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ABSTRACT
Retrieval-Augmented Generation (RAG) has recently emerged as a promising ap-
proach for repository-level code completion by integrating cross-file knowledge
with in-file preceding code to provide comprehensive contexts for generation. To
better understand the contribution of the retrieved cross-file contexts, we introduce
a likelihood-based metric to evaluate the impact of each retrieved code chunk on
the completion. Our analysis reveals that, despite retrieving numerous chunks,
only a small subset positively contributes to the target completion, while some
chunks even degrade performance. To address this issue, we leverage this metric
to construct a repository-level dataset where each retrieved chunk is labeled as
positive, neutral, or negative based on its relevance to the target completion. We
then propose an adaptive retrieval context trimming framework, REPOFILTER,
trained on this dataset to mitigate the harmful effects of negative retrieved con-
texts in RAG-based code completion. Extensive evaluation on the RepoEval and
CrossCodeLongEval benchmarks demonstrates that REPOFILTER consistently
improves completion accuracy compared to approaches without filtering opera-
tions across various tasks. Additionally, REPOFILTER significantly reduces the
length of the input prompt, enhancing computational efficiency while exhibiting
strong generalizability across different models. These results underscore the po-
tential of REPOFILTER to enhance the accuracy, efficiency, and attributability of
RAG-based repository-level code completion.

1 INTRODUCTION
Automatic code completion, particularly at the repository level, has gained significant attention due
to its alignment with real-world coding scenarios. Repository-level code completion requires the
model to understand the repository’s domain knowledge, including cross-file contexts, to provide
accurate recommendations (Zhang et al., 2023; Ding et al., 2024a). Retrieval-augmented generation
(RAG) has emerged as an effective technique for integrating cross-file knowledge into the comple-
tion process. RAG-based framework first retrieves the most relevant code chunks from other files in
the repository—such as user-defined APIs and inter-module dependencies—and incorporates these
retrieved contexts into the prompt, which is then fed into large language models (LLMs) to enhance
the completion of the current file. RAG-based methods for repository-level code completion have
been extensively researched and have demonstrated substantial progress in recent years(Lu et al.,
2022; Zhang et al., 2023; Liu et al.; Ding et al., 2024a).

In repository-level code completion, RAG-based methods typically rely on the preceding code snip-
pet as a query to retrieve cross-file contexts. However, unlike natural language tasks such as question
answering, where the query and relevant documents share a direct semantic relationship, the connec-
tion between the preceding code and the completed code segment is often indirect or implicit. This
results in the retrieval of contexts that, despite exhibiting high semantic or token-level similarity,
may not meaningfully contribute to the completion and may even degrade performance by intro-
ducing irrelevant information. Therefore, understanding the influence of each retrieved cross-file
chunk is essential for optimizing the use of contextual information in code completion. Motivated
by this, we systematically investigate which retrieved snippets truly support the completion process
and evaluate the extent to which the retrieved context is necessary for effective code generation.

To answer this question, we conduct a preliminary experiment on the popular code completion
benchmark RepoEval (Zhang et al., 2023). Specifically, we define a likelihood-based metric to
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evaluate the impact of each cross-file chunk on the target completion. This metric measures the dif-
ference in the model’s likelihood of generating the ground-truth code with and without the inclusion
of a particular context (i.e., chunk) in the prompt. Applying this metric to the retrieved top-10 cross-
file contexts in the RepoEval-API dataset, we find that only 15% of the retrieved chunks genuinely
support the completion, while 5.6% of the chunks degrade the performance, affecting 19.81% of the
instances in the benchmark. The remaining chunks are irrelevant. These experimental results high-
light that most retrieved chunks (85%) either do not contribute to or even hinder code completion,
underscoring the need for effective filtering strategies to identify the most beneficial contexts.

