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Abstract

Associative learning–forming links between co-occurring items–is fundamental
to human cognition, reshaping internal representations in complex ways. Testing
hypotheses on how representational changes occur in biological systems is chal-
lenging, but large language models (LLMs) offer a scalable alternative. Building
on LLMs’ in-context learning, we adapt a cognitive neuroscience associative learn-
ing paradigm and investigate how representations evolve across six models. Our
initial findings reveal a non-monotonic pattern consistent with the Non-Monotonic
Plasticity Hypothesis, with moderately similar items differentiating after learning.
Leveraging the controllability of LLMs, we further show that this differentiation is
modulated by the overlap of associated items with the broader vocabulary–a factor
we term vocabulary interference, capturing how new associations compete with
prior knowledge. We find that higher vocabulary interference amplifies differentia-
tion, suggesting that representational change is influenced by both item similarity
and global competition. Our findings position LLMs not only as powerful tools
for studying representational dynamics in human-like learning systems, but also as
accessible and general computational models for generating new hypotheses about
the principles underlying memory reorganization in the brain.

1 Introduction

Associative learning—the ability to form links between co-occurring items—is a fundamental mecha-
nism that shapes how experiences are encoded, stored, and retrieved. Its ubiquity across species and
cognitive domains has made it a core component in theories of intelligence [47, 10]. As associations
are learned, the brain’s internal representations of the associated items are altered—a reflection of the
neural plasticity that strengthens some connections while weakening others [34, 36, 12]. A central
and ongoing question in cognitive neuroscience is how this self-supervised learning process reshapes
representational structure, and why [46, 11, 7]. There are three main hypotheses for how associa-
tive learning alters representations in biological systems (see Figure 1A). The classical Hebbian
learning rule, where repeatedly associating items strengthens connections between shared features,
predicts more integrated representations across learned items [34]. However, alternative theories
suggest the opposite. For example, the hippocampus often exhibits pattern separation, where rapidly
learned memories reduce representational overlap to minimize interference and facilitate retrieval
[27, 2, 54, 11]. These opposing dynamics—integration versus differentiation—are both observed in
human studies [7, 11, 38, 35]. To reconcile this, the Non-Monotonic Plasticity Hypothesis (NMPH)
posits that representational change follows a U-shaped curve: highly similar or dissimilar items tend
to integrate or remain stable, while moderately similar pairs differentiate [34].

Fully testing these hypotheses in biological systems is inherently difficult [46, 33]. A major challenge
lies in precisely controlling the similarity between items before learning, a prerequisite for detecting
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Figure 1: (A) Hypotheses about representational changes in humans. Competing theories propose
different patterns of representational change as a function of pair similarity before learning: Hebbian
learning predicts integration, pattern separation predicts differentiation, and the Non-Monotonic
Plasticity Hypothesis (NMPH) predicts a U-shaped curve, with high differentiation at moderate
similarity levels prior to learning. (B) Schematic of our adapted associative learning task for LLMs.
Given repeated in-context presentations of a token pair (x, y), the LLM learns to predict the associated
token y. We measure representational change by computing the difference in cosine similarity between
hidden representations of the pair before and after learning. This setup, inspired by a neuroscience
paradigm [46], enables us to examine whether similar dynamics of representational restructuring
emerge during in-context learning. (C) Illustration of low and high vocabulary interference in the
model’s representational space. In the low vocabulary interference case (top, yellow), the target token
y is dissimilar to most other tokens, resulting in less competition from alternative completions when
paired with x. In the high interference case (bottom, orange), the pairing xy is highly similar to many
other possible token pairings, increasing competition and representational pressure to differentiate
the learned association from potential distractors during learning.

non-monotonic representational change. Moreover, the similarity level at which differentiation
emerges can vary across tasks and stimuli, making it unclear in advance which mid-similarity range
will reveal the effect. Capturing this requires dense sampling across the similarity spectrum, further
increasing experimental complexity. Finally, human studies are constrained by cost, participant
fatigue, and measurement noise, which limit the number of trials that can feasibly be conducted.
To address these challenges, we propose using large language models (LLMs) as model organisms
for human associative learning. LLMs exhibit complex cognitive behaviors [3, 48, 49], including
in-context learning (ICL) [53, 19, 9]—rapidly forming associations without weight updates—making
them promising for studying memory dynamics. Unlike hand-crafted neural models designed
to replicate specific representational dynamics [33], LLMs offer a scalable, natural testbed for
uncovering emergent cognitive phenomena.

In this work, we investigate whether LLMs exhibit representational dynamics akin to human as-
sociative learning, and whether they can help disambiguate between competing hypotheses for
representational change. We adapt a cognitive neuroscience associative learning paradigm to the ICL
setting (Figure 1B), repeatedly presenting token pairs in-context to induce associations. By system-
atically controlling the similarity of token pairs before learning, we evaluate how representations
evolve through learning across six open source, well-performing LLMs. Our initial findings support
the NMPH: moderately similar pairs significantly differentiate after learning, mirroring human-like
patterns of representational change.
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We then leverage the controllability of LLMs to examine a factor that may further contribute to
representational change, and is difficult to isolate in biological systems: the similarity between each
paired item and the model’s prior knowledge. Because LLMs are pre-trained to encode co-occurrence
statistics across the entire vocabulary–similar to how humans learn from experience–new associations
introduced during ICL must compete with pre-existing patterns. We refer to this competitive influence
as vocabulary interference (Figure 1C): the extent to which prior knowledge shapes the learning
of new associations. In such cases, learning the correct pairing may require greater changes in the
model’s representations to distinguish it from competing associations. This phenomenon has long
been studied in neuroscience and psychology [32, 6, 42], but empirical measurement in the brain is
limited by the inability to access all competing representations. By contrast, LLMs provide a tractable
framework for quantifying this effect, as the entire distribution of token relationships is explicitly
known. We find that, while pair similarity remains a key determinant of representational change,
vocabulary interference modulates this effect–greater interference leads to stronger differentiation.
These results position LLMs as valuable tools for probing associative learning principles, offering
new insights into how both local and global associative structures influence representational change.

