
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Neuro-Symbolic AI for Analytical Solutions of Differential
Equations

Anonymous authors
Paper under double-blind review

Abstract

Analytical solutions to differential equations offer exact insight but are
rarely available because discovering them requires expert intuition or ex-
haustive search in large combinatorial spaces. We introduce SIGS, a neuro-
symbolic framework that automates this process. SIGS uses a formal gram-
mar to generate only syntactically and physically valid building blocks,
embeds these expressions into a continuous latent space, and then searches
this space to assemble, score, and refine candidate closed-form solutions
by minimizing a physics-based residual. This design unifies symbolic rea-
soning with numerical optimization; the grammar constrains candidate so-
lution blocks to be proper by construction, while the latent search makes
exploration tractable and data-free. Across a range of differential equations,
SIGS recovers exact solutions when they exist and finds highly accurate ap-
proximations otherwise, outperforming tree-based symbolic methods, tra-
ditional solvers, and neural PDE baselines in accuracy and wall-clock ef-
ficiency. These results are a step forward, integrating symbolic structure
with modern ML to discover interpretable, closed-form solutions at scale.

1 Introduction

The understanding of physical processes has been a long-standing effort for scientists and
engineers. A key step in this endeavor is to translate physical insights (laws) into precise
mathematical relationships that capture the underlying phenomena. These relationships
are then tested through experiments that either validate the proposed hypothesis or sug-
gest refinements. Among such mathematical formulations, differential equations (DEs) are
especially ubiquitous across disciplines, as they describe how physical quantities evolve over
time and space. Analytical solutions, closed-form expressions satisfying governing equations
and boundary/initial conditions, not only validate theory against experiment but also re-
veal intrinsic properties such as stability, periodicity, and symmetries. Classical analytical
methods are inherently compositional: they assemble solutions from elementary building
blocks such as eigenfunctions, basis expansions, or Green’s functions.
Unlike the inverse problem of discovery the governing equations given measurements of the
solution, which has been widely considered by adapting symbolic regression Petersen et al.
(2019b); Landajuela et al. (2022); Petersen et al. (2021); Yu et al. (2025); Kamienny et al.
(2022); Biggio et al. (2021); Vastl et al. (2022) to this setting, the forward problem of discov-
ering analytical solutions to DEs, considered here, is less explored. In this context, proposed
approaches include genetic programming and its variants (Tsoulos & Lagaris, 2006; Seaton
et al., 2010; Kamali et al., 2015; Boudouaoui et al., 2020). Lately, symbolic approaches have
been enriched with machine learning components to overcome this combinatorial complex-
ity. Lample & Charton (2019) train neural networks on sequence representations of trees
in order to solve simple explicit ODEs. Wei et al. (2024) propose SSDE, a methodology
that employs a recurrent neural network to generate symbolic candidates, guided by a re-
inforcement learning policy constrained by the governing equations and conditions. As a
baseline, they considered the accuracy of fitting symbolic solutions to functions obtained
by physics-informed neural networks, relying on deep symbolic regression (Petersen et al.,
2019a). Cao et al. (2024) use transfer learning to lift genetic programming results from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview over the proposed Symbolic Iterative Grammar Solver (SIGS). A. Ter-
minal symbols Φ and rules R, together with non-terminals N and starting symbol S, form
the grammar G which generates the mathematical expressions in the library L(G). B. Each
expression w ∈ L(G) is identified with a function u in the finite set of candidate functions
U . C. The encoder E and decoder D of the Grammar Variational Autoencoder (GVAE,
(Kusner et al., 2017)) embed the finite L(G) into the continuous latent space Z. D. Given
a differential equation and system conditions, a structure search is performed over z ∈ Z
using iterative clustering, followed by a separate optimizations of the constants in the fi-
nal structure, optimizing for lowest residual R of the corresponding candidate function
u = I ◦ D(z) ∈ U .

one-dimensional problems to higher dimensions (HD-TLGP). Unlike symbolic regression,
where the primitives of differential operators are chosen from a dictionary of fundamen-
tal operations such as curl or divergence, there exists no principled way to systematically
choose components in solution discovery to combine and get mathematically proper and
physically plausible solutions. As a result, solution discovery methods have tended towards
two extremes: (i) unconstrained search, which faces combinatorial explosion, sensitivity to
initialization, and lack of principled incorporation of domain knowledge; or (ii) narrow pre-
training, which biases discovery toward limited problem classes and hinders generalization.
A principled middle ground is missing.
This raises the key question: Can we design a framework that generalizes across PDEs while
systematically constraining the search to mathematically admissible, physically meaningful
solutions?
We answer affirmatively with the Symbolic Iterative Grammar Solver (SIGS). At its core,
SIGS casts solution discovery as a hierarchical, grammar-guided composition of analytic
atoms (eigenfunctions and related sub-expressions). The hierarchy operates at two levels.
At the top level, an Ansatz specifies the structural form of candidate solutions: e.g. the
Ansatz f(x)×g(t) restricts the search to a product of spatial, temporal, or combined terms.
At the lower level, each placeholder function in the Ansatz is instantiated with concrete
atoms drawn from a grammar; e.g. f(x) is replaced by sin(x). Using formal grammars
(Hopcroft & Ullman, 1979), elementary functions act as terminals while operations such
as addition or exponentiation act as production rules. This formalism generalizes classical
construction techniques, providing a principled way to generate only admissible expressions
and to systematically explore the solution space defined by the PDE.
To overcome the combinatorial complexity of assembling such expressions, SIGS embeds
grammar-generated candidates into a continuous latent manifold using a Grammar Vari-
ational Autoencoder Kusner et al. (2017). We further impose a novel topological regu-
larization within the GVAE, ensuring that latent neighborhoods map smoothly to valid
expressions and that clusters of candidates form convex regions. This embedding trans-
forms discrete tree search into quasi-continuous optimization: instead of enumerating oper-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ators and integers, we navigate the latent manifold, progressively refining the search around
promising regions. The final constants are then optimized with gradient descent, yielding
exact or approximate analytical solutions.
Our key contributions are as follows.

• A grammar-based framework (SIGS) that efficiently balances computational
complexity with generality by composing solution units through hierarchical
Ansatz+atom combinations, modeled through formal grammars.

• The Topological Grammar VAE (TGVAE), which encodes admissible solutions onto
a smooth latent manifold for efficient search.

• An efficient and task-agnostic approach that employs compositionality of solutions
to solve a broad selection of PDEs, without the need for numerical data.

• State-of-the-art performance on recent benchmarks, including recovery of exact so-
lutions and symbolic approximations of PDEs lacking closed-form solutions.

2 Method

Problem setup We consider the generic form of a time-dependent partial differential equa-
tion (PDE) as (Molinaro et al., 2024),

∂tu+ D(u) = f , ∀(x, t) ∈ Ω× [0, T],
u(x, 0) = u0(x), ∀x ∈ Ω,

B[u](x, t) = g, ∀(x, t) ∈ ∂Ω× [0, T],
(1)

where Ω ⊂ Rd is the spatial domain, u ∈ U ⊆ C(Ω × (0, T)) is the space-time continuous
solution, f ∈ U is a forcing term, u0 ∈ Hs(Ω) an initial condition, B[u](x, t) denotes the
boundary conditions, and ∂Ω is the boundary of the domain. The differential operator
can include higher-order derivatives, D(u) = D(ξ, u, ∂ttu,∇xu,∇2

xu, ...), where ξ ∈ Rdξ are
PDE parameters. We remark that Equation 1 represents a very general form of differential
equations as the solution u = u(x, t) is a function of both space and time. By setting
u = u(t), we recover general ODEs, while setting u = u(x) enables us to recover time-
independent PDEs from the same overall formulation. Henceforth, we use PDEs of the
form of Equation 1, as the objects for which we discover analytical solutions. We call the
collection of f ,B[u], and u0 the system conditions that need to be specified in order to solve
a given PDE. We define the symbolic form of a PDE as:

S(u) = ∂tu+ D(u)− f , ∀u ∈ U .

We formulate solving PDEs as an iterative computational process, where given a domain
discretization, a set of boundary and initial conditions, and the symbolic form of the PDE

(Ω,B[u], u0, S)
D(z)−−−→ ui.

The method searches for a parameterization z of uz ∈ U that minimizes the loss,

R(u) = ‖S(u)‖2 + ‖u(0, x)− ui0‖2 + ‖B[u]− g‖2, (2)

where we generally use equal weighting between the residual terms. We restate our goal as
finding an analytical expression u∗ that minimizes the residual R(u), yielding an analytical
solution in case R(u∗) = 0 and an analytical approximate solution if 0 < R(u∗) << 1.

Grammar Construction. Analytic expressions are commonly represented as trees, with
internal node labels denoting unary or binary expressions (e.g. ”sin”, ”+”) and leaves
denoting constants or variables. However, care must be taken when generating such trees to
avoid exponential complexity and the generation of syntactically wrong expressions Virgolin
& Pissis (2022); Kissas et al. (2024). To alleviate this issue, we consider a Context-Free
Grammar (CFG) (Chomsky, 1956; Hopcroft & Ullman, 1979) as a principled way to generate
exactly the classes of atoms included in an Ansatz. A CFG is defined as G = {Φ, N,R, S},
where Φ is the set of terminal symbols, N is the set of non-terminal symbols and Φ∩N = ∅,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

R is a finite set of production rules and S ∈ N is the starting symbol. Each rule r ∈ R is a
map α→ β, where α ∈ N , and β ∈ (Φ ∪N)∗ (see Fig. 1A). A language L(G) is defined as
the set of all possible terminal strings that can be derived by applying the production rules
of the grammar starting from S, or all possible ways that the nodes of a derivation tree
can be connected starting from S as L(G) = {w ∈ Φ∗ | S →∗ w}, where →∗ implies T ≥ 0
applications of rules in R. Each expression is equivalently represented by the string w (as a
sequence of symbols), by the list of rules applied to generate w from S, and by a derivation
tree that represents the syntactic structure of string w ∈ L(G) according to grammar G.
We define an interpretation map I : L(G) → U , which assigns to each syntactic expression
w ∈ L(G) semantic meaning in terms of a function uw : D → R. The set of all functions
represented by the grammar is U(G) = {uw : D → R | uw = I(w), w ∈ L(G)}. We refer to
uw as u in the future to simplify the notation.

Compositional Ansatz. When using SIGS on a specific problem, the user may specify a
structural Ansatz F that outlines the compositional nature of the proposed solution. For
example, one could specify spatiotemporal separability as u(x, t) =

∑K
j=1 ajTj(t)φj(x), leav-

ing the spatial eigenfunctions φj and temporal factors Tj , to be chosen by SIGS. In addition
to φj and Tj , the user may include atoms that encode physical mechanisms at the expres-
sion level; such as transport phases, kx− ωt; viscous shock profiles, tanh((x0 + x− ct)/ν);
or other motifs known to describe the dynamics of interest exactly or approximately. Lo-
calized atoms such as Gaussians can also be included to capture spatially confined phe-
nomena. The Ansatz may include hybrid factors that mix space and time, allowing
u(x, t) =

∑K
j=1 ajTj(t)φj(x)ψj(x, t) which relaxes separability while retaining controlled,

interpretable compositions.
Searching the resulting high-dimensional combinatorial spaces requires a trade-off between
generality and complexity. We embed atoms (sub-trees) instead of primitives (unary, binary
operators, reals, and variables) to decrease the combinatorial complexity of solutions. In the
full Ansatz generality, the solution construction could be performed by considering a number
of arbitrary combinations between atoms. This approach would result in a combinatorial
explosion, partially losing the benefit of considering atoms. For this reason, we assume
that the solutions can be described exactly (or sufficiently well) by the chosen Ansatz. To
include the Ansatz into the grammar, we denote by A : {L(G)}L → L(G) the assembly map
that composes the individual components into the final solution following the Ansatz. This
restricted function class is obtained by activating only those nonterminals and production
rules that implement the user’s Ansatz and its permitted atom categories, and by enforcing
the assembly production dictated by A. The Ansatz thus induces a restriction on the
language LA(G) = {A(w1, ..., wL) : wc ∈ Lc(G)} for the component classes c required by the
Ansatz. In all cases, A realizes the user’s choice by assembling requested categories into a
single symbolic candidate that is then scored by the PDE residual. In summary, the Ansatz
specifies which families of atoms and couplings are admissible, the CFG generates those
atoms and couplings, and the interpretation map turns each derivation into a candidate
function over which SIGS optimizes the PDE residual.

Grammar Variational Autoencoders. To make the search more efficient, we embed w ∈
LA(G) into a low-dimensional continuous manifold using a Grammar Variational Autoen-
coder (Kusner et al., 2017). The encoder is defined as qφ(z|w) and the decoder pθ(w|z), for
z ∈ Z and w ∈ LA(G). The GVAE is trained by minimizing the objective:

L = Lrecon + γ KL(q(z|w)‖ p(z)),

where Lrecon the cross-entropy loss between the predicted and the baseline grammar rules,
and KL(q(z|w)||p(z)) the KL divergence between the encoder and the prior distributions.
Training the GVAE does not require numerical data, only expressions w ∈ L. In practice,
we handle numerical matrices with entries {0, 1}, encoding which rules are employed in
which order to generate w, and impose grammar relations through masking parts of these
matrices to only allow related elements to interact. These grammar masks are also required
for training the model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Geometry Regularization. When we sample the latent manifold, we often evaluate latent
vectors in regions with little or no support from the training distribution, and can also
get trapped in topological artifacts of the latent space. In both cases, the decoder produces
degenerate outputs. For this reason, we impose a geometry-aware regularizer that constrains
the search inside a data-supported enclosure, removes small topological artifacts at the
working resolution, and smooths the decoder so that small latent moves produce predictable
output changes.
We augment the GVAE objective with three regularizers (details in App. A.3). A convex-
enclosure loss LHull that discourages latents from leaving the data-supported region esti-
mated from training codes Gonzalez (1985); Rockafellar (2015). A persistent-homology
loss Lph that suppresses small spurious loops/gaps in the latent cloud at a fixed work-
ing scale Edelsbrunner & Harer (2010). A decoder-smoothness loss Lsmooth that penalizes
large second-order changes in the decoder, so nearby latents decode to predictably similar
functions (Hutchinson, 1989). We combine these losses with the reconstruction and the
KL loss to define the regularized loss of the TGVAE (Topological Grammar Variational
Autoencoder):

L = Lrecon + γ KL(q(z|w)‖ p(z)) + Ltopo, Ltopo = LHull + Lph + Lsmooth.