In this paper, we propose an adaptive retrieval context trimming framework, REPOFILTER1, to ef-
fectively select relevant retrieved contexts for repository-level code completion. The framework is
trained on our constructed dataset, where each retrieved cross-file chunk is annotated with its polar-
ity to guide the model determine whether it is beneficial for completion. Specifically, we sample 43k
instances from nearly 6k diverse Python repositories, each containing consecutive lines of code for
LLMs to complete. These instances are associated with over 400k cross-file context chunks, each la-
beled as positive, neutral, or negative using our proposed likelihood-based metric computed against
the ground-truth completion. This dataset is used to train LLMs to evaluate the polarity of retrieved
code chunks and retain only the positive ones as supplementary context prior to code generation. Ad-
ditionally, the model is trained to adaptively determine whether the available context is sufficient for
the intended completion, thereby reducing unnecessary retrieval and computation. REPOFILTER
redefines the generation process with a “filtering-then-generation” paradigm, enabling the model
to perform on-demand retrieval and focus only on positive retrieved contexts, which mitigates the
impact of noisy or irrelevant snippets and enhances overall code completion performance.

We conducted comprehensive experiments using different LLMs, including StarCoderBase-3B/7B
(Li et al., 2023c) and CodeLlama-7B/13B (Roziere et al., 2023), on different repository-level bench-
marks, including RepoEval and CrossCodeLongEval (Zhang et al., 2023; Ding et al., 2024a; Wu
et al., 2024). Results show that REPOFILTER effectively filters out irrelevant retrieved content
in both left-to-right and infilling code completion settings, achieving an average improvement of
3% in exact match over the baseline RAG frameworks. Moreover, REPOFILTER significantly re-
duces the length of cross-file contexts, shortening the original cross-file portion of the prompt by
over 80% in token count. Notably, for those cases that contain negative-impact retrieved contexts,
REPOFILTER successfully filters the negative contexts out, resulting in a substantial improvement
of over 10% in exact match performance. Furthermore, we also establish that REPOFILTER can
serve as a plug-and-play component, functioning as a retrieval context selection policy for larger
models such as GPT-3.5 and improving their performance in code completion. Our contributions
can be summarized as follows:

• We propose a likelihood-based metric to evaluate the impact of cross-file chunks on code
completion and construct a code completion dataset with polarity-annotated contexts.

• We introduce REPOFILTER, an adaptive retrieval context trimming framework, which
applies adaptive-retrieval and evaluates the polarity of retrieved code chunks and retains
only beneficial contexts for repository-level code completion.

• Comprehensive experiments across multiple LLMs and benchmarks demonstrate that
REPOFILTER consistently improves completion performance, reduces context length, and
effectively mitigates the negative impact of harmful retrievals.

2 RELATED WORK
Retrieval-Augmented Genration Despite the remarkable performance of large language models
(LLMs) in text and code generation, hallucination remains a significant challenge. To address this
issue, retrieval-augmented generation (RAG) has emerged as a key research area, significantly en-
hancing generation by providing LLMs with additional accurate knowledge (Guu et al., 2020; Lewis
et al., 2020), particularly in knowledge-intensive tasks such as question answering (Izacard & Grave,
2020; Ram et al., 2023; Shi et al., 2023; Borgeaud et al., 2022). Recent studies have extended RAG
to programming languages by incorporating external documents or code snippets to improve code
generation (Gu et al., 2016; Zhou et al., 2022; Lu et al., 2022; Zan et al., 2022). To enhance RAG
efficiency and the relevance of retrieved passages, adaptive methods have been proposed to dynami-
cally determine when additional context should be retrieved (He et al., 2021; Mallen et al., 2022; Li
et al., 2023b; Jiang et al., 2023; Wang et al., 2023a; Wu et al., 2024). Other works have focused on

1https://anonymous.4open.science/r/RepoFilter-5AC5
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risk_score = risk_score(payment_data,
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if risk_score >= fraud_threshold: …

old_payments = fetch_oldpayments(months=18)

for cust_info, payment in old_payments:
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save_archive(enriched_data)
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for item in self.data:
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def process_payment_with_fraud_detection(request):

payment_data = extract_payment_data(request)

...

custinfo = 

get_cust_info(payment_data[’cust_id'])

enriched_data = 

enrich_data(payment_data, cust_info)

Figure 1: The overview of REPOFILTER, which initiates on-demand retrieval when the in-file con-
text is insufficient for the intended completion; otherwise, it generates code directly. After retrieval,
REPOFILTER sequentially predicts the impact of each cross-file chunk—categorized as positive,
negative, or neutral—on the target completion, retaining only positive chunks. The process stops
once the context is deemed sufficient, avoiding unnecessary computations.

dynamically selecting or weighting each retrieved context to improve supportiveness (Wang et al.,
2023b; Asai et al.; Pan et al., 2024). Moreover, RAG has been shown to be effective in addressing
various code-related tasks, such as code generation (Li et al., 2023a; Gou et al., 2024), summariza-
tion (Shi et al., 2022; Yu et al., 2022; Choi et al., 2023), and repair (Jin et al., 2023; Joshi et al.,
2023). Our work builds on these advancements by introducing a dynamic context filtering approach
from a sample-level perspective, specifically tailored for code completion.