2 Related work

2.1 Representational change in human memory and neural models

Integration vs. differentiation in the brain. Associative memory-related representational changes
are primarily studied in the hippocampus, a region of the brain thought to be most influential in
memory-driven behavior [41, 25]. Both integration and differentiation of memory representations
have been shown to support distinct behavioral functions: differentiation reduces interference and
enhances specific recall, while integration promotes generalization and inference across related
experiences [46, 4]. These functional roles are thought to map onto distinct hippocampal subre-
gions, e.g., integration with CA1 and differentiation with the dentate gyrus (DG), which shows
sparse activity linked to orthogonalized representations [46, 51]. How LLMs align with this integra-
tion–differentiation spectrum remains an open question.

Non-monotonic plasticity in the brain. The NMPH [34] proposes that representational change
depends non-linearly on pair similarity before learning: moderate similarity leads to differentiation,
whereas low or high similarity leads to stability or integration. Recently, Wammes et al. [46] provided
empirical results supporting this effect by parametrically manipulating the visual similarity of
object pairs using CNN-derived [17, 40] representations. Participants arranged images by perceived
similarity, and the resulting pairwise distances correlated with model-based similarity estimates.
During fMRI, repeated exposure to these pairs revealed significant differentiation for mid-similarity
pairs in the DG, but not for other parts of the hippocampus.

Computational accounts. To account for this variety of findings, [33] proposed an unsupervised
recurrent network model in which partial activation of competing memories during retrieval induces
representational differentiation, a dynamic linked to retrieval-induced forgetting and inhibitory
oscillations [24]. While such models are an important step towards a computational account, they
rely on hand-crafted inputs and necessitate simplified settings, limiting scalability and behavioral
richness. Our work complements prior computational efforts by investigating whether non-monotonic
differentiation, previously observed in biological memory systems, emerges naturally in large-scale,
general-purpose LLMs trained on real-world data–without an explicit separated memory system.

2.2 Associative learning and in-context dynamics in LLMs

LLMs are increasingly studied as systems capable of associative learning, rapidly forming token-level
associations directly within the input context [3]. Recent work shows that LLMs can form stable
in-context associations that shape future predictions [19, 53], exhibiting behaviors consistent with
retrieval, interference, and generalization [1, 45, 15]. These findings suggest that transformer-based
architectures support implicit memory mechanisms across attention and MLP layers, despite the
absence of explicit memory modules. Several studies have also analyzed ICL as a form of fast
memory encoding or Bayesian inference [5, 15], and have shown that attention layers can support
long-range retrieval, stability, and structured generalization [50, 31, 14, 26, 3, 45, 19]. ICL has been
interpreted through the lens of both episodic memory, as models retrieve and reuse information based
on context, and working memory, given that representations are updated dynamically across tokens
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without any parameter changes [53, 19, 30, 21, 5, 22, 13, 8]. We build on this line of research by
shifting focus from behavioral outcomes to the internal representational dynamics underlying learning
through repeated associative exposure.

3 Methods

3.1 Associative learning paradigm

Our associative learning paradigm is inspired by the experimental design of [46], who investigated
how repeated exposure to stimulus pairs with different visual similarity leads to non-monotonic
changes in human hippocampal representations. We adapt this paradigm to LLMs using ICL [3, 5],
replacing visual stimuli with token pairs and modeling learning through repeated token co-occurrence.
This setup allows us to examine whether similar non-monotonic representational shifts occur in
LLMs, and to what extent LLM behavior parallels hippocampal learning dynamics. We focus on ICL
rather than fine-tuning, as LLMs are known to exhibit emergent associative abilities [48, 3, 9], making
ICL a natural fit for studying association tasks. It also provides a controlled and biologically plausible
analogy to how humans acquire associations [53, 19], while enabling consistent comparisons across
models of different sizes and architectures without introducing task-specific fine-tuning.

Formally, we present the token pair (x, y) a total of r→ 1 times, followed by one final presentation of
x alone as a cue for predicting its paired token y. Given the input sequence

s = [x1, y1, x2, y2, . . . , xr→1, yr→1, xr], (1)

the model’s goal is to generate a prediction of the associated paired token, y. By default, we restrict the
number of repetitions such that the total sequence length remains within each model’s m maximum
context length (Lm

max) or the limits imposed by available GPU memory (Lmem ↑ 40k tokens), i.e.,
Lm = min(Lm

max, Lmem). In our setup, the sequence length is Ls ↑ (2 ↓ r)→ 1.

