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ABSTRACT

Analytical solutions to differential equations offer exact insight but are rarely
available because discovering them requires expert intuition or exhaustive search
in large combinatorial spaces. We introduce SIGS, a neuro-symbolic framework
that automates this process. SIGS uses a formal grammar to generate only syn-
tactically and physically valid building blocks, embeds these expressions into a
continuous latent space, and then searches this space to assemble, score, and re-
fine candidate closed-form solutions by minimizing a physics-based residual. This
design unifies symbolic reasoning with numerical optimization; the grammar con-
strains candidate solution blocks to be proper by construction, while the latent
search makes exploration tractable and data-free. Across a range of differential
equations, SIGS recovers exact solutions when they exist and finds highly accu-
rate approximations otherwise, outperforming tree-based symbolic methods, tra-
ditional solvers, and neural PDE baselines in accuracy and wall-clock efficiency.
These results are a step forward, integrating symbolic structure with modern ML
to discover interpretable, closed-form solutions at scale.

1 INTRODUCTION

The understanding of physical processes has been a long-standing effort for scientists and engi-
neers. A key step in this endeavor is to translate physical insights (laws) into precise mathematical
relationships that capture the underlying phenomena. These relationships are then tested through
experiments that either validate the proposed hypothesis or suggest refinements. Among such math-
ematical formulations, differential equations (DEs) are especially ubiquitous across disciplines, as
they describe how physical quantities evolve over time and space. Analytical solutions, closed-form
expressions satisfying governing equations and boundary/initial conditions, not only validate theory
against experiment but also reveal intrinsic properties such as stability, periodicity, and symmetries.
Classical analytical methods are inherently compositional: they assemble solutions from elementary
building blocks such as eigenfunctions, basis expansions, or Green’s functions.

Unlike the inverse problem of discovery the governing equations given measurements of the solu-
tion, which has been widely considered by adapting symbolic regression Petersen et al. (2019b);
Landajuela et al. (2022); Petersen et al. (2021); Yu et al. (2025); Kamienny et al. (2022); Biggio
et al. (2021); Vastl et al. (2022) to this setting, the forward problem of discovering analytical solu-
tions to DEs, considered here, is less explored. In this context, proposed approaches include genetic
programming and its variants (Tsoulos & Lagaris, 2006; Seaton et al., 2010; Kamali et al., 2015;
Boudouaoui et al., 2020). Lately, symbolic approaches have been enriched with machine learning
components to overcome this combinatorial complexity. Lample & Charton (2019) train neural net-
works on sequence representations of trees in order to solve simple explicit ODEs. Wei et al. (2024)
propose SSDE, a methodology that employs a recurrent neural network to generate symbolic candi-
dates, guided by a reinforcement learning policy constrained by the governing equations and condi-
tions. As a baseline, they considered the accuracy of fitting symbolic solutions to functions obtained
by physics-informed neural networks, relying on deep symbolic regression (Petersen et al., 2019a).
Cao et al. (2024) use transfer learning to lift genetic programming results from one-dimensional
problems to higher dimensions (HD-TLGP). Unlike symbolic regression, where the primitives of
differential operators are chosen from a dictionary of fundamental operations such as curl or diver-
gence, there exists no principled way to systematically choose components in solution discovery
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Figure 1: Overview over the proposed Symbolic Iterative Grammar Solver (SIGS). A. Terminal
symbols Φ and rules R, together with non-terminals N and starting symbol S, form the grammar
G which generates the mathematical expressions in the library L(G). B. Each expression w ∈
L(G) is identified with a function u in the finite set of candidate functions U . C. The encoder
E and decoder D of the Grammar Variational Autoencoder (GVAE, (Kusner et al., 2017)) embed
the finite L(G) into the continuous latent space Z. D. Given a differential equation and system
conditions, a structure search is performed over z ∈ Z using iterative clustering, followed by a
separate optimizations of the constants in the final structure, optimizing for lowest residualR of the
corresponding candidate function u = I ◦ D(z) ∈ U .

to combine and get mathematically proper and physically plausible solutions. As a result, solu-
tion discovery methods have tended towards two extremes: (i) unconstrained search, which faces
combinatorial explosion, sensitivity to initialization, and lack of principled incorporation of domain
knowledge; or (ii) narrow pretraining, which biases discovery toward limited problem classes and
hinders generalization. A principled middle ground is missing.

This raises the key question: Can we design a framework that generalizes across PDEs while sys-
tematically constraining the search to mathematically admissible, physically meaningful solutions?

We answer affirmatively with the Symbolic Iterative Grammar Solver (SIGS). At its core, SIGS
casts solution discovery as a hierarchical, grammar-guided composition of analytic atoms (eigen-
functions and related sub-expressions). The hierarchy operates at two levels. At the top level, an
Ansatz specifies the structural form of candidate solutions: e.g. the Ansatz f(x)× g(t) restricts the
search to a product of spatial, temporal, or combined terms. At the lower level, each placeholder
function in the Ansatz is instantiated with concrete atoms drawn from a grammar; e.g. f(x) is re-
placed by sin(x). Using formal grammars (Hopcroft & Ullman, 1979), elementary functions act
as terminals while operations such as addition or exponentiation act as production rules. This for-
malism generalizes classical construction techniques, providing a principled way to generate only
admissible expressions and to systematically explore the solution space defined by the PDE.

To overcome the combinatorial complexity of assembling such expressions, SIGS embeds grammar-
generated candidates into a continuous latent manifold using a Grammar Variational Autoencoder
Kusner et al. (2017). We further impose a novel topological regularization within the GVAE, ensur-
ing that latent neighborhoods map smoothly to valid expressions and that clusters of candidates form
convex regions. This embedding transforms discrete tree search into quasi-continuous optimization:
instead of enumerating operators and integers, we navigate the latent manifold, progressively re-
fining the search around promising regions. The final constants are then optimized with gradient
descent, yielding exact or approximate analytical solutions.

Our key contributions are as follows.
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• A grammar-based framework (SIGS) that efficiently balances computational complexity
with generality by composing solution units through hierarchical Ansatz+atom combina-
tions, modeled through formal grammars.

• The Topological Grammar VAE (TGVAE), which encodes admissible solutions onto a
smooth latent manifold for efficient search.

• An efficient and task-agnostic approach that employs compositionality of solutions to solve
a broad selection of PDEs, without the need for numerical data.

• State-of-the-art performance on recent benchmarks, including recovery of exact solutions
and symbolic approximations of PDEs lacking closed-form solutions.

2 METHOD

Problem setup We consider the generic form of a time-dependent partial differential equation
(PDE) as (Molinaro et al., 2024),

∂tu+ D(u) = f , ∀(x, t) ∈ Ω× [0, T ],
u(x, 0) = u0(x), ∀x ∈ Ω,

B[u](x, t) = g, ∀(x, t) ∈ ∂Ω× [0, T ],
(1)

where Ω ⊂ Rd is the spatial domain, u ∈ U ⊆ C(Ω× (0, T )) is the space-time continuous solution,
f ∈ U is a forcing term, u0 ∈ Hs(Ω) an initial condition, B[u](x, t) denotes the boundary con-
ditions, and ∂Ω is the boundary of the domain. The differential operator can include higher-order
derivatives, D(u) = D(ξ, u, ∂ttu,∇xu,∇2

xu, ...), where ξ ∈ Rdξ are PDE parameters. We remark
that Equation 1 represents a very general form of differential equations as the solution u = u(x, t)
is a function of both space and time. By setting u = u(t), we recover general ODEs, while set-
ting u = u(x) enables us to recover time-independent PDEs from the same overall formulation.
Henceforth, we use PDEs of the form of Equation 1, as the objects for which we discover analytical
solutions. We call the collection of f ,B[u], and u0 the system conditions that need to be specified in
order to solve a given PDE. We define the symbolic form of a PDE as:

S(u) = ∂tu+ D(u)− f , ∀u ∈ U .
We formulate solving PDEs as an iterative computational process, where given a domain discretiza-
tion, a set of boundary and initial conditions, and the symbolic form of the PDE

(Ω,B[u], u0, S)
D(z)−−−→ ui.

The method searches for a parameterization z of uz ∈ U that minimizes the loss,

R(u) = ∥S(u)∥2 + ∥u(0, x)− ui0∥2 + ∥B[u]− g∥2, (2)

where we generally use equal weighting between the residual terms. We restate our goal as finding
an analytical expression u∗ that minimizes the residualR(u), yielding an analytical solution in case
R(u∗) = 0 and an analytical approximate solution if 0 < R(u∗) << 1.

Grammar Construction. Analytic expressions are commonly represented as trees, with internal
node labels denoting unary or binary expressions (e.g. ”sin”, ”+”) and leaves denoting constants or
variables. However, care must be taken when generating such trees to avoid exponential complexity
and the generation of syntactically wrong expressions Virgolin & Pissis (2022); Kissas et al. (2024).
To alleviate this issue, we consider a Context-Free Grammar (CFG) (Chomsky, 1956; Hopcroft &
Ullman, 1979) as a principled way to generate exactly the classes of atoms included in an Ansatz.
A CFG is defined as G = {Φ, N,R, S}, where Φ is the set of terminal symbols, N is the set of
non-terminal symbols and Φ ∩ N = ∅, R is a finite set of production rules and S ∈ N is the
starting symbol. Each rule r ∈ R is a map α → β, where α ∈ N , and β ∈ (Φ ∪ N)∗ (see Fig.
1A). A language L(G) is defined as the set of all possible terminal strings that can be derived by
applying the production rules of the grammar starting from S, or all possible ways that the nodes
of a derivation tree can be connected starting from S as L(G) = {w ∈ Φ∗ | S →∗ w}, where→∗

implies T ≥ 0 applications of rules in R. Each expression is equivalently represented by the string
w (as a sequence of symbols), by the list of rules applied to generate w from S, and by a derivation
tree that represents the syntactic structure of stringw ∈ L(G) according to grammar G. We define an
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interpretation map I : L(G) → U , which assigns to each syntactic expression w ∈ L(G) semantic
meaning in terms of a function uw : D → R. The set of all functions represented by the grammar is
U(G) = {uw : D → R | uw = I(w), w ∈ L(G)}. We refer to uw as u in the future to simplify the
notation.

Compositional Ansatz. When using SIGS on a specific problem, the user may specify a structural
Ansatz F that outlines the compositional nature of the proposed solution. For example, one could
specify spatiotemporal separability as u(x, t) =

∑K
j=1 ajTj(t)ϕj(x), leaving the spatial eigenfunc-

tions ϕj and temporal factors Tj , to be chosen by SIGS. In addition to ϕj and Tj , the user may
include atoms that encode physical mechanisms at the expression level; such as transport phases,
kx − ωt; viscous shock profiles, tanh((x0 + x − ct)/ν); or other motifs known to describe the
dynamics of interest exactly or approximately. Localized atoms such as Gaussians can also be in-
cluded to capture spatially confined phenomena. The Ansatz may include hybrid factors that mix
space and time, allowing u(x, t) =

∑K
j=1 ajTj(t)ϕj(x)ψ(x, t) which relaxes separability while

retaining controlled, interpretable compositions.

