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ABSTRACT

Image-to-video (I2V) generation is gaining increasing attention with its wide application in video
synthesis. Recently, diffusion-based I2V models have achieved remarkable progress given their
novel design on network architecture, cascaded framework, and motion representation. However,
restricted by their noise-to-data generation process, diffusion-based methods inevitably suffer the
difficulty to generate video samples with both appearance consistency and temporal coherence from
an uninformative Gaussian noise, which may limit their synthesis quality. In this work, we present
FrameBridge, taking the given static image as the prior of video target and establishing a tractable
bridge model between them. By formulating I2V synthesis as a frames-to-frames generation task
and modeling it with a data-to-data process, we fully exploit the information in input image and
facilitate the generative model to learn the image animation process. In two popular settings of
training I2V models, namely fine-tuning a pre-trained text-to-video (T2V) model or training from
scratch, we further propose two techniques, SNR-Aligned Fine-tuning (SAF) and neural prior, which
improve the fine-tuning efficiency of diffusion-based T2V models to FrameBridge and the synthesis
quality of bridge-based I2V models respectively. Experiments conducted on WebVid-2M and UCF-
101 demonstrate that: (1) our FrameBridge achieves superior I2V quality in comparison with the
diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171
on UCF-101); (2) our proposed SAF and neural prior effectively enhance the ability of bridge-based
I2V models in the scenarios of fine-tuning and training from scratch. Demo samples can be visited
at: https://framebridgei2v.github.io/.

1 INTRODUCTION

Image-to-video (I2V) generation, commonly referred as image animation, aims at generating consecutive video frames
from a static image (Xing et al., 2023; Ni et al., 2023; Zhang et al., 2024a; Guo et al., 2023; Hu et al., 2022), i.e.,
a frame-to-frames generation task where maintaining appearance consistency and ensuring temporal coherence of
generated video frames are key evaluation criteria (Xing et al., 2023; Zhang et al., 2024a). With the recent progress
in video synthesis (Brooks et al., 2024; Yang et al., 2024; Blattmann et al., 2023; Bao et al., 2024), several diffusion-
based I2V frameworks have been proposed, with novel designs on network architecture (Xing et al., 2023; Zhang
et al., 2024a; Chen et al., 2023b; Ren et al., 2024; Lu et al., 2023), cascaded framework (Jain et al., 2024; Zhang
et al., 2023), and motion representation (Zhang et al., 2024b; Ni et al., 2023). However, although these methods have
demonstrated the potential of diffusion models (Ho et al., 2020; Song et al., 2020) in I2V synthesis, restricted by
their noise-to-data generation process, they inevitably suffer the difficulty to generate video samples required by both
appearance consistency and temporal coherence from uninformative random noise. With the noise-to-data sampling
trajectory which is inherently mismatched with the frame-to-frames synthesis process of I2V task, previous diffusion-
based methods increase the burden of generative models, which may result in limited synthesis quality.

In this work, we present FrameBridge, a novel I2V framework to model the frame-to-frames synthesis process with
recently proposed data-to-data generative framework (Chen et al.; Liu et al., 2023; Chen et al., 2023c). Specifically,
given the input image and video target, we first leverage variational auto-encoder (VAE) based compression network
to transform them into continuous latent representations, and then take their latent representations as boundary dis-
tributions, i.e., prior and target, to establish our data-to-data generative framework. Considering the static image has
already been an informative prior for each of the consecutive frames in video target, we naturally replicate it to obtain
the prior of the whole video clip, constructing the frames-to-frames pairs for the prior-to-target generation process in
FrameBridge. Standing on constructed frames-to-frames pairs, we establish bridge models (Tong et al., 2023; Zhou
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Figure 1: Overview of FrameBridge and diffusion-based I2V models. The sampling process of FrameBridge
(upper) starts from a deterministic data point, while diffusion models (lower) synthesize videos from Gaussian noise.

et al., 2023; Chen et al., 2023c) between them to learn the I2V synthesis with Stochastic Differential Equation (SDE)
based generation process, implicitly modeling the image animation with SDE-based generative models. In comparison
with previous diffusion works, our FrameBridge utilizes given static image as the prior of video target, which is advan-
tageous on preserving the appearance details of input image than conditionally generating video samples from random
noise. Moreover, our frames-to-frames bridge model naturally learns image animation in model training rather than
learning the image-conditioned noise-to-video generation. The improved consistency between generative framework
and I2V task, i.e., data-to-data for frame-to-frames, tends to benefit temporal coherence for I2V synthesis.

In practice, I2V systems usually leverage the potential of a pre-trained diffusion-based text-to-video (T2V)
model (Xing et al., 2023; Chen et al., 2023b; Ma et al., 2024a) with a fine-tuning process, to reduce the require-
ments of image-video data pairs and the computational resources at training stage. Therefore, in the application of
FrameBridge, we aim to efficiently fine-tune a pre-trained diffusion-based T2V model to our proposed bridge-based
I2V model. Toward this target, we propose SNR-Aligned Fine-tuning (SAF), which aligns the two frameworks, i.e.,
diffusion models and bridge models, by adjusting the bridge process. Specifically, we first reparameterize the bridge
process in FrameBridge, enabling the noisy intermediate latents of our frames-to-frames process to be aligned with
the ones in the noise-to-data process of pre-trained diffusion models. Then, we change the timestep to match the
signal-to-noise (SNR) ratio between the input of the bridge model and the pre-trained diffusion model. SAF avoids
the mismatch between the two different generative frameworks at pre-training and fine-tuning stage, and therefore
improves the synthesis quality of FrameBridge when adapting pre-trained T2V diffusion models.

Compared to diffusion models using Gaussian prior, FrameBridge takes static image as prior to improve I2V perfor-
mance. A natural question to our proposed method is if we could further improve the I2V quality with a stronger prior.
We answer this question by further exploiting the prior of our method. Given a static image, we design a one-step
mapping-based network and optimize it with the video target, extracting a neural prior from the image for the video
target. Compared to input image, this neural prior reduces the distance between prior and video target to a greater
extent, and alleviates the burden of generative models further. Although more advanced methods can be leveraged
to extract more informative neural prior, we empirically find that a coarse estimation for video target at the cost of
a single sampling step has already been beneficial to FrameBridge. This further verifies our motivation to present
FrameBridge and shows a novel method to enhance bridge-based I2V models. In this work, our contributions can be
summarized as follows:
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• We propose FrameBridge, making the first attempt to model the frame-to-frames generation task of I2V with
a data-to-data generative framework.

• We present two novel techniques, SAF and neural prior, further improving the performance of FrameBridge
when fine-tuning from pre-trained T2V diffusion models and training from scratch respectively.

• We conduct experiments on two I2V benchmarks by training FrameBridge on WebVid-2M (Bain et al., 2021)
and UCF-101 (Soomro, 2012). FrameBridge fine-tuned with SAF reduces the zero-shot FVD (Unterthiner
et al. (2018); lower is better) from 176 to 83 on MSR-VTT (Xu et al., 2016), and FrameBridge with neural
prior trained from scratch reduces the non-zero-shot FVD from 171 to 122 on UCF-101, highlighting the
superiority of FrameBridge to their diffusion counterparts and the effectiveness of SAF and neural prior.

2 RELATED WORKS

Diffusion-based I2V Generation Diffusion models have recently achieved remarkable progress in I2V synthe-
sis (Blattmann et al., 2023; Chen et al., 2023a; Li et al., 2024). Previous works have explored multi-stage generation
system (Jain et al., 2024; Zhang et al., 2023; Shi et al., 2024) fusion module (Wang et al., 2024; Ren et al., 2024) and
improved network architectures (Wang et al., 2024; Xing et al., 2023; Ma et al., 2024a; Chen et al., 2023b; Ren et al.,
2024), while their generative framework remains the noise-to-data one of diffusion models, which may be inefficient
for I2V synthesis. To improve the uninformative prior, PYoCo (Ge et al., 2023) recently proposes to use correlated
noise for each frame in both training and inference. ConsistI2V (Ren et al., 2024), FreeInit (Wu et al., 2023), and CIL
(Zhao et al., 2024) present training-free strategies to better align the training and inference distribution of diffusion
prior, which is popular in diffusion models (Lin et al., 2024; Podell et al., 2023; Blattmann et al., 2023; Girdhar et al.,
2023). These strategies focus on improving the noise distribution to enhance the quality of synthesized videos, while
they still suffer the restriction of noise-to-data diffusion framework, which may limit their endeavor to utilize the entire
information (e.g., both large-scale features and fine-grained details) contained in the given image. In this work, we
propose a data-to-data framework and utilize deterministic prior rather than Gaussian noise, allowing us to leverage
the clean input image as prior information.