We predict that the LLM’s representations of these tokens will change through the course of ICL,
a phenomenon observed in prior studies analyzing ICL tasks [29, 52, 9]. This prediction also
aligns with findings from neuroscience, where repeated co-occurrence of stimuli is known to drive
representational change in the hippocampus [34, 37].

(Pair) Representational change. For a given model m ↔ M, where M is the set of LLM models
under study, we extract the hidden representations of a token x at the last layer of the model,
hm
x . We chose to examine the last hidden layer to more effectively control for representations that

directly affect model behavior on the ICL task 1. This choice also aligns with a sensory-information
processing hierarchy in which the hippocampus sits at the top of the memory stream [28, 20]. (Pair)
Representational change across ICL is then defined as the difference in cosine similarity between
representations at repetition r and the first occurrence of the pair:

!Sm
r = cos(hm

xr
,hm

yr
)→ cos(hm

x1
,hm

y1
), (2)

where the hidden representation is conditioned on the whole sequence up until that point, e.g.,
hm
xr

= hm(xr | x1, y1, . . . , xr→1, yr→1). Note that our ICL paradigm means that the first occurrence
of y is always conditioned on x, hm

y1
= hm(y1 | x1). This design mirrors human associative learning

paradigms, where pairs are presented sequentially [46]. Throughout the work, we refer to the hidden
states from the first occurrence (hx1 ,hy1) as the representations obtained before learning occurs.

Token similarity groups. To examine whether LLMs exhibit representational dynamics consistent
with those observed in humans, we sample token pairs across the similarity continuum. More
specifically, we sampled evenly along the cosine similarity axis, defining 17 groups g that fall within
the interval [0.1, 0.95). Each group is defined by a window [ωmin, ωmax) that spans 0.05 cosine
similarity. The token pairs within each group are chosen such that their representational similarity
before learning cos(hm

x1
,hm

y1
) lies within the group interval [ωgmin, ω

g
max).

Details on our procedure to find these token pairs are given in the section below. We find 12 token
pairs in each group to form a set for each model, Pm. The token pair sets for each model are
constructed independently due to differences in their vocabulary size and tokenization.

1Preliminary results for the other layers are shown in Appendix D.
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3.2 Optimized search for pairs of tokens

To systematically find tokens whose pair similarity before learning falls within a given interval,
we employ an efficient way for searching the large vocabulary space (between 10k2-72k2 tokens,
depending on the model). Inspired by recent work on prompt and input optimization [55, 39], we
follow a two-step approximation strategy to identify suitable pairs. The Greedy Coordinate Gradient
(GCG) algorithm [55], originally developed for optimizing sequences in adversarial settings (e.g.,
minimizing next-token likelihood), provides a framework for iteratively refining a sequence by
making targeted, gradient-informed edits to individual tokens. We repurpose the GCG method to
minimize a loss defined over the cosine similarity of internal representations.

We start with a duplicate token pair (x, x) with the goal of finding a pair (x, y) that falls within the
target cosine similarity range [ωmin, ωmax). We fix the first x token, and iteratively replace the second
token of this sequence by using gradient signals (without updating the model) to identify vocabulary
items that would bring the pair’s cosine similarity closer to the target range. We select replacements
from the top-k candidates that reduce the loss the most, repeating the process until the similarity falls
within the desired range or a maximum number of steps is hit. This approach efficiently guides token
selection in a controlled, representation-aware way, enabling the construction of token pairs with
precise similarity properties. More information on this algorithm can be found in Appendix A.

3.3 Estimating vocabulary interference

To estimate how a given pair (x, y) relates to the broader LLM vocabulary space, we fix x and sample
each alternative token t from a representative subset of the vocabulary, Ṽm

↗ V
m. We then compute

the similarity between the representation of the correctly associated token y and each alternative
token t ↔ Ṽ

m, conditioned on x’s presentation in context. This provides an estimate of how much y,
when associated with x, competes with other pair completions in the vocabulary space, capturing
the degree of the pair’s vocabulary interference in the model’s representational space. Due to the
computational cost of exhaustively computing all possible pairwise combinations, we randomly
sample 1, 000 tokens from V

m to form the representative subset Ṽm, resulting in 1 million pairwise
combinations.

Concretely, for each pair (x, t) we extract its pair representation before learning, yielding the set
H

m
t = {hm

t1 | ↘t ↔ Ṽ
m
}. We then compare the representation of the pair (x, y) before learning to

each alternative pair,

S
Ṽm

y = {cos(hm
y1
,hm

t1 ) ↘h
m
t1 ↔ H

m
t }. (3)

We can interpret S Ṽm

y as a distribution showing how much interference the pair (x, y) receives from
all competing associations (x, t) with t ↔ Ṽ

m. We define the vocabulary interference score for each
(x, y) as the median of the set S Ṽm

y .

All of the above has been described for a single token pair (x, y). The analysis shown in Figure 3a
depicts results for token pairs drawn from the original stimulus set described above, Pm, optimized
solely for token pair similarity before learning. We then extend the original set of (x, y) pairs, from
P

m, to uniformly sample from the joint distribution of before-learning pair similarity and vocabulary
interference (Figure 3b). That is, we use the ≃ 1 million token pairs from our sub-sampled vocabulary
Ṽ
m to yield a larger set Qm. We aimed to find at least 10 pairs per similarity group g and vocabulary

interference group (details in Appendix A).