Searching the resulting high-dimensional combinatorial spaces requires a trade-off between general-
ity and complexity. We embed atoms (sub-trees) instead of primitives (unary, binary operators, reals,
and variables) to decrease the combinatorial complexity of solutions. In the full Ansatz generality,
the solution construction could be performed by considering a number of arbitrary combinations
between atoms. This approach would result in a combinatorial explosion, partially losing the ben-
efit of considering atoms. For this reason, we assume that the solutions can be described exactly
(or sufficiently well) by the chosen Ansatz. To include the Ansatz into the grammar, we denote by
A : {L(G)}L → L(G) the assembly map that composes the individual components into the final
solution following the Ansatz. This restricted function class is obtained by activating only those non-
terminals and production rules that implement the user’s Ansatz and its permitted atom categories,
and by enforcing the assembly production dictated by A. The Ansatz thus induces a restriction on
the language LA(G) = {A(w1, ..., wL) : wc ∈ Lc(G)} for the component classes c required by the
Ansatz. In all cases, A realizes the user’s choice by assembling requested categories into a single
symbolic candidate that is then scored by the PDE residual. In summary, the Ansatz specifies which
families of atoms and couplings are admissible, the CFG generates those atoms and couplings, and
the interpretation map turns each derivation into a candidate function over which SIGS optimizes
the PDE residual.

Grammar Variational Autoencoders. To make the search more efficient, we embed w ∈ LA(G)
into a low-dimensional continuous manifold using a Grammar Variational Autoencoder (Kusner
et al., 2017). The encoder is defined as qϕ(z|w) and the decoder pθ(w|z), for z ∈ Z andw ∈ LA(G).
The GVAE is trained by minimizing the objective:

L = Lrecon + γ KL(q(z|w)∥ p(z)),
where Lrecon the cross-entropy loss between the predicted and the baseline grammar rules, and
KL(q(z|w)||p(z)) the KL divergence between the encoder and the prior distributions.

Training the GVAE does not require numerical data, only expressions w ∈ L. In practice, we
handle numerical matrices with entries {0, 1}, encoding which rules are employed in which order
to generate w, and impose grammar relations through masking parts of these matrices to only allow
related elements to interact. These grammar masks are also required for training the model.

Geometry Regularization. When we sample the latent manifold, we often evaluate latent vectors
in regions with little or no support from the training distribution, and can also get trapped in topo-
logical artifacts of the latent space. In both cases, the decoder produces degenerate outputs. For this
reason, we impose a geometry-aware regularizer that constrains the search inside a data-supported
enclosure, removes small topological artifacts at the working resolution, and smooths the decoder
so that small latent moves produce predictable output changes.

We augment the GVAE objective with three regularizers (details in App. A.3). A convex-enclosure
loss LHull that discourages latents from leaving the data-supported region estimated from training
codes Gonzalez (1985); Rockafellar (2015). A persistent-homology loss Lph that suppresses small
spurious loops/gaps in the latent cloud at a fixed working scale Edelsbrunner & Harer (2010). A
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decoder-smoothness loss Lsmooth that penalizes large second-order changes in the decoder, so nearby
latents decode to predictably similar functions (Hutchinson, 1989). We combine these losses with
the reconstruction and the KL loss to define the regularized loss of the TGVAE (Topological Gram-
mar Variational Autoencoder):

L = Lrecon + γ KL(q(z|w)∥ p(z)) + Ltopo, Ltopo = LHull + Lph + Lsmooth.

Solution Discovery. The solution discovery is split in two stages (see Fig. 1D, and details in
App. B): In the structure search, we iteratively explore the latent space for a candidate function
included in the structural Ansatz while minimizing the PDE residual, and then optimize its numerical
constants in a separate stage. For searching, we consider a deterministic encoding E(w) = µϕ(w) ∈
Z and decoding D : Z → LA(G) obtained by the argmax decoding under the grammar mask.
Composing with I, we have I ◦ D : Z → UA(G), so each z ∈ Z corresponds to a function
u = I(D(z)) ∈ UA(G). Let τ : L(G) → T be a semantic map that assigns tags, e.g. variables,
deterministically computed from the parse tree w, computed once after training and used for any
downstream solution problem. For a given differential equation, we choose the admissible tag set,
e.g. any function with x, y arguments, and restrict the search to the type-constrained latent subspace
Z ′ = {z ∈ Z : τ(D(z)) ∈ T ′ ⊆ T }.
Let κ : Z ′ → {1, ...,m} be a clustering map in the latent space and denote the clusters Cj =
κ−1(j). We cluster a given subspace based on z ∈ Z ′, and then solve a discrete selection problem
to choose the cluster that contains the most promising solution forms for each T and ϕ, j∗ =
arg min

1≤j≤m
[ inf
z∈Zj⊂Cj

R(D(z))], where Zj can be constructed by either only the expressions from

the training set that fall in Z ′ or the expressions together with samples from the generative model.
Within the best cluster Cj∗ , a global latent search is performed:

z∗ = arg min
z∈Cj∗

R(D(z)),

either by a global optimizer or iterative clustering, performing discrete selection, and sampling from
the most promising cluster until R(D(z)) drops below a threshold. The solution takes a parametric
form u∗(·, p), including constants p that are only represented in the grammar with limited precision.
Thus, we perform a parameter refining step. We consider a gradient based method (Adam, Kingma
& Ba, 2014), and minimize the loss until a termination criterion is triggered, R(u) ≤ 10−8. The
loss R(u) is augmented here by the hull loss R′(u) = R(u) + Lhull to penalize whichever latent
falls out of the hull defined during training.

3 EXPERIMENTS AND RESULTS

We conduct comprehensive experiments to evaluate SIGS against state-of-the-art symbolic methods
for solving PDEs. Our evaluation comprises three components: cross-validation on benchmarks
sourced from the literature (Table 12), assessment on more complex PDE problems with and without
known analytical solutions (Table 14), and an ablation study that examines how topology-aware
regularization improves sampling efficiency. Details on our implementation of the grammar and
GVAE can be found in Appendix A.

Experimental Setup. Our benchmark suite comprises seven PDEs of hyperbolic, parabolic, and
elliptic families. Four problems admit known analytical solutions: viscous Burgers’, 1D Diffusion,
1D Wave, and 2D Damped Wave equations. For the case with no known analytic solution, we
consider three Poisson problems with superposition of different numbers of Gaussian source terms
to test the approximation capabilities of the method.

We compare against two recent symbolic discovery methods: HD-TLGP Cao et al. (2024), and
SSDE Wei et al. (2024). Both of these methods sample discrete trees by combinatorially combin-
ing elements of a user defined dictionary. Moreover, HD-TLGP, considers an Ansatz where the
solution is separable in dimension, e.g. g(x, y) = f(x)g(y), as well as the solution in one dimen-
sion as prior knowledge. SSDE considers a recursive single-variable decomposition Ansatz, e.g.
u(x, y) = g(x, f(y, c)) and couples reinforcement learning with a hierarchical approach that re-
solves each recursion depth sequentially. Both methods search for expressions satisfying differential
equations directly through physics-aware losses similar to R(u). The efficiency of these discovery
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methods lies both in the way they sample trees and the way they compose solutions. For this reason,
we consider two evaluation protocols for HD-TLGP which considers an Ansatz that is similar to
SIGS (details are given in Appendix C.3.2). Protocol 1 is the same as in the original work: The al-
gorithm is fed a dictionary of primitives, sin, cos, log, etc., to compose solutions. In Protocol 2, the
algorithm is fed atoms from SIGS instead of primitive functions from a dictionary, see Appendix C.3
for more details. The objective is to show that naive search in the space of models does not work
even when the algorithm combines atoms, which are mathematically proper subtrees. For SSDE,
we tailor the dictionary of terms for each problem to contain only the primitives, meaning functions,
and variables contained in the solution. For example, if u(x) = sin(πx) + cos(πy) the dictionary
contains only sin, x, y, cos and integers. In this way, we show that for sophisticated search meth-
ods, if the dictionary considers primitives instead of atoms, the method cannot find an admissible
solution when we consider complex problems. The complete primitive specifications appear in Ap-
pendix C.3.1. Neural baselines (PINNs (Raissi et al., 2019), FBPINNs (Moseley et al., 2023)) and
numerical solvers (FEniCS; Alnæs et al., 2015, ; see details in Appendix C.4) are included for ref-
erence. For the Poisson-Gauss problems, no analytical solutions is available. Therefore, we assume
the FEniCS with P4 elements on a 128× 128 mesh as the ground truth. We perform a mesh conver-
gence study to confirm the convergence of the solution at the chosen resolution. Complete problem
specifications, analytical solutions, and discovered symbolic forms relevant to all the problems in
the suite appear in Appendix C, accompanied by additional figures in Appendix C.7.

3.1 EXPERIMENTS

Cross-validation on benchmarks from literature. First, we test SIGS on a subset of problems
considered by Cao et al. and Wei et al. to show how combining the grammar-atoms approach
together with adaptive search is more accurate than alternative approaches. For this purpose, we
chose one-dimensional Poisson and Advection PDEs (HD-TLGP), and a two-dimensional Wave
PDE (SSDE). We consider exactly the same problem specification, that is, the domain, boundary,
and initial conditions, for the comparison. To make the methods comparable, we impose an Ansatz
within SIGS that considers a different function per variable, e.g. u(x, t) = g(x) f(t). The results are
presented in Table 1. While the baseline approaches achieve high accuracy (HD-TLGP: 4.36×10−4

for the Poisson, and 1.01×10−2 for the Wave, SSDE: 1.04×10−16), SIGS achieves exact solutions
on all problems, as it contains π as a symbol and does not approximate it numerically.

Table 1: We compare the accuracy, in terms of relative L2 error against the exact solution, of SIGS
and baselines on a collection of PDEs presented in the HD-TLGP and SSDE papers.

Problem (method) Original Method SIGS (ours)

Poisson (HD-TLGP) 4.36 × 10−4 exact solution
Advection (HD-TLGP) 1.01 × 10−2 exact solution
Wave (SSDE) 1.04× 10−16 exact solution

Comparison for Complex PDEs with known solutions. What makes the following collection of
experiments complicated is not only that the solution contains many terms, but also that the method
needs to find solutions that are very precise. For example, even if an algorithm discovers a solution
that describes a viscous shock for the Burgers equation, slight imprecision in the location of the
shock will result in a very large relative L2 error against the exact solution. This phenomenon also
holds true for the damped wave, as the problem is sensitive to the coefficients governing the diffusion
time. For SIGS, we consider a general solution Ansatz of the form u(x, t) =

∑4
j=1 ajTj(t)ϕj(x)

for the Diffusion, u(x, t) = ajTj(t)ϕSj(x)ψ(x, t) for the Wave and u(x, t) = ajψj(x, t) with
j = 1 for the Burgers. We present the results in Table 2. We observe that SIGS recovers exact
analytical solutions, achieving machine precision on all problems with relative errors ranging from
6.64× 10−14 to 1.22× 10−13. The discovered expressions match analytical forms up to numerical
precision, see Appendix C.5.

