
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REPOFILTER: ADAPTIVE RETRIEVAL CONTEXT
TRIMMING FOR REPOSITORY-LEVEL CODE COMPLE-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT
Retrieval-Augmented Generation (RAG) has recently emerged as a promising ap-
proach for repository-level code completion by integrating cross-file knowledge
with in-file preceding code to provide comprehensive contexts for generation. To
better understand the contribution of the retrieved cross-file contexts, we introduce
a likelihood-based metric to evaluate the impact of each retrieved code chunk on
the completion. Our analysis reveals that, despite retrieving numerous chunks,
only a small subset positively contributes to the target completion, while some
chunks even degrade performance. To address this issue, we leverage this metric
to construct a repository-level dataset where each retrieved chunk is labeled as
positive, neutral, or negative based on its relevance to the target completion. We
then propose an adaptive retrieval context trimming framework, REPOFILTER,
trained on this dataset to mitigate the harmful effects of negative retrieved con-
texts in RAG-based code completion. Extensive evaluation on the RepoEval and
CrossCodeLongEval benchmarks demonstrates that REPOFILTER consistently
improves completion accuracy compared to approaches without filtering opera-
tions across various tasks. Additionally, REPOFILTER significantly reduces the
length of the input prompt, enhancing computational efficiency while exhibiting
strong generalizability across different models. These results underscore the po-
tential of REPOFILTER to enhance the accuracy, efficiency, and attributability of
RAG-based repository-level code completion.

1 INTRODUCTION
Automatic code completion, particularly at the repository level, has gained significant attention due
to its alignment with real-world coding scenarios. Repository-level code completion requires the
model to understand the repository’s domain knowledge, including cross-file contexts, to provide
accurate recommendations (Zhang et al., 2023; Ding et al., 2024a). Retrieval-augmented generation
(RAG) has emerged as an effective technique for integrating cross-file knowledge into the comple-
tion process. RAG-based framework first retrieves the most relevant code chunks from other files in
the repository—such as user-defined APIs and inter-module dependencies—and incorporates these
retrieved contexts into the prompt, which is then fed into large language models (LLMs) to enhance
the completion of the current file. RAG-based methods for repository-level code completion have
been extensively researched and have demonstrated substantial progress in recent years(Lu et al.,
2022; Zhang et al., 2023; Liu et al.; Ding et al., 2024a).

In repository-level code completion, RAG-based methods typically rely on the preceding code snip-
pet as a query to retrieve cross-file contexts. However, unlike natural language tasks such as question
answering, where the query and relevant documents share a direct semantic relationship, the connec-
tion between the preceding code and the completed code segment is often indirect or implicit. This
results in the retrieval of contexts that, despite exhibiting high semantic or token-level similarity,
may not meaningfully contribute to the completion and may even degrade performance by intro-
ducing irrelevant information. Therefore, understanding the influence of each retrieved cross-file
chunk is essential for optimizing the use of contextual information in code completion. Motivated
by this, we systematically investigate which retrieved snippets truly support the completion process
and evaluate the extent to which the retrieved context is necessary for effective code generation.

To answer this question, we conduct a preliminary experiment on the popular code completion
benchmark RepoEval (Zhang et al., 2023). Specifically, we define a likelihood-based metric to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

evaluate the impact of each cross-file chunk on the target completion. This metric measures the dif-
ference in the model’s likelihood of generating the ground-truth code with and without the inclusion
of a particular context (i.e., chunk) in the prompt. Applying this metric to the retrieved top-10 cross-
file contexts in the RepoEval-API dataset, we find that only 15% of the retrieved chunks genuinely
support the completion, while 5.6% of the chunks degrade the performance, affecting 19.81% of the
instances in the benchmark. The remaining chunks are irrelevant. These experimental results high-
light that most retrieved chunks (85%) either do not contribute to or even hinder code completion,
underscoring the need for effective filtering strategies to identify the most beneficial contexts.

In this paper, we propose an adaptive retrieval context trimming framework, REPOFILTER1, to ef-
fectively select relevant retrieved contexts for repository-level code completion. The framework is
trained on our constructed dataset, where each retrieved cross-file chunk is annotated with its polar-
ity to guide the model determine whether it is beneficial for completion. Specifically, we sample 43k
instances from nearly 6k diverse Python repositories, each containing consecutive lines of code for
LLMs to complete. These instances are associated with over 400k cross-file context chunks, each la-
beled as positive, neutral, or negative using our proposed likelihood-based metric computed against
the ground-truth completion. This dataset is used to train LLMs to evaluate the polarity of retrieved
code chunks and retain only the positive ones as supplementary context prior to code generation. Ad-
ditionally, the model is trained to adaptively determine whether the available context is sufficient for
the intended completion, thereby reducing unnecessary retrieval and computation. REPOFILTER
redefines the generation process with a “filtering-then-generation” paradigm, enabling the model
to perform on-demand retrieval and focus only on positive retrieved contexts, which mitigates the
impact of noisy or irrelevant snippets and enhances overall code completion performance.

We conducted comprehensive experiments using different LLMs, including StarCoderBase-3B/7B
(Li et al., 2023c) and CodeLlama-7B/13B (Roziere et al., 2023), on different repository-level bench-
marks, including RepoEval and CrossCodeLongEval (Zhang et al., 2023; Ding et al., 2024a; Wu
et al., 2024). Results show that REPOFILTER effectively filters out irrelevant retrieved content
in both left-to-right and infilling code completion settings, achieving an average improvement of
3% in exact match over the baseline RAG frameworks. Moreover, REPOFILTER significantly re-
duces the length of cross-file contexts, shortening the original cross-file portion of the prompt by
over 80% in token count. Notably, for those cases that contain negative-impact retrieved contexts,
REPOFILTER successfully filters the negative contexts out, resulting in a substantial improvement
of over 10% in exact match performance. Furthermore, we also establish that REPOFILTER can
serve as a plug-and-play component, functioning as a retrieval context selection policy for larger
models such as GPT-3.5 and improving their performance in code completion. Our contributions
can be summarized as follows:

• We propose a likelihood-based metric to evaluate the impact of cross-file chunks on code
completion and construct a code completion dataset with polarity-annotated contexts.

• We introduce REPOFILTER, an adaptive retrieval context trimming framework, which
applies adaptive-retrieval and evaluates the polarity of retrieved code chunks and retains
only beneficial contexts for repository-level code completion.

• Comprehensive experiments across multiple LLMs and benchmarks demonstrate that
REPOFILTER consistently improves completion performance, reduces context length, and
effectively mitigates the negative impact of harmful retrievals.

2 RELATED WORK
Retrieval-Augmented Genration Despite the remarkable performance of large language models
(LLMs) in text and code generation, hallucination remains a significant challenge. To address this
issue, retrieval-augmented generation (RAG) has emerged as a key research area, significantly en-
hancing generation by providing LLMs with additional accurate knowledge (Guu et al., 2020; Lewis
et al., 2020), particularly in knowledge-intensive tasks such as question answering (Izacard & Grave,
2020; Ram et al., 2023; Shi et al., 2023; Borgeaud et al., 2022). Recent studies have extended RAG
to programming languages by incorporating external documents or code snippets to improve code
generation (Gu et al., 2016; Zhou et al., 2022; Lu et al., 2022; Zan et al., 2022). To enhance RAG
efficiency and the relevance of retrieved passages, adaptive methods have been proposed to dynami-
cally determine when additional context should be retrieved (He et al., 2021; Mallen et al., 2022; Li
et al., 2023b; Jiang et al., 2023; Wang et al., 2023a; Wu et al., 2024). Other works have focused on

1https://anonymous.4open.science/r/RepoFilter-5AC5

2

https://anonymous.4open.science/r/RepoFilter-5AC5

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1. Input in-file Code Contexts

3:Filter-then-generate

More

Contexts

2. On-demand Retrieval

Repository

Retrieve
Cross-file code chunks

C2C1 C3 … Ck

3. Filter-then-generate

C1:Positive
More

Context
C2:Neutral C3:Negative C4:Positive

Enough

Contexts

Generate

f_score=analyze_fraud(enriched_data,

customer_info,

fraud_threshold=0.95)

update_f_score(cust_info['cust_id’],

f_score)

...