3.4 Experimental setup

We analyze six recent open-source base LLMs: Llama2-7b, Llama3.1-8b, Llama3.2-1b, Llama3.2-3b,
Gemma2-9b, and Mistral-7b [44, 16, 43, 18]. These models were selected for their recency, open
availability, and relatively small size within their respective families, providing a balance between
computational efficiency and architectural representativeness. All experiments were performed on
internal compute clusters, using two NVIDIA H100 PCIe GPUs with ↑ 80GB GPU memory per
device. The computation of the experiments took a total of ↑ 15 days.
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4 Results

4.1 LLMs exhibit structured, multi-phase learning dynamics

As expected, LLMs are able to complete the in-context associative learning task with high accuracy
(between 90→ 100%), though the number of repetitions required to reach peak accuracy varies across
models. Figure 2a shows how overall prediction accuracy evolves as a function of the number of
repetitions. We identified three distinct phases of learning–Encoding, Consolidation, and Forgetting–
and we observed that their duration varied across models. To enable direct comparison across models,
we normalized the number of repetitions in each phase by aligning phase boundaries: repetitions
within each phase were linearly rescaled to fixed intervals (0→1 for Encoding, 1→2 for Consolidation,
and 2→ 3 for Forgetting). This normalization preserves each model’s internal dynamics while making
phase-aligned trends directly comparable across models. The accuracy curves per model are provided
in Appendix B.2.

• Encoding phase (blue): This phase corresponds to the initial stage of learning, defined by a
steep increase in accuracy as the model is repeatedly exposed to the token pair. We define
this phase as the period during which accuracy continues to rise by more than 3% between
consecutive repetitions, until the model reaches at least 97% of its peak performance.

• Consolidation phase (red): This phase reflects a stable performance regime, where the model
has largely acquired the association and maintains high accuracy over repetitions. Accuracy
remains within ±3% of the peak, indicating that learning has plateaued and performance is
stabilized.

• Forgetting phase (green): Surprisingly, in some models, accuracy begins to decline even
though the number of repetitions remains within the model’s maximum context window
(Ls < Lm

max). We define the forgetting phase as the point where accuracy drops by more
than 3% relative to the average of the two prior repetitions, marking the emergence of
performance degradation.

While all models exhibited the Encoding and Consolidation phases, only two models (Llama2-7b and
Mistral-7b) showed a forgetting phase. For Llama2-7b, forgetting begins relatively early (r = 40),
whereas for Mistral-7b it emerges much later (r = 3, 000). We speculate that the delayed forgetting
in Mistral-7b may be related to its use of a sliding window attention (SWA). For Llama2-7b, we
present preliminary analyses in Appendix B.4, but the underlying cause of early forgetting is not yet
well understood. More broadly, it remains unclear how to predict if, and when, forgetting will occur.
We leave this question to future work. Overall, these results demonstrate that LLMs can effectively
acquire associations and maintain them for a sustained period before eventual degradation.

4.2 Moderately similar pairs significantly differentiate during consolidation

We next investigate how the representations of successfully associated token pairs evolve during
learning, specifically focusing on identifying when integration or differentiation occurs. Figure 2b
shows how the representational similarity between token pairs changes as a function of their similarity
before learning across different phases of learning. We aggregate representational change values
!S by collapsing across models and token pairs within each similarity group g and learning phase,
and report the mean and standard error of the resulting values. To test for differentiation, we
performed one-sided paired t-tests for each similarity group and learning phase, testing whether
pair similarity after learning was significantly lower than pairsimilarity before learning. To account
for multiple comparisons across the 17 similarity groups and 3 learning phases, we applied the
Benjamini–Yekutieli (BY) procedure to control the false discovery rate under dependency among
tests. Groups that remain significant after BY correction (p < 0.05) are marked with asterisks.

During the Encoding phase, no significant differentiation is observed across groups that were highly
similar before learning. Instead, models show a consistent increase in pairwise similarity for low- to
mid-similarity pairs (between 0.1–0.6), reflecting early-stage representational integration: repeated
co-occurrence leads these tokens to move closer together in representation space, supporting initial
association formation. In contrast, mid- to high-similarity pairs (0.65–0.95) exhibit little to no
representational change at this stage.
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Figure 2: Accuracy and representational changes during learning. (a) Models generally show three
phases of learning: encoding, where accuracy steeply increases; consolidation, where accuracy
stabilizes; and forgetting, where accuracy declines. To compare across models with different phase
lengths, the x-axis is normalized: repetitions within each phase are linearly scaled to fixed intervals
(0 → 1 for encoding, 1 → 2 for consolidation, 2 → 3 for forgetting), allowing phase-aligned trends
to be visualized despite variability in learning dynamics. (b) The U-shaped differentiation pattern,
characteristic of the Non-Monotonic Plasticity Hypothesis, is observed only during consolidation
(red). Asterisks (↓) indicate groups that remain significant after Benjamini–Yekutieli correction for
multiple comparisons across similarity groups and phases (p < 0.05).

During the Consolidation phase, a striking effect emerges for pairs that were moderately similar before
learning (0.55→ 0.75): these groups exhibit a significant decrease in pairwise similarity during this
phase of learning. This produces a clear U-shaped pattern in representational change–consistent with
predictions from the NMPH [34, 46]. Notably, this effect coincides with the stabilization of model
performance, suggesting that LLMs undergo structured reorganization of internal representations to
maintain high task accuracy. Otherwise, we find that lower similarity pairs still exhibit integration,
although to a lesser extent than during Encoding. Higher similarity groups remain largely unchanged,
suggesting that their representational similarity is relatively stable across the first two learning phases.