Both HD-TLGP and the SSDE methods fail to find a solution within the time budget that is accurate
or close to the exact, see Appendix C.5. HD-TLGP in the case that we consider atoms in the
dictionary, Protocol 1, returns relative L2 errors in the range 2.04 − 423.40%, demonstrating the
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Table 2: Comparison of methods on PDEs with known analytical solutions. Reported are relative
L2 errors.

PDE Problem SIGS HD-TLGP P1 HD-TLGP P2 SSDE PINNs FBPINNs FEniCS

Burgers 6.64× 10−14 2.04 35.68 45.62 6.09 28.26 8.69× 10−3

Diffusion 7.16× 10−13 33.34 79.73 5.87× 103 2.56 55.54 2.26× 10−3

Damping Wave 1.22× 10−13 423.30 178.77 1.19× 103 5.56 71.36 2.28× 10−2

importance of the optimization method in discovering an accurate solution. Protocol 2 performs
worse, with errors in the ranges of 35.68−178.77% which shows how the results deteriorate without
atoms. SSDE produces errors in the range of 45.62 − 5.87 × 103% even though the primitives are
tailored for each problem. Requiring complex and precise solutions, translates to most of the loss
landscape being flat with a very high value except for a small area where the loss is small. The failure
of SSDE can almost certainly be attributed to the reinforcement learning algorithm failing to find
this small region, as in the classic sparse-rewards problem. This result indicates how sophisticated
optimizers fail completely when the dictionary does not contain elements that support aggressive
exploration of the space of candidate models. Neural methods achieve moderate accuracy (2.56-
6.09), while numerical solvers (FEniCS) present very accurate results. A visual comparison of the
predictions of different methods are provided in Figure 3.

Figure 2: From left to right: source term F (x, y) for the Poisson–Gauss problem; finite-element
solution uh (FEniCS); symbolic approximation usigs (SIGS); absolute error |uh − usigs|

(a) SIGS (b) HD-TLGP (c) SSDE (d) PINNs (e) FEniCS

Figure 3: Comparison of different methods for solving the damped wave equation at t = 2.5. All
methods show the same physical domain x, y ∈ [−8, 8] with wave center at (−5, 5). Parameters:
k = 0.5, ω = 0.4, α = 0.45.

Symbolic approximation without known solutions. For the PDEs we considered so far, we
manufactured, and therefore had access to, the exact solution. This allowed us to make educated
guesses about the form of the Ansatz. In this example, we test how well SIGS and the baselines
approximate the solution when an exact solution and a strong prior on the Ansatz does not exist.
We investigate the Poisson equations with a Gaussian forcing term, which do not admit an exact
analytical solution. For SIGS we choose the Ansatz as u(x, y) =

∑N
j=1 ϕj(x, y)ψj(x, y), with

j ∈ [3, 4, 8] for PG2, PG3, PG4, respectively. Here ψj(x, y) are eigenfunction of the elliptic op-
erator ψ(x, y) = sin(πx) sin(πy) that impose the homogenous Dirichlet boundary conditions, and
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ϕj is randomly sampled from the available atoms. We present the results for all the methods in Ta-
ble 3. SIGS achieves 1−3% relative L2 errors with improving accuracy as complexity increases and
number of modes increases (from 2.66% for 2 Gaussians to 1.05% for 4 Gaussians), which suggests
that SIGS correctly leverages the superposition of the Gaussian atoms. HD-TLGP failed to find a
solution withing the time budget, and produced NaNs in our tests, probably due to numerical insta-
bilities for Protocol 1 while for Protocol 2 generates errors exceeding 107. SSDE achieves errors in
the range 58-70%, which translates to missing the precise superposition of Gaussians.

The results support that successfully discovering the solution of complex PDEs requires a combina-
tion of structured atoms and a global(to explore)-local(to discover precise arrangements) optimiza-
tion algorithm. Moreover, Table 4 shows how the approach of SIGS is practically viable as the
solutions are found in seconds to minutes.

Table 3: Approximation on Poisson-Gauss problems without an-
alytical solutions. Relative L2 errors against FEniCS references.

Problem SIGS HD-TLGP P1 HD-TLGP P2 SSDE

PG-2 2.66 200.9 98.94 69.29
PG-3 1.54 NaN 5.61 ×107 69.64
PG-4 1.05 NaN 5.45 ×107 58.70

Table 4: Wall-clock time (CPU). SIGS reports time-to-ε; others report time-at-termination. Nota-
tion: ✓ reached ε; † hit budget / failed to reach ε. HD-TLGP budget: 20 generations, SSDE budget:
25 generations.

Problem SIGS✓ HD-TLGP P1† HD-TLGP P2† SSDE† PINNs† FEniCS✓

Burgers 13.5 sec > 239 m36 sec > 200 m57 sec > 6 m34 sec 8.8 sec 2.2 sec
Diffusion 39.2 sec > 192 m41 sec > 181 m49 sec > 8 m6 sec 2 m2 sec 1.4 sec
Damping Wave 30.2 sec > 88 m40 sec > 37 m8 sec > 6 m19 sec 29.5 sec 3.4 sec
PG-2 1 m30 sec > 182 m25 sec > 90 m43 sec > 11 m45 sec n/a 19.3 sec
PG-3 1 m51 sec > 120 m7 sec > 97 m16 sec > 11 m4 sec n/a 6.9 sec
PG-4 1 m23 sec > 145 m32 sec > 80 m50 sec > 12 m32 sec n/a 3.4 sec

3.2 ABLATION STUDIES

Atoms vs. Primitives. We previously stated that considering atoms or combining primitives can
have a decisive effect in finding PDE solutions. We test this hypothesis by considering the damped
wave PDE with the Ansatz u(x, y, t) =

∑N
j=1 ψj(x, y, t)ϕj(x)Tj(t) and instead of considering

atoms, we sample ϕ, T, ψ with uniform probability over rules of the same grammar as before. If
we sample a function with the correct arity, e.g. ψ containing x, y, t, we consider the function
admissible. We sampled 50, 000 functions, out of which only 133 were admissible, which means that
it would be impossible to start and adaptive optimization procedure due to the admissible sampling
rate being so low. Moreover, the admissible functions with the lowest loss provides R(u) ≈ 366%
relative L2 error to the exact solution. This clearly demonstrates the necessity of atoms, and thus the
embedding, to the whole process.

TGVAE vs. vanilla GVAE. We measure sampling efficiency using a race-to-k-valid benchmark,
which counts the total attempts required to generate k = 1000 syntactically valid expressions by
sampling random latent vectors z ∈ Z. To assess the quality of the latent space, the latent vectors
are decoded to analytical expressions w, which are rejected if they fail to meet the grammar-based
and mathematical consistency checks in Section A.1.3. We expect both VAEs to be more stable in
regions surrounding zi = E(wi). Hence, we only consider latent vectors z with a minimal distance
of τ = 0.8 away from any training sample zi in terms of the Mahalanobis norm (App. C.6). We
sample 15, 000 admissible latent vectors and split them into ten disjoint sets. We provide each set
to the GVAE and the TGVAE and count the total decode attempts required to obtain 1, 000 valid
expressions. The GVAE required 1486.2 ± 19.5 attempts, while our topology-regularized TGVAE

8
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needed 1433.2 ± 27.3 attempts, a 3.56% ± 1.81 relative reduction. This indicates that geometric
regularization (hull loss, persistent homology, smoothness penalties) yields a more navigable latent
space with fewer degenerate decodes.

4 DISCUSSION AND CONCLUSION

Discussion. This work advances solution discovery for PDEs by demonstrating that grammar-
guided neuro-symbolic methods can reliably and efficiently recover analytical solutions. SIGS con-
sistently improves the state-of-the-art, both in accuracy and speed, often by several orders of magni-
tude. Its success stems from two complementary design choices: (i) constructing a latent manifold
of solution components, which enables smooth and efficient exploration of admissible expressions;
and (ii) employing a hierarchical Ansatz+atom approach that reduces search complexity by structur-
ing the solution space into manageable placeholders, later refined into concrete symbolic elements.
This is in contrast to the baselines explored in this work, which do not address the combinatorial
explosion inherent in symbolic solution discovery. HD-TLGP (Cao et al., 2024) transfers structures
from one-dimensional solutions to higher dimensions, but still relies on stochastic recombination of
primitives, which quickly becomes intractable as complexity grows. SSDE (Wei et al., 2024) in-
stead uses reinforcement learning to guide the construction of candidate solutions, but its flat search
space remains prohibitively large without strong priors. As our experiments show, both methods
degrade sharply when such priors are absent. In contrast, the hierarchical Ansatz+atom design of
SIGS separates global structure from local symbolic details, making tractable what would otherwise
be an unmanageable search. In this way, SIGS not only advances but fundamentally redefines the
state-of-the-art for solution discovery. Beyond these empirical gains, we view SIGS as part of a
broader shift toward neuro-symbolic foundation models for PDEs. Current foundation approaches
(Herde et al., 2024; Hao et al., 2024; Sun et al., 2024; Alkin et al., 2024; Shen et al., 2024) rely
on extensive pretraining and often serve as black-box predictors for downstream tasks. In contrast,
SIGS requires only a one-time pretraining step to construct its manifold, after which it transfers
directly to new problems without retraining. Moreover, it produces analytical expressions that in-
corporate physical priors (e.g., eigenfunctions), yielding interpretable solutions rather than opaque
approximations. This suggests that grammar-based neuro-symbolic models could complement or
even provide an alternative to purely data-driven foundation models in scientific computing.

Limitations. Despite these contributions, SIGS faces two main limitations. First, scalability to
complex engineering problems remains challenging. PDEs involving discontinuities, multiscale
structure, or turbulence may require grammars enriched with special functions that cannot be easily
decomposed into smaller atoms, or long expressions that increase search complexity. Hybrid ap-
proaches that combine symbolic structures with numerical bases (e.g., POD-derived eigenfunctions,
or Neural Operators) may provide a path forward, particularly for multiscale phenomena, as well as
for problems with irregular geometries or boundary conditions. Second, the framework depends on
the joint design of grammar, Ansatz, and latent space. A richer Ansatz can offset a simpler grammar,
while a more expressive grammar requires larger latent spaces and more sophisticated optimization.
Currently, the Ansatz still reflects human expert choices. This can be advantageous in domains with
strong theoretical foundations (e.g., Burgers or Poisson equations), but limits applicability in less
understood settings. A promising direction is to leverage large language models (e.g., Romera-
Paredes et al., 2024) to automate Ansatz construction, learning general solution structures directly
from governing equations.