Repository-level Code Completion Repository-level code completion aims to enhance developer
productivity by providing context-aware code suggestions. Its practical benefits and challenges in
integrating comprehensive project information have garnered significant attention. Recent research
has introduced benchmarks for various completion targets, including line, API invocation, and entire
function block completions, to evaluate the accuracy and functionality of completed code (Lu et al.,
2022; Zhang et al., 2023; Ding et al., 2024a; Liu et al.; Li et al., 2024). While long-context LLMs
are being explored to manage massive repository contexts (Guo et al., 2023), leveraging RAG to
incorporate crucial cross-file contexts shows promise (Wu et al., 2024). Previous work primarily
focused on how to format context to improve the accuracy of retrieval (Cheng et al., 2024; Liu et al.,
2024) and enable models to better utilize these contexts (Ding et al., 2024b; Liang et al., 2024),
or on incorporating information from different modalities, such as third-party libraries and similar
code examples (Shrivastava et al., 2023; Liao et al., 2023; Phan et al., 2024). Apart from them, our
approach emphasizes understanding the impact of each code snippet and filtering retrieved contexts
based on completion intent to get the model to attend to genuinely supportive information.

3 REPOSITORY-LEVEL RETRIEVAL-AUGMENTED CODE COMPLETION

3.1 PROBLEM DEFINITION

We define the components of repository-level code completion as Cout, Cin, Y , where Y represents
the target lines of code to be completed. Cin denotes the in-file context within the target file, while
Cout refers to cross-file code from other files within the repository. To accommodate different
completion scenarios, we introduce two distinct settings for Cin: (1) Infilling, where Cin includes
both the preceding and subsequent code snippets, denoted as (Cp, Cs), and the model generates the
missing code segment in between; and (2) Left-to-right, where Cin consists only of the preceding
code snippet Cp, and the model sequentially generates the subsequent code based on this context
alone. The RAG-based completion framework consists of a retrieval module that uses a retriever R
and a generation module that leverages a generator G. Following previous work (Zhang et al., 2023;
Ding et al., 2024a; Wu et al., 2024), we truncate cross-file contexts into chunks with a specified
number of lines Cout = (c1, c2, . . . , cn). The retriever R then queries these cross-file contexts
using the chunk of the preceding code of Cin and retrieves the top-k candidate chunks with the
highest similarity scores, denoted as Ccc = R(Cin, Cout) = (c′1, . . . , c

′
k). Given a CodeLLM as the
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generator G, the code is completed by formatting the in-file context Cin and the retrieved context
Ccc into a single prompt, i.e., Ŷ = G(Cin, Ccc).

3.2 IDENTIFYING POLARITIES OF RETRIEVED CONTEXTS

We first aim to investigate the effect of context on code completion and propose a method to identify
the polarity of each code chunk as positive, neutral, or negative. Our hypothesis is as follows:
A retrieved code chunk that contains critical information for the current completion will significantly
increase the LLM’s likelihood over the ground truth. Conversely, irrelevant or noisy chunks may
have no effect or even decrease the likelihood.

Based on this hypothesis, we define the contribution score S of a context chunk ci to the target Y
as the difference in log-likelihood between a prompt containing only the in-file context Cin and a
prompt containing both Cin and the specific code chunk ci. This is expressed as:

S(ci|Cin, Y ) =
L(Y | Cin, ci)− L(Y | Cin)

L(Y | Cin)

Here, L(Y | C) represents the model’s log-likelihood of the target sequence Y = (y1, . . . , yT )

given the context C, which is formulated as L(Y | C) =
∑T

t=1 logP (yt | y1, y2, . . . , yt−1, C;G).
Therefore, the polarity of ci with respect to Y can be defined as:

P (ci|Cin, Y ) =


Positive if S(ci|Cin, Y ) > Tp,

Negative if S(ci|Cin, Y ) < Tn,

Neutral otherwise.

where Tp and Tn represent the threshold values for determining Positive and Negative labels, re-
spectively. In this paper, we set Tp = 10.0% and Tn = −5.0%.