Bridge Models Recently, bridge models (Chen et al.; Tong et al., 2023; Liu et al., 2023; Zhou et al., 2023; Chen et al.,
2023c), which overcome the restriction of Gaussian prior in diffusion models, have gained increasing attention. They
have demonstrated the advantages of data-to-data generation process over the noise-to-data one on image-to-image
translation (Liu et al., 2023; Zhou et al., 2023) and text-to-speech synthesis (Chen et al., 2023c) tasks. In this work,
we make the first attempt to extend bridge models to I2V synthesis and further propose two improving techniques for
bridge models, enabling efficient fine-tuning from diffusion models and stronger prior for video target.

3 BACKGROUND

Problem Formulation I2V aims at generating an video clip v ∈ RL×H×W×3 with a number of L frames from
a static image, e.g., the initial frame vi ∈ RH×W×3 of video clip v. In I2V systems (Xing et al., 2023; Blattmann
et al., 2023), an VAE-based compression network is usually leveraged to first transform the video v into a latent
z ∈ RL×h×w×d in a per-frame manner with a pre-trained image encoder E(v), where h = H

p , w = W
p , p > 1 and

d are the spatial compression ratio and the number of output channels. Then, generative models are designed in this
compressed space to learn the conditional distribution pz(z|zi, c), where zi ∈ Rh×w×d is the compressed latent of the
initial frame vi and c denotes other guidance such as the text prompt (Ma et al., 2024a; Chen et al., 2023b) or the image
class condition (Ni et al., 2023; Zhang et al., 2024b). In sampling, we first synthesize the latent z conditioned on the
latent of given static frame zi, and then decode the video clip with pre-trained VAE decoderD(z). As formulated, I2V
synthesis actually seeks to generate consecutive frames in v from a single frame vi, i.e., a frame-to-frames generation
process where the appearance details of vi should be preserved in generated v and the animation in v should start from
vi and remain temporal coherent.

Diffusion-based I2V Synthesis Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015) have been popularly
leveraged to learn the conditional distribution pz(z|zi, c). These models are composed of two processes. A forward
process gradually converts the video latent p0(z0|zi, c) ≜ pdata(z0|zi, c) to a known prior distribution pT,diff (zT ) ≜

3



156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Figure 2: Visualization for the mean value of marginal distributions. We visualize the decoded mean value of
bridge process and diffusion process. The prior and target of FrameBridge are naturally suitable for I2V synthesis.

pprior,diff (zT ) with a forward SDE (Song et al., 2020):

dzt = f(t)ztdt+ g(t)dw, z0 ∼ pdata(z0|zi, c), (1)

where w is a Wiener process, f : RD × [0, T ] −→ RD is the drift coefficient, and g : [0, T ] −→ R
is the diffusion coefficient. D represents the dimension of data z0. The marginal distribution of zt satis-
fies pt,diff (zt|zi, c) =

∫
z0∼p0(z0|zi,c)

pt,diff (zt|z0)p0(z0|zi, c)dz0. Here pt,diff (zt|z0) = N (αtz0, σ
2
t I), αt =

e
∫ t
0
f(τ)dτ , σ2

t = α2
t

∫ t

0
g(τ)2

α2
τ

dτ (Kingma et al., 2021).

Given the forward process defined by eq. (1), there exists a reverse process with a backward SDE which shares the
same marginal distribution pt,diff (zt|zi, c) (Song et al., 2020):

dzt =
[
f(t)zt − g(t)2∇zt

log pt,diff (zt|zi, c)
]
dt+ g(t)dw̄, zT ∼ pprior,diff (zT ), (2)

where w̄ is a backward Wiener process.

To learn the unknown term in eq. (2), i.e., the score function ∇zt
log pt,diff (zt|zi, c), usually a U-Net (Ronneberger

et al., 2015; Ho et al., 2020) or DiT (Peebles & Xie, 2023; Bao et al., 2023) based neural network is optimized with a
denoising objective to predict the noise:

Ldiff (θ) = E(z0,zi,c)∼pdata(z0,zi,c),t∼q(t),zt∼pt,diff (zt|z0)

[
λ(t)

∥∥∥∥ϵθ(zt, t, zi, c)− zt − αtz0
σt

∥∥∥∥2
]
, (3)

where q(t) is a distribution of t supporting on [0, T ], λ(t) is a time-dependent weight function, and ϵθ(zt, t) is an
alternative parameterization method of the score function (Ho et al., 2020).

Limitations As shown, the forward process of diffusion models gradually injects noise into data samples, which re-
sults in a boundary distribution at t = T sharing the same distribution with the injected noise, e.g., the standard Gaus-
sian noise ϵ ∼ N (0, I). Therefore, in generation, their sampling process has to start from the uninformative prior
distribution pprior,diff (zT ) ∼ N (0, I) and then iteratively synthesize the video latent z0 with learned conditional
score function ∇zt

log pt(zt|zi, c). Formulating a frame-to-frames generation task with a conditional noise-to-data
sampling process, diffusion-based I2V systems suffer the difficulties to generate high-quality samples from uninfor-
mative Gaussian noise while preserving the appearance details with condition and keeping the temporal coherence,
which may result in limited I2V performance.
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(a) SAF technique (b) Effectiveness of SAF

Figure 3: SNR-Aligned Fine-tuning for FrameBridge. (a) SAF technique aligns the marginal distributions of Frame-
Bridge with that of pre-trained Gaussian diffusion models. (b) FrameBridge with SAF can better leverage the capabil-
ity of pre-trained models.

4 METHOD

4.1 MOTIVATION

As discussed above, on one hand, the static image in I2V generation has already provided strong condition information,
e.g., the appearance details which should be preserved in generated video. However, the prior of diffusion models
ignore this information, rendering diffusion-based I2V systems regenerate entire video information from Gaussian
noise. On the other hand, the image animation process should be temporal coherent, ensuring the consistency between
video frames. However, the prior of diffusion models makes previous works generate each frame from random noise.
Although the generation is conditioned on static image, it would be difficult for a noise-to-data generation process to
guarantee the temporal coherence between generated frames.

Toward reducing the mismatch between the generation process and the I2V task, we make the first attempt to establish
data-to-data process, i.e., bridge models (Chen et al., 2023c; Zhou et al., 2023), for the frame-to-frames synthesis of
I2V. Taking the static image as the prior of consecutive frames in video, we build a bridge between the initial frame and
the following ones. In generation, each video frame is generated from the initial frame, which is naturally helpful to
preserve appearance details in I2V synthesis. Moreover, as our model learns the frame-to-frames synthesis instead of
conditional noise-to-frames generation, we facilitate our model to focus on learning image animation, which benefits
temporal coherence of generated video.

4.2 FRAMEBRIDGE

Considering the given image, i.e., initial frame zi, has provided the appearance details and the starting point of ani-
mation for video target, we take it as the prior of following frames. To construct the boundary distributions for bridge
models, we replicate the image latent zi for L times along temporal axis to obtain zi ∈ RL×h×w×d as the prior of
video latent z ∈ RL×h×w×d, and establish the bridge process as follows.
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Bridge Process In Figure 1, we present the overview of FrameBridge and compare it with diffusion-based I2V
generation. Different from diffusion-based I2V models using uninformative Gaussian prior, our FrameBridge replaces
the Gaussian prior with a Dirac prior δzi , building a bridge process (Zhou et al., 2023) to connect the video target and
the replicated image prior pprior,bridge(zT |i, c) ≜ δzi(zT ). Specifically, the forward process is changed from eq. (1)
in diffusion models to:

dzt =
[
f(t)zt + g(t)2h(zt, t, zT , z

i, c)
]
dt+ g(t)dw, z0 ∼ pdata(z0|zi, c), zT = zi, (4)

where h(zt, t, zT , zi, c) ≜ ∇zt
log pT,diff (zT |zt) and pT,diff (zT |zt) is the marginal distribution of diffusion process

shown in eq. (1). For bridge process, we denote the marginal distribution of eq. (4) as pt,bridge(zt|zi, c). Similar to
the forward SDE eq. (1) in diffusion process, the forward process of bridge models eq. (4) also has a reverse process,
which shares the same marginal distribution pt,bridge(zt|zi, c) and can be represented by the backward SDE:

dzt =
[
f(t)zt − g(t)2(s(zt, t, zT , z

i, c)− h(zt, t, zT , z
i, c))

]
dt+ g(t)dw̄, zT = zi, (5)

where s(zt, t, zT , zi, c) ≜ ∇zt log pt,bridge(zt|zT , zi, c). The change from the diffusion to the bridge process removes
the restriction of noisy prior, allowing the generation process to start from a static image rather than previous Gaussian
noise. Moreover, as the perturbation kernel pt,bridge(zt|z0, zT , zi, c) in bridge process remains Gaussian (Appendix
A), it facilitates us to find connections between the marginal distribution, i.e., the intermediate representations of
diffusion and bridge process, and then leverage the power of pre-trained diffusion models for bridge models.