Conclusion. In this work, we introduced the Symbolic Iterative Grammar Solver (SIGS), a
grammar-guided neuro-symbolic framework for discovering analytical solutions to differential equa-
tions. By unifying classical compositional methods with modern latent-space optimization through
the Topological Grammar VAE, SIGS systematically explores the space of admissible solutions, en-
abling efficient search and refinement of closed-form expressions. Our approach achieves state-of-
the-art performance on recent benchmarks, recovering exact solutions when available, and producing
interpretable symbolic approximations for PDEs without known closed form solutions. These results
highlight the potential of grammar-based neuro-symbolic methods as a scalable and interpretable al-
ternative to purely data-driven approaches, opening new directions for automated solution discovery
in scientific computing.
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A GRAMMAR AND GVAE

A.1 LIBRARY GENERATION

We construct symbolic component libraries that serve as input vocabulary for the TGVAE archi-
tecture in the discovery of DE solutions. The fundamental challenge in symbolic regression for
DEs is that naive search over arbitrary mathematical expressions is computationally intractable and
often produces physically meaningless results. Our library generation approach addresses this by
creating curated collections of symbolic components that correspond directly to different atoms
that compose solutions of a wide range of differential operators. The library consists of individual
analytical building blocks rather than complete DE solutions. Each component represents a funda-
mental mathematical pattern such as spatial eigenfunctions sin(kπx), temporal factor e−λt, or their
separable product sin(kπx)e−λt that naturally arises in the decomposition of certain operator. This
modular design enables the neural architecture to learn complex solution structures through prin-
cipled combinations of mathematically meaningful primitives, rather than searching over the vast
space of arbitrary symbolic expressions. The key insight driving our approach is that different DE
operators admit characteristic families of atoms that reflect their underlying mathematical structure.
This principled approach transforms the solution discovery task from an open-ended search problem
into a structured exploration of mathematically principled solution components.

A.1.1 ATOM GENERATION

The atoms of the library represent temporal factors, eigenfunctions of operators, expressions that
describe dynamics of interest, and random compositions.

Assume a bounded Lipschitz domain Ω ⊂ Rd and a linear second order operator with homogeneous
boundary conditions, that is self-adjoint and non-negative, e.g. S = −∆ with Dirichlet, Neumann,
or periodic boundary conditions. Then there exists an L2-orthonormal eigen basis {ϕ}j≥1 ⊂ L2(Ω)
and eigenvalues {µ}j≥1 ⊂ [0,∞) with Sϕj = µjϕj . For example, the Diffusion equation ut −
κ∆u = 0 has the scalar ODE T ′(t) + κµjTj(t) = 0 as the temporal rule, with solution Tj(t) =
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Table 5: Closed-form Laplacian eigenfamilies A = −∆ on common domains. Here Ω is the spatial
domain, ϕ the eigenfunction, and µ the eigenvalue inAϕ = µϕ. For Neumann on boxes the constant
mode has µ0 = 0.

Domain / BC Eigenfunction ϕ Eigenvalue µ Index set

Rectangles / periodic boxes Ω =
D∏

d=1

[0, Ld]

Periodic (torus) ϕk(x) = exp
(
i 2π

D∑
d=1

kd

Ld
xd

)
µk = 4π2

D∑
d=1

k2d
L2
d

k ∈ ZD

Dirichlet ϕk(x) =
D∏

d=1

sin
(

kdπ
Ld

xd

)
µk = π2

D∑
d=1

k2d
L2
d

kd ∈ N

Neumann ϕk(x) =

D∏
d=1

cos
(

kdπ
Ld

xd

)
µk = π2

D∑
d=1

k2d
L2
d

kd ∈ N0

(includes constant mode k = 0 with µ0 = 0)

Disks and balls (Dirichlet conditions)

2-D disk, radius R ϕmn(r, θ) = Jm

(
jmn

R r
)
×
{
cos(mθ),
sin(mθ),

µmn =
j2mn

R2 m ∈ Z≥0, n ∈ N

3-D ball, radius R ϕℓmn(r, θ, φ) = jℓ

(
αℓn

R r
)
Yℓm(θ, φ) µℓn =

α2
ℓn

R2 ℓ ∈ Z≥0, |m| ≤ ℓ, n ∈ N

e−κµt. For the spatial rule, we can consider the rectangle box Ω =
∏D

d=1[0, Ld] with Dirichlet
boundary conditions. Given indices k ∈ ND, the grammar produces:

ϕk(x) =

D∏
d=1

sin(kdπxd/Ld), µk = π2
D∑

d=1

k2d
L2
d

.

Composing together with the temporal model, we get u(x, t) =
∑

k ake
κµtϕk(x), which solves

ut + κ∆u = 0 exactly. The amplitudes aj are drawn from prior aj ∼ N (0, σ2ρ) where ρ decays
exponentially to control the regularity or the spectrum. This construction generalizes for multiple
classes of known operators, see Table 6. For constant coefficient operators on separable geometries
we have explicit {ϕk, µk} eigenfunctions as shown in Table 5.

As we discussed, the grammar can also produce expressions that describe dynamics of interest such
as viscous shocks tanh( (ul−ur)(x−st−x0)

4ν ), transport g(kx − ωt), heat kernels 1
(4πkt)d/2

exp(∥x∥
2

4kt ),

Gaussian bumps exp(∥x−x0∥2

2k ) and others. Moreover, atoms are polynomials, and combinations of
the above.

A.1.2 FORMAL GRAMMAR SPECIFICS

The grammar G = (V,Σ, R, S) contains 51 production rules that provide the complete symbolic vo-
cabulary for DE eigenfunction families used in the experiments herein. The grammar systematically
generates expressions through the application of production rules R, including

• compositional rules S → S + T | S × T | S/T | S − T | T | −T that build complex
mathematical structures,

• function application rules T → (S) | (S)2 | sin(S) | exp(S) | log(S) | cos(S) |
√
S |

tanh(S) that provide the transcendental functions essential for eigenfunction representa-
tion,

• variable and monomial specifications T → TD | π | x | y | t | x2 | x3 | y2 | y3 that
capture spatial and temporal dependencies,

• numeric construction T → D | D.D | −D | −D.D | TD with digit generationD → D0 |
D1 | . . . | D9 | 0 | 1 | . . . | 9,

• and scientific notation D → e-1 | e-2 | e-3 | e-4 for numerical stability across multiple
scales.
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Table 6: Modal time factors for common PDE families. Here A is a nonnegative self-adjoint spatial
operator with eigenpairs Aϕk = µkϕk, µk ≥ 0. Projecting the PDE onto ϕk yields the scalar ODE
for Tk(t) shown in the middle column and its solution in the right column.

PDE family Modal ODE (after projection) Temporal factor Tk(t)

Heat / diffusion T ′
k + κµk Tk = 0 e−κµk t

Stokes (divergence-free) T ′
k + ν µk Tk = 0 e−ν µk t

Undamped wave T ′′
k + c2 µk Tk = 0 cos

(
c
√
µk t

)
or sin

(
c
√
µk t

)
Damped wave (telegraph) T ′′

k + 2γ T ′
k + c2 µk Tk = 0

Underdamped c2µk > γ2: e−γt
(
C1 cos(ωkt) +

C2 sin(ωkt)
)
, ωk =

√
c2µk − γ2.

Critical c2µk = γ2: e−γt(C1 + C2t).
Overdamped c2µk < γ2: C1e

−(γ−
√

γ2−c2µk) t +

C2e
−(γ+

√
γ2−c2µk) t.

Biharmonic diffusion T ′
k + κµ2

k Tk = 0 e−κµ2
k t

Damped plate/beam T ′′
k + 2γ T ′

k + c2 µ2
k Tk = 0 As for damped wave, with c2µk replaced by c2µ2

k

Klein–Gordon (damped) T ′′
k + 2γ T ′

k + (c2µk +m2)Tk = 0 As for damped wave, with c2µk replaced by c2µk +m2

Fractional diffusion T ′
k + κµ s

k Tk = 0, s ∈ (0, 1] e−κµ s
k t

Reaction–diffusion (linear part) T ′
k + (κµk − ρ)Tk = 0 e−(κµk−ρ) t

Allen–Cahn (linearized) T ′
k + (κµk − α)Tk = 0 e−(κµk−α) t

Cahn–Hilliard (linearized) T ′
k +M µk(µk + σ)Tk = 0 e−M µk (µk+σ) t

Kuramoto–Sivashinsky (linearized) T ′
k + (ν µ2

k − κµk)Tk = 0 e−(ν µ2
k−κµk)t

Maxwell in a PEC cavity ε T ′′
k + σ T ′

k + c2 µk Tk = 0 Vector modes; as damped wave (if σ = 0: cos / sin with ωk = c
√
µk)

Isotropic linear elasticity T ′′
k + ω2

B,k Tk = 0, B ∈ {T, L} Two branches: ωT,k = cT
√
µk, ωL,k = cL

√
µk; T = cos / sin

The terminal alphabet hence encompasses

Σ = {x, y, t, π}∪{sin, cos, exp, log, tanh,
√
·, (, )}∪{+,−,×, /, ̂}∪{0, 1, . . . , 9}∪{e-1, . . . , e-4}.

A.1.3 MATHEMATICAL CHECKS ON GENERATED FUNCTIONS

Each generated component undergoes rigorous symbolic validation to guarantee syntactic and math-
ematical sense of the generated expressions. In case a generated expression does not satisfy the
checks, it is rejected, and a new one is generated.

Syntactic requirements. We enforce strict variable presence requirements where ODE problems
must contain {x} ⊆ Vars(u), spatial DE problems require {x, y} ⊆ Vars(u), and spatiotemporal
problems need {x, t} ⊆ Vars(u) or {x, y, t} ⊆ Vars(u). Function domain restrictions prevent un-
defined operations through logarithmic function constraints log(f) ⇒ f > 0 on Ω, square root
function requirements

√
f ⇒ f ≥ 0 for spatial components, and division safety ensuring denomi-

nators remain bounded away from zero. To ensure symbolic rather than constant generation, we for-
bid purely numeric arguments to transcendental functions so that sin(α), cos(α), exp(α), log(α) /∈
Lang(GD) for α ∈ R. Integer powers are restricted to degree≤ 3 to preserveH1(Ω) membership on
bounded domains, ensuring that for polynomials u =

∑
|β|≤3 cβx

β we have ∥u∥H1(Ω) < ∞ when
Ω is bounded. Function compositions are validated for smoothness preservation where admissible
functions f ∈ {sin, cos, exp, tanh} applied to arguments g with controlled growth maintain C∞

regularity on bounded domains.

Boundary conditions. For boundary condition compatibility, homogeneous Dirichlet conditions
u|∂Ω = 0 are enforced by multiplying spatial components with boundary-vanishing envelopes such
as ψenv(x, y) = sin

(
πx
Lx

)
sin

(
πy
Ly

)
for rectangular domains, ensuring umodified ∈ H1

0 (Ω). Neumann

compatibility for problems requiring ∂u
∂n |∂Ω = 0 uses cosine spatial modes that naturally satisfy zero

normal derivative conditions.