Solution Discovery. The solution discovery is split in two stages (see Fig. 1D, and details
in App. B): In the structure search, we iteratively explore the latent space for a candidate
function included in the structural Ansatz while minimizing the PDE residual, and then op-
timize its numerical constants in a separate stage. For searching, we consider a deterministic
encoding E(w) = µφ(w) ∈ Z and decoding D : Z → LA(G) obtained by the argmax decoding
under the grammar mask. Composing with I, we have I ◦ D : Z → UA(G), so each z ∈ Z
corresponds to a function u = I(D(z)) ∈ UA(G). Let τ : L(G)→ T be a semantic map that
assigns tags, e.g. variables, deterministically computed from the parse tree w, computed
once after training and used for any downstream solution problem. For a given differential
equation, we choose the admissible tag set, e.g. any function with x, y arguments, and re-
strict the search to the type-constrained latent subspace Z ′ = {z ∈ Z : τ(D(z)) ∈ T ′ ⊆ T }.
Let κ : Z ′ → {1, ...,m} be a clustering map in the latent space and denote the clusters
Cj = κ−1(j). We cluster a given subspace based on z ∈ Z ′, and then solve a discrete
selection problem to choose the cluster that contains the most promising solution forms for
each T and φ, j∗ = arg min

1≤j≤m
[inf
z∈Zj⊂Cj

R(D(z))], where Zj can be constructed by either

only the expressions from the training set that fall in Z ′ or the expressions together with
samples from the generative model. Within the best cluster Cj∗ , a global latent search is
performed:

z∗ = arg min
z∈Cj∗

R(D(z)),

either by a global optimizer or iterative clustering, performing discrete selection, and sam-
pling from the most promising cluster until R(D(z)) drops below a threshold. The solution
takes a parametric form u∗(·, p), including constants p that are only represented in the
grammar with limited precision. Thus, we perform a parameter refining step. We consider
a gradient based method (Adam, Kingma & Ba, 2014), and minimize the loss until a ter-
mination criterion is triggered, R(u) ≤ 10−8. The loss R(u) is augmented here by the hull
loss R′(u) = R(u) + Lhull to penalize whichever latent falls out of the hull defined during
training.

3 Experiments and Results

We conduct comprehensive experiments to evaluate SIGS against state-of-the-art symbolic
methods for solving PDEs. Our evaluation comprises three components: cross-validation
on benchmarks sourced from the literature (Table 12), assessment on more complex PDE
problems with and without known analytical solutions (Table 14), and an ablation study
that examines how topology-aware regularization improves sampling efficiency. Details on
our implementation of the grammar and GVAE can be found in Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Experimental Setup. Our benchmark suite comprises seven PDEs of hyperbolic, parabolic,
and elliptic families. Four problems admit known analytical solutions: viscous Burgers’, 1D
Diffusion, 1D Wave, and 2D Damped Wave equations. For the case with no known analytic
solution, we consider three Poisson problems with superposition of different numbers of
Gaussian source terms to test the approximation capabilities of the method.
We compare against two recent symbolic discovery methods: HD-TLGP Cao et al. (2024),
and SSDE Wei et al. (2024). Both of these methods sample discrete trees by combinato-
rially combining elements of a user defined dictionary. Moreover, HD-TLGP, considers an
Ansatz where the solution is separable in dimension, e.g. g(x, y) = f(x)g(y), as well as the
solution in one dimension as prior knowledge. SSDE considers a recursive single-variable
decomposition Ansatz, e.g. u(x, y) = g(x, f(y, c)) and couples reinforcement learning with a
hierarchical approach that resolves each recursion depth sequentially. Both methods search
for expressions satisfying differential equations directly through physics-aware losses similar
toR(u). The efficiency of these discovery methods lies both in the way they sample trees and
the way they compose solutions. For this reason, we consider two evaluation protocols for
HD-TLGP which considers an Ansatz that is similar to SIGS (details are given in Appendix
C.3.2). Protocol 1 is the same as in the original work: The algorithm is fed a dictionary of
primitives, sin, cos, log, etc., to compose solutions. In Protocol 2, the algorithm is fed atoms
from SIGS instead of primitive functions from a dictionary, see Appendix C.3 for more de-
tails. The objective is to show that naive search in the space of models does not work even
when the algorithm combines atoms, which are mathematically proper subtrees. For SSDE,
we tailor the dictionary of terms for each problem to contain only the primitives, meaning
functions, and variables contained in the solution. For example, if u(x) = sin(πx)+ cos(πy)
the dictionary contains only sin, x, y, cos and integers. In this way, we show that for sophis-
ticated search methods, if the dictionary considers primitives instead of atoms, the method
cannot find an admissible solution when we consider complex problems. The complete prim-
itive specifications appear in Appendix C.3.1. Neural baselines (PINNs (Raissi et al., 2019),
FBPINNs (Moseley et al., 2023)) and numerical solvers (FEniCS; Alnæs et al., 2015, ; see
details in Appendix C.4) are included for reference. For the Poisson-Gauss problems, no
analytical solutions is available. Therefore, we assume the FEniCS with P4 elements on
a 128 × 128 mesh as the ground truth. We perform a mesh convergence study to confirm
the convergence of the solution at the chosen resolution. Complete problem specifications,
analytical solutions, and discovered symbolic forms relevant to all the problems in the suite
appear in Appendix C, accompanied by additional figures in Appendix C.7.

3.1 Experiments

Cross-validation on benchmarks from literature. First, we test SIGS on a subset of prob-
lems considered by Cao et al. and Wei et al. to show how combining the grammar-atoms
approach together with adaptive search is more accurate than alternative approaches. For
this purpose, we chose one-dimensional Poisson and Advection PDEs (HD-TLGP), and a
two-dimensional Wave PDE (SSDE). We consider exactly the same problem specification,
that is, the domain, boundary, and initial conditions, for the comparison. To make the meth-
ods comparable, we impose an Ansatz within SIGS that considers a different function per
variable, e.g. u(x, t) = g(x) f(t). The results are presented in Table 1. While the baseline
approaches achieve high accuracy (HD-TLGP: 4.36× 10−4 for the Poisson, and 1.01× 10−2

for the Wave, SSDE: 1.04 × 10−16), SIGS achieves exact solutions on all problems, as it
contains π as a symbol and does not approximate it numerically.

Table 1: We compare the accuracy, in terms of relative L2 error against the exact solution,
of SIGS and baselines on a collection of PDEs presented in the HD-TLGP and SSDE papers.

Problem (method) Original Method SIGS (ours)

Poisson (HD-TLGP) 4.36 × 10−4 exact solution
Advection (HD-TLGP) 1.01 × 10−2 exact solution
Wave (SSDE) 1.04× 10−16 exact solution

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Comparison for Complex PDEs with known solutions. What makes the following collection
of experiments complicated is not only that the solution contains many terms, but also
that the method needs to find solutions that are very precise. For example, even if an
algorithm discovers a solution that describes a viscous shock for the Burgers equation,
slight imprecision in the location of the shock will result in a very large relative L2 error
against the exact solution. This phenomenon also holds true for the damped wave, as the
problem is sensitive to the coefficients governing the diffusion time. For SIGS, we consider
general solution Ansatze of the forms: We present the results in Table 2. We observe that

Burgers: u(x, t) = aψ(x, t) Diffusion: u(x, y, t) =
∑4

i=1 aiφi(x)Ti(t)
Wave: u(x, y, t) = aφ1(x)φ2(y)T (t) Damping Wave: u(x, y, t) = aψ(x, y, t)T (t)

PG-2/3/4: u(x, y) =
∑K

i=1 aiψi(x, y)ϕi(x, y) KdV: u(x, t) =
∑2

i=0 aiψi(x, t)
k

Advection: u(x, t) = aψ(x, t) Poisson: u(x, y) = a1φ1(x) + a2φ2(y)
Shallow Waters: ρ(x, y, t) = ψ1(x, y, t)ψ2(x, y, t)T (t)

u(x, y, t) = ψ3(x, y, t)ρ(x, y, t)
v(x, y, t) = ψ4(x, y, t)ρ(x, y, t)

SIGS recovers exact analytical solutions, achieving machine precision on all problems with
relative errors ranging from 6.64×10−14 to 1.22×10−13. The discovered expressions match
analytical forms up to numerical precision, see Appendix C.5.
Both HD-TLGP and the SSDE methods fail to find a solution within the time budget that
is accurate or close to the exact, see Appendix C.5. HD-TLGP in the case that we consider
atoms in the dictionary, Protocol 1, returns relative L2 errors in the range 2.04− 423.40%,
demonstrating the importance of the optimization method in discovering an accurate so-
lution. Protocol 2 performs worse, with errors in the ranges of 35.68 − 178.77% which
shows how the results deteriorate without atoms. SSDE produces errors in the range of
45.62 − 5.87 × 103% even though the primitives are tailored for each problem. Requiring
complex and precise solutions, translates to most of the loss landscape being flat with a
very high value except for a small area where the loss is small. The failure of SSDE can
almost certainly be attributed to the reinforcement learning algorithm failing to find this
small region, as in the classic sparse-rewards problem. This result indicates how sophisti-
cated optimizers fail completely when the dictionary does not contain elements that support
aggressive exploration of the space of candidate models. Neural methods achieve moderate
accuracy (2.56-6.09), while numerical solvers (FEniCS) present very accurate results. A
visual comparison of the predictions of different methods are provided in Figure 3.

Table 2: Comparison of methods on PDEs with known analytical solutions. Reported are
relative L2 errors.

PDE Problem SIGS HD-TLGP P1 HD-TLGP P2 SSDE PINNs FBPINNs FEniCS

Burgers 6.64× 10−14 2.04 35.68 45.62 6.09 28.26 8.69× 10−3

Diffusion 7.16× 10−13 33.34 79.73 5.87× 103 2.56 55.54 2.26× 10−3

Damping Wave 1.22× 10−13 423.30 178.77 1.19× 103 5.56 71.36 2.28× 10−2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: From left to right: source term F (x, y) for the Poisson–Gauss problem; finite-
element solution uh (FEniCS); symbolic approximation usigs (SIGS); absolute error |uh −
usigs|

(a) SIGS (b) HD-TLGP (c) SSDE (d) PINNs (e) FEniCS

Figure 3: Comparison of different methods for solving the damped wave equation at t = 2.5.
All methods show the same physical domain x, y ∈ [−8, 8] with wave center at (−5, 5).
Parameters: k = 0.5, ω = 0.4, α = 0.45.

Symbolic approximation without known solutions. For the PDEs we considered so far, we
manufactured, and therefore had access to, the exact solution. This allowed us to make
educated guesses about the form of the Ansatz. In this example, we test how well SIGS and
the baselines approximate the solution when an exact solution and a strong prior on the
Ansatz does not exist. We investigate the Poisson equations with a Gaussian forcing term,
which do not admit an exact analytical solution. For SIGS we choose the Ansatz as u(x, y) =∑N

j=1 φj(x, y)ψj(x, y), with j ∈ [3, 4, 8] for PG2, PG3, PG4, respectively. Here ψj(x, y) are
eigenfunction of the elliptic operator ψ(x, y) = sin(πx) sin(πy) that impose the homogenous
Dirichlet boundary conditions, and φj is randomly sampled from the available atoms. We
present the results for all the methods in Table 3. SIGS achieves 1− 3% relative L2 errors
with improving accuracy as complexity increases and number of modes increases (from 2.66%
for 2 Gaussians to 1.05% for 4 Gaussians), which suggests that SIGS correctly leverages the
superposition of the Gaussian atoms. HD-TLGP failed to find a solution withing the time
budget, and produced NaNs in our tests, probably due to numerical instabilities for Protocol
1 while for Protocol 2 generates errors exceeding 107. SSDE achieves errors in the range
58-70%, which translates to missing the precise superposition of Gaussians.
The results support that successfully discovering the solution of complex PDEs requires a
combination of structured atoms and a global(to explore)-local(to discover precise arrange-
ments) optimization algorithm. Moreover, Table 4 shows how the approach of SIGS is
practically viable as the solutions are found in seconds to minutes.

3.2 Ablation Studies

Atoms vs. Primitives. We previously stated that considering atoms or combining primi-
tives can have a decisive effect in finding PDE solutions. We test this hypothesis by con-
sidering the damped wave PDE with the Ansatz u(x, y, t) =

∑N
j=1 ψj(x, y, t)φj(x)Tj(t) and

instead of considering atoms, we sample φ, T, ψ with uniform probability over rules of the
same grammar as before. If we sample a function with the correct arity, e.g. ψ containing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Approximation on Poisson-Gauss problems with-
out analytical solutions. Relative L2 errors against FEniCS
references.

Problem SIGS HD-TLGP P1 HD-TLGP P2 SSDE

PG-2 2.66 200.9 98.94 69.29
PG-3 1.54 NaN 5.61 ×107 69.64
PG-4 1.05 NaN 5.45 ×107 58.70

Table 4: Wall-clock time (CPU). SIGS reports time-to-ε; others report time-at-termination.
Notation: X reached ε; † hit budget / failed to reach ε. HD-TLGP budget: 20 generations,
SSDE budget: 25 generations.