Retrieval

Decision

def analyze_fraud(payment_data,

cstm_info,

fraud_threshold=0.95):

risk_score = risk_score(payment_data,

customer_info)

if risk_score >= fraud_threshold: …

old_payments = fetch_oldpayments(months=18)

for cust_info, payment in old_payments:

enriched_data=enrich_data(payment,cust_info)

save_archive(enriched_data)

log_activity(payment['payment_id’])

1. Input in-file Code Contexts

def calculate_statistics(self):

mean, median, and mode

…

median = sorted_data[mid]

2. Directly Generate

Enough

Contexts

Generate

frequency = {}

for item in self.data:

frequency[item]=frequency.get(item,0)+1

mode = max(frequency, key=frequency.get)

return {"mean”: mean,"median": median,"mode”: mode}

def process_payment_with_fraud_detection(request):

payment_data = extract_payment_data(request)

...

custinfo =

get_cust_info(payment_data[’cust_id'])

enriched_data =

enrich_data(payment_data, cust_info)

Figure 1: The overview of REPOFILTER, which initiates on-demand retrieval when the in-file con-
text is insufficient for the intended completion; otherwise, it generates code directly. After retrieval,
REPOFILTER sequentially predicts the impact of each cross-file chunk—categorized as positive,
negative, or neutral—on the target completion, retaining only positive chunks. The process stops
once the context is deemed sufficient, avoiding unnecessary computations.

dynamically selecting or weighting each retrieved context to improve supportiveness (Wang et al.,
2023b; Asai et al.; Pan et al., 2024). Moreover, RAG has been shown to be effective in addressing
various code-related tasks, such as code generation (Li et al., 2023a; Gou et al., 2024), summariza-
tion (Shi et al., 2022; Yu et al., 2022; Choi et al., 2023), and repair (Jin et al., 2023; Joshi et al.,
2023). Our work builds on these advancements by introducing a dynamic context filtering approach
from a sample-level perspective, specifically tailored for code completion.

Repository-level Code Completion Repository-level code completion aims to enhance developer
productivity by providing context-aware code suggestions. Its practical benefits and challenges in
integrating comprehensive project information have garnered significant attention. Recent research
has introduced benchmarks for various completion targets, including line, API invocation, and entire
function block completions, to evaluate the accuracy and functionality of completed code (Lu et al.,
2022; Zhang et al., 2023; Ding et al., 2024a; Liu et al.; Li et al., 2024). While long-context LLMs
are being explored to manage massive repository contexts (Guo et al., 2023), leveraging RAG to
incorporate crucial cross-file contexts shows promise (Wu et al., 2024). Previous work primarily
focused on how to format context to improve the accuracy of retrieval (Cheng et al., 2024; Liu et al.,
2024) and enable models to better utilize these contexts (Ding et al., 2024b; Liang et al., 2024),
or on incorporating information from different modalities, such as third-party libraries and similar
code examples (Shrivastava et al., 2023; Liao et al., 2023; Phan et al., 2024). Apart from them, our
approach emphasizes understanding the impact of each code snippet and filtering retrieved contexts
based on completion intent to get the model to attend to genuinely supportive information.

3 REPOSITORY-LEVEL RETRIEVAL-AUGMENTED CODE COMPLETION

3.1 PROBLEM DEFINITION

We define the components of repository-level code completion as Cout, Cin, Y , where Y represents
the target lines of code to be completed. Cin denotes the in-file context within the target file, while
Cout refers to cross-file code from other files within the repository. To accommodate different
completion scenarios, we introduce two distinct settings for Cin: (1) Infilling, where Cin includes
both the preceding and subsequent code snippets, denoted as (Cp, Cs), and the model generates the
missing code segment in between; and (2) Left-to-right, where Cin consists only of the preceding
code snippet Cp, and the model sequentially generates the subsequent code based on this context
alone. The RAG-based completion framework consists of a retrieval module that uses a retriever R
and a generation module that leverages a generator G. Following previous work (Zhang et al., 2023;
Ding et al., 2024a; Wu et al., 2024), we truncate cross-file contexts into chunks with a specified
number of lines Cout = (c1, c2, . . . , cn). The retriever R then queries these cross-file contexts
using the chunk of the preceding code of Cin and retrieves the top-k candidate chunks with the
highest similarity scores, denoted as Ccc = R(Cin, Cout) = (c′1, . . . , c

′
k). Given a CodeLLM as the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

generator G, the code is completed by formatting the in-file context Cin and the retrieved context
Ccc into a single prompt, i.e., Ŷ = G(Cin, Ccc).

3.2 IDENTIFYING POLARITIES OF RETRIEVED CONTEXTS

We first aim to investigate the effect of context on code completion and propose a method to identify
the polarity of each code chunk as positive, neutral, or negative. Our hypothesis is as follows:
A retrieved code chunk that contains critical information for the current completion will significantly
increase the LLM’s likelihood over the ground truth. Conversely, irrelevant or noisy chunks may
have no effect or even decrease the likelihood.

Based on this hypothesis, we define the contribution score S of a context chunk ci to the target Y
as the difference in log-likelihood between a prompt containing only the in-file context Cin and a
prompt containing both Cin and the specific code chunk ci. This is expressed as:

S(ci|Cin, Y) =
L(Y | Cin, ci)− L(Y | Cin)

L(Y | Cin)

Here, L(Y | C) represents the model’s log-likelihood of the target sequence Y = (y1, . . . , yT)

given the context C, which is formulated as L(Y | C) =
∑T

t=1 logP (yt | y1, y2, . . . , yt−1, C;G).
Therefore, the polarity of ci with respect to Y can be defined as:

P (ci|Cin, Y) =

Positive if S(ci|Cin, Y) > Tp,

Negative if S(ci|Cin, Y) < Tn,

Neutral otherwise.

where Tp and Tn represent the threshold values for determining Positive and Negative labels, re-
spectively. In this paper, we set Tp = 10.0% and Tn = −5.0%.

We evaluate the polarities of the top-10 retrieved code chunks based on the Jaccard similarity
of each instance in the RepoEval dataset (Zhang et al., 2023). We compare the performance of
StarCoderBase-3B in code completion using four different strategies for incorporating cross-file
contexts into the prompt: (1) Full Retrieve, where all top-10 retrieved chunks are included in the
prompt; (2) Positive-only, which retains only the chunks labeled as positive; (3) w/o Negative, which
excludes negative chunks from the retrieved contexts; (4) w/o Neutral, which excludes chunks la-
beled as neutral. Results in Table (a) reveal three key findings: (1) The model with prompts contain-
ing only positive chunks outperforms the one including all candidate cross-file chunks; (2) Eliminat-
ing neutral chunks does not significantly affect the model’s completion performance; (3) Removing
negative chunks in the prompt improves code completion performance. These findings align with
our expectations of how positive, neutral, and negative chunks impact completion, further validating
the effectiveness of our likelihood-based metric by demonstrating that the model’s likelihood scores
can reliably indicate which retrieved contexts contribute meaningfully to the completion task.

Strategies Exact Match (%)

Full Retrieve 47.27
Positive-only 49.47
w/o Neutral 47.02
w/o Negative 49.96

(a) The impact of different context se-
lection strategies for completion on
RepoEval-API.

800

900

0 1 2 3 4 5 6 7 8 9 10
Pos Contexts Num

0

100

200

300

1200

1300

0 1 2 3 4 5 6 7 8
Neg Contexts Num

0

100

200

300

600

700

0 1 2 3 4 5 6 7 8 9 10
Neutral Contexts Num

0

100

200

300

Da
ta

 In
st

an
ce

s

(b) Distribution of the number of positive/negative/neutral cross-
file chunks for each data instance on RepoEval-API.

Furthermore, Figure (b) illustrates the distribution of positive, negative, and neutral chunks within
the cross-file contexts retrieved for each instance. The x-axis represents the number of positive,
negative, or neutral chunks in each instance, while the y-axis indicates the number of data instances.
The data reveals that only about half of the instances contain any positive-impact chunks within their
retrieved contexts, and among these, most contain only 1-2 positive chunks out of the 10 retrieved.
In contrast, nearly 20% of instances include negatively impactful chunks, while the majority of
retrieved chunks are neutral and irrelevant to the target completion. This distribution indicates that
only a small subset of the retrieved contexts contributes meaningfully to the completion, while the
rest introduce noise or even hinder performance. To address this issue, we propose REPOFILTER,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a framework that enhances efficiency by enabling on-demand retrieval and filtering out irrelevant or
harmful chunks. By focusing on positive contexts, REPOFILTER improves both the performance
and efficiency of code completion.