Constants. Numerical stability is maintained through exponential scaling control using scientific
notation coefficients with mantissa m ∈ [0.001, 999] and exponent e ∈ [−4, 4] to prevent overflow
and underflow. Floating point precision involves rounding numeric literals to 3 decimal places for

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: GVAE architecture summary. LN: LayerNorm over [C,L]; all linear/conv layers use
bias=False unless noted.

Block Layer Dims / Kernel / Len Act/Norm

Input Tensor C=53, L=72 –

Encoder
Conv1D 53 → 64, k=2, L: 72 → 71 ELU
Conv1D 64 → 128, k=3, L: 71 → 69 ELU
Conv1D 128 → 256, k=4, L: 69 → 66 ELU

Linear 256×66=16, 896 → 256 ELU
Heads 256 → 32 (µ), 256 → 32 (log σ2) –

Decoder (positional)
Linear 32 → 512 ELU
GRU input= 512, hidden= 512, layers= 1 –
TimeDense 512 → 53 (per position, L=72) –

Latent dim / samples z-dim = 32; decoder samples per input = 1

Table 8: Lightning module summary (train mode).

Name Type Params Mode

model GrammarVAE 6.1 M train

Total trainable params 6.1 M (24.495 MB)

most components and 6 decimal places for wave modes, converting to rational representations when
possible to avoid precision degradation.

Uniqueness of expressions. Expression canonization includes converting fractional powers to
√·

notation when p = 1/2, transforming reciprocal notation x−1 7→ 1/x, and simplifying coefficients
such as (2 × 3)x 7→ 6x. Uniqueness is enforced through syntactic equivalence classes where we
define s ∼ s′ if their canonized forms coincide after symbolic simplification, maintaining exactly
one representative per equivalence class [s] ∈ L(GD)/ ∼ using a global hash table that tracks all
generated canonical forms.

A.2 GVAE MODEL AND TRAINING DETAILS

We employ a Grammar Variational Autoencoder (GVAE) that maps one-hot sequences of CFG
production rules to a continuous latent space and decodes back to valid rule sequences. Inputs are
x ∈ RB×C×L withC=53 rules andL=72 time steps (dataset shapeN×C×L = 23,682×53×72);
targets are y = argmaxc x ∈ {0, . . . , 52}B×L.

Architecture. The encoder stacks three valid (no-pad) 1D convolutions with ELU activations,
followed by a linear layer and two bias-free heads producing µ, log σ2 ∈ R32. The decoder is
non-autoregressive (“positional”): it lifts z ∈ R32 to a hidden state, runs a GRU across positions,
then applies a time-distributed linear projection to rule logits. Shapes and hyperparameters are
summarized in Table 7. Lightning reports 6.1 M trainable parameters (model size 24.495 MB; see
Table 8).

Losses and regularization. The objective is

L = Lrecon + β(t) KL (q(z|x) ∥ p(z))︸ ︷︷ ︸
latent

+ γ(e)
(
0.8LHull + 0.8Lph + 10−4 Lsmooth

)
,

withLrecon being equal to cross entropy loss ofLrecon
(
logits, y

)
, where logits being the mean over de-

coder samples (here = 1). The KL weight uses a linear warmup β(t) = β0+(1−β0) min
(

t
7000 , 1

)
with β0=0.01. The geometric topological block activates once validation sequence-exact accuracy
reaches 20%, then ramps γ(e) from 0 to 1 over 5 epochs. Topological loss’ terms (Hull, ph@scale
on CPU, smooth) are computed in fp32 and scheduled sparsely (train every 50 steps and validate
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Table 9: Training hyperparameters and Ltopo term weights. ReduceLROnPlateau monitors the bal-
anced ELBO.

Item Value Details

Optimizer AdamW lr = 3× 10−4, weight decay = 10−5

Batch size (train/val) 64 / 64 4 dataloader workers
Precision 16-mixed (AMP) global grad clip = 1.0
Scheduler ReduceLROnPlateau factor = 0.2, patience = 5
Epochs / Early stop 200 / 10 monitor (validation’s set ELBO)
KL warmup β(t) to 1.0 by 7000 updates β0=0.01
Topo loss activation at val-acc ≥ 20% ramp γ over 5 epochs
Topo loss schedule train/val every 50 / 12 sparse to limit cost
Topo loss weights wHull=0.8, wph=0.8 wsmooth=10−4

Ph settings max points = 24, max dim = 1 Rips on CPU, scales {0.10, 0.50}
Hull directions K=256 fixed UK ⊂ Sd−1

every 12 batches). Upon Ltopo activation, the LR scheduler’s best-score baseline is reset to the new
balanced ELBO.

Data and splits. We train on an HDF5 corpus of one-hot sequences under a typed CFG. Random
split with seed 42 into train/val/test of 70%/20%/10% yields the counts in Table 10.

Table 10: Dataset and splits for GVAE training (C=53, L=72).

Split # Sequences

Train 16,578
Val 4,736
Test 2,368

Environment and software. Experiments ran on an NVIDIA RTX 5080 Laptop GPU (16 GB
VRAM). Key versions are summarized in Table 11.

Table 11: Compute environment.

Component Spec
CPU Intel Core Ultra 9 275HX, 24C/24T @ 2.7 GHz
RAM 32 GB
GPU NVIDIA GeForce RTX 5080 Laptop GPU 16 GB VRAM)
Python 3.10.18
PyTorch / Lightning 2.7.1+cu128 / 2.5.2
CUDA / cuDNN 12.8 / 90800

Training procedure and metrics. We train on a single GPU with AMP and gradient clipping.
The primary validation metric is the val ELBO, combining CE, KL (with warmup), and Ltopo (when
enabled). We also log CE, KL, ELBO variants, Topo loss components, and sequence-exact accuracy.
Early stopping halts after 10 epochs without improvement in val elbo full.

Runtime observations. Before the activation of Ltopo, epochs take a few seconds. Around the
activation point (48th epoch), training duration is∼ 3 s, however at the (50th epoch) that Ltopo starts
getting calculated training duration raises to ∼ 262 s. This spike is expected. The Ltopo builds
a Vietoris–Rips complex and computes persistent homology on the CPU. Constructing distance
matrices and boundary operators. Differentiating through them (ph/smooth-Hessian), dominates
wall-clock time and introduces CPU↔GPU synchronization overhead.

Decoding & evaluation settings. Non-autoregressive (positional) decoding with one latent sam-
ple, max length 72, vocabulary size 53. When applicable, a CFG mask enforces per-step validity.
Report sequence-exact accuracy, validity rate, CE, KL, and ELBO on validation/test sets.
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A.3 GEOMETRY REGULARIZATION

Here, we provide details on the additional loss terms added to the GVAE loss to form the Topological
GVAE (TGVAE).

Convex hull loss. Let z ∈ Rd be a latent vector and Z = {zi}Bi=1 the current batch. We maintain
a reservoir of latent vectors Rt ⊂ Rd using a farthest point insertion with distance δ > 0 (Gonzalez,
1985). At each iteration t, we freeze Rprev

t , compute losses, and update the reservoir only if a latent
is not δ close to any z seen thus far. Considering fixed unit directions {nk}Kk=1 ∈ Sd−1 and a support
function hZ(n) = supz∈Z⟨n, z⟩ (Rockafellar, 2015) we define:

LHull(R
prev
t , Zt) =

1

BK

B∑
i=1

K∑
k=1

[⟨nk, zi⟩ − hRprev
t
(nk)]

2+, where [·]+ = max{·, 0}.

If LHull = 0 then every zi lies in the an explicit convex enclosure of the frozen reservoir ∩Dd=1{z :
⟨nm, z⟩ ≤ hRprev

t
}. Inside those bounds, we remove small spurious loops and holes at the working

resolution set by δ.

Persistent homology loss. Let Pt = Rprev
t ∪ Zt, and Vk(P ) the persistence diagram of Vietoris-

Rips homology across the scale ϵ (Edelsbrunner & Harer, 2010). We set the working radius r =
√
2δ

using the clamped lifetime ℓr(b, d) = max{0,min(d, r) − min(b, r)}, and define the persistent
homology loss:

Lph(Pt) =
∑

(b,d)∈V1(Pt)

ℓr(b, d)
2 + a0

∑
(b,d)∈V0(Pt)

ℓr(b0, d0)
2,

which suppresses small loops H1 and micro-clusters H0 at resolution r.

Smoothing loss. We also penalize large Hessian energies to prevent sharp decode curvatures, to
ensure that small moves in the latent space produce stable changes. For decoder Dθ : Rd → RM ,
we set f(z) = 1⊤Dθ and Hf (z) = ∇2f(z), with v ∼ N (0, Id) we define:

Lsmooth = Ez∈Zt∥Hf (z)v∥22,

which is estimated using the probes as in Hutchinson (1989).

B ITERATIVE SEARCH AND REFINEMENT

This appendix details the two-stage search procedure outlined in Section 2. We provide the mathe-
matical formulation and implementation details for both structure discovery and coefficient refine-
ment.

B.1 NOTATION AND SETUP

When using SIGS on a specific problem, the user may specify a structural Ansatz F consisting of the
compositional nature the proposed solutions should follow. For example, one could specify spatio-
temporal separability as u(x, t) =

∑K
j=1 ϕj(x)ψj(t), leaving K spatial and K temporal functions,

overall L = 2K components, to be chosen by SIGS. We denote by A : {L(G)}L → L(G) the
assembly map that composes the single components into the final solution following the Ansatz, and
refer to the component indices as NL = {1, . . . , L}. Recall the TGVAE encoder E : L(G) 7→ Z
and decoder D : Z → L(G) that assign strings (functions) from the language to latent vectors in
Z ⊂ Rd. For a given component c ∈ NL, the Ansatz specifies the variables c should contain. This
prior knowledge is incorporated by filtering the library to contain only valid component candidates
L(c) and restricting Z to the component-specific latent set Z(c) = {z(c)i }Nc

i=1 by applying the encoder
E to L(c).
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B.2 TARGET LOSS: DISCRETIZED PDE RESIDUAL

Based on the continuous augmented PDE residualR(u) from Equation equation 2, we formulate its
discretized form

R(u) =
1

|M|
∑
x∈M

1

|T |
∑
t∈T

(S[u](x, t))2 (3)

+ β1
1

|MIC |
∑
x∈M

(u(x, 0)− u0(x))2 (4)

+ β2
1

|MBC |
∑

x∈M∂Ω

1

|T |
∑
t∈T

(B[u](x, t)− g(x, t))2 , (5)

whereM is the discretization grid inside the domain,MBC/MIC are the discretization points on
the domain boundary and initial conditions, respectively, and T is the time discretization to evaluate
the PDE and boundary operators on. For any candidate decoded function uw = I(D(z)), we use
R as the target metric throughout all steps of the solution search pipeline. Within our experiments,
we choose the spatial discretization to be 128 and 128 as a time discretization for all the problems
except Damping Wave where we use 64 and 64 respectively.