Problem SIGSX HD-TLGP P1† HD-TLGP P2† SSDE† PINNs† FEniCSX

Burgers 13.5 sec > 239 m36 sec > 200 m57 sec > 6 m34 sec 8.8 sec 2.2 sec
Diffusion 39.2 sec > 192 m41 sec > 181 m49 sec > 8 m6 sec 2 m2 sec 1.4 sec
Damping Wave 30.2 sec > 88 m40 sec > 37 m8 sec > 6 m19 sec 29.5 sec 3.4 sec
PG-2 1 m30 sec > 182 m25 sec > 90 m43 sec > 11 m45 sec n/a 19.3 sec
PG-3 1 m51 sec > 120 m7 sec > 97 m16 sec > 11 m4 sec n/a 6.9 sec
PG-4 1 m23 sec > 145 m32 sec > 80 m50 sec > 12 m32 sec n/a 3.4 sec

x, y, t, we consider the function admissible. We sampled 50, 000 functions, out of which
only 133 were admissible, which means that it would be impossible to start and adaptive
optimization procedure due to the admissible sampling rate being so low. Moreover, the
admissible functions with the lowest loss provides R(u) ≈ 366% relative L2 error to the
exact solution. This clearly demonstrates the necessity of atoms, and thus the embedding,
to the whole process.

TGVAE vs. vanilla GVAE. We measure sampling efficiency using a race-to-k-valid bench-
mark, which counts the total attempts required to generate k = 1000 syntactically valid
expressions by sampling random latent vectors z ∈ Z. To assess the quality of the latent
space, the latent vectors are decoded to analytical expressions w, which are rejected if they
fail to meet the grammar-based and mathematical consistency checks in Section A.1.3. We
expect both VAEs to be more stable in regions surrounding zi = E(wi). Hence, we only
consider latent vectors z with a minimal distance of τ = 0.8 away from any training sample
zi in terms of the Mahalanobis norm (App. C.6). We sample 15, 000 admissible latent
vectors and split them into ten disjoint sets. We provide each set to the GVAE and the
TGVAE and count the total decode attempts required to obtain 1, 000 valid expressions.
The GVAE required 1486.2±19.5 attempts, while our topology-regularized TGVAE needed
1433.2 ± 27.3 attempts, a 3.56% ± 1.81 relative reduction. This indicates that geometric
regularization (hull loss, persistent homology, smoothness penalties) yields a more navigable
latent space with fewer degenerate decodes.

4 Discussion and Conclusion

Discussion. This work advances solution discovery for PDEs by demonstrating that
grammar-guided neuro-symbolic methods can reliably and efficiently recover analytical so-
lutions. SIGS consistently improves the state-of-the-art, both in accuracy and speed, often
by several orders of magnitude. Its success stems from two complementary design choices:
(i) constructing a latent manifold of solution components, which enables smooth and effi-
cient exploration of admissible expressions; and (ii) employing a hierarchical Ansatz+atom
approach that reduces search complexity by structuring the solution space into manageable
placeholders, later refined into concrete symbolic elements. This is in contrast to the base-
lines explored in this work, which do not address the combinatorial explosion inherent in
symbolic solution discovery. HD-TLGP (Cao et al., 2024) transfers structures from one-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

dimensional solutions to higher dimensions, but still relies on stochastic recombination of
primitives, which quickly becomes intractable as complexity grows. SSDE (Wei et al., 2024)
instead uses reinforcement learning to guide the construction of candidate solutions, but
its flat search space remains prohibitively large without strong priors. As our experiments
show, both methods degrade sharply when such priors are absent. In contrast, the hierar-
chical Ansatz+atom design of SIGS separates global structure from local symbolic details,
making tractable what would otherwise be an unmanageable search. In this way, SIGS not
only advances but fundamentally redefines the state-of-the-art for solution discovery. Be-
yond these empirical gains, we view SIGS as part of a broader shift toward neuro-symbolic
foundation models for PDEs. Current foundation approaches (Herde et al., 2024; Hao et al.,
2024; Sun et al., 2024; Alkin et al., 2024; Shen et al., 2024) rely on extensive pretraining and
often serve as black-box predictors for downstream tasks. In contrast, SIGS requires only a
one-time pretraining step to construct its manifold, after which it transfers directly to new
problems without retraining. Moreover, it produces analytical expressions that incorporate
physical priors (e.g., eigenfunctions), yielding interpretable solutions rather than opaque
approximations. This suggests that grammar-based neuro-symbolic models could comple-
ment or even provide an alternative to purely data-driven foundation models in scientific
computing.

Limitations. Despite these contributions, SIGS faces two main limitations. First, scalabil-
ity to complex engineering problems remains challenging. PDEs involving discontinuities,
multiscale structure, or turbulence may require grammars enriched with special functions
that cannot be easily decomposed into smaller atoms, or long expressions that increase
search complexity. Hybrid approaches that combine symbolic structures with numerical
bases (e.g., POD-derived eigenfunctions, or Neural Operators) may provide a path forward,
particularly for multiscale phenomena, as well as for problems with irregular geometries
or boundary conditions. Second, the framework depends on the joint design of grammar,
Ansatz, and latent space. A richer Ansatz can offset a simpler grammar, while a more expres-
sive grammar requires larger latent spaces and more sophisticated optimization. Currently,
the Ansatz still reflects human expert choices. This can be advantageous in domains with
strong theoretical foundations (e.g., Burgers or Poisson equations), but limits applicability
in less understood settings. A promising direction is to leverage large language models (e.g.,
Romera-Paredes et al., 2024) to automate Ansatz construction, learning general solution
structures directly from governing equations.

Conclusion. In this work, we introduced the Symbolic Iterative Grammar Solver (SIGS),
a grammar-guided neuro-symbolic framework for discovering analytical solutions to differ-
ential equations. By unifying classical compositional methods with modern latent-space op-
timization through the Topological Grammar VAE, SIGS systematically explores the space
of admissible solutions, enabling efficient search and refinement of closed-form expressions.
Our approach achieves state-of-the-art performance on recent benchmarks, recovering exact
solutions when available, and producing interpretable symbolic approximations for PDEs
without known closed form solutions. These results highlight the potential of grammar-based
neuro-symbolic methods as a scalable and interpretable alternative to purely data-driven
approaches, opening new directions for automated solution discovery in scientific computing.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

References
Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and

Johannes Brandstetter. Universal physics transformers. arXiv preprint arXiv:2402.12365,
2024.

Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg,
Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The FEniCS
Project Version 1.5. Archive of Numerical Software, 3(100), December 2015. ISSN 2197-
8263. doi: 10.11588/ans.2015.100.20553.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista
Parascandolo. Neural symbolic regression that scales. In International Conference on
Machine Learning, pp. 936–945. PMLR, 2021.

Yassine Boudouaoui, Hacene Habbi, Celal Ozturk, and Dervis Karaboga. Solving differential
equations with artificial bee colony programming. Soft Computing, 24:17991–18007, 2020.

Lulu Cao, Yufei Liu, Zhenzhong Wang, Dejun Xu, Kai Ye, Kay Chen Tan, and Min Jiang.
An interpretable approach to the solutions of high-dimensional partial differential equa-
tions. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):20640–20648,
Mar. 2024. doi: 10.1609/aaai.v38i18.30050. URL https://ojs.aaai.org/index.php/AAAI/
article/view/30050.

Noam Chomsky. Three models for the description of language. IRE Transactions on Infor-
mation Theory, 2(3):113–124, 1956. doi: 10.1109/TIT.1956.1056813.

Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
computer science, 38:293–306, 1985.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, An-
ima Anandkumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator
transformer for large-scale pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Em-
manuel de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for
pdes. arXiv preprint arXiv:2405.19101, 2024.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979. ISBN 978-0201029888.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for
laplacian smoothing splines. Communications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

MZM Kamali, N Kumaresan, and Kuru Ratnavelu. Solving differential equations with ant
colony programming. Applied Mathematical Modelling, 39(10-11):3150–3163, 2015.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Char-
ton. End-to-end symbolic regression with transformers. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=GoOuIrDHG_Y.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Georgios Kissas, Siddhartha Mishra, Eleni Chatzi, and Laura De Lorenzis. The language of
hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 428:
117053, 2024.

11

https://ojs.aaai.org/index.php/AAAI/article/view/30050
https://ojs.aaai.org/index.php/AAAI/article/view/30050
https://openreview.net/forum?id=GoOuIrDHG_Y

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In International conference on machine learning, pp. 1945–1954. PMLR,
2017.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv
preprint arXiv:1912.01412, 2019.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio
Aravena, Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified frame-
work for deep symbolic regression. Advances in Neural Information Processing Systems,
35:33985–33998, 2022.

Roberto Molinaro, Samuel Lanthaler, Bogdan Raonić, Tobias Rohner, Victor Armegioiu,
Zhong Yi Wan, Fei Sha, Siddhartha Mishra, and Leonardo Zepeda-Núñez. Generative ai
for fast and accurate statistical computation of fluids. arXiv preprint arXiv:2409.18359,
2024.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neu-
ral networks (fbpinns): a scalable domain decomposition approach for solving differential
equations. Advances in Computational Mathematics, 49(4):62, 2023.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K
Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019a.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K
Kim, and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions
from data via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019b.

Brenden K Petersen, Claudio P Santiago, and Mikel Landajuela. Incorporating domain
knowledge into neural-guided search. arXiv preprint arXiv:2107.09182, 2021.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational physics, 378:686–707,
2019.

Ralph Tyrell Rockafellar. Convex analysis:(pms-28). Princeton university press, 2015.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Ba-
log, M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Peng-
ming Wang, Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries
from program search with large language models. Nature, 625(7995):468–475, January
2024. ISSN 1476-4687. doi: 10.1038/s41586-023-06924-6.

Tom Seaton, Gavin Brown, and Julian F Miller. Analytic solutions to differential equations
under graph-based genetic programming. In European Conference on Genetic Program-
ming, pp. 232–243. Springer, 2010.

Junhong Shen, Tanya Marwah, and Ameet Talwalkar. Ups: Efficiently building founda-
tion models for pde solving via cross-modal adaptation. In ICML 2024 AI for Science
Workshop, 2024.

Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation
model for partial differential equation: Multi-operator learning and extrapolation. arXiv
preprint arXiv:2404.12355, 2024.

Ioannis G. Tsoulos and Isaac E. Lagaris. Solving differential equations with genetic
programming. Genetic Programming and Evolvable Machines, 7:33–54, 2006. URL
https://api.semanticscholar.org/CorpusID:1719377.

Martin Vastl, Jonáš Kulhánek, Jiří Kubalík, Erik Derner, and Robert Babuška. Symformer:
End-to-end symbolic regression using transformer-based architecture. arXiv preprint
arXiv:2205.15764, 2022.

12

https://api.semanticscholar.org/CorpusID:1719377

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Marco Virgolin and Solon P Pissis. Symbolic regression is np-hard. arXiv preprint
arXiv:2207.01018, 2022.

Shu Wei, Yanjie Li, Lina Yu, Min Wu, Weijun Li, Meilan Hao, Wenqiang Li, Jingyi Liu,
and Yusong Deng. Closed-form symbolic solutions: A new perspective on solving partial
differential equations. arXiv preprint arXiv:2405.14620, 2024.

Wolfram Research, Inc. Mathematica. Wolfram Research, Inc., Champaign, IL, 2024. URL
https://www.wolfram.com/mathematica/. Version 14.1.

Karin L Yu, Eleni Chatzi, and Georgios Kissas. Grammar-based ordinary differential equa-
tion discovery. arXiv preprint arXiv:2504.02630, 2025.

13

https://www.wolfram.com/mathematica/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Grammar and GVAE 14
A.1 Library Generation . 14
A.2 GVAE Model and Training Details . 17
A.3 Geometry Regularization . 19

B Iterative Search and Refinement 19
B.1 Notation and Setup . 19
B.2 Target loss: Discretized PDE residual . 20
B.3 Stage I: Structure discovery by iterative clustering 20
B.4 Stage II: Coefficient Refinement . 21

C Experiments 21
C.1 Problem Definitions . 21
C.2 Solution Ansatz specific to our experiments 23
C.3 Configuration of baseline methods . 25
C.4 FEniCS Validation for Reference Solutions 26
C.5 Discovered Symbolic Expressions . 27
C.6 Details on the ablation Study . 27
C.7 Solution Visualizations . 30
C.8 Additional results during the review process 33
C.9 Additions to the computational performance assessment 40

A Grammar and GVAE

A.1 Library Generation

We construct symbolic component libraries that serve as input vocabulary for the TGVAE
architecture in the discovery of DE solutions. The fundamental challenge in symbolic regres-
sion for DEs is that naive search over arbitrary mathematical expressions is computation-
ally intractable and often produces physically meaningless results. Our library generation
approach addresses this by creating curated collections of symbolic components that cor-
respond directly to different atoms that compose solutions of a wide range of differential
operators. The library consists of individual analytical building blocks rather than complete
DE solutions. Each component represents a fundamental mathematical pattern such as spa-
tial eigenfunctions sin(kπx), temporal factor e−λt, or their separable product sin(kπx)e−λt

that naturally arises in the decomposition of certain operator. This modular design enables
the neural architecture to learn complex solution structures through principled combina-
tions of mathematically meaningful primitives, rather than searching over the vast space of
arbitrary symbolic expressions. The key insight driving our approach is that different DE
operators admit characteristic families of atoms that reflect their underlying mathematical
structure. This principled approach transforms the solution discovery task from an open-
ended search problem into a structured exploration of mathematically principled solution
components.

A.1.1 Atom Generation

The atoms of the library represent temporal factors, eigenfunctions of operators, expressions
that describe dynamics of interest, and random compositions.
Assume a bounded Lipschitz domain Ω ⊂ Rd and a linear second order operator with
homogeneous boundary conditions, that is self-adjoint and non-negative, e.g. S = −∆ with

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Closed-form Laplacian eigenfamilies A = −∆ on common domains. Here Ω is the
spatial domain, φ the eigenfunction, and µ the eigenvalue in Aφ = µφ. For Neumann on
boxes the constant mode has µ0 = 0.