We evaluate the polarities of the top-10 retrieved code chunks based on the Jaccard similarity
of each instance in the RepoEval dataset (Zhang et al., 2023). We compare the performance of
StarCoderBase-3B in code completion using four different strategies for incorporating cross-file
contexts into the prompt: (1) Full Retrieve, where all top-10 retrieved chunks are included in the
prompt; (2) Positive-only, which retains only the chunks labeled as positive; (3) w/o Negative, which
excludes negative chunks from the retrieved contexts; (4) w/o Neutral, which excludes chunks la-
beled as neutral. Results in Table (a) reveal three key findings: (1) The model with prompts contain-
ing only positive chunks outperforms the one including all candidate cross-file chunks; (2) Eliminat-
ing neutral chunks does not significantly affect the model’s completion performance; (3) Removing
negative chunks in the prompt improves code completion performance. These findings align with
our expectations of how positive, neutral, and negative chunks impact completion, further validating
the effectiveness of our likelihood-based metric by demonstrating that the model’s likelihood scores
can reliably indicate which retrieved contexts contribute meaningfully to the completion task.

Strategies Exact Match (%)

Full Retrieve 47.27
Positive-only 49.47
w/o Neutral 47.02
w/o Negative 49.96

(a) The impact of different context se-
lection strategies for completion on
RepoEval-API.
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(b) Distribution of the number of positive/negative/neutral cross-
file chunks for each data instance on RepoEval-API.

Furthermore, Figure (b) illustrates the distribution of positive, negative, and neutral chunks within
the cross-file contexts retrieved for each instance. The x-axis represents the number of positive,
negative, or neutral chunks in each instance, while the y-axis indicates the number of data instances.
The data reveals that only about half of the instances contain any positive-impact chunks within their
retrieved contexts, and among these, most contain only 1-2 positive chunks out of the 10 retrieved.
In contrast, nearly 20% of instances include negatively impactful chunks, while the majority of
retrieved chunks are neutral and irrelevant to the target completion. This distribution indicates that
only a small subset of the retrieved contexts contributes meaningfully to the completion, while the
rest introduce noise or even hinder performance. To address this issue, we propose REPOFILTER,
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a framework that enhances efficiency by enabling on-demand retrieval and filtering out irrelevant or
harmful chunks. By focusing on positive contexts, REPOFILTER improves both the performance
and efficiency of code completion.

4 REPOFILTER

We introduce REPOFILTER, a repository-level code completion framework designed to achieve
two key objectives: (1) selectively retrieving and incrementally adding code chunks as needed, and
(2) filtering out irrelevant chunks to prevent the model from attending to noisy information, thereby
making the code completion process more precise and interpretable. To achieve this, we predefine
a set of special signal tokens, T , categorized into two types. The first type consists of adaptive-
retrieval tokens (<EC>, <MC>). <EC> indicates that there is sufficient context to proceed with code
completion, eliminating the need for further retrieval or additional chunks. In contrast, the <MC>
token signals that the model requires more cross-file chunks for intended completion. The second
type includes polarity tokens (<pos>, <neg>, <neu>), which denote whether a cross-file chunk has a
positive, negative, or neutral impact on code completion. During the generation process, the model
is trained to autonomously evaluate and generate these signal tokens at various stages to perform
their respective functions.
4.1 TRAINING

Dataset Construction. We followed the approach outlined in (Wu et al., 2024) to construct a fine-
tuning dataset using the licensed repository-level dataset, Stack (Kocetkov et al., 2022). First, we
randomly sampled the target Y from the raw repository data, which could be a random line, a
consecutive code chunk, or an entire function body. We then retrieved the top 10 cross-file code
chunks using Jaccard Similarity (Jaccard, 1912) and labeled the polarity of each chunk based on the
likelihood-based metric. The detailed data construction process is provided in Appendix A.