Training Objective Analogous to diffusion models, we use a SDE solver to solve eq. (5) when sampling videos.
Since h(zt, t, zT , z

i, c) can be calculated analytically (see Appendix A), we only need to estimate the unknown term
s(zt, t, zT , z

i, c) with neural networks (Kingma et al., 2021). After parameterization (more details can be found in
Appendix A), we train FrameBridge models ϵΨ̂θ (zt, t, zT , z

i, c) with the denoising objective (Chen et al., 2023c):

Lbridge(θ) = E (z0,z
i,c)∼pdata(z0,z

i,c),

zT=zi,t,zt∼pt,bridge(zt|z0,zT ,zi,c)

[∥∥∥∥ϵΨ̂θ (zt, t, zT , zi, c)− zt − αtz0
σt

∥∥∥∥2
]
. (6)

Figure 4: Case of neural prior. The neural prior provides
more motion information than a static image, and is seman-
tically closer to the reference video in dataset.

The training of FrameBridge resembles that of Gaus-
sian diffusion-based I2V models: We first sample a
video latent z0 and the condition c from training set, ex-
tracting the first frame of z0 to construct zi. The pri-
mary difference lies in the Gaussian perturbation kernel
pt,bridge(zt|z0, zT , zi, c) of eq. (6). As we replace the
Gaussian prior with a deterministic data point zT , the
mean value is an interpolation between data and zT in-
stead of the decaying data in diffusion models, naturally
preserving more data information and facilitating gener-
ative models to learn image animation rather than regen-
erating the information provided in static image.

Bridge Process vs Diffusion Process To demonstrate
the advantages of bridge process in I2V synthesis, we vi-
sualize the data part, i.e., the mean function of bridge and
diffusion process, in Figure 2. As shown, when replicat-
ing the initial frame, I2V synthesis can be formulated
as a frames-to-frames generation task. With the data-
to-data bridge process, the boundary distributions of our
FrameBridge, i.e., the prior and the target, have been an
ideal fit for the I2V task, which is helpful for generative models to focus on modeling the image animation process.
In the meanwhile, as seen from our intermediate representations, the data information, e.g., appearance details, is well
preserved during the bridge process. In comparison, the prior and intermediate representations of diffusion process
contain rare or coarse information of the target, which is uninformative and requires diffusion models to generate
entire video information from scratch conditioned on static image.
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Table 1: Zero-shot I2V generation on UCF-101 and MSR-VTT (256× 256, 16 frames). w/o SAF means FrameBridge
without SAF techniques when fine-tuning. Results marked by ∗ are reported in Xing et al. (2023). Some metrics are
not applicable for SVD as the I2V model of SVD generate videos with 14 frames and other models in the table generate
videos with 16 frames. For each metric, we mark the best one with † and the second one with ‡.

Method UCF-101 MSR-VTT

FVD ↓ IS ↑ PIC ↑ FVD ↓ CLIPSIM ↑ PIC ↑
DynamiCrafter (Xing et al., 2023) 485 29.46 0.6266 192 0.2245 0.6131
DynamiCrafter∗ 429 – 0.6078 234 – 0.5803
I2VGen-XL∗ (Zhang et al., 2023) 571 – 0.5313 289 – 0.5352
SVD (Blattmann et al., 2023) 235‡ – – 114 – –
SEINE (Chen et al., 2023b) 461 22.32 0.6665 245 0.2250† 0.6848
ConsistI2V (Ren et al., 2024) 202† 39.76 0.7638† 106 0.2249 0.7551†

SparseCtrl (Guo et al., 2025) 722 19.45 0.4818 311 0.2245 0.4382
FrameBridge (Ours, w/o SAF) 433 38.61 0.5989 229 0.2246 0.5559
FrameBridge (Ours, w/ SAF) 312 39.89‡ 0.6697 99‡ 0.2250† 0.6963
FrameBridge-100k (Ours, w/SAF) 258 44.13† 0.7274‡ 95† 0.2250† 0.7142‡

Table 2: VBench-I2V (Huang et al., 2024) scores for different I2V models. For all the evaluation dimensions, higher
score means better performance. For results marked by ∗, we directly use the data of VBench-I2V Leaderboard. For
each metric, we mark the best one with † and the second one with ‡. The abbreviations represents Subject Consistency
(SC), Background Consistency (BC), Temporal Flickering (TF), Motion Smoothness (MS), Dynamic Degree (DD),
Aesthetic Quality (AQ), Imaging Quality (IQ).

Model SC BC TF MS DD AQ IQ

DynamiCrafter 95.40‡ 96.22 97.03 97.82‡ 38.69‡ 59.40† 62.29
SEINE 93.45 94.21 95.07 96.20 24.55 56.55 70.52†

SparseCtrl 88.39 92.46 91.78 94.25 81.95† 49.88 69.35‡

ConsistI2V∗ 95.27 98.28† 97.56 97.38 18.62 59.00 66.92
FrameBridge 96.24† 97.25‡ 98.01† 98.51† 35.77 59.38‡ 63.28

4.3 SNR-ALIGNED FINE-TUNING

To implement FrameBridge, one straightforward strategy is to train bridge models from scratch using eq. (6). Mean-
while, another common practice of training I2V models is to fine-tune from pre-trained T2V diffusion models (Chen
et al., 2023b;a; Xing et al., 2023; Blattmann et al., 2023; Ma et al., 2024a). A key challenge arises as the marginal
distribution of bridge models pt,bridge(zt) differs from that of diffusion models pt,diff (zt), limiting the generation
performance of fine-tuned FrameBridge as illustrated in Figure 3. To address this issue, we propose the innovative
SNR-Aligned Fine-tuning (SAF) technique. By bridging the gap between the two distributions during fine-tuning,
SAF enables more seamless knowledge transfer between the two model families. To the best of our knowledge, this
is the first attempt to explore how to effectively fine-tune bridge models from pre-trained diffusion models. Our SAF
technique consists of the following two steps:

Reparameterization of Bridge Process. In bridge process, the perturbed latent zt at timestep t can be written as
the linear combination of z0, zT and a Gaussian noise ϵ: zt = atz0 + btzT + ctϵ (detailed expression of at, bt, ct can
be found in eq. (12)), which is different from αtz0 + σtϵ

1 in diffusion models due to the change of prior and forward
process. Therefore, the pre-trained diffusion models have limited ability to directly denoise such a zt, which impairs
effective fine-tuning. To match the distributions of zt, we reparameterize the bridge process by

z̃t =
zt − btzT√
a2t + c2t

=
at√

a2t + c2t
z0 +

ct√
a2t + c2t

ϵ. (7)

1Without loss of generality, we consider Variance-Preserving (VP) diffusion where α2
t + σ2

t = 1
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Then, z̃t can be represented as the combination of clean data z0 and a Gaussian noise, with the squre sum of coefficients
equal to 1. Thus, the reparameterized bridge process z̃t exactly align with a VP diffusion process,

SNR-based Latent Alignment Although z̃t has the same perturbation kernel as a diffusion process, the marginal
distribution of z̃t does not match that of the pre-trained diffusion at timestep t, i.e., αtz0 + σtϵ, hindering bridge
models to seamlessly leverage the knowledge of pre-trained diffusion models (see Figure 3). Therefore, we leverage
signal-to-noise ratio (SNR) as an indicator to unify the two marginal distributions (Kingma et al., 2021). Specifically,
we change the timestep t to another t̃ such that αt̃ = at√

a2
t+c2t

, σt̃ = ct√
a2
t+c2t

, and then z̃t has the same SNR as

αt̃z0 + σt̃ϵ in diffusion process. According to the above derivation, we reparameterize the input of bridge models as
ϵΨ̂θ,bridge(zt, t, i, c) ≜ ϵΨ̂θ,aligned(z̃t, t̃, i, c), and initialize ϵΨ̂θ,aligned with the pre-trained T2V diffusion models. Since
the marginal distribution of z̃t is complemetely aligned with the marginal of diffusion process at timestep t̃, SAF
enables bridge models to fully exploit the denoising capability of pre-trained diffusion models. We provide a general
statement of SAF technique and more details in Appendix A.

4.4 NEURAL PRIOR

By establishing a data-to-data process for I2V synthesis, we have been able to reduce the distance between the prior
and the target from noise-to-frames to frames-to-frames, and therefore reduce the burden of generative models and aim
at improving synthesis quality. To further demonstrate the function of improving prior information for I2V synthesis,
we extend our design of FrameBridge from replicated initial frame zi to neural representations Fη(z

i, c), which serves
as a stronger prior for video frames.