Domain / BC Eigenfunction φ Eigenvalue µ Index set

Rectangles / periodic boxes Ω =
D∏

d=1

[0, Ld]

Periodic (torus) φk(x) = exp
(
i 2π

D∑
d=1

kd

Ld
xd

)
µk = 4π2

D∑
d=1

k2d
L2
d

k ∈ ZD

Dirichlet φk(x) =

D∏
d=1

sin
(

kdπ
Ld

xd

)
µk = π2

D∑
d=1

k2d
L2
d

kd ∈ N

Neumann φk(x) =
D∏

d=1

cos
(

kdπ
Ld

xd

)
µk = π2

D∑
d=1

k2d
L2
d

kd ∈ N0

(includes constant mode k = 0 with µ0 = 0)
Disks and balls (Dirichlet conditions)

2-D disk, radius R φmn(r, θ) = Jm

(
jmn

R r
)
×

{
cos(mθ),
sin(mθ),

µmn =
j2mn

R2 m ∈ Z≥0, n ∈ N

3-D ball, radius R φ`mn(r, θ, ϕ) = j`

(
α`n

R r
)
Y`m(θ, ϕ) µ`n =

α2
`n

R2 ` ∈ Z≥0, |m| ≤ `, n ∈ N

Dirichlet, Neumann, or periodic boundary conditions. Then there exists an L2-orthonormal
eigen basis {φ}j≥1 ⊂ L2(Ω) and eigenvalues {µ}j≥1 ⊂ [0,∞) with Sφj = µjφj . For example,
the Diffusion equation ut−κ∆u = 0 has the scalar ODE T ′(t)+κµjTj(t) = 0 as the temporal
rule, with solution Tj(t) = e−κµt. For the spatial rule, we can consider the rectangle box
Ω =

∏D
d=1[0, Ld] with Dirichlet boundary conditions. Given indices k ∈ ND, the grammar

produces:

φk(x) =

D∏
d=1

sin(kdπxd/Ld), µk = π2
D∑

d=1

k2d
L2
d

.

Composing together with the temporal model, we get u(x, t) =
∑

k ake
κµtφk(x), which solves

ut + κ∆u = 0 exactly. The amplitudes aj are drawn from prior aj ∼ N (0, σ2ρ) where ρ
decays exponentially to control the regularity or the spectrum. This construction generalizes
for multiple classes of known operators, see Table 6. For constant coefficient operators on
separable geometries we have explicit {φk, µk} eigenfunctions as shown in Table 5.
As we discussed, the grammar can also produce expressions that describe dynamics of in-
terest such as viscous shocks tanh((ul−ur)(x−st−x0)

4ν), transport g(kx − ωt), heat kernels
1

(4πkt)d/2
exp(‖x‖

2

4kt), Gaussian bumps exp(‖x−x0‖2

2k) and others. Moreover, atoms are polyno-
mials, and combinations of the above.

A.1.2 Formal Grammar Specifics

The grammar G = (V,Σ, R, S) contains 51 production rules that provide the complete
symbolic vocabulary for DE eigenfunction families used in the experiments herein. The
grammar systematically generates expressions through the application of production rules
R, including

• compositional rules S → S + T | S × T | S/T | S − T | T | −T that build complex
mathematical structures,

• function application rules T → (S) | (S)2 | sin(S) | exp(S) | log(S) | cos(S) |√
S | tanh(S) that provide the transcendental functions essential for eigenfunction

representation,
• variable and monomial specifications T → TD | π | x | y | t | x2 | x3 | y2 | y3 that

capture spatial and temporal dependencies,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Modal time factors for common PDE families. Here A is a nonnegative self-adjoint
spatial operator with eigenpairs Aφk = µkφk, µk ≥ 0. Projecting the PDE onto φk yields
the scalar ODE for Tk(t) shown in the middle column and its solution in the right column.

PDE family Modal ODE (after projection) Temporal factor Tk(t)

Heat / diffusion T ′
k + κµk Tk = 0 e−κµk t

Stokes (divergence-free) T ′
k + ν µk Tk = 0 e−ν µk t

Undamped wave T ′′
k + c2 µk Tk = 0 cos

(
c
√
µk t

)
or sin

(
c
√
µk t

)
Damped wave (telegraph) T ′′

k + 2γ T ′
k + c2 µk Tk = 0

Underdamped c2µk > γ2: e−γt
(
C1 cos(ωkt) +

C2 sin(ωkt)
)
, ωk =

√
c2µk − γ2.

Critical c2µk = γ2: e−γt(C1 + C2t).
Overdamped c2µk < γ2: C1e

−(γ−
√

γ2−c2µk) t +

C2e
−(γ+

√
γ2−c2µk) t.

Biharmonic diffusion T ′
k + κµ2

k Tk = 0 e−κµ2
k t

Damped plate/beam T ′′
k + 2γ T ′

k + c2 µ2
k Tk = 0 As for damped wave, with c2µk replaced by c2µ2

k

Klein–Gordon (damped) T ′′
k + 2γ T ′

k + (c2µk +m2)Tk = 0 As for damped wave, with c2µk replaced by c2µk +m2

Fractional diffusion T ′
k + κµ s

k Tk = 0, s ∈ (0, 1] e−κµ s
k t

Reaction–diffusion (linear part) T ′
k + (κµk − ρ)Tk = 0 e−(κµk−ρ) t

Allen–Cahn (linearized) T ′
k + (κµk − α)Tk = 0 e−(κµk−α) t

Cahn–Hilliard (linearized) T ′
k +M µk(µk + σ)Tk = 0 e−M µk (µk+σ) t

Kuramoto–Sivashinsky (linearized) T ′
k + (ν µ2

k − κµk)Tk = 0 e−
(
ν µ2

k−κµk

)
t

Maxwell in a PEC cavity ε T ′′
k + σ T ′

k + c2 µk Tk = 0 Vector modes; as damped wave (if σ = 0: cos / sin with ωk = c
√
µk)

Isotropic linear elasticity T ′′
k + ω2

B,k Tk = 0, B ∈ {T, L} Two branches: ωT,k = cT
√
µk, ωL,k = cL

√
µk; T = cos / sin

• numeric construction T → D | D.D | −D | −D.D | TD with digit generation
D → D0 | D1 | . . . | D9 | 0 | 1 | . . . | 9,

• and scientific notation D → e-1 | e-2 | e-3 | e-4 for numerical stability across multiple
scales.

The terminal alphabet hence encompasses

Σ = {x, y, t, π}∪{sin, cos, exp, log, tanh,
√
·, (,)}∪{+,−,×, /, ̂}∪{0, 1, . . . , 9}∪{e-1, . . . , e-4}.

A.1.3 Mathematical checks on generated functions

Each generated component undergoes rigorous symbolic validation to guarantee syntactic
and mathematical sense of the generated expressions. In case a generated expression does
not satisfy the checks, it is rejected, and a new one is generated.

Syntactic requirements. We enforce strict variable presence requirements where ODE prob-
lems must contain {x} ⊆ Vars(u), spatial DE problems require {x, y} ⊆ Vars(u), and spa-
tiotemporal problems need {x, t} ⊆ Vars(u) or {x, y, t} ⊆ Vars(u). Function domain restric-
tions prevent undefined operations through logarithmic function constraints log(f)⇒ f > 0
on Ω, square root function requirements

√
f ⇒ f ≥ 0 for spatial components, and division

safety ensuring denominators remain bounded away from zero. To ensure symbolic rather
than constant generation, we forbid purely numeric arguments to transcendental functions
so that sin(α), cos(α), exp(α), log(α) /∈ Lang(GD) for α ∈ R. Integer powers are restricted to
degree ≤ 3 to preserve H1(Ω) membership on bounded domains, ensuring that for polynomi-
als u =

∑
|β|≤3 cβx

β we have ‖u‖H1(Ω) <∞ when Ω is bounded. Function compositions are
validated for smoothness preservation where admissible functions f ∈ {sin, cos, exp, tanh}
applied to arguments g with controlled growth maintain C∞ regularity on bounded domains.

Boundary conditions. For boundary condition compatibility, homogeneous Dirichlet condi-
tions u|∂Ω = 0 are enforced by multiplying spatial components with boundary-vanishing en-
velopes such as ψenv(x, y) = sin

(
πx
Lx

)
sin

(
πy
Ly

)
for rectangular domains, ensuring umodified ∈

H1
0 (Ω). Neumann compatibility for problems requiring ∂u

∂n |∂Ω = 0 uses cosine spatial modes
that naturally satisfy zero normal derivative conditions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: GVAE architecture summary. LN: LayerNorm over [C,L]; all linear/conv layers
use bias=False unless noted.

Block Layer Dims / Kernel / Len Act/Norm
Input Tensor C=53, L=72 –

Encoder
Conv1D 53 → 64, k=2, L: 72 → 71 ELU
Conv1D 64 → 128, k=3, L: 71 → 69 ELU
Conv1D 128 → 256, k=4, L: 69 → 66 ELU
Linear 256×66=16, 896 → 256 ELU
Heads 256 → 32 (µ), 256 → 32 (log σ2) –

Decoder (positional)
Linear 32 → 512 ELU
GRU input= 512, hidden= 512, layers= 1 –
TimeDense 512 → 53 (per position, L=72) –

Latent dim / samples z-dim = 32; decoder samples per input = 1

Table 8: Lightning module summary (train mode).

Name Type Params Mode
model GrammarVAE 6.1 M train
Total trainable params 6.1 M (24.495 MB)

Constants. Numerical stability is maintained through exponential scaling control using
scientific notation coefficients with mantissa m ∈ [0.001, 999] and exponent e ∈ [−4, 4] to
prevent overflow and underflow. Floating point precision involves rounding numeric literals
to 3 decimal places for most components and 6 decimal places for wave modes, converting
to rational representations when possible to avoid precision degradation.

Uniqueness of expressions. Expression canonization includes converting fractional powers
to
√
· notation when p = 1/2, transforming reciprocal notation x−1 7→ 1/x, and simplifying

coefficients such as (2 × 3)x 7→ 6x. Uniqueness is enforced through syntactic equivalence
classes where we define s ∼ s′ if their canonized forms coincide after symbolic simplification,
maintaining exactly one representative per equivalence class [s] ∈ L(GD)/ ∼ using a global
hash table that tracks all generated canonical forms.

A.2 GVAE Model and Training Details

We employ a Grammar Variational Autoencoder (GVAE) that maps one-hot sequences of
CFG production rules to a continuous latent space and decodes back to valid rule sequences.
Inputs are x ∈ RB×C×L with C=53 rules and L=72 time steps (dataset shape N×C×L =
23,682× 53× 72); targets are y = argmaxc x ∈ {0, . . . , 52}B×L.

Architecture. The encoder stacks three valid (no-pad) 1D convolutions with ELU activa-
tions, followed by a linear layer and two bias-free heads producing µ, log σ2 ∈ R32. The
decoder is non-autoregressive (“positional”): it lifts z ∈ R32 to a hidden state, runs a GRU
across positions, then applies a time-distributed linear projection to rule logits. Shapes and
hyperparameters are summarized in Table 7. Lightning reports 6.1 M trainable parameters
(model size 24.495 MB; see Table 8).

Losses and regularization. The objective is

L = Lrecon + β(t) KL (q(z|x) ‖ p(z))︸ ︷︷ ︸
latent

+ γ(e)
(
0.8LHull + 0.8Lph + 10−4 Lsmooth

)
,

with Lrecon being equal to cross entropy loss of Lrecon
(
logits, y

)
, where logits being the

mean over decoder samples (here = 1). The KL weight uses a linear warmup β(t) =

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Training hyperparameters and Ltopo term weights. ReduceLROnPlateau monitors
the balanced ELBO.

Item Value Details

Optimizer AdamW lr = 3× 10−4, weight decay = 10−5

Batch size (train/val) 64 / 64 4 dataloader workers
Precision 16-mixed (AMP) global grad clip = 1.0
Scheduler ReduceLROnPlateau factor = 0.2, patience = 5
Epochs / Early stop 200 / 10 monitor (validation’s set ELBO)
KL warmup β(t) to 1.0 by 7000 updates β0=0.01
Topo loss activation at val-acc ≥ 20% ramp γ over 5 epochs
Topo loss schedule train/val every 50 / 12 sparse to limit cost
Topo loss weights wHull=0.8, wph=0.8 wsmooth=10−4

Ph settings max points = 24, max dim = 1 Rips on CPU, scales {0.10, 0.50}
Hull directions K=256 fixed UK ⊂ Sd−1

β0 + (1 − β0) min
(

t
7000 , 1

)
with β0=0.01. The geometric topological block activates once

validation sequence-exact accuracy reaches 20%, then ramps γ(e) from 0 to 1 over 5 epochs.
Topological loss’ terms (Hull, ph@scale on CPU, smooth) are computed in fp32 and sched-
uled sparsely (train every 50 steps and validate every 12 batches). Upon Ltopo activation,
the LR scheduler’s best-score baseline is reset to the new balanced ELBO.

Data and splits. We train on an HDF5 corpus of one-hot sequences under a typed CFG.
Random split with seed 42 into train/val/test of 70%/20%/10% yields the counts in Table 10.

Table 10: Dataset and splits for GVAE training (C=53, L=72).

Split # Sequences
Train 16,578
Val 4,736
Test 2,368

Environment and software. Experiments ran on an NVIDIA RTX 5080 Laptop GPU
(16 GB VRAM). Key versions are summarized in Table 11.

Table 11: Compute environment.

Component Spec
CPU Intel Core Ultra 9 275HX, 24C/24T @ 2.7 GHz
RAM 32 GB
GPU NVIDIA GeForce RTX 5080 Laptop GPU 16 GB VRAM)
Python 3.10.18
PyTorch / Lightning 2.7.1+cu128 / 2.5.2
CUDA / cuDNN 12.8 / 90800

Training procedure and metrics. We train on a single GPU with AMP and gradient clip-
ping. The primary validation metric is the val ELBO, combining CE, KL (with warmup),
and Ltopo (when enabled). We also log CE, KL, ELBO variants, Topo loss components, and
sequence-exact accuracy. Early stopping halts after 10 epochs without improvement in val
elbo full.