During the Forgetting phase, the previously observed non-monotonic pattern disappears, and mid-
similarity pairs no longer exhibit significant differentiation. Surprisingly, this is the only phase in
which groups that were highly similar before learning show a notable change in their representational
structure, displaying clear signs of differentiation relative to their before-learning similarity. Low-
similarity pairs, by contrast, undergo even stronger integration than during the Encoding phase. This
results in a mild, approximately linear trend in representational change as a function of similarity
before learning—resembling the general trend of Encoding, but with greater integration at low
similarity and stronger differentiation at high similarity. This trend indicates a loss of structured
representational updates, aligning with the observed decline in accuracy. Further results of the
evolution of these changes are presented in Appendix B.3.

Taken together, our findings show that LLMs exhibit structured representational dynamics consistent
with the NMPH. Interestingly, this non-monotonic pattern is present only during the Consolidation
phase, when behavioral performance is stably high, but absent during the Encoding and Forgetting—
phases marked by behavioral instability and less structured representational change. Importantly,
unlike prior computational models explicitly designed to produce U-shaped dynamics [33], the
LLMs that exhibit this non-monotonic effect are general-purpose, pretrained models that were not
architecturally constrained or fine-tuned to exhibit such behavior.

4.3 Pair similarity drives representation change, modulated by vocabulary interference

During the Consolidation phase—when models exhibited stable maintenance of learned associations—
we observed a non-monotonic pattern of representational change as a function of pairwise similarity
before learning: low-similarity pairs (up to ↑ 0.5) integrated, mid-similarity pairs (0.55–0.75)
differentiated, and high-similarity pairs (> 0.75) showed little to no representational change, aligning
best with the NMPH. Building on this analysis, we next examine an additional factor that may
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contribute to this pattern and is difficult to isolate in biological systems: the similarity between each
paired item and the model’s prior knowledge. Because LLMs are pre-trained to encode co-occurrence
statistics across the entire vocabulary, as humans are thought to do through learning, new associations
introduced during ICL must compete with pre-existing patterns. We expect that this competition—
what we refer to as vocabulary interference—influences representational change: greater interference
(i.e., higher similarity to other items in the vocabulary space) should impose stronger pressure for
differentiation to support successful learning.

We thus extend the representational similarity change analysis from Section 4.2 by systematically
examining these changes across different levels of vocabulary interference. Specifically, using our
original token pairs (x, y) in P

m, we estimate their vocabulary interference with respect to alternative
tokens in the set Ṽm (see Section 3.3). To facilitate comparison across conditions, we categorize
pairs into three equally sized groups based on their vocabulary interference scores: Low, Mid, and
High (see Appendix A.4 for details).

Figure 3a shows how vocabulary interference modulates representational change, with the pattern of
this effect varying depending on the pairs’ similarity before learning. For low-similarity pairs (up
to 0.5 → 0.6), we observe consistent integration at all levels of vocabulary interference. For mid-
similarity pairs (0.6→ 0.7), differentiation emerges as the primary driver across interference levels.
High-similarity pairs (above 0.7), however, display high variability and heterogeneous effects: lower
interference tends to promote integration, whereas higher interference tends to yield differentiation.
This heterogeneity may help explain the apparent U-shaped pattern in our earlier analysis: while
low- and mid-similarity pairs exhibit seemingly consistent behavior across interference levels, the
variability among high-similarity pairs can mask these opposing trends when averaged, leading to an
apparent lack of representational change.

Sampling the full spectrum of vocabulary interference. These findings suggest an interaction
between pairwise similarity and vocabulary interference, particularly in the high-similarity regime.
To more directly test this interaction, we next control for both factors simultaneously by examining
token pairs that span the full joint distribution of pairwise similarity and vocabulary interference
(see Section 3.3 and Appendix A for details). To do this, we form an extended set of (x, y) tokens
pairs, Qm, by sampling additional token pairs uniformly across vocabulary interference values. Our
approach ensured a minimum of 10 representative pairs per model, similarity group and vocabulary
interference level.

Figure 3b shows the results under this controlled sampling regime, where both pair similarity and
vocabulary interference are explicitly balanced. As before, we observe a consistent pattern of
integration for low-similarity pairs (up to 0.5→0.6). Yet now we observe a robust effect of vocabulary
interference: the curves for higher interference levels lie below those for lower interference, indicating
reduced, but still present, integration. For mid-similarity pairs, we observe differentiation across
all levels of vocabulary interference, and the effect is stronger under higher interference. For high-
similarity pairs, we observe a distinct trend: under moderate or high interference, these pairs clearly
differentiate, while under low interference, their representations remain relatively stable.

Importantly, across all similarity levels, we observe that higher vocabulary interference is consistently
associated with reduced pairwise similarity after learning. One possible explanation for this pattern is
that increased interference introduces greater competitive pressure: to reliably associate with each
other, paired tokens must distinguish themselves from many similar distractors in the vocabulary. This
competition drives the model to reshape representations not only to encode the intended association,
but also to preserve distinctiveness within the broader context of the model’s prior knowledge.