As shown in Figure 4, although the static frame has provided indicative information such as the appearance details
of the background and different objects, it may not be informative for the motion information in consecutive frames.
When the distance between the prior frame and the target frame is large, bridge models are faced with the challenge to
generate the motion trajectory. Therefore, we present a stronger prior than simply duplicating the initial frame, neural
prior, which achieves a coarse estimation of the target at first, and then bridge models generate the high-quality target
from this coarse estimation.

Considering bridge models synthesize target data with iterative sampling steps, we develop a one-step mapping-based
prior network taking both image latent zi and text or label condition c as input, and separately train the prior network
with a regression loss in latent space:

Lprior(η) = E(z,zi,c)∼pdata(z,zi,c)

[∥∥Fη(z
i, c)− z

∥∥2] . (8)

Table 3: Non-zero-shot I2V generation on UCF-101. Dif-
ferent from zero-shot metrics, here all models are trained
on UCF-101 dataset. The best and second results are
marked with † and ‡. The PIC value of ExtDM is not com-
parable to other methods as its resolution 64 × 64 is much
lower than others and it generate videos with slower mo-
tion.

Method FVD ↓ IS ↑ PIC ↑

ExtDM 649 21.37 0.9651†

VDT-I2V 171 62.61 0.7401
FrameBridge 154‡ 64.01† 0.7443
FrameBridge-NP 122† 63.60‡ 0.7662‡

With this objective, it can be proved that Fη(z
i, c) learns

to predict the mean value of subsequent frames, as shown
in Appendix A). Given pre-trained Fη(z

i, c), we build
FrameBridge-NP from its output and target video latent
z by replacing the prior zT in eq. (6) with the neural prior
Fη(z

i, c). More details of the training and sampling al-
gorithm can be found in Appendix E.

In generation, neural prior model Fη(z
i, c) provide a

coarse estimation with a single deterministic step, which
is closer to the target than the provided initial frame, and
bridge model synthesize the video target with a coarse-
to-fine iterative sampling process. Although more ad-
vanced methods can be designed to further improve neu-
ral prior, we present a design with simple training ob-
jective and one-step sampling, demonstrating the perfor-
mance of enhancing prior information on I2V synthesis.
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5 EXPERIMENTS

We carry out experiments on UCF-101 (Soomro, 2012) and WebVid-2M (Bain et al., 2021) datasets to demonstrate
the advantages of our data-to-data generation framework for I2V tasks.

5.1 SETUPS

Class-conditional I2V Generation For class-conditional I2V generation, we train FrameBridge and other baselines
on UCF-101 dataset. Fréchet Video Distance (Unterthiner et al. (2018); FVD) and Inception Score (Saito et al. (2017);
IS) are used to evaluate the quality of generated videos. Meanwhile, we use Perceptual Input Conformity (PIC) (Xing
et al., 2023) to evaluate the consistency of the synthesized frames with given image conditions.

Text-conditional I2V Generation For text-conditional I2V generation, FrameBridge models are fine-tuned from
pre-trained T2V diffusion models on WebVid-2M dataset. We use zero-shot FVD, IS, PIC on UCF-101 and zero-shot
FVD, CLIPSIM (Wu et al., 2021), PIC on MSR-VTT (Xu et al., 2016) to evalaute the quality and consistency with
image conditions for generated videos. More details about datasets and metrics can be found in Appendix C.

5.2 FINE-TUNING FROM PRE-TRAINED DIFFUSION MODELS

Figure 5: Qualitative comparisons between Frame-
Bridge and other baselines. FrameBridge outperforms
other diffusion-based methods in appearance consistency
and video quality.

Implementation Details Following (Xing et al.,
2023), we fine-tune FrameBridge with the replicated
prior zi from the open-sourced T2V diffusion model
VideoCrafter1 (Chen et al., 2023a). When applying
SAF technique proposed in Section 4.3, we initialize
the network after alignment ϵΨ̂θ,aligned(zt, t, z

i, c) with
the weights of VideoCrafter1 at 256 × 256 resolu-
tions, otherwise we directly initialize the bridge model
ϵΨ̂θ (zt, t, z

i, c) with VideoCrafter1. We fine-tune two
FrameBridge models (with and without SAF) for 20k it-
erations with batch size 64, and fine-tune a FrameBridge
model with SAF for 100k iterations (FrameBridge-
100k). All synthesized videos are sampled through
the first-order SDE solvers with 50 steps (Chen et al.,
2023c). More details can be found in Appendix C.

Comparison with Baselines We choose Dynami-
Crafter (Xing et al., 2023), SEINE (Chen et al., 2023b),
I2VGen-XL (Zhang et al., 2023), SVD (Blattmann et al.,
2023), ConsistI2V (Ren et al., 2024) and SparseCtrl
(Guo et al., 2025) as text-conditional I2V baselines. Ta-
ble 1 shows zero-shot metrics on UCF-101 and MSR-
VTT after fine-tuning on WebVid-2M. We also evaluate
FrameBridge and other baselines with a comprehensive
benchemark for video quality, i.e., VBench-I2V (Huang
et al., 2024) 2.As demonstrated by quantitative results
in the tables, FrameBridge can effectively leverage the
knowledge from pre-trained T2V diffusion models and generate videos with higher quality and consistency than the
diffusion counterparts. Moreover, it is indicated that SAF can further improve the performance of fine-tuned Frame-
Bridge, showcasing the advantages of matching marginal distributions of the bridge process and diffusion process.
We further discuss the trade-off between the dynamic degree and consistency in Appendix D.1. Qualitative results are
shown in Figure 5.

2For some models, we directly use the evaluation results on VBench Leaderboard https://huggingface.co/spaces/
Vchitect/VBench_Leaderboard/.
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Table 4: Ablation of SAF technique on UCF-101. All
models are fine-tuned from Latte-XL/2 class-conditional
video diffusion model for 20k iterations. We use re-
peating regression for FrameBridge, and w/o SAF means
fine-tuning without SAF technique.

Method FVD ↓ IS ↑ PIC ↑
VDT-I2V 177 55.22 0.7700
FrameBridge(w/o SAF) 157 37.65 0.7498
FrameBridge(w/ SAF) 148 55.60 0.8198

Table 5: Ablation of neural prior. Condition means
whether the model condition on Fη(z

i, c). We use FVD
to evaluate the video quality.

Method Prior Condition FVD ↓

VDT-I2V Gaussian % 171
VDT-I2V Gaussian ! 132
FrameBridge replicated % 154
FrameBridge replicated ! 129
FrameBridge-NP neural ! 122

Both quantitative and qualitative comparisons demonstrate the advantages of FrameBridge and the data-to-data gen-
eration framework for I2V tasks. To the best of our knowledge, our trial is the first time to fine-tune diffusion bridge
models from pre-trained diffusion models, and SAF is crucial to boosting the performance of fine-tuned bridge models.

5.3 NEURAL PRIOR FOR BRIDGE MODELS

Implementation Details We implement FrameBridge-NP based on the class-conditional video diffusion model
Latte-S/2 (Ma et al., 2024b) by replacing diffusion process with the Bridge-gmax bridge process. We freeze the
parameters η of neural prior when training bridge models ϵΨ̂θ (zt, t, zT , z

i, c). All synthesized videos are sampled
through the first-order SDE solvers with 250 steps. More details can be found in Appendix C.

Comparison with Baselines We reproduce two diffusion models ExtDM (Zhang et al., 2024b) and VDT (Lu et al.,
2023) on UCF-101 dataset for the class-conditional I2V task as our baselines. Table 3 shows that FrameBridge-NP has
superior video quality and consistency with condition images. More qualitative results are shown in Appendix F. The
experiments reveal that bridge-based I2V models outperform their diffusion counterparts with both replicated prior
and neural prior, justifying the usage of the data-to-data generation process for I2V tasks. Additionally, FrameBridge
can further benefit from neural prior Fη(z

i, c) as it actually narrows the gap between the prior and data distribution of
bridge process.

5.4 ABLATION STUDIES

SNR-Aligned Fine-tuning Table 1 has already shown the advantage of SAF technique, we use another ablation
experiment to further elucidate that. We fine-tune a pre-trained class-conditional video generation model Latte-XL/23

on UCF-101 with 20k iterations. The quantitative results presented in Table 4 shows that SAF improves generation
performance of FrameBridge.

Neural Prior To showcase the effectiveness of neural prior, we compare five different models varying in priors and
network conditions. More details of the configurations can be found in Appendix C. Results in Table 5 reveal that
Fη(z

i, c) is indeed more informative than a single frame zi and can be fully utilized by FrameBridge through the
change of prior.