Runtime observations. Before the activation of Ltopo, epochs take a few seconds. Around
the activation point (48th epoch), training duration is ∼ 3 s, however at the (50th epoch)
that Ltopo starts getting calculated training duration raises to ∼ 262 s. This spike is ex-
pected. The Ltopo builds a Vietoris–Rips complex and computes persistent homology on
the CPU. Constructing distance matrices and boundary operators. Differentiating through

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

them (ph/smooth-Hessian), dominates wall-clock time and introduces CPU↔GPU synchro-
nization overhead.

Decoding & evaluation settings. Non-autoregressive (positional) decoding with one latent
sample, max length 72, vocabulary size 53. When applicable, a CFG mask enforces per-step
validity. Report sequence-exact accuracy, validity rate, CE, KL, and ELBO on valida-
tion/test sets.

A.3 Geometry Regularization

Here, we provide details on the additional loss terms added to the GVAE loss to form the
Topological GVAE (TGVAE).

Convex hull loss. Let z ∈ Rd be a latent vector and Z = {zi}Bi=1 the current batch. We
maintain a reservoir of latent vectors Rt ⊂ Rd using a farthest point insertion with distance
δ > 0 (Gonzalez, 1985). At each iteration t, we freeze Rprev

t , compute losses, and update
the reservoir only if a latent is not δ close to any z seen thus far. Considering fixed unit
directions {nk}Kk=1 ∈ Sd−1 and a support function hZ(n) = supz∈Z〈n, z〉 (Rockafellar, 2015)
we define:

LHull(R
prev
t , Zt) =

1

BK

B∑
i=1

K∑
k=1

[〈nk, zi〉 − hRprev
t

(nk)]
2+, where [·]+ = max{·, 0}.

If LHull = 0 then every zi lies in the an explicit convex enclosure of the frozen reservoir
∩Dd=1{z : 〈nm, z〉 ≤ hRprev

t
}. Inside those bounds, we remove small spurious loops and holes

at the working resolution set by δ.

Persistent homology loss. Let Pt = Rprev
t ∪ Zt, and Vk(P) the persistence diagram of

Vietoris-Rips homology across the scale ε (Edelsbrunner & Harer, 2010). We set the working
radius r =

√
2δ using the clamped lifetime `r(b, d) = max{0,min(d, r) − min(b, r)}, and

define the persistent homology loss:

Lph(Pt) =
∑

(b,d)∈V1(Pt)

`r(b, d)
2 + a0

∑
(b,d)∈V0(Pt)

`r(b0, d0)
2,

which suppresses small loops H1 and micro-clusters H0 at resolution r.

Smoothing loss. We also penalize large Hessian energies to prevent sharp decode curva-
tures, to ensure that small moves in the latent space produce stable changes. For decoder
Dθ : Rd → RM , we set f(z) = 1>Dθ and Hf (z) = ∇2f(z), with v ∼ N (0, Id) we define:

Lsmooth = Ez∈Zt
‖Hf (z)v‖22,

which is estimated using the probes as in Hutchinson (1989).

B Iterative Search and Refinement

This appendix details the two-stage search procedure outlined in Section 2. We provide
the mathematical formulation and implementation details for both structure discovery and
coefficient refinement.

B.1 Notation and Setup

When using SIGS on a specific problem, the user may specify a structural Ansatz F con-
sisting of the compositional nature the proposed solutions should follow. For example, one
could specify spatio-temporal separability as u(x, t) =

∑K
j=1 φj(x)ψj(t), leaving K spatial

and K temporal functions, overall L = 2K components, to be chosen by SIGS. We denote
by A : {L(G)}L → L(G) the assembly map that composes the single components into the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

final solution following the Ansatz, and refer to the component indices as NL = {1, . . . , L}.
Recall the TGVAE encoder E : L(G) 7→ Z and decoder D : Z → L(G) that assign strings
(functions) from the language to latent vectors in Z ⊂ Rd. For a given component c ∈ NL,
the Ansatz specifies the variables c should contain. This prior knowledge is incorporated by
filtering the library to contain only valid component candidates L(c) and restricting Z to
the component-specific latent set Z(c) = {z(c)i }

Nc
i=1 by applying the encoder E to L(c).

B.2 Target loss: Discretized PDE residual

Based on the continuous augmented PDE residual R(u) from Equation equation 2, we
formulate its discretized form

R(u) =
1

|M|
∑
x∈M

1

|T |
∑
t∈T

(S[u](x, t))2 (3)

+ β1
1

|MIC |
∑
x∈M

(u(x, 0)− u0(x))2 (4)

+ β2
1

|MBC |
∑

x∈M∂Ω

1

|T |
∑
t∈T

(B[u](x, t)− g(x, t))2 , (5)

where M is the discretization grid inside the domain, MBC/MIC are the discretization
points on the domain boundary and initial conditions, respectively, and T is the time dis-
cretization to evaluate the PDE and boundary operators on. For any candidate decoded
function uw = I(D(z)), we use R as the target metric throughout all steps of the solution
search pipeline. Within our experiments, we choose the spatial discretization to be 128 and
128 as a time discretization for all the problems except Damping Wave where we use 64 and
64 respectively.

B.3 Stage I: Structure discovery by iterative clustering

Component-wise libraries. The Ansatz function A specifies the number of components
as well as which variables should be present per component (and possibly other syntactic
requirements). We therefore filter the initial library L for each component to retain only
viable candidate expressions to obtain L(c), and the corresponding encoded latent vectors
Z(c) = {E(w) : w ∈ L(c)}.

Initial clustering. We then iteratively partition the latent subspaces Z(c) for each of the
components separately into Kc clusters by k-means clustering, sample from each the clus-
ters, and assemble solution candidates. Let NK(c) = {1, . . . ,Kc} denote the cluster indices
for component c, and by K = NK(1) × · · · × NK(L) the cluster index set of all possible
cross-component cluster combinations. For example, in case of spatio-temporal separability
u(x, t) = f(x) · g(t), spatial and temporal components are separated into component-wise
libraries, clustered, and sampled independently and solutions are assembled from pairs of
clusters (kx, kt).

Cluster selection. We sample M tuples of cluster indices ki = (k
(1)
i , . . . , k

(L)
i) ∈ K, where

k
(c)
i denotes the index of the cluster used for the c-th component in the i-th sample. For

each component c, we choose a latent vector z(c)i from the current encoded library vectors
in cluster ki,c, decode w

(c)
i = D(z(c)i), and assemble wi = A

(
w

(1)
i , . . . , w

(L)
i

)
. Then, we

evaluate the discretized residual for each candidate, ri = R
(
I(wi)

)
. Finally, we select the

candidate with minimal residual and record the cluster indices k∗ = ki = (k
(1)
i , . . . , k

(L)
i) of

the candidate with minimal residual w∗ = wi as the current best clusters.

Iterative subclustering. Each of the component-wise subclusters selected as current best
clusters in the previous iteration are partitioned into Kc sub-clusters by k-means clustering
on the latent vectors. The cluster selection is repeated (sample combinations of clusters,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

decode and assemble expressions, evaluate the residual, choose best cluster combination)
and the best cluster combination k∗ is updated from the new, refined clusters. Iteratively,
the size of the resulting clusters shrinks, focusing in on the final best cluster combination.
This procedure is repeated until a target residual is reached, r? ≤ εstruct, or an evaluation
budget on the number of iterations is exhausted.

Generation of additional latent vectors. As the size of the latent clusters decreases, there
are fewer latent vectors of the initial training library zi. New latent vectors can be generated
for these clusters, further exploring the latent space beyond what the GVAE has seen during
training. We generate these samples by convex interpolation of its members with small
isotropic jitter (decodable latent interpolation).

B.4 Stage II: Coefficient Refinement

Given the best symbolic structure w? from Stage I, we freeze the form and expose only
its numeric literals as trainable parameters p ∈ RP , where we protect constants such as
π, e, and integer exponents. We minimize the PDE residual from R(u) on the resulting
parametric function family u?(·; p) = I

(
w?(p)

)
to obtain the best constants

p∗ = argmin
p

R
(
u?(·; p)

)
and the corresponding final (exact or approximate) solution u?(·) = u?(·; p?).

Implementation. We compile u(·; p) in float64 JAX, obtain the required derivatives by
automatic differentiation to evaluate S[u] on the grids (M, T), and compute R(u) batched
over all points.
We parse the numeric literals in w? to form p̄. For single-start, set p(0) = p̄. For multi-start,
draw

p(0,s) ∼ N
(
p̄, diag

(
(η|p̄|)2

))
, s = 1, . . . , S,

and optimize all starts in parallel (JAX vmap). We use Adam (Optax) with exponential
learning-rate decay and JIT. Early stopping triggers when

√
R(u) < εtol or a budget is

reached.

Algorithm 1 SIGS: Symbolic Iterative Grammar Solver (overview)
Require: Grammar G, assembly map A, trained TGVAE (E ,D), discretized residual R,

budgets (M, Tmax), thresholds (εstruct, εtol)
Ensure: Refined symbolic solution u? with coefficients p∗
1: Stage 0 (amortized): Initial_Sampling → (w?, z?, k?, r?)
2: Stage I (structure): Subcluster_Refine(w?, z?, k?, r?)→ (w?, z?, k?, r?)
3: Stage II (coeffs): Coefficient_Refinement(w?, εtol)→ p∗

4: return w?(p∗)

C Experiments

C.1 Problem Definitions

We evaluate our method on five representative PDEs spanning steady-state and time-
dependent settings. Following the general formulation in equation 1, we specify the dif-
ferential operator D in Table 14, together with the computational domain and mesh used
to evaluate the residual R(u) and to compute discretized solutions with FEM and PINN
methods. The forcing term f and initial/boundary conditions for each test problem are spec-
ified in the following, where we distinguish cases with known (manufactured) and unknown
analytic solutions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 2 Stage 0 (amortized): Library clustering and initial assembly
Require: Assembly map A, encoder/decoder (E ,D), discretized residual R, draw budget M
Ensure: Best candidate (w?, z?, k?, r?)
1: For each component c ∈ NL: enforce variable constraints Cc from the Ansatz to filter

the library L(c)

2: Encode and cluster: Z(c) = {E(w) : w ∈ L(c)}, partition into Kc clusters; let NK(c) =
{1, . . . ,Kc}

3: Initialize incumbent r? ← +∞
4: for i = 1 to M do
5: Sample cluster tuple ki = (ki,1, . . . , ki,L) ∈ NK(1) × · · · × NK(L)

6: for each c do
7: Draw z

(c)
i from cluster ki,c; decode w(c)

i = D(z(c)i)
8: end for
9: Assemble wi = A

(
w

(1)
i , . . . , w

(L)
i

)
10: Score ri = R

(
I(wi)

)
11: if ri < r? then
12: (w?, z?, k?, r?)←

(
wi, [z

(1)
i ; . . . ; z

(L)
i], ki, ri

)
13: end if
14: end for
15: return (w?, z?, k?, r?)

Algorithm 3 Stage I: Focused subclustering and structure refinement
Require: Incumbent (w?, z?, k?, r?) from Stage 0, encoder/decoder (E ,D), residual R, as-

sembly A, budgets (Tmax), threshold εstruct
Ensure: Updated (w?, z?, k?, r?)
1: For each c ∈ NL: restrict to latents in cluster K(c),? and partition into Hc subclusters
2: t← 0
3: while r? > εstruct and t < Tmax do
4: Sample subcluster tuple h = (h1, . . . , hL) ∈ NH(1) × · · · × NH(L)

5: for each c do
6: if subcluster hc is too small then
7: generate samples in hc by convex interpolation plus small isotropic jitter
8: end if
9: Draw z(c) from subcluster hc

10: Decode w(c) = D(z(c))
11: end for
12: Assemble w = A

(
w(1), . . . , w(L)

)
13: Score r = R

(
I(w)

)
14: if r < r? then
15: (w?, z?, k?, r?)←

(
w, [z(1); . . . ; z(L)], h, r

)
16: end if
17: t← t+ 1
18: end while
19: return (w?, z?, k?, r?)

C.1.1 Construction of known analytical solutions

For the four problems with known analytical solutions, we employ the method of man-
ufactured solutions to construct the test problems and ensure exact error quantification.
Given a chosen analytical solution utrue, we construct the forcing term via f = −D[utrue]
to guarantee that utrue satisfies the PDE exactly. Initial and boundary conditions are then
prescribed from utrue to complete the well-posed problem formulation.
The specific analytical solutions are detailed in Table 15. These solutions are chosen to ex-
hibit diverse mathematical behaviors: the Burgers’ equation features a smooth shock profile
with nonlinear advection, the diffusion equation uses a multi-mode separated solution with

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 4 Stage II: Multi-start coefficient refinement (JAX)
Require: Best structure w?, residual R, tolerance εtol, starts S, noise scale η
Ensure: Optimized coefficients p∗ and refined w?(p∗)
1: Parse numeric literals in w? to get p̄
2: for s = 1 to S do
3: Initialize p(0,s) ∼ N

(
p̄, diag((η|p̄|)2)

)
4: end for
5: Optimize all starts with Adam (JAX, float64, JIT) and exponential LR decay; at each

step evaluate R
(
I(w?(p(t,s)))

)
6: Early-stop when

√
R < εtol or budget reached; keep the best p∗ =

argminsR
(
I(w?(p(·,s)))

)
7: return p∗ and w?(p∗)

Table 12: Canonical problems reproduced from prior work. Dimension notation: n+mD
denotes n spatial and m temporal variables.

Problem (paper) Operator D Dim Domain Mesh Ground truth u?

Poisson1 (HDTLGP) uxx + uyy 2D [0, 1]2 642 sin(πx) sin(πy)
Advection3 (HDTLGP) ut + ux + uy 2+1D [0, 1]2 × [0, 2] 642 × 64 sin(x−t) + sin(y−t)

Wave2D (SSDE) utt − (uxx + uyy) 2+1D [−1, 1]2 × [0, 1] 82 × 8 ex
2

sin(y) e−0.5t

exponential decay, the wave equation employs a truncated Fourier series, and the damping
wave incorporates both temporal decay and spatial wave propagation in two dimensions.