4 REPOFILTER

We introduce REPOFILTER, a repository-level code completion framework designed to achieve
two key objectives: (1) selectively retrieving and incrementally adding code chunks as needed, and
(2) filtering out irrelevant chunks to prevent the model from attending to noisy information, thereby
making the code completion process more precise and interpretable. To achieve this, we predefine
a set of special signal tokens, T , categorized into two types. The first type consists of adaptive-
retrieval tokens (<EC>, <MC>). <EC> indicates that there is sufficient context to proceed with code
completion, eliminating the need for further retrieval or additional chunks. In contrast, the <MC>
token signals that the model requires more cross-file chunks for intended completion. The second
type includes polarity tokens (<pos>, <neg>, <neu>), which denote whether a cross-file chunk has a
positive, negative, or neutral impact on code completion. During the generation process, the model
is trained to autonomously evaluate and generate these signal tokens at various stages to perform
their respective functions.
4.1 TRAINING

Dataset Construction. We followed the approach outlined in (Wu et al., 2024) to construct a fine-
tuning dataset using the licensed repository-level dataset, Stack (Kocetkov et al., 2022). First, we
randomly sampled the target Y from the raw repository data, which could be a random line, a
consecutive code chunk, or an entire function body. We then retrieved the top 10 cross-file code
chunks using Jaccard Similarity (Jaccard, 1912) and labeled the polarity of each chunk based on the
likelihood-based metric. The detailed data construction process is provided in Appendix A.

We verbalize the training data in a fill-in-the-middle format using two strategies. The first strategy
can be sequentially expressed as:

<PREFIX>[Left Context]<SUFFIX>[Right Context]<MC>[C1]<pos><MC>[C2]<neu>..<MC>[Cn]<pos><EC><MIDDLE>

where <PREFIX><SUFFIX><MIDDLE> are special tokens defined by the code LLM for the fill-in-the-
middle format. Additionally, the sub-sequence <MC>[C1]<pos><MC>[C2]<neu>..<MC>[Cn]<pos><EC> repre-
sents the verbalized cross-file contexts augmented with both adaptive-retrieval tokens and polarity
tokens. Moreover, the order of the candidate chunks is randomly shuffled, but the sequence includes
all positive chunks, with the final chunk always labeled as positive to ensure it provides the last
critical piece of information for code completion. This training data format is designed to guide the
model accurately labeling the polarity of cross-file code chunks. The second format is denoted as:

<PREFIX>[Left Context]<SUFFIX>[Right Context]<MC>[C1]<pos><MC>[C4]<pos><MC>[Cn]<pos><EC><MIDDLE>[Target]

Here, the sub-sequence of cross-file chunks includes only the positive chunks. This format is de-
signed to help the model determine whether additional information is required for completion and
to complete the code based on positive cross-file code chunks. If there are no positive-labeled can-
didate chunks, the cross-file chunk sequence will consist solely of the token <EC>, indicating that
the in-file context is sufficient and no further retrieval is necessary.

Training objectives. Using the verbalized training dataset, we optimize the model with a standard
teacher-forcing approach. This optimization is achieved by minimizing a weighted sum of the cross-
entropy loss over both the signal tokens and the target tokens for code completion:

L = − logPG(Y |Cin, Ccc) + λ(− logPG(T |Cin, Ccc))

To prevent the model from memorizing irrelevant local contexts, we mask the in-file and cross-file
contexts during loss calculation.
4.2 Inference

The inference process of REPOFILTER is designed to dynamically balance retrieval and generation
for code completion. As outlined in Algorithm 1, the process can be divided into four key phases:
Analyzing In-File Context: The model first evaluates the in-file context to determine whether addi-
tional cross-file retrieval is needed. This decision is based on generating an adaptive-retrieval token,
choosing between <EC> (enough context) and <MC> (more context needed), guided by a predefined
threshold applied to the softmax probability of these tokens.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: REPOFILTER Inference Process
Input: Generator G, Retriever R, Cross-file contexts Cout, In-file contexts Cin = (Cp, Cs),

Adaptive-retrieval token set TA, Polarity token set TP ,threshold for choosing polarity tokens
tp, tn, threshold for choosing adaptive retrieval token tc

Output: Completed code lines Ŷ
X ← (PREFIX, Cp, SUFFIX, Cs) /* Initialize input sequence */
m← Select(SoftmaxTA(G(m|X)), tc) /* Generate adaptive-retrieval token */
if m =< EC > then

X ← append(X, [MIDDLE])
else if m =< MC > then

Ccc ← R(Cin, Cout) /* Retrieve Top-K cross-file chunks */
foreach chunk ci ∈ Ccc do

p← Select(SoftmaxTP (G(p|X)), tp, tn) /* Generate polarity token */
if p =< pos > then

X ← append(X, ci)
m← Select(SoftmaxTA(G(m|X)), tc) /* Reassess context sufficiency */
if m =< EC > then

X ← append(X, [MIDDLE])
break /* Context is sufficient */

return Ŷ ← G(X) /* Generate final completed code */

Initiating Retrieval (if needed): If <MC> is selected, the retriever R is triggered to fetch the top-K
cross-file code chunks relevant to the input. These retrieved chunks are then sequentially appended
to the input sequence for further evaluation.
Chunk Evaluation and Filtering: Each retrieved chunk is assessed by the model for relevance
using polarity tokens (<pos>, <neu>, and <neg>). Positive chunks (<pos>) are retained and ap-
pended to the sequence to enrich the context. Neutral or negative chunks (<neu> or <neg>) are
filtered out to avoid irrelevant or misleading information.
Reassessing Context and Generating Code: After adding a positive chunk, the model reevaluates
whether the context is now sufficient for code generation. If <EC> is selected at this stage, the model
switches to code generation using a fill-in-the-middle format. Otherwise, the process continues, it-
erating through the remaining retrieved chunks.
This iterative process ensures that only the most relevant cross-file contexts are used, improving
the model’s ability to generate accurate and efficient code completions. Moreover, we present a
generation case utilizing our framework in Appendix F for illustrating the inference process.

5 EXPERIMENTAL SETUP

5.1 TRAINING & INFERENCE

Dataset. Following Wu et al. (2024), we sampled 6k Python repositories from Stack (Kocetkov
et al., 2022). For each data instance, we retrieved 10 candidate cross-file code chunks with the
highest Jaccard Similarity scores. Each chunk was labeled by computing its contribution score S.
Several post-processing steps were implemented to filter out low-quality data based on three criteria:
(1) the target file contains at least three local import statements; (2) the target lines do not include
comments or import statements, and the target sequence consists of at least six tokens; and (3) the
in-file context and the 10 candidate cross-file chunks are expected to provide sufficient context for
completion. To evaluate this, we set a threshold of 0.5 for edit similarity, assuming that when a
positive chunk achieves an edit similarity score above this threshold, the contexts can be considered
sufficiently informative for completion. After applying these criteria, we obtained 43k instances
containing 400k labeled cross-file chunks. We verbalized these instances based on the two strategies
mentioned in section 4.1 to construct the final dataset, consisting of 130k instances. We allocated
95% of the data for training and the remaining 5% for validation. More details on the implementation
and statistics can be found in Appendix A.

Train. We train LLMs using different variants from two model families: StarCoderBase-3B/7B
(Li et al., 2023c) and CodeLlama-7B/13B (Roziere et al., 2023). The models are optimized over 2
epochs, utilizing an initial learning rate of 2e-5, 5% warm-up steps, and linear decay. Additionally,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Code completion in Infilling completion setting.