6 CONCLUSIONS

In this work, we propose FrameBridge, building a data-to-data generation process for I2V synthesis, which matches
the frame-to-frames nature of this task. Additionally, targeting at two typical scenarios of training I2V models, namely
fine-tuning from pre-trained diffusion models and training from scratch, we present SNR-Aligned Fine-tuning (SAF)
and neural prior respectively to further improve the generation quality of FrameBridge. Extensive experiments show
that FrameBridge generate videos with enhanced appearance consistency with image condition and improved temporal
coherence between frames, demonstrating the advantages of FrameBridge over diffusion-based I2V methods and the
effectiveness of two proposed techniques.

3https://huggingface.co/maxin-cn/Latte/tree/main
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of FrameBridge, we elaborate the reference works, codebase, datasets, pre-trained model
checkpoints. The code for fine-tuning and training FrameBridge models are based on the open-sourced codebase of
DDBM4, Latte5 and DynamiCrafter6. Details about UCF-101, WebVid-2M, MSR-VTT datasets can be found in C.
When fine-tuning I2V models from pre-trained diffusion models, we use pre-trained checkpoints of VideoCrafter1
to initialize the weights of our model, which is available at https://huggingface.co/VideoCrafter/
Text2Video-256. In Appendix C, we present details for reproducing the training and evaluation process of Frame-
Bridge. The proof of claims are provided in A. Additionally, we provide enough demo samples on our demo page and
our code will also be released there upon acceptance.
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A PROOF AND DERIVATION

A.1 BASICS OF DENOISING DIFFUSION BRIDGE MODEL (DDBM)

We provide the derivations of pt,bridge(zt|z0, zT , zi, c) and h(z, t,y, zi, c) used in Section 4.2.

Similar to the proofs in (Zhou et al., 2023), we calculate pt,bridge(zt|z0, zT , zi, c) by applying Bayes’ rule:

pt,bridge(zt|z0, zT , zi, c) = pt,diff (zt|z0, zT , zi, c) =
pT,diff (zT |zt, z0, zi, c)pt,diff (zt|z0, zi, c)

pt,diff (zT |z0, zi, c)

1
=

pT,diff (zT |zt)pt,diff (zt|z0)
pT,diff (zT |z0)

.

(9)

1 uses the Markovian of the diffusion process zt (Kingma et al., 2021).

The perturbation kernels pT,diff (zT |zt), pt,diff (zt|z0), pT,diff (zT |z0) is Gaussian and takes the form of:

pT,diff (zT |zt) = N (zT ;
αT

αt
zt, (σ

2
T −

α2
T

α2
t

σ2
t )I),

pt,diff (zt|z0) = N (zt;αtz0, σ
2
t I),

pT,diff (zT |z0) = N (zT ;αT z0, σ
2
T I).

(10)

Following (Zhou et al., 2023), it can be derived that pt,bridge(zt|zT , z0, zi, c) is also Gaussian, and
pt,bridge(zt|zT , z0, zi, c) = N (zt;µt(z0, zT ), σ

2
t,bridgeI), where

µt(z0, zT ) = αt(1−
SNRT

SNRt
)z0 +

SNRT

SNRt

αt

αT
zT ,

σ2
t,bridge = σ2

t (1−
SNRT

SNRt
).

(11)

Specifically, zt of bridge process can be reparameterized by zt = atz0 + btzT + ctϵ, where

at = αt(1−
SNRT

SNRt
),

bt =
SNRT

SNRt

αt

αT
,

ct =

√
σ2
t (1−

SNRT

SNRt
).

(12)

Here, SNRt =
α2

t

σ2
t

(Kingma et al., 2021) is the signal-to-noise ratio of diffusion process.

Then we calculate h(z, t,y, zi, c) = ∇zt
log pT,diff (zT |zt)|zt=z,zT=y.

As pT,diff (zT |zt) = N (zT ;
αT

αt
zt, (σ

2
T −

α2
T

α2
t
σ2
t )I), we have

pT,diff (zT |zt) =
1√

2π(σ2
T −

α2
T

α2
t
σ2
t )

D
exp

−
∥∥∥zT − αT

αt
zt

∥∥∥2
2(σ2

T −
α2

T

α2
t
σ2
t )

 , (13)

log pT,diff (zT |zt) = −

∥∥∥zT − αT

αt
zt

∥∥∥2
2(σ2

T −
α2

T

α2
t
σ2
t )

+ C, (14)
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where C is a constant independent of zT .

∇zt log pT,diff (zT |zt) = ∇zt

−
∥∥∥zT − αT

αt
zt

∥∥∥2
2(σ2

T −
α2

T

α2
t
σ2
t )

 = −
zT − αT

αt
zt

(σ2
T −

α2
T

α2
t
σ2
t )
. (15)

So, h(z, t,y, zi, c) = −
y−αT

αt
z

(σ2
T−

α2
T

α2
t
σ2
t )

. Note that for the diffusion process we commonly use, αT

αt
≈ 0 and σT ≈ 1, and

we have h(z, t,y, zi, c) ≈ −y.

A.2 PARAMETERIZATION OF FRAMEBRIDGE

Proposition 1. The score estimation sθ(zt, t, zT , z
i, c) of bridge process pt,bridge(zt|zT , zi, c) can be reparamterized

by

sθ(zt, t, zT , z
i, c) = − 1

σt
ϵΨ̂θ (zt, t, zT , z

i, c)− SNRT

SNRt

zt − αt

αT
zT

σ2
t (1− SNRT

SNRt
)
, (16)

where SNRt =
α2

t

σ2
t

, and ϵΨ̂θ (zt, t, zT , z
i, c) is trained with the objective

Lbridge(θ) = E (z0,z
i,c)∼pdata(z0,z

i,c),

zT=zi,t,zt∼pt,bridge(zt|z0,zT ,zi,c)

[
λ̃(t)

∥∥∥∥ϵΨ̂θ (zt, t, zT , zi, c)− zt − αtz0
σt

∥∥∥∥2
]
. (17)

Here λ̃(t) is the weight function of timestep t and we take λ̃(t) = 1 unless otherwise specified.

When SNRT ≈ 0(which is often the case for diffusion process), there exists ϵ such that

sθ(zt, t, zT , z
i, c) ≈ − 1

σt
ϵΨ̂θ (zt, t, zT , z

i, c), ∀t ∈ [ϵ, T − ϵ]. (18)

Proof. We denote the desnoising target zt−αtz0

σt
by ϵΨ̂(zt, z0, t), and define at = αt(1 − SNRT

SNRt
), bt = SNRT

SNRt

αt

αT
,

ct =
√

σ2
t (1− SNRT

SNRt
).

From eq. (11), we have

∇z log pt,bridge(z|z0, zT )|z=zt,zT=zi = −zt − atz0 − btz
i

c2t
, (19)

which is the target of Denoising Bridge Score Matching (Zhou et al., 2023). Our goal is to represent this target with
zt, zT , and ϵΨ̂(zt, z0, t).

From the definition of ϵΨ̂(zt, z0, t), we have

z0 =
zt − σtϵ

Ψ̂(zt, z0, t)

αt
. (20)
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Plug it into eq. (19), it can be derived that

∇z log pt,bridge(z|z0, zT )|z=zt,zT=zi = −
zt − at

zt−σtϵ
Ψ̂(zt,z0,t)
αt

− btz
i

c2t

= −αtzt − atzt + atσtϵ
Ψ̂(zt, z0, t)− αtbtzT

αtc2t

= −atσtϵ
Ψ̂(zt, z0, t)

αtc2t
− (αt − at)zt − αtbtz

i

αtc2t

= − 1

σt
ϵΨ̂(zt, z0, t)−

αt
SNRT

SNRt
zt − α2

t

αT

SNRT

SNRt
zi

αtσ2
t (1− SNRT

SNRt
)

= − 1

σt
ϵΨ̂(zt, z0, t)−

SNRT

SNRt

zt − αt

αT
zi

σ2
t (1− SNRT

SNRt
)
,

(21)

As the Denoising Bridge Score Matching takes the form of

Lbridge(θ) = E(z0,zi,c).zT=zi,t,zt

[
λ(t)

∥∥sθ(zt, t, zT , zi, c)−∇z log pt,bridge(z|z0, zT )|z=zt,zT=zi

∥∥2] , (22)

when we parameterize sθ(zt, t, zT , zi, c) = − 1
σt
ϵΨ̂θ (zt, t, zT , z

i, c)− SNRT

SNRt

zt− αt
αT

zT

σ2
t (1−

SNRT
SNRt

)
, the training objective can be

written as

Lbridge(θ) = E(z0,zi,c).zT=zi,t,zt

[
λ(t)

σ2
t

∥∥∥ϵΨ̂θ (zt, t, zT , zi, c)− ϵΨ̂(zt, z0, t)
∥∥∥2] , (23)

which proves the first part of the proposition if we take λ̃(t) = λ(t)
σ2
t

.