Representational change through the lens of vocabulary interference. The idea that increased
interference introduces competitive pressure provides a useful lens for interpreting the distinct
behaviors observed across different pair similarity regimes. For instance, one possible interpretation
of the robust integration observed among low-similarity pairs, regardless of vocabulary interference
level, is that their representational distance before learning provides greater flexibility for alignment.
Because these pairs begin far apart in the representation space, the model can bring them closer (i.e.,
integrate) without risking excessive overlap that would compromise their individual distinguishability.
In this regime, vocabulary interference may impose relatively weak constraints, since the updated
representations remain unlikely to be confounded with each other—thus, integration can proceed even

8



0.1-0.2
0.2-0.3

0.3-0.4
0.4-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-0.9

0.9-1.0

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Vocabulary Interference Level
Low
Mid
High

Pair Similarity Before Learning

Δ 
Pa

ir 
Si

m
ila

rit
y 

Af
te

r 
Le

ar
ni

ng

(a) Control for pair similarity.

0.1-0.2
0.2-0.3

0.3-0.4
0.4-0.5

0.5-0.6
0.6-0.7

0.7-0.8
0.8-0.9

0.9-1.0

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Vocabulary Interference Level
Low
Mid
High

Pair Similarity Before Learning

Δ 
Pa

ir 
Si

m
ila

rit
y 

Af
te

r 
Le

ar
ni

ng

(b) Control for pair similarity & vocab. interference.

Figure 3: Effect of vocabulary interference on representational change across different pair similarity
groups. (a) Results for our original token pairs, sampled uniformly with respect to pair similarity
before learning (x-axis). We observe a consistent integration trend for low-similarity pairs and a shift
toward differentiation for mid-similarity pairs (0.6–0.7). High-similarity pairs show more heteroge-
neous behavior, where low interference tends to promote integration, while higher interference tends
to yield differentiation. (b) Results for extended token pairs, sampled uniformly over pair similarity
before learning (x-axis) and vocabulary interference level (colored lines). Higher vocabulary interfer-
ence consistently leads to more differentiation, especially for mid- and high-similarity groups. These
results suggest that while pairwise similarity is a key driver of differentiation, vocabulary interference
amplifies this effect.

under high interference. We speculate that this relative freedom from competition allows the model to
prioritize pairwise association without necessitating broader adjustments across the vocabulary space.

At the other extreme, high-similarity pairs begin very close in representational space. Under high
vocabulary interference, the model must reshape these representations to prevent confusion with
nearby distractors—yet increasing their similarity further could risk entanglement. As a result,
differentiation becomes the most likely direction of change, consistent with the strong divergence
we observe under high vocabulary interference. In contrast, when vocabulary interference is low,
these pairs are already well isolated from the rest of the vocabulary, reducing the pressure for
representational differentiation.

Mid-similarity pairs lie in a “sensitive zone” where both factors—pairwise similarity and vocabu-
lary interference—interact most dynamically. They are similar enough to each other that further
integration might risk overlap to the point of risking their distinction, yet not similar enough to be
clearly associated. Consequently, differentiation appears to be the primary orientation of change
for mid-similarity pairs, intensifying with greater vocabulary interference to preserve separability.
This suggests that mid-similarity pairs are especially vulnerable to representational reorganization,
regardless of the specific interference level.

Therefore, the observed U-shaped curve in the previous analysis (Section 4.2) may be partially
explained by a nuanced interaction between pairwise similarity and vocabulary interference. In the
high-similarity range, pairs fragment into opposing behaviors across levels of vocabulary interference,
so that averaging over these heterogeneous effects can mask systematic representational change and
create an illusion of stability.

5 Discussion

In this paper, we investigate whether LLMs exhibit representational changes during associative
learning that mirror those observed in humans, and whether they help disambiguate between com-
peting hypotheses about how such changes unfold. Controlling for within pair similarity, we found
a non-monotonic pattern of representational change, consistent with the NMPH. This pattern is
observed when models stabilize their learning, in what we name the Consolidation phase. The fact
that LLMs naturally give rise to these dynamics—without any task-specific optimization, and under
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conditions aligned with how humans learn associations—suggests that they may serve as emergent,
flexible model organisms for studying memory reorganization in the brain.

We then leverage the controllability of LLMs to investigate how the vocabulary interference–defined
as the interaction between token pair similarity and their similarity to the broader vocabulary–affects
representational changes. By introducing this second dimension of analysis, we show that repre-
sentational dynamics cannot be fully understood in terms of pairwise similarity alone. Instead,
representational change reflects a joint influence of pairwise similarity and global contextual com-
petition within the model’s prior knowledge. This interaction is especially evident at the extremes:
low-similarity pairs integrate consistently across all interference levels, suggesting greater flexibility
due to low risk of confusion. High-similarity pairs, by contrast, are already near each other in repre-
sentational space and face stronger constraints: when vocabulary interference is high, differentiation
is the only viable way to maintain separability, whereas under low interference, they remain relatively
insulated from external competition, reducing the pressure for further differentiation. Mid-similarity
pairs appear to lie at a critical boundary–similar enough to risk confusion, yet not similar enough to
form a strong association–making them particularly susceptible to interference-induced differenti-
ation. This sensitivity highlights how small shifts in competitive context can alter the direction of
representational change.