C.1.2 Problem without known analytic solution

The Poisson–Gauss problem represents a realistic scenario where no analytical solution is
available, making it particularly valuable for assessing method performance in practical
applications. The problem consists of the steady-state Poisson equation ∇2u = f on the
unit square [0, 1]2 with homogeneous Dirichlet boundary conditions u = 0 on ∂[0, 1]2.
The forcing term f is constructed as a superposition of n isotropic Gaussian sources:

f(x, y) =

n∑
i=1

exp

(
− (x− µx,i)

2 + (y − µy,i)
2

2σ2

)
(6)

with fixed width σ = 0.1 and deterministically chosen centers:

• PG-2: (0.3, 0.8), (0.7, 0.2)
• PG-3: (0.3, 0.8), (0.7, 0.2), (0.5, 0.2)
• PG-4: (0.3, 0.8), (0.7, 0.2), (0.5, 0.2), (0.4, 0.6)

This configuration creates localized source regions with smooth spatial variation, testing
the method’s ability to capture multi-scale features and handle problems without ground
truth solutions. For evaluation on this problem, we rely on mesh convergence studies and
physics-based consistency checks rather than direct error computation against an analytical
reference.

C.2 Solution Ansatz specific to our experiments

Our framework generates eigenfunction components for five distinct operator classes, each
producing characteristic mathematical patterns with specific parameter ranges that ensure
physical relevance and numerical stability.

• Wave operators Dwave = ∇2 − 1
c2

∂2

∂t2 generate oscillatory eigenmodes
ak sin(kπx) cos(ckπt) where mode indices k ∈ {1, 2, . . . ,K} determine spatial har-
monic frequencies, wave speeds c ∈ [0.1, 0.8] control temporal oscillation rates,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 13: Closed-form parity on canonical problems from prior work. We list the operator,
domain, evaluation mesh, the ground-truth solution u?, the closed form printed in the
original paper, and the expression found by SIGS, together with relative L2 errors (discrete,
uniform grid).

Problem (source) Baseline expression SIGS expression

Poisson1 (HDTLGP) sin(3.141x) sin(3.142 y) sin(πx) sin(πy)

Advection3 (HDTLGP) − sin(0.9838t− x)− sin(0.9979t− y) sin(x− t) + sin(y − t)

Wave2D (SSDE) ex
2−0.5t sin(y) ex

2

sin(y) e−0.5t

Table 14: Summary of benchmark problems. Dimension notation: n+mD denotes n spatial
and m temporal dimensions.

Problem Operator D Dim Domain Mesh Key Parameters
Burgers’ ut + uux − νuxx 1+1D [−5, 5]× [0, 2] 128× 128 ν = 0.01
Diffusion ut − κuxx 1+1D [0, 1.397]× [0, 1] 128× 128 κ = 0.697
Damping wave utt + ut − c2(uxx + uyy) 2+1D [−8, 8]2 × [0, 4] 32× 32× 32 c = 0.8
Poisson–Gauss −(uxx + uyy) 2D [0, 1]2 100× 100

and amplitude coefficients ak = m×10e

k × π
K use scientific notation with mantissa

m ∈ [5, 9] and exponential damping to ensure numerical stability across multiple
scales.

• Diffusion operators Ddiff = ∇2 − ∂
∂t produce separable heat modes

2M0

L sin
(

(2n+1)πx
L

)
e−

(2n+1)2π2Dt

L2 where amplitude coefficients M0 ∈ [1, 3] set ini-
tial magnitudes, domain lengths L ∈ [0.1, 1.5] determine spatial scales, diffusivities
D ∈ [0.01, 1] control temporal decay rates, and odd harmonic indexing (2n + 1)
corresponds to homogeneous Dirichlet boundary conditions with mode numbers
n ∈ {0, 1, 2} generating the first three eigenmodes.

• Viscous Burgers operators DBurgers = u∂u
∂x − ν ∂2u

∂x2 create shock transi-
tion profiles consisting of average components uL+uR

2 and shock components
uL−uR

2 tanh
(

(x−x0−st)(uL−uR)
4ν

)
where left asymptotic states uL ∈ [1, 3] and right

asymptotic states uR ∈ [−1, 1] define the shock amplitude, propagation speeds
s ∈ [0.1, 2] control shock movement, initial positions x0 ∈ [−1, 1] set shock loca-
tions, and kinematic viscosities ν ∈ [0.01, 1] determine shock width.

• Poisson-Gauss operators DPoisson = ∇2 with source terms generate localized Gaus-
sian profiles e−α((x−x0)

2+(y−y0)
2) for superposition of Gaussian source terms and

polynomial harmonic functions for steady-state equilibrium configurations, where
decay parameters α control Gaussian widths, center coordinates (x0, y0) determine
localization, and multiple Gaussians can be superposed as source terms.

• Outgoing damped wave operators Dout-wave = ∇2 − 1
c2

∂2

∂t2 + γ ∂
∂t com-

bine envelope functions h
(
e((x−x0)

2+(y−y0)
2)/(w(1+t)) + 1

)−1

, oscillatory kernels
cos(k

√
(x− x0)2 + (y − y0)2 − ct), and decay factors e−at where amplitudes h ∈

[0.01, 0.5], envelope width parameters w ∈ [0.3, 1.0], radial wave numbers k ∈
[0.5, 4.0], phase velocities c ∈ [0.1, 1.0], temporal decay rates a ∈ [0.02, 0.8], and
center coordinates (x0, y0) ∈ [−6, 6]2 control the composite spatiotemporal struc-
ture.

Our grammar-based approach produces eigenfunction components at different structural
levels including elementary eigenmodes corresponding to individual spatial harmonics
φk(x) and temporal factors ψk(t), separable products representing complete eigenfunctions
φk(x)ψk(t) generated when the grammar produces expressions containing both spatial and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 15: Analytical (manufactured) solutions for benchmark problems.

Problem Analytical Solution utrue Constants
Burgers’ 0.86 + 0.6 tanh(25.8 t− 30.0x+ 9.9) –
Diffusion A[sin

(
πx
L

)
e
−π2κ

L2 t − sin
(
3πx
L

)
e
− 9π2κ

L2 t
A = 3.974, L = 1.397

+ sin
(
5πx
L

)
e
− 25π2κ

L2 t
]

Damping wave e−αt cos(ωt−KR(x, y)),
where R(x, y) =

√
(hx+ 1)2 + (hy − 1)2

h = 0.2, K = 2.5, ω = 0.4,
α = 0.45

temporal variables, and composite structures like non-separable patterns cos(
√
x2 + y2/t)

that the grammar can generate through its compositional rules but cannot be factorized.
For ODE problems and linear spatial DEs such as Poisson and Laplace equations where
component structure is simpler, we supplement operator-informed generation with proba-
bilistic grammar expansion using a context-free grammar that recursively builds expression
trees by selecting binary operations with probability 0.6, unary functions with probability
0.3, and terminal symbols with probability 0.1.

C.3 Configuration of baseline methods

C.3.1 SSDE Primitive Sets

To ensure fair comparison, SSDE receives primitive sets derived from the same structural
Ansatz used by SIGS. For problems expecting separated variable forms (e.g., f(x) · g(t) for
spatiotemporal PDEs), we provide SSDE with functions that appear in the corresponding
variable-specific clusters within SIGS’s grammar.

Table 16: SSDE primitive sets derived from SIGS’s structural Ansatz

Problem Expected Form Variables Function Set
Burgers f(x, t) (x, t) {+,−,×,÷, exp, tanh, sin, cos}
Diffusion

∑
i fi(x) · gi(t) (x, t) {+,−,×,÷, exp, tanh, sin, cos, log}

Damping Wave f(x, y) · g(t) (x, y, t) {+,−,×,÷, exp, sin, cos,
√}

PG-2/3/4 f(x, y) (x, y) {+,−,×,÷, exp, log, xn, sin, cos}

Rationale for Primitive Selection. The primitive sets are determined by analyzing which
functions appear in SIGS’s variable-specific clusters:

• For separated forms f(x) · g(t): We include functions from both the spatial cluster
(containing x) and temporal cluster (containing t)

• For spatiotemporal problems: {sin, cos} from spatial modes, {exp} from temporal
decay, {tanh} for shock profiles (Burgers-specific)

• For wave equations: Exclude exp since the temporal cluster for waves contains only
oscillatory functions

• For spatial-only problems (PG): Include functions from the (x, y) spatial cluster

This ensures both methods access identical function spaces, SIGS through its structured
grammar clusters and SSDE through explicit primitive specification. The key difference lies
in search strategy: SIGS restricts combinations to physically motivated forms, while SSDE
explores all possible tree compositions.

SSDE Hyperparameters. All problems use consistent RL hyperparameters: learning rate
0.0005, entropy weight 0.07, batch size 1000, 200,000 training samples, and expression length
constraints between 4 and 30 tokens (extended to 60 for Diffusion due to its multimodal
structure requiring more complex expressions).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.3.2 HD-TLGP Protocols

We evaluate HD-TLGP under two protocols that parallel the conditions for SSDE and SIGS.

Protocol 1: Knowledge-Based Initialization. HD-TLGP receives problem-specific solution
components in its knowledge base:

• Diffusion: First mode with exact amplitude A sin(πx/L) exp(−π2Dt/L2), templates
for modes 3 and 5, and 2-3 mode combinations

• Burgers: Core shock tanh(α(x− x0 − st)) and scaled variant

• Damping Wave: Radial motif cos(k
√
(x− x0)2 + (y − y0)2−ωt) and separable tem-

plate sin(πx) sin(πy) cos(ωt) exp(−γt)

• PG-2/3/4: Boundary mask sin(πx) sin(πy), individual Gaussians for each center,
and sum-of-Gaussians template

These components test whether genetic programming can extend partial solutions (Dif-
fusion/Wave), refine parametric forms (Burgers), or combine spatial structures (Damping
Wave, PG).

Protocol 2: Primitive-Only Discovery. HD-TLGP starts from random expressions using
exactly the same primitive set as SSDE for each problem:

• 1D problems (Diffusion, Wave, Burgers): {+,−,×,÷, sin, cos, exp, tanh}

• Damping Wave: {+,−,×,÷, sin, cos, exp, tanh,√}

• PG-2/3/4: {+,−,×,÷, sin, cos, exp, log,√}

No knowledge base components are provided, requiring complete discovery from elementary
functions. This ensures all symbolic methods explore identical function spaces.

Implementation Details. Population size 200 (1D) or 50 (2D), crossover 0.6, mutation 0.6,
KB transfer 0.6 (Protocol 1 only), maximum 25 generations or 120-1200 seconds, local
optimization enabled for constant tuning, peephole simplification for expression reduction.

C.4 FEniCS Validation for Reference Solutions

For the Poisson-Gauss problems lacking analytical solutions, we establish numerical ground
truth through rigorous finite element analysis. We solve the Poisson equation −∇2u = f
with homogeneous Dirichlet boundary conditions on the unit square, where f consists of
superposed Gaussian sources:

f(x, y) =

n∑
i=1

exp

(
− (x− µx,i)

2 + (y − µy,i)
2

2σ2

)

Verification Methodology. To validate our FEniCS reference solutions, we employ three
convergence criteria:

1. Mesh convergence: Solutions computed on progressively refined meshes (16×16
through 128×128) with P4 elements

2. Energy balance: The weak form identity a(uh, uh) = L(uh) must hold to machine
precision, where a(u, v) =

∫
Ω
∇u · ∇v dx and L(v) =

∫
Ω
fv dx

3. Residual minimization: The strong-form PDE residual ‖ − ∇2uh − f‖L2 decreases
at the expected rate O(hp+1)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 17: FEniCS Convergence Study for Poisson-Gauss (PG-2) Problem using P2 Elements

Problem Mesh DOF Runtime (s) PDE Residual (R(u))

PG-2

32×32 4225 0.0672 2.0525e−02
64×64 16641 0.2103 1.0238e−02

100×100 40401 0.5271 6.5487e−03
128×128 66049 0.9463 5.1154e−03
256×256 263169 3.5499 2.5573e−03
512×512 1050625 14.9201 1.2787e-03

1024×1024 4198401 57.0198 6.3970e−04

Validation Results. Table 17 shows the convergence study for the Poisson-Gauss (PG-2)
problem using P2 elements. This study focuses on validating the stability and efficiency of
the Finite Element solution. The Runtime shows the computational cost increases propor-
tionally with the DOF. Most importantly, the PDE Residual (R(u)) demonstrates stable,
clear convergence, decreasing by a factor of approximately 2 with each mesh refinement.
This confirms a consistent O(h1) decay rate for the residual, proving that the solution is
systematically converging to satisfy the strong form of the Poisson equation and the Dirichlet
boundary conditions.

Evaluation of Discovered Expressions. Symbolic expressions discovered by SIGS and base-
line methods are evaluated against these FEniCS references through Galerkin projection.
Given a discovered expression usym(x, y), we compute its projection onto the finite element
space and measure the relative L² error:

Error = ‖u
FEM
h −Πhusym‖L2

‖uFEM
h ‖L2

where Πh denotes the L² projection operator onto the P4 finite element space. This provides
a rigorous, mesh-independent measure of solution quality for problems without analytical
ground truth.

C.5 Discovered Symbolic Expressions

Tables 18–20 present the symbolic expressions discovered by each method. The structural
differences are immediately apparent: SIGS produces compact, physically interpretable ex-
pressions that directly reflect PDE solution structures—separated variables for diffusion,
traveling waves for Burgers, and properly masked Gaussians for Poisson problems. In con-
trast, both HD-TLGP and SSDE generate deeply nested compositions of elementary func-
tions. HD-TLGP Protocol 1, despite receiving solution components, wraps them in other
operations (e.g., sin(sin(cos(exp(·)))) around the Burgers shock), while Protocol 2 often col-
lapses to trivial constants for complex problems. SSDE consistently produces expressions
with extreme nesting depth—up to 500+ operations for Damping Wave, that represent
brute-force fitting rather than discovery of underlying mathematical structure. These ex-
pressions, while potentially achieving low training error fail to generalize and provide no
insight into the PDE dynamics.