B.3 STAGE I: STRUCTURE DISCOVERY BY ITERATIVE CLUSTERING

Component-wise libraries. The Ansatz functionA specifies the number of components as well as
which variables should be present per component (and possibly other syntactic requirements). We
therefore filter the initial library L for each component to retain only viable candidate expressions
to obtain L(c), and the corresponding encoded latent vectors Z(c) = {E(w) : w ∈ L(c)}.

Initial clustering. We then iteratively partition the latent subspaces Z(c) for each of the compo-
nents separately intoKc clusters by k-means clustering, sample from each the clusters, and assemble
solution candidates. Let NK(c) = {1, . . . ,Kc} denote the cluster indices for component c, and by
K = NK(1) × · · · × NK(L) the cluster index set of all possible cross-component cluster combina-
tions. For example, in case of spatio-temporal separability u(x, t) = f(x)·g(t), spatial and temporal
components are separated into component-wise libraries, clustered, and sampled independently and
solutions are assembled from pairs of clusters (kx, kt).

Cluster selection. We sample M tuples of cluster indices ki = (k
(1)
i , . . . , k

(L)
i ) ∈ K, where

k
(c)
i denotes the index of the cluster used for the c-th component in the i-th sample. For each

component c, we choose a latent vector z(c)i from the current encoded library vectors in cluster ki,c,
decode w(c)

i = D(z(c)i ), and assemble wi = A
(
w

(1)
i , . . . , w

(L)
i

)
. Then, we evaluate the discretized

residual for each candidate, ri = R
(
I(wi)

)
. Finally, we select the candidate with minimal residual

and record the cluster indices k∗ = ki = (k
(1)
i , . . . , k

(L)
i ) of the candidate with minimal residual

w∗ = wi as the current best clusters.

Iterative subclustering. Each of the component-wise subclusters selected as current best clusters
in the previous iteration are partitioned into Kc sub-clusters by k-means clustering on the latent
vectors. The cluster selection is repeated (sample combinations of clusters, decode and assemble
expressions, evaluate the residual, choose best cluster combination) and the best cluster combination
k∗ is updated from the new, refined clusters. Iteratively, the size of the resulting clusters shrinks,
focusing in on the final best cluster combination. This procedure is repeated until a target residual is
reached, r⋆ ≤ εstruct, or an evaluation budget on the number of iterations is exhausted.

Generation of additional latent vectors. As the size of the latent clusters decreases, there are
fewer latent vectors of the initial training library zi. New latent vectors can be generated for these
clusters, further exploring the latent space beyond what the GVAE has seen during training. We
generate these samples by convex interpolation of its members with small isotropic jitter (decodable
latent interpolation).
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B.4 STAGE II: COEFFICIENT REFINEMENT

Given the best symbolic structure w⋆ from Stage I, we freeze the form and expose only its nu-
meric literals as trainable parameters p ∈ RP , where we protect constants such as π, e, and integer
exponents. We minimize the PDE residual from R(u) on the resulting parametric function family
u⋆(·; p) = I

(
w⋆(p)

)
to obtain the best constants

p∗ = argmin
p

R
(
u⋆(·; p)

)
and the corresponding final (exact or approximate) solution u⋆(·) = u⋆(·; p⋆).

Implementation. We compile u(·; p) in float64 JAX, obtain the required derivatives by automatic
differentiation to evaluate S[u] on the grids (M, T ), and compute R(u) batched over all points.

We parse the numeric literals in w⋆ to form p̄. For single-start, set p(0) = p̄. For multi-start, draw

p(0,s) ∼ N
(
p̄, diag

(
(η|p̄|)2

))
, s = 1, . . . , S,

and optimize all starts in parallel (JAX vmap). We use Adam (Optax) with exponential learning-rate
decay and JIT. Early stopping triggers when

√
R(u) < εtol or a budget is reached.

Algorithm 1 SIGS: Symbolic Iterative Grammar Solver (overview)

Require: Grammar G, assembly map A, trained TGVAE (E ,D), discretized residual R, budgets
(M, Tmax), thresholds (εstruct, εtol)

Ensure: Refined symbolic solution u⋆ with coefficients p∗
1: Stage 0 (amortized): INITIAL SAMPLING→ (w⋆, z⋆, k⋆, r⋆)
2: Stage I (structure): SUBCLUSTER REFINE(w⋆, z⋆, k⋆, r⋆)→ (w⋆, z⋆, k⋆, r⋆)
3: Stage II (coeffs): COEFFICIENT REFINEMENT(w⋆, εtol)→ p∗

4: return w⋆(p∗)

Algorithm 2 Stage 0 (amortized): Library clustering and initial assembly

Require: Assembly map A, encoder/decoder (E ,D), discretized residual R, draw budget M
Ensure: Best candidate (w⋆, z⋆, k⋆, r⋆)

1: For each component c ∈ NL: enforce variable constraints Cc from the Ansatz to filter the library
L(c)

2: Encode and cluster: Z(c) = {E(w) : w ∈ L(c)}, partition into Kc clusters; let NK(c) =
{1, . . . ,Kc}

3: Initialize incumbent r⋆ ← +∞
4: for i = 1 to M do
5: Sample cluster tuple ki = (ki,1, . . . , ki,L) ∈ NK(1) × · · · × NK(L)

6: for each c do
7: Draw z

(c)
i from cluster ki,c; decode w(c)

i = D(z(c)i )
8: end for
9: Assemble wi = A

(
w

(1)
i , . . . , w

(L)
i

)
10: Score ri = R

(
I(wi)

)
11: if ri < r⋆ then
12: (w⋆, z⋆, k⋆, r⋆)←

(
wi, [z

(1)
i ; . . . ; z

(L)
i ], ki, ri

)
13: end if
14: end for
15: return (w⋆, z⋆, k⋆, r⋆)

C EXPERIMENTS

C.1 PROBLEM DEFINITIONS

We evaluate our method on five representative PDEs spanning steady-state and time-dependent set-
tings. Following the general formulation in equation 1, we specify the differential operator D in
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Algorithm 3 Stage I: Focused subclustering and structure refinement

Require: Incumbent (w⋆, z⋆, k⋆, r⋆) from Stage 0, encoder/decoder (E ,D), residual R, assembly
A, budgets (Tmax), threshold εstruct

Ensure: Updated (w⋆, z⋆, k⋆, r⋆)
1: For each c ∈ NL: restrict to latents in cluster K(c),⋆ and partition into Hc subclusters
2: t← 0
3: while r⋆ > εstruct and t < Tmax do
4: Sample subcluster tuple h = (h1, . . . , hL) ∈ NH(1) × · · · × NH(L)

5: for each c do
6: if subcluster hc is too small then
7: generate samples in hc by convex interpolation plus small isotropic jitter
8: end if
9: Draw z(c) from subcluster hc

10: Decode w(c) = D(z(c))
11: end for
12: Assemble w = A

(
w(1), . . . , w(L)

)
13: Score r = R

(
I(w)

)
14: if r < r⋆ then
15: (w⋆, z⋆, k⋆, r⋆)←

(
w, [z(1); . . . ; z(L)], h, r

)
16: end if
17: t← t+ 1
18: end while
19: return (w⋆, z⋆, k⋆, r⋆)

Algorithm 4 Stage II: Multi-start coefficient refinement (JAX)

Require: Best structure w⋆, residual R, tolerance εtol, starts S, noise scale η
Ensure: Optimized coefficients p∗ and refined w⋆(p∗)

1: Parse numeric literals in w⋆ to get p̄
2: for s = 1 to S do
3: Initialize p(0,s) ∼ N

(
p̄, diag((η|p̄|)2)

)
4: end for
5: Optimize all starts with Adam (JAX, float64, JIT) and exponential LR decay; at each step eval-

uate R
(
I(w⋆(p(t,s)))

)
6: Early-stop when

√
R < εtol or budget reached; keep the best p∗ = argminsR

(
I(w⋆(p(·,s)))

)
7: return p∗ and w⋆(p∗)

Table 14, together with the computational domain and mesh used to evaluate the residual R(u)
and to compute discretized solutions with FEM and PINN methods. The forcing term f and ini-
tial/boundary conditions for each test problem are specified in the following, where we distinguish
cases with known (manufactured) and unknown analytic solutions.

Table 12: Canonical problems reproduced from prior work. Dimension notation: n+mD denotes n
spatial and m temporal variables.

Problem (paper) Operator D Dim Domain Mesh Ground truth u⋆

Poisson1 (HDTLGP) uxx + uyy 2D [0, 1]2 642 sin(πx) sin(πy)
Advection3 (HDTLGP) ut + ux + uy 2+1D [0, 1]2 × [0, 2] 642 × 64 sin(x−t) + sin(y−t)

Wave2D (SSDE) utt − (uxx + uyy) 2+1D [−1, 1]2 × [0, 1] 82 × 8 ex
2

sin(y) e−0.5t

C.1.1 CONSTRUCTION OF KNOWN ANALYTICAL SOLUTIONS

For the four problems with known analytical solutions, we employ the method of manufactured solu-
tions to construct the test problems and ensure exact error quantification. Given a chosen analytical
solution utrue, we construct the forcing term via f = −D[utrue] to guarantee that utrue satisfies
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Table 13: Closed-form parity on canonical problems from prior work. We list the operator, domain,
evaluation mesh, the ground-truth solution u⋆, the closed form printed in the original paper, and the
expression found by SIGS, together with relative L2 errors (discrete, uniform grid).

Problem (source) Baseline expression SIGS expression

Poisson1 (HDTLGP) sin(3.141x) sin(3.142 y) sin(πx) sin(πy)

Advection3 (HDTLGP) − sin(0.9838t− x)− sin(0.9979t− y) sin(x− t) + sin(y − t)

Wave2D (SSDE) ex
2−0.5t sin(y) ex

2

sin(y) e−0.5t

Table 14: Summary of benchmark problems. Dimension notation: n+mD denotes n spatial and m
temporal dimensions.

Problem Operator D Dim Domain Mesh Key Parameters

Burgers’ ut + uux − νuxx 1+1D [−5, 5]× [0, 2] 128× 128 ν = 0.01
Diffusion ut − κuxx 1+1D [0, 1.397]× [0, 1] 128× 128 κ = 0.697
Damping wave utt + ut − c2(uxx + uyy) 2+1D [−8, 8]2 × [0, 4] 32× 32× 32 c = 0.8
Poisson–Gauss −(uxx + uyy) 2D [0, 1]2 100× 100

the PDE exactly. Initial and boundary conditions are then prescribed from utrue to complete the
well-posed problem formulation.

The specific analytical solutions are detailed in Table 15. These solutions are chosen to exhibit di-
verse mathematical behaviors: the Burgers’ equation features a smooth shock profile with nonlinear
advection, the diffusion equation uses a multi-mode separated solution with exponential decay, the
wave equation employs a truncated Fourier series, and the damping wave incorporates both temporal
decay and spatial wave propagation in two dimensions.