Model RAG Strategies Repoeval-Line Repoeval-API Repoeval-Func Cclongeval-Chunk Cclongeval-Func

EM ES EM ES UT ES EM ES ES

StarCoderBase-3B

No-Retrieve 46.56 68.93 39.09 65.19 22.42 39.43 33.57 62.15 48.62
Full-Retrieve 56.25 74.72 47.27 72.69 27.25 48.34 38.21 64.05 46.33
RepoFormer 57.13 75.47 49.22 74.06 27.91 48.70 39.69 67.67 48.75
REPOFILTER 60.50 79.07 50.59 77.28 29.67 51.35 41.55 68.63 52.61

StarCoderBase-7B

No Retrieve 50.50 71.75 40.71 66.78 24.18 43.26 36.93 64.16 51.11
Full-Retrieve 58.56 76.86 48.16 74.62 29.23 51.77 43.23 68.31 46.40
RepoFormer 59.25 78.06 49.47 77.00 31.21 50.43 44.64 70.40 45.84
REPOFILTER 61.44 80.12 51.09 78.53 33.41 53.69 45.97 71.28 55.37

CodeLlama-7B

No Retrieve 50.69 72.22 40.34 65.80 23.74 43.32 36.17 64.05 49.23
Retrieve 59.06 77.89 47.59 72.21 28.79 51.37 44.29 68.11 51.92

RepoFormer 59.19 78.18 48.34 74.91 32.09 51.50 45.74 68.39 50.92
REPOFILTER 62.56 81.24 51.53 77.46 31.65 53.23 49.53 73.78 53.45

CodeLlama-13B

No Retrieve 52.69 73.63 41.03 66.89 25.05 46.08 40.88 66.22 51.65
Full-Retrieve 60.31 77.15 48.66 73.39 30.55 53.29 46.17 69.45 54.18
RepoFormer 61.00 80.38 49.28 78.02 33.19 53.28 47.74 70.09 54.17
REPOFILTER 62.94 81.56 51.84 77.74 34.29 56.70 50.22 73.03 57.69

we set λ = 2.0, a batch size of 512, and a maximum sequence length of 4096. Training is conducted
on 4 NVIDIA A100 GPUs, each with 80GB of memory.

Retrieval. In line with previous studies (Zhang et al., 2023; Ding et al., 2024a), we divide cross-file
code into chunks using a window size of 10 lines and a stride size of 5 lines. The preceding 10 lines
of in-file code are then used as a query to retrieve the top-10 cross-file chunks, ranked by their Jac-
card similarity scores (Jaccard, 1912). Our main experiments focus on sparse retrieval, as prior re-
search (Ding et al., 2024a) has demonstrated that dense retrieval methods do not improve completion
performance. This limitation occurs because cross-file chunks with high semantic similarity to the
preceding code do not necessarily capture the code’s underlying intent, and thus may not meaning-
fully contribute to completion. Additionally, we evaluate the performance of REPOFILTER when
using a dense retriever with UniXcoder as the encoder (Guo et al., 2022), as detailed in Appendix C.

Inference. In our experiments, we use greedy decoding for code completion. For special signal
tokens, the probability threshold for <MC> is set to 0.3, and <EC> is generated otherwise. For po-
larity tokens, we apply a threshold of 0.3 for both <pos> and <neg>, prioritizing <pos> if it meets
the threshold first, and defaulting to <neu> if neither does. Detailed ablation studies on threshold
settings are provided in Section 6.5. Additionally, we set the maximum token length of the prompt
to 4096, with 1024 tokens allocated for the in-file context and 3072 for the cross-file chunks. We
utilize vLLM (Kwon et al., 2023) to accelerate the inference process.

5.2 EVALUATION

Datasets. We evaluate our model on two benchmarks: RepoEval (Zhang et al., 2023), which in-
cludes line, API, and function completion tasks derived from 14 high-quality Python repositories;
and CrossCodeLongEval (Wu et al., 2024), which extends the repositories from CrossCodeEval
(Ding et al., 2024a) to include chunk-level and function-level code completion tasks. We consider
two completion settings in our experiments: (1) Infilling, where the model completes the middle
part of the code based on both the preceding and subsequent context; and (2) Left-to-right, where
the model generates code sequentially using only the preceding context. We evaluate both settings
on the RepoEval and CrossCodeLongEval datasets using these benchmarks.

Model & Baselines. The baseline models are consistent with the CodeLlama and StarCoderBase
variants used to train REPOFILTER. We compare our model against three baseline retrieval set-
tings: (1) No Retrieve—the model completes the code using only in-file contexts; (2) Full Retrieve
(Zhang et al., 2023; Ding et al., 2024a)—the model completes the code using in-file contexts along
with the top 10 candidate cross-file code chunks; and (3) RepoFormer (Wu et al., 2024)—the model
determines whether retrieval is necessary for completion be for initiate retrieval. Detailed imple-
mentations of these baselines are provided in Appendix B.

Metrics. Following (Zhang et al., 2023; Ding et al., 2024a; Wu et al., 2024), we use the execution-
based metric pass rate of Unit Tests (UT) to evaluate function-level completion in the RepoEval
dataset. For all other data, we use the reference-based metrics Exact Match (EM) and Edit Similarity
(ES) for evaluation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Code completion in Left-to-right completion setting.

Model RAG Strategies Repoeval-Line Repoeval-API Repoeval-Func Cclongeval-Chunk Cclongeval-Func

EM ES EM ES UT ES EM ES ES

StarCoderBase-3B

No Retrieve 33.37 57.94 27.33 56.11 17.80 36.63 23.08 51.09 42.44
Full Retrieve 48.00 68.44 38.21 65.37 23.96 46.39 33.82 57.37 43.32
RepoFormer 47.38 69.67 38.59 67.32 25.05 47.40 34.20 59.38 44.89
REPOFILTER 50.50 71.23 40.84 70.76 25.49 48.81 35.61 59.02 46.40

StarCoderBase-7B

No Retrieve 35.69 59.64 28.96 57.51 19.56 37.54 27.03 56.16 51.11
Full Retrieve 48.94 69.05 39.96 65.97 25.93 48.11 39.24 62.40 46.40
RepoFormer 48.44 68.09 38.40 70.22 25.71 46.16 38.68 62.27 45.84
REPOFILTER 51.32 71.90 42.15 69.70 26.59 49.87 39.65 64.28 55.37

CodeLlama-7B

No Retrieve 37.25 61.61 28.52 57.76 20.00 40.04 27.80 55.74 43.04
Full Retrieve 50.00 68.47 40.90 66.33 24.62 47.64 38.95 61.47 50.16
RepoFormer 48.63 68.97 38.34 68.29 26.37 47.52 37.06 60.49 48.12
REPOFILTER 51.12 70.63 41.46 71.04 27.47 48.33 39.40 63.05 51.03

CodeLlama-13B

No Retrieve 39.25 62.55 28.89 58.14 21.76 41.06 29.07 55.19 43.62
Full Retrieve 51.81 71.92 42.28 69.42 26.59 49.00 40.95 65.67 47.82
RepoFormer 50.06 69.03 41.59 69.16 26.25 48.73 41.10 65.38 49.96
REPOFILTER 52.94 72.76 42.71 72.59 27.69 49.99 41.80 65.34 54.69

Table 3: Code completion in data instances containing negative cross-file chunks.

Model RAG-strategy
Left-to-right Infilling

RepoEval-Line RepoEval-API RepoEval-Line RepoEval-API
EM ES EM ES EM ES EM ES

Starcoderbase-7B
No Retrieve 7.82 34.92 3.36 35.98 17.13 42.92 11.02 44.04
Full Retrieve 7.23 37.39 5.46 39.46 16.39 42.15 10.63 47.45
REPOFILTER 28.92 57.84 16.03 55.79 29.28 62.36 22.83 63.90

CodeLlama-7b
No Retrieve 7.83 38.99 3.36 34.47 17.13 46.36 10.24 42.44
Full Retrieve 6.62 38.01 6.30 43.24 12.15 44.23 9.84 43.14
REPOFILTER 22.89 55.31 17.64 54.71 34.25 65.25 20.47 63.21

6 RESULTS & ANALYSIS

6.1 MAIN RESULTS

We evaluate the code completion performance of REPOFILTER in two settings across different
models and compare it with several baseline RAG strategies. The results, presented in Tables 1 and
2, demonstrate that incorporating retrieved cross-file chunks significantly improves performance
over models that rely solely on preceding code for generation. This improvement is evident across
both reference-based and execution-based evaluation metrics. When compared to full and adaptive
retrieval methods, REPOFILTER consistently achieves notable enhancements across various tasks.
For example, in the infilling setting, the performance of StarCoderBase-3B under REPOFILTER
framework is comparable to, or even surpasses, that of the StarCoderBase-7B model using full
retrieval. Furthermore, the gains achieved by REPOFILTER in this setting mirror those observed
when negative chunks are removed from the prompt, as shown in Table (a) in Section 3.2. This
indicates that our method effectively filters out noise in cross-file chunks, retaining only those that
positively contribute to code generation.