C.6 Details on the ablation Study

Mahalanobis distance. Given x ∈ Rd, mean µ, covariance Σ � 0, the Mahalanobis distance
is dM (x, µ) =

√
(x− µ)>Σ−1(x− µ). For each model, we compute training encoder means

{µi}Ni=1, estimate Σ from these means, and define dmin(z) = mini dM (z, µi). Our filter
accepts a candidate z iff d

(with)
min (z) ≥ τ and d

(w/o)
min (z) ≥ τ (we use τ=0.8).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 18: Symbolic expressions discovered by SIGS

Problem Discovered Expression
Burgers 0.86 + 0.6 tanh(30(x− 0.33− 0.86t))

Diffusion 3.974(sin(2.15πx)e−3.21π2t + sin(0.71πx)e−0.36π2t + sin(3.58πx)e−8.93π2t)

Damping Wave cos(0.5
√

(x+ 5.0)2 + (y − 5)2 − 0.4t)e−0.45t

PG-2 sin(πx) sin(πy) ·
[
0.0080 exp

(0.424((x−0.923)2+(y−0.760)2)

2.136·0.5732
)

+0.0251 exp
(−1.071((x−0.794)2+(y−0.054)2)

2.245·0.2012
)

+0.0105 exp
(−1.110((x−0.248)2+(y−0.496)2)

1.862·0.1852
)]

PG-3 sin(πx) sin(πy) ·
[
0.0079 exp

(0.461((x−0.500)2+(y+0.217)2)

2.152·0.5082
)

+0.0137 exp
(−0.816((x−0.750)2+(y−0.873)2)

1.898·0.1382
)

+0.0137 exp
(−0.851((x−0.250)2+(y−0.873)2)

2.505·0.1232
)

+0.0206 exp
(−1.092((x−0.500)2+(y−0.043)2)

1.738·0.2212
)]

PG-4 sin(πx) sin(πy) ·
[
0.0068 exp

(−1.489((x−0.731)2+(y−0.502)2)

1.553·0.1952
)

+0.0112 exp
(−1.123((x−0.500)2+(y−0.124)2)

1.804·0.1592
)

+0.0294 exp
(−0.031((x−0.665)2+(y−0.887)2)

2.025·0.5842
)

+0.0069 exp
(−0.992((x−0.267)2+(y−0.502)2)

1.664·0.1552
)

+0.0286 exp
(−1.024((x−0.501)2+(y+0.276)2)

1.569·0.1902
)

Table 19: Symbolic expressions discovered by SSDE

Problem Expression Found
Burgers exp(tanh(−1743.845x− 76821.176)/ sin(exp(tanh(exp(x))))) ·

exp(− tanh(−t exp(t)− 3t+ tanh(−1743.845x−
76821.176)/ sin(exp(tanh(exp(x))))))

Diffusion cos(t+ x+ cos(112.185x3 tanh(x2 + x)− 118.201x3 + 8.824x)−
tanh(t))/(2t+ x/ cos(−t+ x+ cos(112.185x3 tanh(x2 + x)− 118.201x3 +
8.824x)) + cos(112.185x3 tanh(x2 + x)− 118.201x3 + 8.824x)/ cos(−t+ x+
cos(112.185x3 tanh(x2 + x)− 118.201x3 + 8.824x)))

Damping Wave Expression with 500+ operations including nested functions, (full expression
exceeds reasonable display length)

PG-2 sin(x(−0.02582816 + 0.01654789
cos(x2+cos(y(y+exp(x·cos(y+0.42096704)))))

))

PG-3 x(−0.802y2 + y)(1.092cos(sin(sin(sin(x))))− 0.82463681261637)

PG-4 x(log(sin(sin(cos(sin(sin(sin(sin(sin(sin(x)))))))))) + 0.383)− 0.007

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 20: Symbolic expressions discovered by HD-TLGP

Problem Protocol Expression Found

Burgers P1 sin(sin(cos(exp(− tanh(0.996 tanh(25.8t− 30.0x+ 9.9)))))) + 0.569

P2 tanh(exp(− cos(tanh(tanh(x) + 0.5) + tanh(1.649 exp(−x)))) +
tanh(sin(x+ 48.558) + tanh(x)))

Diffusion P1 3.974 · (exp(88.121t+ 3.974 exp(−3.525t) sin(63.495/x) ·
sin(2.249x)) sin(2.249x) + sin(11.244x)) exp(−91.646t)

P2 sin(tanh(tanh(x))) + 1.840 tanh(t+ sin(0.540 ·
exp(0.5

sin(cos(sin(x+π))/((1.623t−5.100)(−t+2x+1.0)))
tanh(1.019 cos(1.649t+

0.824)))))

Damping Wave P1 exp(cos(0.542t−0.357((x−0.135)(x+0.269)+(y−0.940)(y+0.495))1/2))

P2 Complex nested expression with 150+ operations including imaginary
unit

PG-2
P1 0.0181 sin(exp(1.638(26.282 + exp(−0.992/(x2 − 40x+ y2 − 26.598y +

531.969)))1/2)− 1.638 exp(−0.191/(7.560x · exp(1.670x) + 117.703x−
370.656y + 61.605 exp(1.670x)− 1833.212)) sin(x− y))

P2 0.000105

PG-3
P1 (y − 0.468)(y − 0.440)(sin((tanh(y) + 9.870) exp(0.0120/((x−

0.538)(x− 0.032) + (y − 1.662)(y − 1.548)))))1/2

P2 9944.705 sin(x) + 1.218× 10−12

PG-4
P1 12945.616/ sin(exp(exp(exp(−1.095 exp(3.535/((x+ 0.0183)2 + (y −

0.389)(y − 0.368)))/(−1.527y + 1.527(x− 0.764)2 exp(3.535/((x+
0.0183)2 + (y − 0.389)(y − 0.368)))− 5.261)))))

P2 9505.982

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C.7 Solution Visualizations

−4 −2 0 2 4
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t

0.260

0.384

0.508

0.632

0.757

0.881

1.005

1.129

1.253

1.377

u(
x,

t)

Figure 4: Contour plot of the learned solution u(x, t) for the Burgers equation. The horizon-
tal axis represents the spatial domain x ∈ [−5, 5], the vertical axis represents the temporal
domain t ∈ [0, 2], and the colormap indicates the solution magnitude ranging from 0.26 to
1.46. The solution is computed on a 128× 128 discretization grid

0 0.35 0.7 1.05 1.4
x

0.00

0.25

0.50

0.75

1.00

t

−1.49

−0.01

1.47

2.95

4.43

5.91

7.38

8.86

10.34

11.82

u(
x,

t)

Figure 5: Contour plot of the learned solution u(x, t) for the Diffusion equation. The
horizontal axis represents the spatial domain x ∈ [0, 1.4], the vertical axis represents the
temporal domain t ∈ [0, 1], and the colormap indicates the solution magnitude ranging from
−1.5 to 11.9. The solution is computed on a 128× 128 discretization grid.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

−8 −4 0 4 8
x

−8

−4

0

4

8

y

t = 0.5

−8 −4 0 4 8
x

t = 1.0

−8 −4 0 4 8
x

t = 2.0

−0.4

−0.2

0.0

0.2

0.4

u(
x,

y,
t)

Figure 6: Contour plots of the learned solution u(x, y, t) for the Damped Wave equation at
time instances t ∈ {0.5, 1.0, 2.0}. The spatial domain is (x, y) ∈ [−8, 8]2, and the colormap
indicates the solution magnitude ranging from −0.5 to 0.5. The solution is computed on a
128× 128 discretization grid.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Figure 7: Comparison of numerical approximation and symbolic solution for the Poisson
equation with 2 Gaussian source centers. (Left) Source term F (x, y) consisting of 2 Gaussian
functions centered at (0.3, 0.5) and (0.7, 0.2) with σ = 0.1. (Right) Solution obtained using
the SIGS method. (Middle) Reference solution obtained by Finite Element Method (FEM)
solution computed using FEniCS on a 100×100 mesh with P2 elements. The spatial domain
is (x, y) ∈ [0, 1]2, visualized on a 400×400 grid. The colormap indicates solution magnitude
with maximum values of approximately 0.035.

Figure 8: Comparison of numerical approximation and symbolic solution for the Poisson
equation with 3 Gaussian source centers. (Left)Source term F (x, y) consisting of 3 Gaussian
functions centered at (0.3, 0.8), (0.7, 0.8), and (0.5, 0.2) with σ = 0.1. (Middle) Reference
solution obtained by Finite Element Method (FEM) solution computed using FEniCS on
a 100 × 100 mesh with P2 elements .(Right) Solution obtained using the SIGS method.
The spatial domain is (x, y) ∈ [0, 1]2, visualized on a 400× 400 grid. The relative L2 error
between FEM and SIGS solutions is approximately 1%.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 9: Comparison of numerical approximation and symbolic solution for the Poisson
equation with 4 Gaussian source centers. (Left)Source term F (x, y) consisting of 4 Gaussian
functions centered at (0.3, 0.5), (0.7, 0.5), (0.5, 0.2), and (0.5, 0.7) with σ = 0.1s. (Middle)
Reference solution obtained by Finite Element Method (FEM) solution using FEniCS on a
100 × 100 mesh with P2 element .(Right) Solution obtained using the SIGS method. The
spatial domain is (x, y) ∈ [0, 1]2, visualized on a 400×400 grid. The symmetric arrangement
of sources produces a cross-like pattern in the solution field.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

C.8 Additional results during the review process

C.8.1 Korteweg-de Vries (KdV) Equation

We are going to study how grammar misspecification, e.g. missing primitive functions,
and the choice of the Ansatz affect the solution capabilites of SIGS. For this purpose, we
consider the Korteweg-de Vries (KdV) quation. The KdV equation is a PDE which models
one-dimensional nonlinear dispersive nondissipative waves, or solitons, defined as:

ut + 6uux + uxxx = 0, (7)
The one-soliton setup of this problem considers a single wave as it moves across the domain,
and has an analytic solution of the form

u(x, t) =
2

cosh2(x− 4t)
, (8)

where cosh is not included in the grammar. We define the domain Ω×T ∈ [−10, 10]× [0, 1],
and the Ansatz as

u(x, t) =

2∑
k=0

φ(x, t)k. (9)

SIGS found the following solution:
0.0003734 · tanh(0.001355 · t− 0.0006419 · x+ 0.0002936)

−2.0 · tanh2(4.0 · t− 1.0 · x+ 2.237e− 7) + 2.0.

This is a very interesting result. If we apply trigonometric identities, we see that:
2

cosh2(x− 4t)
= 2 sech2(x− 4t) = 2 (1− tanh2(x− 4t)) = 2− 2 tanh2(x− 4t), (10)

which is very close to what SIGS returns, with relative L2 error ≈ 6.6 × 10−6. Despite
the fact that cosh is missing from the grammar, we can find an equivalent form very fast,
wall-clock time is 36 sec.

C.8.2 Shallow Water Equations

The SWE equations are a hyperbolic system of PDEs which describe the flow below a
pressure surface in a fluid. We use the method of manufactured solutions to construct
analytical equations for the density and velocities. The solutions are coupled because of the
dependence of the velocities on the density. The density ρ(x, y, t) is modeled as:

ρ(x, y, t) = 1 + h exp

(
− r

w(1 + t)

)
cos

(
k
√
r − ct

)
e−αt,

where r = (x− x0)2 + (y − y0)2 the center of the droplet, h represents the amplitude, w is
the Gaussian width, k is the wave number, c is the wave speed, and α is the decay rate. The
terms x0 and y0 define the initial center of the wave. The velocity components ux(x, y, t)
and uy(x, y, t) are derived using the linear shallow waters theory as:

ux(x, y, t) = ρ(x, y, t) · x · c
H ·
√
r
,

uy(x, y, t) = ρ(x, y, t) · y · c
H ·
√
r
,

where H is a velocity scaling factor. The governing equations for the shallow water system
are:

Mass conservation: ∂ρ

∂t
+
∂(ρux)

∂x
+
∂(ρuy)

∂y
= fρ(x, y, t),

x-momentum: ∂(ρux)

∂t
+
∂(ρu2x + 1

2gρ
2)

∂x
+
∂(ρuxuy)

∂y
= fx(x, y, t),

y-momentum: ∂(ρuy)

∂t
+
∂(ρuxuy)

∂x
+
∂(ρu2y +

1
2gρ

2)

∂y
= fy(x, y, t).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

The forcing terms fx(x, y, t) and fy(x, y, t) ensure the manufactured solutions remain valid
over the specified domain and time interval by compensating for natural wave decay and dis-
sipation. The parameters of these expressions ranges provide sufficient flexibility to capture
diverse wave behaviors h ∼ U(0.5, 2.0), w ∼ U(0.3, 3.0), k ∼ U(0.5, 8.0), c ∼ U(0.3, 3.0), α ∼
U(0.02, 0.8), x0, y0 ∼ U(−6.0, 6.0),H ∼ U(1.0, 5.0). To discover a new solution of the shal-
low water equations, we consider h = 0.97, w = 0.88, k = 1.78, c = 1.28, α = 0.72, (x0, y0) =
(3.77, 2.34),H = 4.46, (x, y) ∈ [−10, 10], t ∈ [0, 5], and r0 = (x − 3.77)2 + (y − 2.34)2. We
consider periodic boundary conditions and initial conditions the function values at time
t = 0.
We consider Ansatze for each equation:

ρ(x, y, t) = f(x, y, t)g(x, y, t)h(t),

u(x, y, t) = ρ(x, y, t)sx(x, y),

v(x, y, t) = ρ(x, y, t)sy(x, y),

where f, g, sxsy atoms from the grammar. We consider ρ as part of the ansatz of u, v due
to the dependency between the velocity and the density we discussed earlier. We report
both the true manufactured solution and the solution found by SIGS, which has the correct
structural form, in terms of the values of θ in Table 21. The errors reported are:

RelL2(ρ) ≈ 1.8731× 10−4(0.0187%),

RelL2(u) ≈ 2.2310× 10−4(0.0223%),

RelL2(v) ≈ 4.1783× 10−4(0.0418%).