Table 15: Analytical (manufactured) solutions for benchmark problems.

Problem Analytical Solution utrue Constants

Burgers’ 0.86 + 0.6 tanh(25.8 t− 30.0x+ 9.9) –

Diffusion A[sin
(
πx
L

)
e
−π2κ

L2 t − sin
(
3πx
L

)
e
− 9π2κ

L2 t
A = 3.974, L = 1.397

+ sin
(
5πx
L

)
e
− 25π2κ

L2 t
]

Damping wave e−αt cos(ωt−KR(x, y)),
where R(x, y) =

√
(hx+ 1)2 + (hy − 1)2

h = 0.2, K = 2.5, ω = 0.4,
α = 0.45

C.1.2 PROBLEM WITHOUT KNOWN ANALYTIC SOLUTION

The Poisson–Gauss problem represents a realistic scenario where no analytical solution is available,
making it particularly valuable for assessing method performance in practical applications. The
problem consists of the steady-state Poisson equation ∇2u = f on the unit square [0, 1]2 with
homogeneous Dirichlet boundary conditions u = 0 on ∂[0, 1]2.

The forcing term f is constructed as a superposition of n isotropic Gaussian sources:

f(x, y) =

n∑
i=1

exp

(
− (x− µx,i)

2 + (y − µy,i)
2

2σ2

)
(6)

with fixed width σ = 0.1 and deterministically chosen centers:

• PG-2: (0.3, 0.8), (0.7, 0.2)
• PG-3: (0.3, 0.8), (0.7, 0.2), (0.5, 0.2)
• PG-4: (0.3, 0.8), (0.7, 0.2), (0.5, 0.2), (0.4, 0.6)

This configuration creates localized source regions with smooth spatial variation, testing the
method’s ability to capture multi-scale features and handle problems without ground truth solutions.
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For evaluation on this problem, we rely on mesh convergence studies and physics-based consistency
checks rather than direct error computation against an analytical reference.

C.2 SOLUTION ANSATZ SPECIFIC TO OUR EXPERIMENTS

Our framework generates eigenfunction components for five distinct operator classes, each produc-
ing characteristic mathematical patterns with specific parameter ranges that ensure physical rele-
vance and numerical stability.

• Wave operators Dwave = ∇2 − 1
c2

∂2

∂t2 generate oscillatory eigenmodes
ak sin(kπx) cos(ckπt) where mode indices k ∈ {1, 2, . . . ,K} determine spatial
harmonic frequencies, wave speeds c ∈ [0.1, 0.8] control temporal oscillation rates, and
amplitude coefficients ak = m×10e

k × π
K use scientific notation with mantissa m ∈ [5, 9]

and exponential damping to ensure numerical stability across multiple scales.

• Diffusion operators Ddiff = ∇2 − ∂
∂t produce separable heat modes

2M0

L sin
(

(2n+1)πx
L

)
e−

(2n+1)2π2Dt

L2 where amplitude coefficients M0 ∈ [1, 3] set ini-
tial magnitudes, domain lengths L ∈ [0.1, 1.5] determine spatial scales, diffusivities
D ∈ [0.01, 1] control temporal decay rates, and odd harmonic indexing (2n + 1) corre-
sponds to homogeneous Dirichlet boundary conditions with mode numbers n ∈ {0, 1, 2}
generating the first three eigenmodes.

• Viscous Burgers operators DBurgers = u∂u
∂x−ν ∂2u

∂x2 create shock transition profiles consisting

of average components uL+uR

2 and shock components uL−uR

2 tanh
(

(x−x0−st)(uL−uR)
4ν

)
where left asymptotic states uL ∈ [1, 3] and right asymptotic states uR ∈ [−1, 1] define the
shock amplitude, propagation speeds s ∈ [0.1, 2] control shock movement, initial positions
x0 ∈ [−1, 1] set shock locations, and kinematic viscosities ν ∈ [0.01, 1] determine shock
width.

• Poisson-Gauss operators DPoisson = ∇2 with source terms generate localized Gaussian
profiles e−α((x−x0)

2+(y−y0)
2) for superposition of Gaussian source terms and polynomial

harmonic functions for steady-state equilibrium configurations, where decay parameters α
control Gaussian widths, center coordinates (x0, y0) determine localization, and multiple
Gaussians can be superposed as source terms.

• Outgoing damped wave operators Dout-wave = ∇2 − 1
c2

∂2

∂t2 + γ ∂
∂t combine en-

velope functions h
(
e((x−x0)

2+(y−y0)
2)/(w(1+t)) + 1

)−1

, oscillatory kernels

cos(k
√
(x− x0)2 + (y − y0)2 − ct), and decay factors e−at where amplitudes

h ∈ [0.01, 0.5], envelope width parameters w ∈ [0.3, 1.0], radial wave numbers
k ∈ [0.5, 4.0], phase velocities c ∈ [0.1, 1.0], temporal decay rates a ∈ [0.02, 0.8], and
center coordinates (x0, y0) ∈ [−6, 6]2 control the composite spatiotemporal structure.

Our grammar-based approach produces eigenfunction components at different structural levels in-
cluding elementary eigenmodes corresponding to individual spatial harmonics ϕk(x) and temporal
factors ψk(t), separable products representing complete eigenfunctions ϕk(x)ψk(t) generated when
the grammar produces expressions containing both spatial and temporal variables, and compos-
ite structures like non-separable patterns cos(

√
x2 + y2/t) that the grammar can generate through

its compositional rules but cannot be factorized. For ODE problems and linear spatial DEs such
as Poisson and Laplace equations where component structure is simpler, we supplement operator-
informed generation with probabilistic grammar expansion using a context-free grammar that recur-
sively builds expression trees by selecting binary operations with probability 0.6, unary functions
with probability 0.3, and terminal symbols with probability 0.1.
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C.3 CONFIGURATION OF BASELINE METHODS

C.3.1 SSDE PRIMITIVE SETS

To ensure fair comparison, SSDE receives primitive sets derived from the same structural Ansatz
used by SIGS. For problems expecting separated variable forms (e.g., f(x) · g(t) for spatiotemporal
PDEs), we provide SSDE with functions that appear in the corresponding variable-specific clusters
within SIGS’s grammar.

Table 16: SSDE primitive sets derived from SIGS’s structural Ansatz

Problem Expected Form Variables Function Set

Burgers f(x, t) (x, t) {+,−,×,÷, exp, tanh, sin, cos}
Diffusion

∑
i fi(x) · gi(t) (x, t) {+,−,×,÷, exp, tanh, sin, cos, log}

Damping Wave f(x, y) · g(t) (x, y, t) {+,−,×,÷, exp, sin, cos,
√}

PG-2/3/4 f(x, y) (x, y) {+,−,×,÷, exp, log, xn, sin, cos}

Rationale for Primitive Selection. The primitive sets are determined by analyzing which func-
tions appear in SIGS’s variable-specific clusters:

• For separated forms f(x) · g(t): We include functions from both the spatial cluster (con-
taining x) and temporal cluster (containing t)

• For spatiotemporal problems: {sin, cos} from spatial modes, {exp} from temporal decay,
{tanh} for shock profiles (Burgers-specific)

• For wave equations: Exclude exp since the temporal cluster for waves contains only oscil-
latory functions

• For spatial-only problems (PG): Include functions from the (x, y) spatial cluster

This ensures both methods access identical function spaces, SIGS through its structured grammar
clusters and SSDE through explicit primitive specification. The key difference lies in search strategy:
SIGS restricts combinations to physically motivated forms, while SSDE explores all possible tree
compositions.

SSDE Hyperparameters. All problems use consistent RL hyperparameters: learning rate 0.0005,
entropy weight 0.07, batch size 1000, 200,000 training samples, and expression length constraints
between 4 and 30 tokens (extended to 60 for Diffusion due to its multimodal structure requiring
more complex expressions).

C.3.2 HD-TLGP PROTOCOLS

We evaluate HD-TLGP under two protocols that parallel the conditions for SSDE and SIGS.

Protocol 1: Knowledge-Based Initialization. HD-TLGP receives problem-specific solution
components in its knowledge base:

• Diffusion: First mode with exact amplitude A sin(πx/L) exp(−π2Dt/L2), templates for
modes 3 and 5, and 2-3 mode combinations

• Burgers: Core shock tanh(α(x− x0 − st)) and scaled variant

• Damping Wave: Radial motif cos(k
√
(x− x0)2 + (y − y0)2−ωt) and separable template

sin(πx) sin(πy) cos(ωt) exp(−γt)
• PG-2/3/4: Boundary mask sin(πx) sin(πy), individual Gaussians for each center, and sum-

of-Gaussians template

These components test whether genetic programming can extend partial solutions (Diffusion/Wave),
refine parametric forms (Burgers), or combine spatial structures (Damping Wave, PG).
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Protocol 2: Primitive-Only Discovery. HD-TLGP starts from random expressions using exactly
the same primitive set as SSDE for each problem:

• 1D problems (Diffusion, Wave, Burgers): {+,−,×,÷, sin, cos, exp, tanh}
• Damping Wave: {+,−,×,÷, sin, cos, exp, tanh,√}
• PG-2/3/4: {+,−,×,÷, sin, cos, exp, log,√}

No knowledge base components are provided, requiring complete discovery from elementary func-
tions. This ensures all symbolic methods explore identical function spaces.

Implementation Details. Population size 200 (1D) or 50 (2D), crossover 0.6, mutation 0.6, KB
transfer 0.6 (Protocol 1 only), maximum 25 generations or 120-1200 seconds, local optimization
enabled for constant tuning, peephole simplification for expression reduction.

C.4 FENICS VALIDATION FOR REFERENCE SOLUTIONS

For the Poisson-Gauss problems lacking analytical solutions, we establish numerical ground truth
through rigorous finite element analysis. We solve the Poisson equation −∇2u = f with homoge-
neous Dirichlet boundary conditions on the unit square, where f consists of superposed Gaussian
sources:

f(x, y) =

n∑
i=1

exp

(
− (x− µx,i)

2 + (y − µy,i)
2

2σ2

)

Verification Methodology. To validate our FEniCS reference solutions, we employ three conver-
gence criteria:

1. Mesh convergence: Solutions computed on progressively refined meshes (16×16 through
128×128) with P4 elements

2. Energy balance: The weak form identity a(uh, uh) = L(uh) must hold to machine preci-
sion, where a(u, v) =

∫
Ω
∇u · ∇v dx and L(v) =

∫
Ω
fv dx

3. Residual minimization: The strong-form PDE residual ∥−∇2uh− f∥L2 decreases at the
expected rate O(hp+1)

Table 17: FEniCS convergence study demonstrating exponential convergence and energy conserva-
tion

Problem Mesh DOFs L² Error vs 128×128 Energy Imbalance PDE Residual

PG-2

16×16 289 2.3e-3 1.2e-6 8.7e-4
32×32 1,089 5.1e-4 3.4e-7 2.1e-4
64×64 4,225 8.7e-5 5.6e-8 3.8e-5

128×128 16,641 – 2.1e-9 6.2e-6

Validation Results. Table 17 shows representative convergence for PG-2 (similar rates observed
for PG-3 and PG-4). The L² errors between successive mesh refinements decrease by factors of 4.5-
5.8, confirming super-linear convergence. The energy imbalance |a(uh, uh)−L(uh)| reaches 10−9

at the reference resolution, effectively satisfying the weak form exactly. The PDE residual decreases
as O(h5) for P4 elements, matching theoretical predictions.