Our results show that, while pairwise similarity is a key determinant of representational change,
vocabulary interference modulates this effect. This interaction between pair association strength and
global contextual interference reveals richer representational dynamic than previously assumed, and
may help reconcile diverging findings in the neuroscience literature, where such vocabulary-level
interference remains difficult to assess due to limited access to global representational structure.
Critically, this kind of fine-grained, systematic manipulation is difficult to achieve in human studies,
where both pairwise similarity and global interference are hard to quantify and control. LLMs thus
serve as powerful computational model organisms for testing hypotheses about memory dynamics,
offering a level of scale and experimental control that is rarely achievable in biological systems.

Limitations and future work. Although LLMs differ mechanistically from human brains, they
provide a valuable model system for generating and testing hypotheses that are otherwise challenging
to examine in biological systems. Nonetheless, they are not direct stand-ins for humans, and empirical
validation in human studies remains essential.

Our operationalization of vocabulary interference also has limitations. By design, it estimates
representational competition from the broader vocabulary space, but this approximation may not fully
capture the dynamics of interference in human memory, where similarity is shaped by experience,
attention, and context. Furthermore, our measure relies on sampled subsets of tokens for tractability,
which may underrepresent the true structure of competition across the full vocabulary.

Methodologically, our analysis focused on the final hidden layer of each model, with only preliminary
exploration of earlier layers. Future work could systematically track representational change across
layers, providing an extended analysis of how interference and differentiation emerge throughout the
model hierarchy. Additionally, to ensure coverage across a wide range of similarity values, we used
token pairs defined by geometric properties rather than naturalistic semantics. A preliminary analysis
on WordNet stimuli is provided in Appendix C, with further investigation left for future work.

Finally, this work focuses on hypotheses tested in mature adult brains, leaving open the question
of how these processes emerge during development. Promising future directions include exploring
curriculum-learning setups that more closely mirror human developmental trajectories, analyzing at-
tention patterns to identify circuit-level mechanisms involved in resolving interference, and examining
how representational dynamics evolve during fine-tuning and longer-term learning.

10



Acknowledgments

This work was partially funded by the German Research Foundation (DFG) - DFG Research Unit
FOR 5368 and by the Max Planck Institute for Software Systems graduate center. We thank Omer
Moussa and Mathis Pink for providing valuable feedback on earlier versions of this work.

References
[1] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What

learning algorithm is in-context learning? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

[2] Tarek Amer and Lila Davachi. Extra-hippocampal contributions to pattern separation. eLife,
12:e82250, March 2023.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] Iva K. Brunec, Jessica Robin, Rosanna K. Olsen, Morris Moscovitch, and Morgan D. Barense.
Integration and differentiation of hippocampal memory traces. Neuroscience & Biobehavioral
Reviews, 118:196–208, November 2020.

[5] Thomas F Burns, Tomoki Fukai, and Christopher J Earls. Associative memory inspires im-
provements for in-context learning using a novel attention residual stream architecture. arXiv
preprint arXiv:2412.15113, 2024.

[6] Jeremy B Caplan, Mayank Rehani, and Jennifer C Andrews. Associations compete directly in
memory. Quarterly Journal of Experimental Psychology, 67(5):955–978, 2014.

[7] Avi JH Chanales, Alexandra G Tremblay-McGaw, Maxwell L Drascher, and Brice A Kuhl.
Adaptive repulsion of long-term memory representations is triggered by event similarity. Psy-
chological science, 32(5):705–720, 2021.

[8] Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
gpt learn in-context? language models implicitly perform gradient descent as meta-optimizers.
arXiv preprint arXiv:2212.10559, 2022.

[9] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing
Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint
arXiv:2301.00234, 2022.

[10] Athanasios Drigas and Eleni Mitsea. The 8 pillars of metacognition. International Journal of
Emerging Technologies in Learning (iJET), 15(21):162–178, 2020.

[11] Serra E Favila, Avi JH Chanales, and Brice A Kuhl. Experience-dependent hippocampal pattern
differentiation prevents interference during subsequent learning. Nature communications,
7(1):11066, 2016.

[12] Serra E Favila, Hongmi Lee, and Brice A Kuhl. Transforming the concept of memory reactiva-
tion. Trends in neurosciences, 43(12):939–950, 2020.

[13] Zafeirios Fountas, Martin A Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos
Lampouras, Haitham Bou-Ammar, and Jun Wang. Human-like episodic memory for infinite
context llms. arXiv preprint arXiv:2407.09450, 2024.

[14] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

[15] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. arXiv preprint arXiv:2012.14913, 2020.

11



[16] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[18] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[19] Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Do llms dream of
elephants (when told not to)? latent concept association and associative memory in transformers.
Advances in Neural Information Processing Systems, 37:67712–67757, 2024.

[20] Pierre Lavenex and David G Amaral. Hippocampal-neocortical interaction: A hierarchy of
associativity. Hippocampus, 10(4):420–430, 2000.

[21] Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit,
Felix Yu, and Sanjiv Kumar. Large language models with controllable working memory. arXiv
preprint arXiv:2211.05110, 2022.

[22] Ji-An Li, Corey Zhou, Marcus Benna, and Marcelo G Mattar. Linking in-context learning in
transformers to human episodic memory. Advances in Neural Information Processing Systems,
37:6180–6212, 2024.

[23] Jorge Nocedal and Stephen J Wright. Line Search Methods. In Numerical Optimization, pages
30–65. Springer New York, 2006.