For the second part, when SNRT ≈ 0, there exists an ϵ > 0, such that 1

σ2
t (1−

SNRT
SNRt

)
has an upper bound M . Since

SNRT

SNRt

αt

αT
= αT

σ2
t

αtσ2
T
≈ 0 when SNRT ≈ 0, it can be directly inferenced from eq. (16) that sθ(zt, t, zT , zi, c) ≈

− 1
σt
ϵΨ̂θ (zt, t, zT , z

i, c).

Remark. From the first part of the proposition, we parameterize bridge models to predict zt−αtz0

σt
. It is similar

to that used in Chen et al. (2023c) although their parameterization is derived from the forward-backward diffusion
process of Schrödinger Bridge problems. The statement and proof of this proposition reveals that DDBM and Diffusion
Schrödinger Bridges are closely related. Additionally, the second part shows that our parameterization resembles the
Denoising Score Matching in diffusion models.

A.3 SNR-ALIGNED FINE-TUNING

Existence and Uniqueness of t̃ In Section 4.3, we need to find a t̃ such that αt̃ = at√
a2
t+c2t

, σt̃ = ct√
a2
t+c2t

. Since

a2
t

c2t
=

α2
t

σ2
t
(1− SNRT

SNRt
) = SNRt−SNRT , it is a monotonically decreasing function of t. As SNRt is also a monotonically

decreasing function which ranges over (0,∞), we can take t̃ = SNR−1(
a2
t

c2t
) and the uniqueness of such t̃ can also

be guaranteed. Next, we provide a more general form of SAF, where the schedule {αt, σt}t∈[0,T ] of the pre-trained
diffusion models and bridge models are not necessarily the same.

Proposition 2. Suppose we fine-tune a Gaussian diffusion model ϵ̃η(zt, t, c) with schedule {α̃t, σ̃t}t∈[0,T ] to a dif-
fusion bridge model ϵΨ̂θ,bridge(zt, t, zT , z

i, c) ≜ ϵΨ̂θ,align(z̃t, t̃, zT , z
i, c) with schedule {αt, σt}t∈[0,T ]. If we use the

same dataset pdata(z0, zi, c) for training ϵ̃η(zt, t, c) and fine-tuning ϵΨ̂θ,align(z̃t, t̃, zT , z
i, c). Then, for each c, the
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input (zt, t) of ϵ̃η has the same marginal distribution as the input (z̃t, t̃) of ϵΨ̂θ,align(z̃t, t̃, zT , z
i, c). Here

z̃t =
zt − btz

i√
a2t + c2t

,

t̃ = S̃NR
−1

(
a2t
c2t

).

(24)

(S̃NR =
α̃2

t

σ̃2
t

is the signal-to-noise ratio of pre-trained diffusion models.)

Proof. Since S̃NR is also a monotonically decreasing function ranging over (0,∞), the uniqueness and existence of
t̃ can also be guaranteed by the above analysis.

For a fixed c, t, we denote the probability density function of z̃t by q(z̃t; t). Then

q(z̃t; t) =

∫
zi

q(z̃t|zi; t)pdata(zi)dzi

=

∫
zi

∫
z0

q(z̃t|z0, zi; t)pdata(z0, zi)dz0dzi

=

∫
zi

∫
z0

N (z̃t;
at√

a2t + c2t
z0,

ct√
a2t + c2t

I)pdata(z0, z
i)dz0dz

i

=

∫
zi

∫
z0

N (z̃t; α̃t̃z0, σ̃
2
t̃ I)pdata(z0, z

i)dz0dz
i

=

∫
z0

N (z̃t; α̃t̃z0, σ̃
2
t̃ I)(

∫
zi

pdata(z0, z
i)dzi)dz0

=

∫
z0

N (z̃t; α̃t̃z0, σ̃
2
t̃ I)pdata(z0)dz0,

(25)

which equals to the marginal distribution of the pre-trained diffusion process pt,diff (zt).

A.4 NEURAL PRIOR WITH REGRESSION TRAINING OBJECTIVE.

Proposition 3. If we train Fη(z
i, c) with the regression training objective

Lprior(η) = E(z0,zi,c)∼pdata(z0,zi,c)

[∥∥Fη(z
i, c)− z0

∥∥2] , (26)

and the neural network is optimized sufficiently, then we have

Fη(z
i, c) = F ∗

η (z
i, c) ≜ Ez0∼pdata(z0|zi,c) [z0] . (27)

Proof. For each (zi, c), Lprior(η) optimizes the following objective:

lη(z
i, c) = Ez0∼pdata(z0|zi,c)

[∥∥Fη(z
i, c)− z0

∥∥2]
=

∥∥Fη(z
i, c)

∥∥2 − ⟨Fη(z
i, c),Ez0∼pdata(z0|zi,c) [z0]⟩+

∥∥Ez0∼pdata(z0|zi,c) [z0]
∥∥2

=
∥∥Fη(z

i, c)
∥∥2 − ⟨Fη(z

i, c),Ez0∼pdata(z0|zi,c) [z0]⟩+ C.

(28)

where C is a constant independent of η. When the network is optimized sufficiently, lη(zi, c) takes the minimum for
each (zi, c), so we have

Fη(z
i, c) = argmin

x

(
∥x∥2 − ⟨x,Ez0∼pdata(z0|zi,c) [z0]⟩

)
(29)

It can be solved that Fη(z
i, c) = Ez0∼pdata(z0|zi,c) [z0].
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B DETAILED DISCUSSION ON RELATED WORKS

Video Diffusion Models Inspired by the success of text-to-image (T2I) diffusion models (Ramesh et al., 2022;
Nichol et al., 2021), numerous studies have investigated diffusion-based text-to-video (T2V) models (Blattmann et al.,
2023; Yang et al., 2024; Singer et al., 2022) by designing 3D spatial-temporal U-Net (Ho et al., 2022b;a) and Diffusion
Transformers (DiT) (Peebles & Xie, 2023; Bao et al., 2023). To improve memory and computation efficiency, Latent
Diffusion Models (LDM) (Rombach et al., 2022; Vahdat et al., 2021) are utilized where the diffusion process is applied
in the compressed latent space of video samples (Bao et al., 2024; Brooks et al., 2024; He et al., 2022). Meanwhile,
some other works designed cascaded diffusion models to generate motion representation (Yu et al., 2024) or videos
with lower resolution (Ho et al., 2022a; Wang et al., 2023) first, which are utilized to synthesize the result videos in
the subsequent stages.

Diffusion-based I2V Generation The main difference between I2V and T2V is the incorporation of image condi-
tions into the sampling process. Xing et al. (2023) utilizes the features of a CLIP image encoder and a lightweight
transformer to inject image conditions into the backbone of a T2V model. Ma et al. (2024a) and Zhang et al. (2024c)
propose to directly model the residual between the subsequent frames and the given initial frame with diffusion for
I2V generation. Moreover, Ma et al. (2024a) also uses the DCTInit technique to enhance the consistency of video
content with the given image. Chen et al. (2023b) presents to train short-to-long video generation models with masked
diffusion models. Guo et al. (2023) and Zhang et al. (2024a) propose to utilize pre-trained T2I models for image an-
imation by training an additional component to model the relationship between video frames. SparseCtrl (Guo et al.,
2025) and Animate Anyone (Hu, 2024) design specific fusion modules for video diffusion models to adapt to various
types of conditions including RGB images. Ren et al. (2024) propose improved network architecture and sampling
strategy for image-to-video generation at the same time to enhance the controllability of image conditions. Jain et al.
(2024), Zhang et al. (2023) and Shi et al. (2024) design cascaded diffusion systems for I2V generation. VIDIM (Jain
et al., 2024) consists of one base diffusion model and another two diffusion models for spatial and temporal super-
resolution respectively. Zhang et al. (2023) uses a base diffusion model to generate videos with low resolutions, which
serve as the input of the following video super-resolution diffusion model. Shi et al. (2024) first generates the optical
flow between the subsequent frames and given image with a diffusion process, and use the optical flow as conditions
of another model to generate videos. Ni et al. (2023) and Zhang et al. (2024b) train an autoencoder to represent the
motions between frames in a latent space, and use diffusion models to generate motion latents. However, previous I2V
diffusion models are built on the noise-to-data generation of conditional diffusion process and the sampling remains a
denoising process conditioned on given images. In contrast, FrameBridge replaces the diffusion process with a bridge
process and the sampling directly model the animation of static images.