We verbalize the training data in a fill-in-the-middle format using two strategies. The first strategy
can be sequentially expressed as:

<PREFIX>[Left Context]<SUFFIX>[Right Context]<MC>[C1]<pos><MC>[C2]<neu>..<MC>[Cn]<pos><EC><MIDDLE>

where <PREFIX><SUFFIX><MIDDLE> are special tokens defined by the code LLM for the fill-in-the-
middle format. Additionally, the sub-sequence <MC>[C1]<pos><MC>[C2]<neu>..<MC>[Cn]<pos><EC> repre-
sents the verbalized cross-file contexts augmented with both adaptive-retrieval tokens and polarity
tokens. Moreover, the order of the candidate chunks is randomly shuffled, but the sequence includes
all positive chunks, with the final chunk always labeled as positive to ensure it provides the last
critical piece of information for code completion. This training data format is designed to guide the
model accurately labeling the polarity of cross-file code chunks. The second format is denoted as:

<PREFIX>[Left Context]<SUFFIX>[Right Context]<MC>[C1]<pos><MC>[C4]<pos><MC>[Cn]<pos><EC><MIDDLE>[Target]

Here, the sub-sequence of cross-file chunks includes only the positive chunks. This format is de-
signed to help the model determine whether additional information is required for completion and
to complete the code based on positive cross-file code chunks. If there are no positive-labeled can-
didate chunks, the cross-file chunk sequence will consist solely of the token <EC>, indicating that
the in-file context is sufficient and no further retrieval is necessary.

Training objectives. Using the verbalized training dataset, we optimize the model with a standard
teacher-forcing approach. This optimization is achieved by minimizing a weighted sum of the cross-
entropy loss over both the signal tokens and the target tokens for code completion:

L = − logPG(Y |Cin, Ccc) + λ(− logPG(T |Cin, Ccc))

To prevent the model from memorizing irrelevant local contexts, we mask the in-file and cross-file
contexts during loss calculation.
4.2 Inference

The inference process of REPOFILTER is designed to dynamically balance retrieval and generation
for code completion. As outlined in Algorithm 1, the process can be divided into four key phases:
Analyzing In-File Context: The model first evaluates the in-file context to determine whether addi-
tional cross-file retrieval is needed. This decision is based on generating an adaptive-retrieval token,
choosing between <EC> (enough context) and <MC> (more context needed), guided by a predefined
threshold applied to the softmax probability of these tokens.

5
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Algorithm 1: REPOFILTER Inference Process
Input: Generator G, Retriever R, Cross-file contexts Cout, In-file contexts Cin = (Cp, Cs),

Adaptive-retrieval token set TA, Polarity token set TP ,threshold for choosing polarity tokens
tp, tn, threshold for choosing adaptive retrieval token tc

Output: Completed code lines Ŷ
X ← (PREFIX, Cp, SUFFIX, Cs) /* Initialize input sequence */
m← Select(SoftmaxTA(G(m|X)), tc) /* Generate adaptive-retrieval token */
if m =< EC > then

X ← append(X, [MIDDLE])
else if m =< MC > then

Ccc ← R(Cin, Cout) /* Retrieve Top-K cross-file chunks */
foreach chunk ci ∈ Ccc do

p← Select(SoftmaxTP (G(p|X)), tp, tn) /* Generate polarity token */
if p =< pos > then

X ← append(X, ci)
m← Select(SoftmaxTA(G(m|X)), tc) /* Reassess context sufficiency */
if m =< EC > then

X ← append(X, [MIDDLE])
break /* Context is sufficient */

return Ŷ ← G(X) /* Generate final completed code */

Initiating Retrieval (if needed): If <MC> is selected, the retriever R is triggered to fetch the top-K
cross-file code chunks relevant to the input. These retrieved chunks are then sequentially appended
to the input sequence for further evaluation.
Chunk Evaluation and Filtering: Each retrieved chunk is assessed by the model for relevance
using polarity tokens (<pos>, <neu>, and <neg>). Positive chunks (<pos>) are retained and ap-
pended to the sequence to enrich the context. Neutral or negative chunks (<neu> or <neg>) are
filtered out to avoid irrelevant or misleading information.
Reassessing Context and Generating Code: After adding a positive chunk, the model reevaluates
whether the context is now sufficient for code generation. If <EC> is selected at this stage, the model
switches to code generation using a fill-in-the-middle format. Otherwise, the process continues, it-
erating through the remaining retrieved chunks.
This iterative process ensures that only the most relevant cross-file contexts are used, improving
the model’s ability to generate accurate and efficient code completions. Moreover, we present a
generation case utilizing our framework in Appendix F for illustrating the inference process.