We also evaluate code completion performance across two settings: Infilling and Left-to-right com-
pletion. The results in Tables 1 and 2 show that incorporating subsequent code snippets significantly
enhances the model’s completion capabilities. For line-level and chunk-level tasks, including sub-
sequent code results in nearly a 10% improvement compared to the Left-to-right setting under the
same RAG strategy. However, for function-level completion, the benefit of incorporating in-file sub-
sequent code is less pronounced. This may be due to the function body serving as an independent
module, making subsequent code (i.e., code outside the function) less relevant to the function’s con-
tent. Additionally, RepoFormer underperforms compared to the full-retrieval strategy in some tasks
under the Left-to-right setting, and the improvements achieved by REPOFILTER in this setting are
less substantial than those observed in the Infilling setting. We hypothesize that the model’s ability
to assess the utility of retrieved chunks for completion depends on its understanding of the code’s in-
tention. However, with only the preceding code available, identifying the code’s intention becomes
more challenging, leading to a decline in performance compared to the Infilling setting.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

RepoEval_Line RepoEval_API RepoEval_Func CCLongEval_Chunk CCLongEval_Func0

1000

2000

3000
Cr

os
s-

fil
e

Co
nt

ex
t L

en
gt

h

Full Retrieve RepoFormer RepoFilter

Figure 3: Cross-file Length of different benchmarks when applying different RAG Strategies.

Table 4: Model performance on RepoEval-API when provided with cross-file contexts filtered by
REPOFILTER-3B.

Setting RAG Strategy Starcoder-7B Starcoder-15B Starcoder2-7B CodeLlama-7B CodeLlama-13B DeepSeek-16B QwenCoder-7B GPT-3.5-turbo

EM ES EM ES EM ES EM ES EM ES EM ES EM ES EM ES

Infilling Full Retrieve 48.16 74.62 50.66 75.73 40.90 67.14 47.59 72.21 48.66 73.39 49.78 73.60 41.84 69.19 34.21 56.13
REPOFILTER 50.28 74.81 51.72 77.08 42.21 70.33 49.22 73.34 49.47 73.78 51.59 76.05 45.97 71.41 36.27 58.75

Left-to-right Full Retrieve 39.96 65.97 42.46 70.34 37.34 62.12 40.90 66.33 42.28 69.42 42.03 70.14 42.56 69.02 31.14 56.35
REPOFILTER 41.90 66.70 42.90 69.92 38.84 63.77 41.65 69.06 43.46 70.85 42.96 71.47 42.63 69.10 32.02 57.03

6.2 PERFORMANCE ON INSTANCES RETRIEVED WITH NEGATIVE CONTEXTS

REPOFILTER is designed to filter out irrelevant and noisy retrieved chunks that may negatively
impact the model’s completion. Although REPOFILTER demonstrates improvements over baseline
RAG strategies, it remains unclear how the model performs when provided with negative chunks.
To address this, we use the method proposed in Section 3.2 to identify instances containing negative
chunks among the top-10 retrieved cross-file code chunks in the RepoEval-API and RepoEval-Line
tasks. Out of the 1,600 test instances, we identified 285 and 166 instances containing negative
chunks for API and line-level completion, respectively. We then evaluate REPOFILTER on these
subsets in both the Infilling and Left-to-right settings to investigate whether the model can effectively
filter out noisy information. The results, summarized in Table 3, show that full retrieval exhibits poor
performance on these samples, often performing worse than directly generating code based solely on
in-file context in most scenarios. This finding validates that these identified negative chunks directly
degrade the model’s completion performance. In contrast, REPOFILTER outperforms full retrieval
by a significant margin across both tasks and settings, confirming that our model can effectively
filter chunks based on their supportiveness for completion, thereby mitigating the impact of potential
noise.

6.3 LENGTH OF CROSS-FILE CONTEXTS

In code completion, the lack of explicit information about the code’s intent often results in inac-
curate retrievals. To address this, a common practice is to provide the generator with up to 10
candidate chunks. However, this approach results in overly lengthy contexts, and as analyzed in
Section 3.2, only a small portion of these chunks are truly relevant to the completion task. We use
the length of cross-file context tokens provided to the generator as an indicator of both efficiency
and attributability. Figure 3 illustrates the final cross-file context lengths under three strategies: full
retrieval, RepoFormer, and REPOFILTER, evaluated across multiple benchmarks in the infilling
setting. Notably, REPOFILTER refers to its StarCoderBase-3B variant, and similar context lengths
were observed with other model variants of REPOFILTER after filtering. We observe that full re-
trieval with 10 cross-file chunks leads to excessively lengthy contexts, all exceeding 1,500 tokens.
RepoFormer, which selectively determines the necessity of retrieving cross-file contexts, reduces
context length by approximately 30%. Building on this, REPOFILTER further filters out irrelevant
chunks, reducing context length by nearly 80% compared to full retrieval. This substantial reduc-
tion in context length not only improves efficiency but also increases information density, thereby
enhancing the attributability of the model’s completions without compromising performance.

6.4 REPOFILTER AS FILTERING POLICY

We investigate whether the filtering decisions made by a smaller model can effectively generalize
to larger models from different families and sizes. In our experiments, the StarCoderBase-3B vari-
ant of REPOFILTER is used to perform adaptive retrieval and context filtering, with the filtered

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

42

44

46

48

50

E
xa

ct
 M

at
ch

 (%
)

Full-Retrieve

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

1200

1400

1600

C
ro

ss
-fi

le
 C

on
te

xt
s

Le
ng

th

Full-Retrieve <MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

10

G
en

er
at

ed
 S

ig
na

l T
ok

en
s

<MC>
<pos>

Figure 4: Ablations of threshold setting of signal tokens

prompts subsequently provided to larger models for code completion. The evaluation is conducted
on the RepoEval-API task under both Infilling and Left-to-right settings. Larger models, including
StarCoderBase-7B/16B, StarCoder2-7B, CodeLlama-7B/13B, DeepSeek-16B, QWen2.5-Coder-7B,
and GPT-3.5-turbo (Hui et al., 2024), are tested to assess their performance using the filtered con-
texts. The results, shown in Table 4, demonstrate consistent improvements in both EM and ES
scores, along with significantly shorter prompt lengths when larger models generate code using the
filtered contexts compared to full retrieval. These findings suggest that the filtering decisions made
by the smaller model generalize well across diverse architectures, highlighting the potential of our
method to serve as a plug-and-play module for enhancing both the performance and efficiency of
larger models in code completion tasks.

6.5 ABLATIONS

We ablate the impact of different thresholds for <MC> and <pos> on code completion performance
and resource efficiency. The experiments are conducted using the StarCoderBase-3B model on
the RepoEval-API task under the infilling setting, while ablations on other tasks are presented in
Appendix E. Figure 4 presents the results across three key metrics: Exact Match (EM), cross-file
context length, and the number of generated signal tokens.

Thresholds vs. Exact Match: The left figure of 4 shows that EM values are highly sensitive to
thresholds for <MC> and <pos> tokens. For <MC>, EM remains stable and relatively high (50.16%
to 50.59%) between thresholds 0.0 and 0.3 but drops sharply beyond this range, reaching 41.15%
at a threshold of 1.0 due to disabled retrieval excluding relevant information. A similar pattern is
observed for <pos>: a higher threshold prevents identifying positive chunks, while a lower threshold
risks including noise, reducing accuracy.

Thresholds vs. Cross-file Context Lengths: The middle figure of 4 shows that increasing thresh-
olds for <MC> and <pos> reduces cross-file context length, improving efficiency. This effect is
more pronounced for <pos>, with a sharp reduction as its threshold rises. At a threshold of 0.3 for
both tokens, the context length is reduced to 355 tokens—less than 30% of the original—balancing
minimal context length and high EM scores.

Thresholds vs. Generated Signal Tokens: While REPOFILTER improves completion perfor-
mance and reduces prompt length, filtering incurs additional computational costs compared to direct
generation. The number of generated signal tokens indicates this cost. As shown in the right fig-
ure of 4, the <pos> threshold minimally affects this metric, while the <MC> threshold significantly
impacts it. A lower <MC> threshold causes more chunks to be evaluated, increasing signal token
counts, which drop sharply from 10.85 tokens at a threshold of 0.0 to 1.0 token at a threshold of 1.0.

Model performance is highly sensitive to the signal token thresholds. A low <MC> threshold in-
creases resource demand without improving performance, while a high threshold enhances effi-
ciency but reduces completion quality. A threshold of 0.3 achieves the best trade-off.