(11)

By the problem definition, we know that the initial condition has a local support around
a center r0 which means that it is not physically meaningful for different atoms to have
different centers. For this reason, the optimization centers are made identical for the local
optimization by choosing the center of the traveling wave which is the dominant physical
feature of the problem. The overall optimization time to get the solution is 3 minutes and
23 seconds.

Aρ Asx Asy cρx cρy csx csy csyx csyy σ decay freq phase

True 1.142 1.142 1.142 0.4 -0.4 0.4 -0.4 0.4 -0.4 1.1 0.6 2.6 0.7
Init 1.64 1.91 0.93 1.02 -0.49 1.02 -0.49 1.02 -0.49 1.96 0.75 1.92 0.11
SIGS 1.142 1.14 1.14 0.39 -0.4 0.40 -0.39 0.39 -0.39 1.09 0.59 2.60 0.70

Table 21: Values of the parameters θ in the solutions to the SWE system: The true man-
ufactured solution (True), the values returned after the SIGS structural search with values
of c adjusted (Init), and the final values found after the parameter optimization (SIGS).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

(a) Manufactured density ρ?(x, y, t) at t = {0, 0.5, 1.5}.

(b) SIGS density ρSIGS(x, y, t) at the same times.

Figure 10: Shallow-water density fields. Top: manufactured solution from Eq. (SWE-MS);
bottom: SIGS-refined solution. The three panels correspond to t = 0, 0.5, and 1.5 on the
domain (x, y) ∈ [−2, 2]2 with periodic boundary conditions.

(a) Manufactured velocity u?
x(x, y, t) at t = {0, 0.5, 1.5}.

(b) SIGS velocity ux,SIGS(x, y, t) at the same times.

Figure 11: Shallow-water x-velocity fields. Top: manufactured solution; bottom: SIGS
solution. Panels show t = 0, 0.5, and 1.5.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

(a) Manufactured velocity u?
y(x, y, t) at t = {0, 0.5, 1.5}.

(b) SIGS velocity uy,SIGS(x, y, t) at the same times.

Figure 12: Shallow-water y-velocity fields. Top: manufactured solution; bottom: SIGS
solution. Panels show t = 0, 0.5, and 1.5.

C.8.3 Compressible Euler equations (CE)

We consider the two-dimensional compressible Euler equations (in steady state) on a periodic
spatial domain. We use the method of manufactured solutions (MMS) to construct closed-
form analytical baselines, and derive consistent forcing terms so that the manufactured fields
satisfy the Euler system exactly. SIGS is then used to rediscover these fields by minimizing
PDE residuals.
Let Ω = [0, 1]2 with (x, y) ∈ Ω. We define the conservative state

U(x, y) =


ρ(x, y)

ρ(x, y)u(x, y)

ρ(x, y) v(x, y)

E(x, y)

 , ρ > 0, (u, v) ∈ R2,

where ρ is density, (u, v) are the velocity components, and E is the total energy density. In
the MMS setting we use steady (time–independent) solutions, hence ∂t(·) = 0. The forced
steady Euler system reads

∇· F (U) =

fρ
fu
fv
fE

 in Ω, (12)

with flux

F (U) =


ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p

u(E + p) v(E + p)

 .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Equivalently, in component form,
∂x(ρu) + ∂y(ρv) = fρ,

∂x(ρu
2 + p) + ∂y(ρuv) = fu,

∂x(ρuv) + ∂y(ρv
2 + p) = fv,

∂x
(
u(E + p)

)
+ ∂y

(
v(E + p)

)
= fE .

We close the system with the ideal-gas equation of state

p = (γ − 1)
(
E − 1

2ρ(u
2 + v2)

)
, γ = 1.4. (13)

We impose periodic boundary conditions on all primitive variables: for φ ∈ {ρ, u, v, p},

φ(0, y) = φ(1, y), φ(x, 0) = φ(x, 1).

The Ansätze used by SIGS for each variable are sums of grammar atoms, with exponential
envelopes for ρ and p:

ρ(x, y) = exp
(6∑

i=1

fi(x, y)
)
,

u(x, y) =

6∑
i=1

gi(x, y),

v(x, y) =

6∑
i=1

hi(x, y),

p(x, y) = exp
(6∑

i=1

ki(x, y)
)
,

where fi, gi, hi, ki are spatial atoms generated by the grammar.

Field Manufactured Optimized Rel. L2 (%)
ρ exp

(
−0.0887 sin(πx) sin(πy) +

0.504 sin(πx) sin(2πy) +
0.259 sin(2πx) sin(πy) +
0.140 sin(2πx) sin(2πy)

)
exp

(
0.273 sin(πx) sin(2πy) +

0.217 sin(2πx) sin(πy) +
0.229 sin(2πx) sin(2πy) +
2.18× 10−3 sin(2πy) cos(πx)

)
10.8

u π
(
−0.243 sin(πx) sin(πy) −

0.385 sin(πx) sin(2πy) −
0.494 sin(2πx) sin(πy) +
0.518 sin(2πx) sin(2πy)

)
−0.929 sin(πx) sin(πy) −
1 sin(πx) sin(2πy) +
0.0518 sin(πx) cos(3πy) −
1.50 sin(2πx) sin(πy) +
1.56 sin(2πx) sin(2πy)

9.93

v π
(
0.0715 sin(πx) sin(πy) +

0.233 sin(πx) sin(2πy) −
0.536 sin(2πx) sin(πy) +
0.665 sin(2πx) sin(2πy)

)
0.718 sin(πx) sin(2πy) +
2.05 sin(2πx) sin(2πy) −
0.307 sin(4πx) sin(πy) −
1.22 sin(πy) cos(πx) +
1 sin(πy) cos(3πx)

9.84

p exp
(
0.235 sin(πx) sin(πy) −

0.322 sin(πx) sin(2πy) −
0.356 sin(2πx) sin(πy) −
0.448 sin(2πx) sin(2πy)

)
exp

(
−0.389 sin(πx) sin(2πy) −

0.354 sin(2πx) sin(πy) −
0.410 sin(2πx) sin(2πy)

) 12.1

Table 22: Manufactured vs. optimized fields with coefficients truncated to three significant
figures.

C.8.4 Results from classical methods

We assess the difficulty of the PDEs considered in this manuscript by trying to solve them
using different automated procedures, such as the state-of-the-art Computer Algebra System
Mathematica Wolfram Research, Inc. (2024). Since manual solving might also lead to success

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 13: Compressible Euler manufactured vs. SIGS-optimized fields. Each row cor-
responds to one state variable (ρ, u, v, p), and columns show the manufactured reference
(left) and the SIGS-refined solution (right) evaluated on the same grid. SIGS recovers the
spatial structure and magnitude of all four coupled fields simultaneously, yielding a near-
indistinguishable match to the manufactured solution.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

in different cases, we ask ChatGPT 5.1 (Extended Reasoning) to solve the problems as a
proxy for human ingenuity. We use the DSolveValue function of Mathematica on the same
suite of problems that we tested SIGS on. We report the results in Table 23. The following
solutions were found:
Mathematica: Dirichlet heat equation. Mathematica returns the standard Fourier–sine
series solution of the Dirichlet heat problem:

u(x, t) =

∞∑
n=1

bn exp
(
−D

(
nπ
L

)2

t
)
sin

(
nπx
L

)
, (14)

where the coefficients bn are the sine–series coefficients of the initial condition (computed
symbolically or numerically by DSolveValue):

bn =
2

L

∫ L

0

u0(ξ) sin
(

nπξ
L

)
dξ. (15)

The infinite series solution found is written as:

u(x, t) =

∞∑
K=1

e−3.52tK2

sin(2.24K)

1.69× 1063K6 − 5.94× 1064K4 + 4.40× 1065K2 − 3.82× 1065

+

(
− 1.28× 1064K4 + 2.57× 1064K2 − 8.38× 1065

)
sin(3.14K)

1.69× 1063K6 − 5.94× 1064K4 + 4.40× 1065K2 − 3.82× 1065

+
K
(
− 1.68× 1049K4 + 2.78× 1050K2 − 3.62× 1050

)
cos(3.14K)

1.69× 1063K6 − 5.94× 1064K4 + 4.40× 1065K2 − 3.82× 1065

]
.

(16)

where K the mode index n in a sine expansion in, meaning sin(πnx), matching Dirichlet
BC in x.
Mathematica: Poisson-Gauss (2 centers). Mathematica returns an eigenfunction/Green’s-
function representation based on the sine basis in x and the corresponding 1D Green’s
function in y:

u(x, y) = 2

∞∑
n=1

sin(nπx)

∫ 1

0

Gn(y, η)

(∫ 1

0

sin(nπξ)f(ξ, η)dξ

)
dη, (17)

where, for each Fourier mode n ≥ 1, Gn(y, η) is the 1D Green’s function for the operator
∂yy − (nπ)2 on y ∈ (0, 1) with homogeneous Dirichlet boundary conditions:

Gn(y, η) =
1

nπ sinh(nπ)

{
sinh(nπy) sinh

(
nπ(1− η)

)
, 0 ≤ y ≤ η ≤ 1,

sinh(nπη) sinh
(
nπ(1− y)

)
, 0 ≤ η ≤ y ≤ 1.

(18)

This is exactly the Green’s-function representation

u(x, y) =

∫∫
(0,1)2

G(x, y; ξ, η)f(ξ, η)dη, (19)

with G expanded in the sine basis in x.
ChatGPT: Poisson-Gauss (2 centers). ChatGPT returned the following solution after a
reasoning time of 8 m 16 s:

uChatGPT (x, y) =− 0.01
(
log

(√
(x− 0.3)2 + (y − 0.5)2

)
− 0.5Ei

(
− (x− 0.3)2 + (y − 0.5)2

0.02

)
+ log

(√
(x− 0.7)2 + (y − 0.2)2

)
− 0.5Ei

(
− (x− 0.7)2 + (y − 0.2)2

0.02

))
,

(20)

shown in Fig. 14 and corresponding to a relative L2 error of 1.576e+02%. Upon questioning
the result, it admits: ’Exactly: the closed-form solution I gave you did not enforce the
Dirichlet BC=0, u=0’.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Figure 14: Performance of ChatGPT on the PG-2 problem: Initial condition, FEniCS
solution, and approximation returned by ChatGPT.

ChatGPT: Burgers. ChatGPT correctly finds the analytical solution

uChatGPT (x, y) = 0.86− 0.6 tanh
(
30x− 25.8t− 9.9

)
. (21)

Here we need to clarify that ChatGPT actually ”cheats” in the sense that it doesn’t really
solve the PDEs with manufactured solutions, but it uses the initial and boundary conditions
to reverse engineer the manufactured solution.

Table 23: Success of classical solution methods on a selection of problems.

Problem Mathematica ChatGPT

Burgers No Yes

Damped Wave No

Diffusion equation Yes (Infinite Series)

Poisson–Gauss (2 centers) Yes (Infinite Series) Approximation

KdV equation No

Table 24: Performance metrics for ChatGPT for two mathematical problems.

Problem Relative L2 Error Reasoning Time

Burgers 0.0% 7 m 25 s

Poisson–Gauss (2 centers) 1.576e+02% 8 m 16 s

C.9 Additions to the computational performance assessment

In Table 3, the relative L2 error between the SIGS and FEniCS solutions was computed
on the native 100 × 100 grid. We add the residuals R(u) of both methods on different
grids for the solutions by SIGS and FEniCS in Table 25. In general, FEniCS has a lower
residual error, justifying to consider it as the reference in the relative error computation.
For finer meshes, we see the FEniCS residual decreasing, while is stays constant for SIGS.
An extended convergence study of R(u) for FEniCS can be found in Table 17.

Table 25: Comparison of residuals R(u) between SIGS and FEniCS for problems PG-2,
PG-3 and PG-4, evaluated on two mesh resolutions.

Mesh Model residual PG-2 PG-3 PG-4
128× 128 R(uFEniCS) 2.924× 10−4 3.663× 10−4 4.070× 10−4

128× 128 R(uSIGS) 4.491× 10−2 4.476× 10−2 3.617× 10−2

256× 256 R(uFEniCS) 8.048× 10−5 1.034× 10−4 1.133× 10−4

256× 256 R(uSIGS) 4.493× 10−2 4.490× 10−2 3.618× 10−2

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

In terms of runtimes, the model runs in Table 4 arrive at different levels of accuracy. In
order to facilitate the comparison, we stop the SIGS optimization at errors comparable to
the FEniCS solution in Table 2 and report this cropped SIGS runtime in Table 17.

Table 26: Updated SIGS runtimes: time to discover an analytical solution at comparable
relative L2 error ≈ 10−2–10−3.

PDE problem Rel. L2 (SIGS) Total SIGS time (s)
Burgers 4.85× 10−3 11.62
Diffusion 2.59× 10−3 14.67
Damped wave 1.44× 10−2 8.95

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

LLMs usage in the manuscript The authors used LLMs to polish grammar and spelling
through Overleaf tools and independent LLMs services.

42

	Introduction
	Method
	Experiments and Results
	Experiments
	Ablation Studies

	Discussion and Conclusion
	 Appendix
	Grammar and GVAE
	Library Generation
	Atom Generation
	Formal Grammar Specifics
	Mathematical checks on generated functions

	GVAE Model and Training Details
	Geometry Regularization

	Iterative Search and Refinement
	Notation and Setup
	Target loss: Discretized PDE residual
	Stage I: Structure discovery by iterative clustering
	Stage II: Coefficient Refinement

	Experiments
	Problem Definitions
	Construction of known analytical solutions
	Problem without known analytic solution

	Solution Ansatz specific to our experiments
	Configuration of baseline methods
	SSDE Primitive Sets
	HD-TLGP Protocols

	FEniCS Validation for Reference Solutions
	Discovered Symbolic Expressions
	Details on the ablation Study
	Solution Visualizations
	Additional results during the review process
	Korteweg-de Vries (KdV) Equation
	Shallow Water Equations
	Compressible Euler equations (CE)
	Results from classical methods

	Additions to the computational performance assessment