5 EXPERIMENTAL SETUP

5.1 TRAINING & INFERENCE

Dataset. Following Wu et al. (2024), we sampled 6k Python repositories from Stack (Kocetkov
et al., 2022). For each data instance, we retrieved 10 candidate cross-file code chunks with the
highest Jaccard Similarity scores. Each chunk was labeled by computing its contribution score S.
Several post-processing steps were implemented to filter out low-quality data based on three criteria:
(1) the target file contains at least three local import statements; (2) the target lines do not include
comments or import statements, and the target sequence consists of at least six tokens; and (3) the
in-file context and the 10 candidate cross-file chunks are expected to provide sufficient context for
completion. To evaluate this, we set a threshold of 0.5 for edit similarity, assuming that when a
positive chunk achieves an edit similarity score above this threshold, the contexts can be considered
sufficiently informative for completion. After applying these criteria, we obtained 43k instances
containing 400k labeled cross-file chunks. We verbalized these instances based on the two strategies
mentioned in section 4.1 to construct the final dataset, consisting of 130k instances. We allocated
95% of the data for training and the remaining 5% for validation. More details on the implementation
and statistics can be found in Appendix A.

Train. We train LLMs using different variants from two model families: StarCoderBase-3B/7B
(Li et al., 2023c) and CodeLlama-7B/13B (Roziere et al., 2023). The models are optimized over 2
epochs, utilizing an initial learning rate of 2e-5, 5% warm-up steps, and linear decay. Additionally,
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Table 1: Code completion in Infilling completion setting.

Model RAG Strategies Repoeval-Line Repoeval-API Repoeval-Func Cclongeval-Chunk Cclongeval-Func

EM ES EM ES UT ES EM ES ES

StarCoderBase-3B

No-Retrieve 46.56 68.93 39.09 65.19 22.42 39.43 33.57 62.15 48.62
Full-Retrieve 56.25 74.72 47.27 72.69 27.25 48.34 38.21 64.05 46.33
RepoFormer 57.13 75.47 49.22 74.06 27.91 48.70 39.69 67.67 48.75
REPOFILTER 60.50 79.07 50.59 77.28 29.67 51.35 41.55 68.63 52.61

StarCoderBase-7B

No Retrieve 50.50 71.75 40.71 66.78 24.18 43.26 36.93 64.16 51.11
Full-Retrieve 58.56 76.86 48.16 74.62 29.23 51.77 43.23 68.31 46.40
RepoFormer 59.25 78.06 49.47 77.00 31.21 50.43 44.64 70.40 45.84
REPOFILTER 61.44 80.12 51.09 78.53 33.41 53.69 45.97 71.28 55.37

CodeLlama-7B

No Retrieve 50.69 72.22 40.34 65.80 23.74 43.32 36.17 64.05 49.23
Retrieve 59.06 77.89 47.59 72.21 28.79 51.37 44.29 68.11 51.92

RepoFormer 59.19 78.18 48.34 74.91 32.09 51.50 45.74 68.39 50.92
REPOFILTER 62.56 81.24 51.53 77.46 31.65 53.23 49.53 73.78 53.45

CodeLlama-13B

No Retrieve 52.69 73.63 41.03 66.89 25.05 46.08 40.88 66.22 51.65
Full-Retrieve 60.31 77.15 48.66 73.39 30.55 53.29 46.17 69.45 54.18
RepoFormer 61.00 80.38 49.28 78.02 33.19 53.28 47.74 70.09 54.17
REPOFILTER 62.94 81.56 51.84 77.74 34.29 56.70 50.22 73.03 57.69

we set λ = 2.0, a batch size of 512, and a maximum sequence length of 4096. Training is conducted
on 4 NVIDIA A100 GPUs, each with 80GB of memory.