7 CONCLUSION

In this paper, we introduced a metric to evaluate the influence of retrieved cross-file chunks on code
completion and constructed a labeled dataset to categorize these chunks by their impact. We devel-
oped REPOFILTER, a framework that adaptively retrieves and filters relevant contexts, improving
both accuracy and efficiency in code generation. Our results show that REPOFILTER significantly
enhances performance, particularly by mitigating the effects of misleading contexts, while reduc-
ing the computational load. Additionally, the framework generalizes well across various models,
demonstrating its versatility and effectiveness in repository-level code completion. Further discus-
sion regarding the limitations and potential impact of our work can be found in Appendix D.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference
on Learning Representations.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Wei Cheng, Yuhan Wu, and Wei Hu. Dataflow-guided retrieval augmentation for repository-level
code completion. arXiv preprint arXiv:2405.19782, 2024.

Yunseok Choi, Cheolwon Na, Hyojun Kim, and Jee-Hyong Lee. Readsum: Retrieval-augmented
adaptive transformer for source code summarization. IEEE Access, 11:51155–51165, 2023.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code completion. Advances in Neural Information
Processing Systems, 36, 2024a.

Yangruibo Ding, Zijian Wang, Wasi U Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati, Par-
minder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly modeling in-file
and cross-file context. In Proceedings of the 2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pp. 3433–3445,
2024b.

Qianwen Gou, Yunwei Dong, Yujiao Wu, and Qiao Ke. Rrgcode: Deep hierarchical search-based
code generation. Journal of Systems and Software, 211:111982, 2024.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep api learning. In Pro-
ceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering, pp. 631–642, 2016.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified cross-
modal pre-training for code representation. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 7212–7225, 2022.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Junxian He, Graham Neubig, and Taylor Berg-Kirkpatrick. Efficient nearest neighbor language
models. arXiv preprint arXiv:2109.04212, 2021.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282, 2020.

Paul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37–50, 1912.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. arXiv preprint
arXiv:2305.06983, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1646–1656, 2023.

Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen, and Ivan
Radiček. Repair is nearly generation: Multilingual program repair with llms. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 5131–5140, 2023.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. Skcoder: A sketch-based approach
for automatic code generation. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 2124–2135. IEEE, 2023a.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories. arXiv preprint arXiv:2404.00599,
2024.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jingyuan Wang, Jian-Yun Nie, and Ji-Rong Wen. The web
can be your oyster for improving language models. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pp. 728–746, 2023b.

R Li, LB Allal, Y Zi, N Muennighoff, D Kocetkov, C Mou, M Marone, C Akiki, J Li, J Chim, et al.
Starcoder: May the source be with you! Transactions on machine learning research, 2023c.

Ming Liang, Xiaoheng Xie, Gehao Zhang, Xunjin Zheng, Peng Di, Hongwei Chen, Chengpeng
Wang, Gang Fan, et al. Repofuse: Repository-level code completion with fused dual context.
arXiv preprint arXiv:2402.14323, 2024.

Dianshu Liao, Shidong Pan, Qing Huang, Xiaoxue Ren, Zhenchang Xing, Huan Jin, and Qinying
Li. Context-aware code generation framework for code repositories: Local, global, and third-party
library awareness. arXiv preprint arXiv:2312.05772, 2023.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations.

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, Haiyan Zhao, Zhi Jin, and Qianxiang
Wang. Graphcoder: Enhancing repository-level code completion via code context graph-based
retrieval and language model. arXiv preprint arXiv:2406.07003, 2024.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. Reacc:
A retrieval-augmented code completion framework. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6227–6240, 2022.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. arXiv preprint arXiv:2212.10511, 2022.

Ruotong Pan, Boxi Cao, Hongyu Lin, Xianpei Han, Jia Zheng, Sirui Wang, Xunliang Cai, and
Le Sun. Not all contexts are equal: Teaching llms credibility-aware generation. arXiv preprint
arXiv:2404.06809, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Huy N Phan, Hoang N Phan, Tien N Nguyen, and Nghi DQ Bui. Repohyper: Better context retrieval
is all you need for repository-level code completion. arXiv preprint arXiv:2403.06095, 2024.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316–1331, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Ensheng Shi, Yanlin Wang, Wei Tao, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Hong-
bin Sun. Race: Retrieval-augmented commit message generation. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 5520–5530, 2022.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. arXiv
preprint arXiv:2301.12652, 2023.

Disha Shrivastava, Denis Kocetkov, Harm de Vries, Dzmitry Bahdanau, and Torsten Scholak. Re-
pofusion: Training code models to understand your repository. arXiv preprint arXiv:2306.10998,
2023.

Yile Wang, Peng Li, Maosong Sun, and Yang Liu. Self-knowledge guided retrieval augmentation
for large language models. arXiv preprint arXiv:2310.05002, 2023a.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan Parvez, and Graham Neubig. Learning to
filter context for retrieval-augmented generation. arXiv preprint arXiv:2311.08377, 2023b.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and Xiaofei Ma.
Repoformer: Selective retrieval for repository-level code completion. arXiv preprint
arXiv:2403.10059, 2024.

Chi Yu, Guang Yang, Xiang Chen, Ke Liu, and Yanlin Zhou. Bashexplainer: Retrieval-augmented
bash code comment generation based on fine-tuned codebert. In 2022 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pp. 82–93. IEEE, 2022.

Daoguang Zan, Bei Chen, Zeqi Lin, Bei Guan, Yongji Wang, and Jian-Guang Lou. When language
model meets private library. arXiv preprint arXiv:2210.17236, 2022.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2471–2484, 2023.

Shuyan Zhou, Uri Alon, Frank F Xu, Zhengbao JIang, and Graham Neubig. Doccoder: Generating
code by retrieving and reading docs. arXiv preprint arXiv:2207.05987, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS OF DATASET CONSTRUCTION

Data Collection We collected a dataset comprising 5,824 distinct projects from Stack (Kocetkov
et al., 2022), each with a minimum of 10 stars, ensuring no overlap with the RepoEval and Cross-
CodeEval datasets used as test sets in our main experiments. To ensure interaction with other mod-
ules within the repository, target code lines were randomly sampled from files containing at least
three local import statements. These target code segments include a variety of formats to promote
model generalization, ranging from single lines and chunks of 2-20 lines to full functions with fewer
than 50 lines. Additionally, target lines were filtered to exclude comments and include at least six
tokens. The sampled data was divided equally into two completion settings: the left-to-right setting,
where only the preceding code is provided, and the infilling setting, which includes both preceding
and subsequent code as in-file context.

Data Labeling We then chunked the cross-file contexts and constructed queries based on the in-file
context for each target Y . For each query, we retrieved the top 10 cross-file chunks and labeled
them with a polarity—positive, neutral, or negative—using our likelihood-based metric, as detailed
in Pseudo-code 2. To determine the thresholds for classifying positive and negative chunks, we ex-
perimented with various threshold settings to generate different sets of positive and negative chunks.
The StarCoder-3B model’s completion performance was then evaluated on the validation set using
only positive chunks or using top-10 retrieved contexts excluding negative chunks, allowing us to
identify the optimal threshold. The adaptive retrieval token in our model is designed to indicate
whether the current in-file and cross-file contexts provide sufficient information for code comple-
tion. To ensure this condition is met when constructing the training data, we evaluated the Edit
Similarity (ES) score between the in-file context and the retrieved positive cross-file chunks. Only
instances where the ES score exceeded 0.5 were included in the dataset, ensuring that the retrieved
contexts contributed meaningfully to the completion task. This filtering process guarantees that the
final training instances contain sufficient and relevant information. After the filtering process, we
finally got 43k instances of labelling with more than 400k cross-file chunks. The instance-level
statistics are presented in Table 5, and the chunk-level polarity distributions are shown in Figure
5. We observe that positive chunks make up 20-30% of the retrieved chunks, while 10-20% of in-
stances contain negative chunks. The remaining chunks are generally irrelevant to the completion
task, reflecting a distribution similar to the RepoEval-API test set.