Evaluation of Discovered Expressions. Symbolic expressions discovered by SIGS and baseline
methods are evaluated against these FEniCS references through Galerkin projection. Given a dis-
covered expression usym(x, y), we compute its projection onto the finite element space and measure
the relative L² error:

Error =
∥uFEM

h −Πhusym∥L2

∥uFEM
h ∥L2
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where Πh denotes the L² projection operator onto the P4 finite element space. This provides a
rigorous, mesh-independent measure of solution quality for problems without analytical ground
truth.

C.5 DISCOVERED SYMBOLIC EXPRESSIONS

Tables 18–20 present the symbolic expressions discovered by each method. The structural differ-
ences are immediately apparent: SIGS produces compact, physically interpretable expressions that
directly reflect PDE solution structures—separated variables for diffusion, traveling waves for Burg-
ers, and properly masked Gaussians for Poisson problems. In contrast, both HD-TLGP and SSDE
generate deeply nested compositions of elementary functions. HD-TLGP Protocol 1, despite receiv-
ing solution components, wraps them in other operations (e.g., sin(sin(cos(exp(·)))) around the
Burgers shock), while Protocol 2 often collapses to trivial constants for complex problems. SSDE
consistently produces expressions with extreme nesting depth—up to 500+ operations for Damping
Wave, that represent brute-force fitting rather than discovery of underlying mathematical structure.
These expressions, while potentially achieving low training error fail to generalize and provide no
insight into the PDE dynamics.

Table 18: Symbolic expressions discovered by SIGS

Problem Discovered Expression

Burgers 0.86 + 0.6 tanh(30(x− 0.33− 0.86t))

Diffusion 3.974(sin(2.15πx)e−3.21π2t + sin(0.71πx)e−0.36π2t + sin(3.58πx)e−8.93π2t)

Damping Wave cos(0.5
√

(x+ 5.0)2 + (y − 5)2 − 0.4t)e−0.45t

PG-2 sin(πx) sin(πy) ·
[
0.0080 exp

( 0.424((x−0.923)2+(y−0.760)2)

2.136·0.5732
)

+0.0251 exp
(−1.071((x−0.794)2+(y−0.054)2)

2.245·0.2012
)

+0.0105 exp
(−1.110((x−0.248)2+(y−0.496)2)

1.862·0.1852
)]

PG-3 sin(πx) sin(πy) ·
[
0.0079 exp

( 0.461((x−0.500)2+(y+0.217)2)

2.152·0.5082
)

+0.0137 exp
(−0.816((x−0.750)2+(y−0.873)2)

1.898·0.1382
)

+0.0137 exp
(−0.851((x−0.250)2+(y−0.873)2)

2.505·0.1232
)

+0.0206 exp
(−1.092((x−0.500)2+(y−0.043)2)

1.738·0.2212
)]

PG-4 sin(πx) sin(πy) ·
[
0.0068 exp

(−1.489((x−0.731)2+(y−0.502)2)

1.553·0.1952
)

+0.0112 exp
(−1.123((x−0.500)2+(y−0.124)2)

1.804·0.1592
)

+0.0294 exp
(−0.031((x−0.665)2+(y−0.887)2)

2.025·0.5842
)

+0.0069 exp
(−0.992((x−0.267)2+(y−0.502)2)

1.664·0.1552
)

+0.0286 exp
(−1.024((x−0.501)2+(y+0.276)2)

1.569·0.1902
)

C.6 DETAILS ON THE ABLATION STUDY

Mahalanobis distance. Given x ∈ Rd, mean µ, covariance Σ ≻ 0, the Mahalanobis distance
is dM (x, µ) =

√
(x− µ)⊤Σ−1(x− µ). For each model, we compute training encoder means

{µi}Ni=1, estimate Σ from these means, and define dmin(z) = mini dM (z, µi). Our filter accepts a
candidate z iff d(with)

min (z) ≥ τ and d(w/o)
min (z) ≥ τ (we use τ=0.8).
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Table 19: Symbolic expressions discovered by SSDE

Problem Expression Found

Burgers exp(tanh(−1743.845x− 76821.176)/ sin(exp(tanh(exp(x))))) ·
exp(− tanh(−t exp(t)− 3t+ tanh(−1743.845x−
76821.176)/ sin(exp(tanh(exp(x))))))

Diffusion cos(t+ x+ cos(112.185x3 tanh(x2 + x)− 118.201x3 + 8.824x)−
tanh(t))/(2t+ x/ cos(−t+ x+ cos(112.185x3 tanh(x2 + x)− 118.201x3 +
8.824x)) + cos(112.185x3 tanh(x2 + x)− 118.201x3 + 8.824x)/ cos(−t+ x+
cos(112.185x3 tanh(x2 + x)− 118.201x3 + 8.824x)))

Damping Wave Expression with 500+ operations including nested functions, (full expression exceeds
reasonable display length)

PG-2 sin(x(−0.02582816 + 0.01654789
cos(x2+cos(y(y+exp(x·cos(y+0.42096704)))))

))

PG-3 x(−0.802y2 + y)(1.092cos(sin(sin(sin(x))))− 0.82463681261637)

PG-4 x(log(sin(sin(cos(sin(sin(sin(sin(sin(sin(x)))))))))) + 0.383)− 0.007

Table 20: Symbolic expressions discovered by HD-TLGP

Problem Protocol Expression Found

Burgers P1 sin(sin(cos(exp(− tanh(0.996 tanh(25.8t− 30.0x+ 9.9)))))) + 0.569

P2 tanh(exp(− cos(tanh(tanh(x) + 0.5) + tanh(1.649 exp(−x)))) +
tanh(sin(x+ 48.558) + tanh(x)))

Diffusion P1 3.974 · (exp(88.121t+ 3.974 exp(−3.525t) sin(63.495/x) ·
sin(2.249x)) sin(2.249x) + sin(11.244x)) exp(−91.646t)

P2 sin(tanh(tanh(x))) + 1.840 tanh(t+ sin(0.540 ·
exp( 0.5

sin(cos(sin(x+π))/((1.623t−5.100)(−t+2x+1.0)))
tanh(1.019 cos(1.649t+

0.824)))))

Damping Wave P1 exp(cos(0.542t−0.357((x−0.135)(x+0.269)+(y−0.940)(y+0.495))1/2))

P2 Complex nested expression with 150+ operations including imaginary unit

PG-2

P1 0.0181 sin(exp(1.638(26.282 + exp(−0.992/(x2 − 40x+ y2 − 26.598y +

531.969)))1/2)− 1.638 exp(−0.191/(7.560x · exp(1.670x) + 117.703x−
370.656y + 61.605 exp(1.670x)− 1833.212)) sin(x− y))

P2 0.000105

PG-3
P1 (y − 0.468)(y − 0.440)(sin((tanh(y) + 9.870) exp(0.0120/((x−

0.538)(x− 0.032) + (y − 1.662)(y − 1.548)))))1/2

P2 9944.705 sin(x) + 1.218× 10−12

PG-4

P1 12945.616/ sin(exp(exp(exp(−1.095 exp(3.535/((x+ 0.0183)2 + (y −
0.389)(y − 0.368)))/(−1.527y + 1.527(x− 0.764)2 exp(3.535/((x+
0.0183)2 + (y − 0.389)(y − 0.368)))− 5.261)))))

P2 9505.982
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C.7 SOLUTION VISUALIZATIONS
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Figure 4: Contour plot of the learned solution u(x, t) for the Burgers equation. The horizontal
axis represents the spatial domain x ∈ [−5, 5], the vertical axis represents the temporal domain
t ∈ [0, 2], and the colormap indicates the solution magnitude ranging from 0.26 to 1.46. The solution
is computed on a 128× 128 discretization grid
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Figure 5: Contour plot of the learned solution u(x, t) for the Diffusion equation. The horizontal
axis represents the spatial domain x ∈ [0, 1.4], the vertical axis represents the temporal domain
t ∈ [0, 1], and the colormap indicates the solution magnitude ranging from −1.5 to 11.9. The
solution is computed on a 128× 128 discretization grid.
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Figure 6: Contour plots of the learned solution u(x, y, t) for the Damped Wave equation at time
instances t ∈ {0.5, 1.0, 2.0}. The spatial domain is (x, y) ∈ [−8, 8]2, and the colormap indicates the
solution magnitude ranging from−0.5 to 0.5. The solution is computed on a 128×128 discretization
grid.
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Figure 7: Comparison of numerical approximation and symbolic solution for the Poisson equation
with 2 Gaussian source centers. (Left) Source term F (x, y) consisting of 2 Gaussian functions
centered at (0.3, 0.5) and (0.7, 0.2) with σ = 0.1. (Right) Solution obtained using the SIGS method.
(Middle) Reference solution obtained by Finite Element Method (FEM) solution computed using
FEniCS on a 100×100 mesh with P2 elements. The spatial domain is (x, y) ∈ [0, 1]2, visualized on a
400×400 grid. The colormap indicates solution magnitude with maximum values of approximately
0.035.

Figure 8: Comparison of numerical approximation and symbolic solution for the Poisson equation
with 3 Gaussian source centers. (Left)Source term F (x, y) consisting of 3 Gaussian functions cen-
tered at (0.3, 0.8), (0.7, 0.8), and (0.5, 0.2) with σ = 0.1. (Middle) Reference solution obtained
by Finite Element Method (FEM) solution computed using FEniCS on a 100 × 100 mesh with P2
elements .(Right) Solution obtained using the SIGS method. The spatial domain is (x, y) ∈ [0, 1]2,
visualized on a 400× 400 grid. The relative L2 error between FEM and SIGS solutions is approxi-
mately 1%.
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Figure 9: Comparison of numerical approximation and symbolic solution for the Poisson equation
with 4 Gaussian source centers. (Left)Source term F (x, y) consisting of 4 Gaussian functions cen-
tered at (0.3, 0.5), (0.7, 0.5), (0.5, 0.2), and (0.5, 0.7) with σ = 0.1s. (Middle) Reference solution
obtained by Finite Element Method (FEM) solution using FEniCS on a 100 × 100 mesh with P2
element .(Right) Solution obtained using the SIGS method. The spatial domain is (x, y) ∈ [0, 1]2,
visualized on a 400×400 grid. The symmetric arrangement of sources produces a cross-like pattern
in the solution field.

LLMs usage in the manuscript The authors used LLMs to polish grammar and spelling through
Overleaf tools and independent LLMs services.
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