Noise Manipulation for Video Diffusion Models Several works have explored to improve the uninformative prior
distribution of diffusion models. PYoCo (Ge et al., 2023) recently proposes to use correlated noise for each frame
in both training and inference. ConsistI2V (Ren et al., 2024), FreeInit (Wu et al., 2023), and CIL (Zhao et al., 2024)
present training-free strategies to better align the training and inference distribution of diffusion prior, which is popular
in diffusion models (Lin et al., 2024; Podell et al., 2023; Blattmann et al., 2023; Girdhar et al., 2023). These strategies
focus on improving the noise distribution to enhance the quality of synthesized videos, while they still suffer the
restriction of noise-to-data diffusion framework, which may limit their endeavor to utilize the entire information (e.g.,
both large-scale features and fine-grained details) contained in the given image. In contrast, we propose a data-to-data
framework and utilize deterministic prior rather than Gaussian noise, allowing us to leverage the clean input image as
prior information.

Comparison with Previous Works of Bridge Models In Section 3, we leverage the forward SDE of bridge models
(Zhou et al., 2023) and the backward sampler proposed by Chen et al. (2023c) to build FrameBridge. We unify their
theoretical frameworks to establish our formulation, and emphasize that bridge models are suitable for image-to-video
generation, which is a typical data-to-data generation task. Liu et al. (2023) and Chen et al. (2023c) apply bridge
models to image-to-image translation and text-to-speech synthesis tasks respectively. Compared with their works, we
focus on I2V tasks, building our bridge-based framework by utilizing the frames-to-frames essence and presenting
two innovative techniques for two scenarios of training I2V models, namely fine-tuning from pre-trained text-to-video
diffusion models and training from scratch.
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C EXPERIMENT DETAILS

We provide descriptions of the datasets and metrics used in our experiments, along with implementation details for
different I2V models.

C.1 DATASETS

UCF-101 is an open-sourced video dataset consisting of 13320 videos clips, and each video clip are categorized into
one of the 101 action classes. There are three official train-test split, each of which divide the whole dataset into 9537
training video clips and 3783 test video clips. We use the whole dataset as the training data for I2V models trained
from scratch on UCF-101, and use the test set to evaluate zero-shot metrics for models fine-tuned on WebVid-2M.
When we evaluate zero-shot metrics on UCF-101 for text-conditional I2V models, we use the class label as the input
text prompt.

WebVid-2M is an open-sourced dataset consisting of about 2.5 million video-text pairs, which is a subset of WebVid-
10M. We only use WebVid-2M as the training data when fine-tuning I2V models from T2V diffusions in Section
5.2.

MSR-VTT is an open-sourced dataset consisting of 10000 video-text pairs, and we only use the test set to compute
zero-shot metrics for fine-tuned models.

Preprocess of Training Data: For both UCF-101 and WebVid-2M dataset, we sample 16 frames from each video
clip with a fixed frame stride of 3 when training. Then we resize and center-crop the video clips to 256 × 256 before
input it to the models.

C.2 METRICS

Fréchet Video Distance ( Unterthiner et al. (2018); FVD) evaluates the quality of synthesized videos by computing
the perceptual distance between videos sampled from the dataset and the models. We follow the protocol used in
StyleGAN-V (Skorokhodov et al., 2022) to calculate FVD. First, we sample 2048 video clips with 16 frames and
frame stride of 3 from the dataset. Then, we generate 2048 videos from the I2V models. All videos are resized to 256
× 256 before calculating FVD except for ExtDM. (ExtDM generate videos with resolution 64 × 64, so we compute
FVD on this resolution.) After that, we extract features of those videos with the same I3D model used in the repository
of StyleGAN-V 7 and calculate the Fréchet Distance.

Inception Score (Saito et al. (2017); IS) also evaluates the quality of the generated videos. However, computing IS
need a pre-trained classifier and we only apply this metric on UCF-101. When computing IS, we use the open-sourced
evaluation code and pre-trained classifier for videos from the repository of StyleGAN-V.

CLIPSIM (Wu et al., 2021) evaluates the consistency between video frames and the text prompt by computing the
average CLIP similarity score between each frame and the prompt. We use the VIT-B/32 CLIP model (Radford et al.,
2021) when evaluating zero-shot metrics on MSR-VTT.

PIC is a metric used by Xing et al. (2023) to evaluate the consistency of video frames and the given image by the
computing average Dreamsim (Fu et al., 2023) distance between generated frames and the image condition.

C.3 IMPLEMENTATION OF FRAMEBRIDGE AND OTHER BASELINES

We offer the implementation details of I2V models which are fine-tuned on WebVid-2M or trained from scratch on
UCF-101.

C.3.1 FRAMEBRIDGE

Fine-tuning on WebVid2M We reference the codebase of Dynamicrafter8 to fine-tune FrameBridge, and initialize
our model from the pre-trained VideoCrafter1 (Chen et al., 2023a) checkpoint. For the schedule of bridge, we adopt

7https://github.com/universome/stylegan-v
8https://github.com/Doubiiu/DynamiCrafter
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the Bridge-gmax schedule of (Chen et al., 2023c), where f(t) = 0, g(t)2 = β0 + t(β1 − β0), αt = 1, σ2
t =

1
2 (β1 − β0)t

2 + β0t with β0 = 0.01, β1 = 50. For both FrameBridge with and without SAF technique, we fine-tune
the models ϵΨ̂ for 20k iterations with batch size 64. We use the AdamW optimizer with learning rate 1 × 10−5 and
mixed precision of BFloat16. We do not apply ema to the model weight during fine-tuning. The conditions c and zi

are incorporated into the network in the same way as DynamiCrafter, and we concatenate zt with zi along the channel
axis to condition the network on the prior. As the schedule {αt, σt}t∈[0,T ] is different from that of the pre-trained
diffusion models, we use the generalized SAF (Proposition 2).

Training From Scratch on UCF-101 We reference the codebase of Latte9 to train FrameBridge from scratch on
UCF-101. We adopt Latte-S/2 as our bridge model with the same schedule as above and train FrameBridge for 400k
iterations with batch size 40. For FrameBridge with neural prior, we also implement Fη(z

i, c) with Latte-S/2 except
that the conditioning of timestep t is removed from the model. To match zi with the input shape of Latte, we replicate
zi for L times and concatenate them along temporal axis. We train Fη(z

i, c) for 400k iterations with batch size 32
before training bridge models if the neural prior is applied. For both the training of bridge models and Fη(z

i, c), we
use the AdamW optimizer with learning rate 1× 10−5 and ema is not applied. The conditions c are incorporated into
the network in the same way as Latte. Since Latte-S/2 is a transformer-based diffusion network, we incorporate the
condition zi by concatenate it with video latent zt in the token sequence. To condition the network on prior zi or
Fη(z

i, c), we concatenate them with zt along the channel axis.

C.3.2 BASELINES FOR CLASS-CONDITIONAL I2V GENERATION

ExtDM (Zhang et al., 2024b) is a diffusion-based video prediction model, which is trained to predict the following
m frames with the given first n frames of a video clip. We train ExtDM with their official implementation10 and set
n = 1,m = 15 for our I2V setting on UCF-101.

VDT-I2V is our implementation of the I2V method proposed by Lu et al. (2023). They use a transformer-based
diffusion network for I2V generation by directly concatenating the image condition with the token sequence of the
noisy video latent zt. We also implement their I2V method on a Latte-S/2 model considering the similarities among
transformer-based diffusion models.

C.3.3 BASELINES FOR TEXT-CONDITIONAL I2V GENERATION

For DynamiCrafter (Xing et al., 2023), SVD (Blattmann et al., 2023), SEINE (Chen et al., 2023b), ConsistI2V (Ren
et al., 2024) and SparseCtrl (Guo et al., 2025), we use the official model checkpoints and sampling code to sample
videos for evaluation.

C.3.4 ABLATION STUDIES ON NEURAL PRIOR

In Section 5.4, we ablate on the neural prior technique by comparing the performance of four models:

• VDT-I2V: The same model as our diffusion baseline on UCF-101.

• VDT-I2V with neural prior as the network condition: The same model as VDT-I2V except that we addi-
tionally condition the network on Fη(z

i, c).

• FrameBridge without neural prior: A FrameBridge model implemented by utilizing the replicated image
zi as the prior.

• FrameBridge with neural prior only as the network condition: A FrameBridge model implemented by
utilizing zi as the prior. However, we condition the bridge model on Fη(z

i, c) by additionally feeding it into
the network through concatenation with zt along the channel axis.

• FrameBridge-NP: A FrameBridge model implemented by utilizing Fη(z
i, c) as the prior.

9https://github.com/Vchitect/Latte
10https://github.com/nku-zhichengzhang/ExtDM
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Algorithm 1: Training algorithms for FrameBridge.

Result: Trained FrameBridge model ϵΨ̂θ (zt, t, zT , z
i, c).