Algorithm 2: Cross-file chunks labeling
Input: Generator G, Retriever R, In-file contexts Cin = (Cp, Cs), Cross-file code Cout,

Window size w, stride size s, Polarity thresholds Tp, T, n

Output: Labeled Cross-file Chunk set Ĉcc

Ĉcc ← ∅
Q← Cp[−w :] /* Query */
Cout ← chunklize cross-file contexts with w and s
Ccc ← R(Q,Cout) /* Retrieve the top-10 cross-file contexts */

L(Y |cin) =
∑T

t=1 logP (yt|y1, .., yt−1, Cin;G) /* Compute likelihood */
foreach chunk ci ∈ Ccc do

L(Y |Cin, ci) =
∑T

t=1 logP (yt|y1, .., yt−1, Cin, ci;G)

S(ci|Cin, Y) = L(Y |Cin,ci)−L(Y |Cin)
L(Y |Cin)

Polarity(ci|Cin, Y)← (S(ci|Cin, Y), Tp, Tn) /* Polarity of ci */

Ĉcc ← Append(ci, Polarity(ci|Cin, Y))

return Ĉcc

B IMPLEMENTATION DETAILS

Since our methods primarily focus on how the generator utilizes the retrieved contexts, we maintain
the same setup for the retrieval process across all experiments. The details of truncation, query
formation, and the retrieval procedure have been introduced in previous sections. In this section, we

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Training data statistics.

Completion Setting Line Chunk Function Total

Left-to-right Infilling Left-to-right Infilling Left-to-right Infilling

Instances 6982 7056 7850 7746 7415 6561 43610

18000
20000

0 1 2 3 4 5 6
Pos Contexts Num

0

3000

6000

9000

12000
35000
38000

0 1 2 3 4 5 6
Neg Contexts Num

0

3000

6000

9000

12000
18000
20000

0 1 2 3 4 5 6 7 8 9 10
Neutral Contexts Num

0

3000

6000

9000

12000

Da
ta

 In
st

an
ce

s

Figure 5: The statistics of chunk polarities of training data.

will outline the basic prompt structure used for code generation, followed by the implementation
details of both the baseline models and our proposed methods.

Prompt Format. We adopt the same prompt format for both the baselines and our proposed methods
to ensure consistency. Since our experiments are conducted in both the left-to-right and infilling
settings, we standardize the prompt format using the fill-in-the-middle structure for fair comparison.
Additionally, following the approach in (Zhang et al., 2023; Wu et al., 2024), we represent the cross-
file contexts using both natural language descriptions and the token # to denote code snippets. To
provide structural information, the original file path of each code chunk is also included. A typical
chunk is verbalized as:

#Here are relevant code fragments from other files of the repo:

the below code fragment can be found in:
huggingface diffusers/examples/dreambooth/train dreambooth lora.py

pipeline = DiffusionPipeline.from pretrained(
args.pretrained model name or path, revision=args.revision,
torch dtype=weight dtype
)
pipeline.scheduler = ...
...

Baseline Implementation. To ensure consistency across different baselines, we formatted prompts
for the no-retrieval and full-retrieval settings based on the same retrieval setup and prompt structure.
In the full-retrieval baseline, cross-file contexts are ordered by their Jaccard similarity score. For
the adaptive retrieval baseline i.e., RepoFormer, due to the absence of an open-source dataset as
well as its model, we trained RepoFormer on the same dataset used for REPOFILTER to ensure
a fair comparison. RepoFormer is designed to determine whether retrieval is necessary for code
completion. To achieve this, we adapted our dataset, labeling instances with no positive cross-file
samples as no retrieval needed, while those with relevant cross-file contexts were labeled as retrieval
needed. This resulted in 20,076 instances labeled as the no retrieval needed and 23,534 instances
labeled as the retrieval needed. Additionally, we introduced the special token <MC> to indicate
whether retrieval is required in the prompt for model training. RepoFormer was trained using the
same data construction process and hyperparameter settings as REPOFILTER, ensuring that the
comparison between the two models remains fair and consistent.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Code completion performance when adopting UniXcoder as a retriever.

Completion Setting RAG Strategy Line API Function

EM ES EM ES ES

Infilling Full Retrieve 57.81 77.45 46.40 72.83 49.86
RepoCoder 60.50 78.79 48.16 75.33 55.03

REPOFILTER 60.88 79.53 49.09 77.62 53.62
REPOFILTER + RepoCoder 61.38 79.80 50.72 77.80 55.17

Left-to-right Full Retrieve 48.06 68.75 38.15 63.70 48.28
RepoCoder 51.44 70.16 39.90 65.91 49.07

REPOFILTER 51.00 69.52 40.34 67.48 48.90
REPOFILTER + RepoCoder 52.44 71.64 40.84 69.17 50.07

C GENERALIZATION OF REPOFILTER ON OTHER RETRIEVERS

We employ sparse retrieval in our main experiments, as previous work has demonstrated that sparse
retrievers perform well in repository-level code completion, offering comparable results to dense
retrievers. However, since our methods primarily focus on filtering the retrieved contexts, they
should, in principle, be generalized to different retrieval methods, regardless of whether they are
sparse or dense.

C.1 UNIXCODER

To explore the generalizability of our approach to dense retrievers, which may produce different
retrieved contexts, we experimented with UniXcoder (Guo et al., 2022) as the dense retriever. We
leverage UniXCoder to embed each cross-file chunk as well as the query from the in-file preceding
code chunk. Then the candidate chunks are retrieved by the cosine similarity between the embedded
vector of cross-file chunks and the query chunk. We maintained all indexing and query settings
unchanged to ensure consistency in evaluation. Our model was then tested on the RepoEval dataset
under the left-to-right and infilling settings. The results in terms of reference-based metrics are
shown in Table 6.

The results show that REPOFILTER consistently improves performance compared to full-retrieve,
which aligns with our findings from the main experiments. This suggests that REPOFILTER can
generalize to other retrieval methods. Furthermore, when comparing the results with those from
the main experiments, we observe that using UniXcoder does not outperform sparse retrieval and
slightly reduces efficiency. This outcome is consistent with previous research (Zhang et al., 2023;
Ding et al., 2024a), and we hypothesize that in repository-level code completion, the preceding
code may not always convey the necessary intent for completion. As a result, semantically similar
chunks retrieved by dense methods may not always contribute meaningfully to the task. While sparse
retrieval also does not specifically capture the intent behind the code, its token-level similarity can
help retrieve useful chunks, particularly when similar API or function names are involved. However,
this approach is still suboptimal. Future research should explore methods that extract the underlying
intent of the incomplete code and retrieve truly relevant chunks based on that intent.

C.2 REPOCODER

In addition to conventional dense or sparse retrievers, some research has specifically designed re-
trieval frameworks tailored for repository-level code completion, aiming to retrieve more accurate
and helpful cross-file contexts. A representative work in this area is RepoCoder (Zhang et al., 2023),
which employs an iterative retrieval approach, incorporating the model’s generated content into sub-
sequent retrieval rounds. In our implementation, we kept all retrieval settings consistent with our
main experiment and conducted two iterations of retrieval. The results for RepoCoder are also pre-
sented in the table 6, demonstrating consistent improvements over the one-time retrieval baseline.
Building on this foundation, we further applied REPOFILTER to their framework to filter the final
round of retrieval results. From the table, we observe that our method further enhances RepoCoder’s
performance, illustrating that our approach can generalize to other sophisticatedly designed retrieval
frameworks.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D DISCUSSIONS

This work focuses on analyzing and filtering retrieved cross-file contexts in the scenario of
repository-level code completion. However, there are several limitations in our current study. For
instance, our analysis and experiments are confined to Python and Python repositories, without ex-
ploring whether our labeling method and REPOFILTER can be extended to other programming lan-
guages. Future work will address this limitation by investigating and expanding to a broader range
of languages. Additionally, most of our evaluations rely on reference-based metrics. In the context
of code completion and generation, especially for longer completion targets such as chunks or func-
tions, execution-based metrics, such as unit tests, provide a more accurate assessment of completion
quality. Developing such benchmarks would establish a stronger foundation for further research in
this domain. Beyond repository-level code completion, other tasks in the code domain, such as code