[24] Kenneth A Norman, Ehren Newman, Greg Detre, and Sean Polyn. How inhibitory oscillations
can train neural networks and punish competitors. Neural computation, 18(7):1577–1610, 2006.

[25] John O’keefe and Lynn Nadel. Précis of o’keefe & nadel’s the hippocampus as a cognitive map.
Behavioral and Brain Sciences, 2(4):487–494, 1979.

[26] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

[27] Randall C. O’Reilly and James L. McClelland. Hippocampal conjunctive encoding, storage,
and recall: Avoiding a trade-off. Hippocampus, 4(6):661–682, December 1994.

[28] Randall C O’Reilly, Yuko Munakata, Michael J Frank, Thomas E Hazy, et al. Computational
cognitive neuroscience. 2012.

[29] Core Francisco Park, Andrew Lee, Ekdeep Singh Lubana, Yongyi Yang, Maya Okawa, Kento
Nishi, Martin Wattenberg, and Hidenori Tanaka. Iclr: In-context learning of representations. In
The Thirteenth International Conference on Learning Representations, 2025.

[30] Core Francisco Park, Ekdeep Singh Lubana, Itamar Pres, and Hidenori Tanaka. Competition
dynamics shape algorithmic phases of in-context learning. arXiv preprint arXiv:2412.01003,
2024.

[31] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

[32] Jeroen G Raaijmakers and Richard M Shiffrin. Search of associative memory. Psychological
review, 88(2):93, 1981.

[33] Victoria JH Ritvo, Alex Nguyen, Nicholas B Turk-Browne, and Kenneth A Norman. A neural
network model of differentiation and integration of competing memories. Elife, 12:RP88608,
2024.

12



[34] Victoria JH Ritvo, Nicholas B Turk-Browne, and Kenneth A Norman. Nonmonotonic plasticity:
how memory retrieval drives learning. Trends in cognitive sciences, 23(9):726–742, 2019.

[35] Anna C Schapiro, Lauren V Kustner, and Nicholas B Turk-Browne. Shaping of object repre-
sentations in the human medial temporal lobe based on temporal regularities. Current biology,
22(17):1622–1627, 2012.

[36] Anna C Schapiro, Nicholas B Turk-Browne, Matthew M Botvinick, and Kenneth A Norman.
Complementary learning systems within the hippocampus: a neural network modelling approach
to reconciling episodic memory with statistical learning. Philosophical Transactions of the
Royal Society B: Biological Sciences, 372(1711):20160049, 2017.

[37] Anna C Schapiro, Nicholas B Turk-Browne, Kenneth A Norman, and Matthew M Botvinick.
Statistical learning of temporal community structure in the hippocampus. Hippocampus,
26(1):3–8, 2016.

[38] Margaret L Schlichting, Jeanette A Mumford, and Alison R Preston. Learning-related represen-
tational changes reveal dissociable integration and separation signatures in the hippocampus
and prefrontal cortex. Nature communications, 6(1):8151, 2015.

[39] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts.
In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages 4222–4235,
Online, November 2020. Association for Computational Linguistics.

[40] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[41] Larry R Squire. Memory and the hippocampus: a synthesis from findings with rats, monkeys,
and humans. Psychological review, 99(2):195, 1992.

[42] Shauna M Stark, Zachariah M Reagh, Michael A Yassa, and Craig EL Stark. What’s in a
context? cautions, limitations, and potential paths forward. Neuroscience letters, 680:77–87,
2018.

[43] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[44] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[45] Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning, pages 35151–35174.
PMLR, 2023.

[46] Jeffrey Wammes, Kenneth A Norman, and Nicholas Turk-Browne. Increasing stimulus similarity
drives nonmonotonic representational change in hippocampus. elife, 11:e68344, 2022.

[47] Edward A Wasserman and Ralph R Miller. What’s elementary about associative learning?
Annual review of psychology, 48(1):573–607, 1997.

[48] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

[49] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

13



[50] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

[51] Michael A Yassa and Craig EL Stark. Pattern separation in the hippocampus. Trends in
neurosciences, 34(10):515–525, 2011.

[52] Safoora Yousefi, Leo Betthauser, Hosein Hasanbeig, Raphaël Millière, and Ida Momenne-
jad. Decoding in-context learning: Neuroscience-inspired analysis of representations in large
language models. arXiv preprint arXiv:2310.00313, 2023.

[53] Jiachen Zhao. In-context exemplars as clues to retrieving from large associative memory. arXiv
preprint arXiv:2311.03498, 2023.

[54] Ewa Zotow, James A. Bisby, and Neil Burgess. Behavioral evidence for pattern separation in
human episodic memory. Learning & Memory, 27(8):301–309, August 2020.

[55] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

14



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and at the end of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15



Justification: Our paper does not involve any proofs or assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: As described in Section 3 and throughout the Appendix, we have provided
detailed descriptions and analyses of the experimental setups for all our investigations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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versions (if applicable).
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6. Experimental setting/details
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results?
Answer: [Yes]
Justification: As detailed in Section 3, we have thoroughly described the experimental setups
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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Justification: We have addressed the broader impacts of our work in Section 5. Additionally,
as our research is primarily an empirical exploration and poses no additional social risks, we
have not included a discussion on potential harmfulness.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use LLM models and they are properly credited in Section 3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

19

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the use of LLM models in Section 3 and in our Appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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