Set bridge process {αt, σt, at, bt, ct}Tt=0 ;
if Neural prior is used then

Train a neural prior model Fη(z
i, c) with eq. (8) before training FrameBridge ;

end
if Fine-tuned from pre-trained diffuion model ϵϕ(zt, t, c) then

if SAF is used then
Re-parameterize the input of ϵΨ̂θ (zt, t, zT , z

i, c) by ϵΨ̂θ (zt, t, zT , z
i, c) ≜ ϵΨ̂θ,align(z̃t, t̃, zT , z

i, c) with
eq. (24) ;

Initialize ϵΨ̂θ,align with the weight of ϵϕ(zt, t, c) ;
else

Initialize ϵΨ̂θ with the weight of ϵϕ(zt, t, c) ;
end

else
Randomly initialize ϵΨ̂θ (zt, t, zT , z

i, c);
end
while Not reach the training budget do

Sample data (z0, c) ∼ pdata(z0, c), timestep t and zt ∼ pbridge,t(zt|z0, zT );
Take the first frame of z0 as the image condition zi ;
if Neural prior is used then

zT ← Fη(z
i, c) ;

else
Construct zT by replicating zi ;

end

l(θ) =
∥∥∥ϵΨ̂θ (zt, t, zT , zi, c)− zt−αtz0

σt

∥∥∥2 ;

Update θ with the optimizer and loss function l(θ) ;
end

D MORE DISCUSSIONS ABOUT EXPERIMENT RESULTS

In this section, we provide further discussions and analysis of the results provided in Section 5.

D.1 DYNAMIC DEGREE OF GENERATED VIDEOS

As shown by (Zhao et al., 2024), there is usually a trade-off between dynmaic motion and condition alignment for
I2V models, and the high dynamic degree scores of some baseline models in Table 2 are at the cost of condition
and temporal consistency. FrameBridge can reach a balance demonstrated by the multi-dimensional evaluation on
VBench-I2V. Moreover, as demonstrated by Table 6 the dynamic degree of FrameBridge is not low compared with
other models on the official VBench-I2V Leaderboard.

D.2 CONTENT-DEBIASED FVD

Ge et al. (2024) points out that the FVD metric has a content bias and may misjudge the qualify of videos. As
supplementary, we also provide the evaluation results of the Content-Debiased FVD (CD-FVD) on MSR-VTT in
Table 7.

D.3 LEARNING CURVE FOR VIDEO QUALITY

To illustrate the change of video quality during training, we reproduce the training process of DynamiCrafter for 20k
iterations and compare the zero-shot CD-FVD metric on MSR-VTT dataset with a FrameBridge model trained during
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Table 6: VBench-I2V scores related to the motion of videos for different I2V models. For all the evaluation di-
mensions, higher score means better performance. For results marked by ∗, we directly use the data of VBench-I2V
Leaderboard.

Model Dynamic
Degree

Temporal
Flickering

Motion
Smoothness

FrameBrdige 35.77 98.01 98.51
DynamiCrafter 38.69 97.03 97.82
SEINE 24.55 95.07 96.20
SEINE-512 × 320∗ 34.31 96.72 96.68
SEINE-512 × 512∗ 27.07 97.31 97.12
ConsistI2V∗ 18.62 97.56 97.38

Table 7: Zero-shot CD-FVD metric on MSR-VTT dataset. We also include the FVD metric as a reference

Model CD-FVD ↓ FVD ↓
DynamiCrafter 207 234
SEINE 420 245
ConsistI2V 192 106
SparseCtrl 454 311
FrameBridge-100k 148 95

the training process. As we use the same training batch size and model structure for FrameBridge and DynamiCrafter
in this experiment, the training budget for two models at the same training step is also the same. As demonstrated by
Figure 6, the video quality of FrameBridge is superior to that of DynamiCrafter during the training process and it also
converges faster than its diffusion counterpart (i.e., DynamiCrafter).

Figure 6: The learning curve of FrameBridge and DynamiCrafter.
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D.4 SAMPLING EFFICIENCY OF FRAMEBRIDGE

Since sampling efficiency is also important for I2V models, we also conduct experiments to show the quality of
videos sampled with different number of sampling timesteps and compare it with DynamiCrafter and SEINE. Figure
D.4 shows that the quality of videos sampled by FrameBridge is better than that of DynamiCrafter and SEINE with
different timesteps (i.e., 250, 100, 50, 40, 20). Moreover, we also measure the actual execution time of the sampling
algorithm and show the result in Figure D.4. As illustrated by these two figures, FrameBridge can achieve good
balance between sample efficiency and video quality, and there is no significant degradation in video quality when
decreasing the sampling timestep from 250 to 50 or even smaller.

(a) Zero-shot FVD with different sampling timesteps (b) Zero-shot PIC with different sampling timesteps

Figure 7: Video quality sampled with different number of timesteps.

(a) Zero-shot FVD with different execution time (b) Zero-shot PIC with different execution time

Figure 8: Video quality sampled with different execution time.

E PSEUDO CODE FOR THE TRAINING AND SAMPLING OF FRAMEBRIDGE

We provide the pseudo code for the training and sampling process of FrameBridge (See Algorithm 1 and 3). Mean-
while, we also provide that of diffusion-based I2V models (See Algorithm 2 and 4) to show the distinctions between
FrameBridge and diffusion-based I2V models.
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Algorithm 2: Training algorithms for I2V diffusion models.

Result: Trained I2V diffusion model ϵθ(zt, t, zi, c).
Set diffusion process {αt, σt}Tt=0 ;
if Fine-tuned from pre-trained diffuion model ϵϕ(zt, t, c) then

Initialize ϵθ with the weight of ϵϕ(zt, t, c) ;
else

Randomly initialize ϵθ(zt, t, z
i, c);

end
while Not reach the training budget do

Sample data (z0, c) ∼ pdata(z0, c), timestep t and zt = αtz0 + σtϵ, where ϵ ∼ N (0, I) ;
Take the first frame of z0 as the image condition zi ;
l(θ) =

∥∥ϵθ(zt, t, zi, c)− ϵ
∥∥2 ;

Update θ with the optimizer and loss function l(θ) ;
end

Algorithm 3: Sampling algorithms for FrameBridge.
Result: Video latent z0.
Prepare a trained FrameBridge model ϵΨ̂θ (zt, t, zT , z

i, c) and timestep schedule 0 = t0 < t1 < ... < tN = T ;
Obtain the given input image zi and additional conditions c ;
if Neural prior is used then

zT ← Fη(z
i, c) ;

(Here Fη should be the same neural prior model used in the training process.)
else

Construct zT by replicating zi ;
end
for k = N downto 1 do

Calculate the score function of bridge process∇z log pbridge,tk(z|zT , zi, c)|z=ztk
with ϵΨ̂θ (ztk , tk, zT , z

i, c) ;
Utilize a SDE solver to solve the backward bridge SDE
dzt =

[
f(t)zt − g(t)2(s(zt, t, zT , z

i, c)− h(zt, t, zT , z
i, c))

]
dt+ g(t)dw̄ from z(tk) = ztk to obtain

ztk−1
;

end
Return z0 ;

Algorithm 4: Sampling algorithms for I2V diffusion models.
Result: Video latent z0.
Prepare a trained I2V diffusion model ϵθ(zt, t, zi, c) and timestep schedule 0 = t0 < t1 < ... < tN = T ;
Obtain the given input image zi and additional conditions c ;
Sample a latent zT ∼ N (0, σ2

T I) ;
for k = N downto 1 do

Calculate the score function of diffusion process∇z log pdiff,tk(z|zi, c)|z=ztk
with ϵ(ztk , tk, z

i, c) ;
Utilize a SDE solver to solve the backward diffusion SDE
dzt =

[
f(t)zt − g(t)2∇zt log pt,diff (zt|zi, c)

]
dt+ g(t)dw̄ from z(tk) = ztk to obtain ztk−1

;
end
Return z0 ;

F MORE QUALITATIVE RESULTS

We show several randomly selected samples of FrameBridge below, and more synthesized samples can be visited at:
https://framebridgei2v.github.io/
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Figure 9: Qualitative comparisons between FrameBridge and other baselines. FrameBridge outperforms other
diffusion-based methods in appearance consistency and video quality.
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Figure 10: Zero-shot generation results of fine-tuned FrameBridge (with SAF) on UCF-101.
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Figure 11: Zero-shot generation results of fine-tuned FrameBridge (with SAF) on MSR-VTT.
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Figure 12: Non-zero-shot generation results of FrameBridge-NP on UCF-101. We use two lines to present a neural
prior and the corresponding generated video.
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Figure 13: Comparisons between fine-tuned FrameBridge and other diffusion-based I2V models.
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