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.50

0.52

0.54

0.56

0.58

0.60

0.62

E
xa

ct
 M

at
ch

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

200

400

600

800

1000

1200

1400

C
ro

ss
-fi

le
 C

on
te

xt
s

Le
ng

th
<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

10

G
en

er
at

ed
 S

ig
na

l T
ok

en
s

<MC>
<pos>

Ablation on Repoeval-Line

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.40

0.42

0.44

0.46

0.48

0.50

E
di

t S
im

ila
rit

y

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

500

1000

1500

2000

2500

C
ro

ss
-fi

le
 C

on
te

xt
s

Le
ng

th

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.5

5.0

7.5

10.0

12.5

15.0

G
en

er
at

ed
 S

ig
na

l T
ok

en
s

<MC>
<pos>

Ablation on Repoeval-Func

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.32

0.34

0.36

0.38

0.40

0.42

0.44

E
xa

ct
 M

at
ch

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

250

500

750

1000

1250

1500

1750

C
ro

ss
-fi

le
 C

on
te

xt
s

Le
ng

th

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

4

6

8

10

G
en

er
at

ed
 S

ig
na

l T
ok

en
s

<MC>
<pos>

Ablation on Cclongeval-Chunk

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

E
di

t S
im

ila
rit

y

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

500

1000

1500

2000

2500

3000

C
ro

ss
-fi

le
 C

on
te

xt
s

Le
ng

th

<MC>
<pos>

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2.5

5.0

7.5

10.0

12.5

15.0

G
en

er
at

ed
 S

ig
na

l T
ok

en
s

<MC>
<pos>

Ablation on Cclongeval-Func

Figure 6: Ablations of threshold setting of signal tokens on extended tasks

generation and code repair, could potentially benefit from retrieval-augmented generation (RAG) to
enhance model performance. Our methods can be extended to these tasks to analyze how retrieved
code snippets influence the generated outputs. Notably, our likelihood-based metric for identifying
the polarity of retrieved contexts is model-agnostic and does not impose strict requirements on data
formats, such as being specific to repository-level completion or code-related tasks. This makes it
promising for application in knowledge-intensive natural language tasks like question answering.
Exploring whether this metric remains effective for more diverse natural languages is an intriguing
direction for future research.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E EXTENDED ABLATION STUDIES

In Section 6.5, we analyzed the impact of the threshold setting for signal tokens during the infer-
ence process on the model’s completion performance, cross-file context length, and the number of
additional tokens generated in the ReproEval-API completion task. To further explore whether this
threshold setting affects these three aspects consistently across other datasets and assess its gener-
alizability, we retained the same ablation setting and conducted ablation studies on the other four
tasks from the main experiment. The results, shown in the figure 6, indicate a similar pattern across
these tasks. Specifically, setting the threshold for the two signal tokens to 0.2–0.3 achieves a relative
balance between efficiency and performance, yielding the optimal trade-off.

F Case Study

In this section, we present a case study to illustrate how our model determines the polarity of each
chunk and utilizes filtering to facilitate correct code generation. In the example depicted below,
the <prefix> contains a portion of the preceding code, while the <suffix> section shows the
model initiating the retrieving process by first outputting <MC>. Subsequently, the model sequen-
tially evaluates each chunk, outputting the corresponding polarity token at the end of each chunk
(denoted by a special end-of-chunk token).

When a chunk is identified with <pos>, the model further evaluates the sufficiency of the context.
Once the context is deemed sufficient, the model outputs <EC> and directly proceeds with code
generation.

In this case study, we compare the generation results of the baseline with full-retrieval and our
framework. Notably, our framework’s output exactly matches the ground truth, whereas the base-
line generates incorrect results. We attribute the baseline’s failure to being misled by the first neg-
ative chunk, which involves interval computations and symbolic mappings. These suggest testing
WildFunction in a more complex applied context, leading to incorrect guidance.

In contrast, the two chunks identified as ¡pos¿ provide critical support for the correct completion.
One chunk shows how objects like Function are instantiated, directly informing the appropriate com-
pletion for WildFunction. Another chunk clearly explains the purpose and usage of WildFunction
through its docstring, further reinforcing the correct completion.

This demonstrates how our framework effectively filters and prioritizes relevant contexts, enabling
precise code generation. <PREFIX>

1 ...
2

3 def test_sympy__core__function__Application():
4 from sympy.core.function import Application
5 assert _test_args(Application(1, 2, 3))
6

7

8 def test_sympy__core__function__AppliedUndef():
9 from sympy.core.function import AppliedUndef

10 assert _test_args(AppliedUndef(1, 2, 3))
11

12

13 def test_sympy__core__function__Derivative():
14 from sympy.core.function import Derivative
15 assert _test_args(Derivative(2, x, y, 3))
16

17

18 @SKIP("abstract class")
19 def test_sympy__core__function__Function():
20 pass
21

22

23 def test_sympy__core__function__Lambda():
24 assert _test_args(Lambda((x, y), x + y + z))
25

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

26

27 def test_sympy__core__function__Subs():
28 from sympy.core.function import Subs
29 assert _test_args(Subs(x + y, x, 2))
30

31

32 def test_sympy__core__function__WildFunction():

<SUFFIX>

1 <mc>
2 # Here are some relevant code fragments from other files of the repo:
3 # -----
4 # The below code fragment can be found in Shardul555/sympy/sympy/solvers/

ode/tests/test_single.py
5 _ode_solver_test(

_get_examples_ode_sol_nth_linear_undetermined_coefficients)
6

7

8 def test_nth_order_reducible():
9 from sympy.solvers.ode.ode import _nth_order_reducible_match

10

11 F = lambda eq: _nth_order_reducible_match(eq, f(x))
12 D = Derivative
13 assert F(D(y*f(x), x, y) + D(f(x), x)) is None
14 assert F(D(y*f(y), y, y) + D(f(y), y)) is None
15 <End_of_Chunk><neu>
16

17 ###
18 ###
19 # -----
20 # The below code fragment can be found in Shardul555/sympy/sympy/solvers/

ode/tests/test_single.py
21 @_add_example_keys
22 def _get_examples_ode_sol_almost_linear():
23 from sympy import Ei
24 A = Symbol(’A’, positive=True)
25 f = Function(’f’)
26 d = f(x).diff(x)
27

28 return {
29 <End_of_Chunk><pos><mc>
30 ###
31 ###
32 # -----
33 # The below code fragment can be found in Shardul555/sympy/sympy/sets/

tests/test_sets.py
34 x = Symbol(’x’, real=True)
35 assert Interval(0, x).free_symbols == {x}
36

37

38 def test_image_interval():
39 from sympy.core.numbers import Rational
40 x = Symbol(’x’, real=True)
41 a = Symbol(’a’, real=True)
42 assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
43 assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
44 <End_of_Chunk><neg>
45 ###
46 ###
47 # -----
48 # The below code fragment can be found in Shardul555/sympy/sympy/solvers/

ode/tests/test_ode.py
49 def test_issue_4785():
50 from sympy.abc import A

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

51 eq = x + A*(x + diff(f(x), x) + f(x)) + diff
52 (f(x), x) + f(x) + 2
53 assert classify_ode(eq, f(x)) == (’1st_linear’, ’almost_linear’,
54 ’1st_power_series’, ’lie_group’,
55 ’nth_linear_constant_coeff_undetermined_coefficients’,
56 ’nth_linear_constant_coeff_variation_of_parameters’,
57 ’1st_linear_Integral’, ’almost_linear_Integral’,
58 ’nth_linear_constant_coeff_variation_of_parameters_Integral’)
59 # issue 4864
60 <End_of_Chunk><neu>
61 ###
62 ###
63 # -----
64 # The below code fragment can be found in sympy/sympy/core/function.py
65 class WildFunction(Function, AtomicExpr): # type: ignore
66 """
67 A WildFunction function matches any function (with its arguments).
68

69 Examples
70 ========
71

72 >>> from sympy import WildFunction, Function, cos
73 >>> from sympy.abc import x, y
74 >>> F = WildFunction(’F’)
75 >>> f = Function(’f’)
76 """
77 <End_of_Chunk><pos><ec>

REPOFILTER COMPLETION

1 def test_sympy__core__function__WildFunction():
2 from sympy.core.function import WildFunction
3 assert _test_args(WildFunction(’f’))

BASELINE COMPLETION

1 def test_sympy__core__function__WildFunction():
2 from sympy.core.function import WildFunction
3 from sympy import Symbol, imageset, Interval
4 x = Symbol(’x’, real=True)
5 f = WildFunction(’f’)
6 assert imageset(x, f(x), Interval(-2, 2)) == imageset(x, f(x),

Interval(-2, 2))

20

	Introduction
	Related work
	Repository-level Retrieval-Augmented Code Completion
	Problem Definition
	Identifying polarities of retrieved contexts

	REPOFILTER
	Training
	Inference

	Experimental Setup
	Training & Inference
	Evaluation

	Results & Analysis
	Main Results
	Performance on instances retrieved with negative contexts
	Length of Cross-file Contexts
	REPOFILTER as filtering policy
	Ablations

	Conclusion
	Details of dataset construction
	Implementation details
	Generalization of REPOFILTER on other retrievers
	UniXCoder
	RepoCoder

	Discussions
	Extended Ablation studies
	Case Study