Retrieval. In line with previous studies (Zhang et al., 2023; Ding et al., 2024a), we divide cross-file
code into chunks using a window size of 10 lines and a stride size of 5 lines. The preceding 10 lines
of in-file code are then used as a query to retrieve the top-10 cross-file chunks, ranked by their Jac-
card similarity scores (Jaccard, 1912). Our main experiments focus on sparse retrieval, as prior re-
search (Ding et al., 2024a) has demonstrated that dense retrieval methods do not improve completion
performance. This limitation occurs because cross-file chunks with high semantic similarity to the
preceding code do not necessarily capture the code’s underlying intent, and thus may not meaning-
fully contribute to completion. Additionally, we evaluate the performance of REPOFILTER when
using a dense retriever with UniXcoder as the encoder (Guo et al., 2022), as detailed in Appendix C.

Inference. In our experiments, we use greedy decoding for code completion. For special signal
tokens, the probability threshold for <MC> is set to 0.3, and <EC> is generated otherwise. For po-
larity tokens, we apply a threshold of 0.3 for both <pos> and <neg>, prioritizing <pos> if it meets
the threshold first, and defaulting to <neu> if neither does. Detailed ablation studies on threshold
settings are provided in Section 6.5. Additionally, we set the maximum token length of the prompt
to 4096, with 1024 tokens allocated for the in-file context and 3072 for the cross-file chunks. We
utilize vLLM (Kwon et al., 2023) to accelerate the inference process.

5.2 EVALUATION

Datasets. We evaluate our model on two benchmarks: RepoEval (Zhang et al., 2023), which in-
cludes line, API, and function completion tasks derived from 14 high-quality Python repositories;
and CrossCodeLongEval (Wu et al., 2024), which extends the repositories from CrossCodeEval
(Ding et al., 2024a) to include chunk-level and function-level code completion tasks. We consider
two completion settings in our experiments: (1) Infilling, where the model completes the middle
part of the code based on both the preceding and subsequent context; and (2) Left-to-right, where
the model generates code sequentially using only the preceding context. We evaluate both settings
on the RepoEval and CrossCodeLongEval datasets using these benchmarks.

Model & Baselines. The baseline models are consistent with the CodeLlama and StarCoderBase
variants used to train REPOFILTER. We compare our model against three baseline retrieval set-
tings: (1) No Retrieve—the model completes the code using only in-file contexts; (2) Full Retrieve
(Zhang et al., 2023; Ding et al., 2024a)—the model completes the code using in-file contexts along
with the top 10 candidate cross-file code chunks; and (3) RepoFormer (Wu et al., 2024)—the model
determines whether retrieval is necessary for completion be for initiate retrieval. Detailed imple-
mentations of these baselines are provided in Appendix B.

Metrics. Following (Zhang et al., 2023; Ding et al., 2024a; Wu et al., 2024), we use the execution-
based metric pass rate of Unit Tests (UT) to evaluate function-level completion in the RepoEval
dataset. For all other data, we use the reference-based metrics Exact Match (EM) and Edit Similarity
(ES) for evaluation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Code completion in Left-to-right completion setting.

Model RAG Strategies Repoeval-Line Repoeval-API Repoeval-Func Cclongeval-Chunk Cclongeval-Func

EM ES EM ES UT ES EM ES ES

StarCoderBase-3B

No Retrieve 33.37 57.94 27.33 56.11 17.80 36.63 23.08 51.09 42.44
Full Retrieve 48.00 68.44 38.21 65.37 23.96 46.39 33.82 57.37 43.32
RepoFormer 47.38 69.67 38.59 67.32 25.05 47.40 34.20 59.38 44.89
REPOFILTER 50.50 71.23 40.84 70.76 25.49 48.81 35.61 59.02 46.40

StarCoderBase-7B

No Retrieve 35.69 59.64 28.96 57.51 19.56 37.54 27.03 56.16 51.11
Full Retrieve 48.94 69.05 39.96 65.97 25.93 48.11 39.24 62.40 46.40
RepoFormer 48.44 68.09 38.40 70.22 25.71 46.16 38.68 62.27 45.84
REPOFILTER 51.32 71.90 42.15 69.70 26.59 49.87 39.65 64.28 55.37

CodeLlama-7B

No Retrieve 37.25 61.61 28.52 57.76 20.00 40.04 27.80 55.74 43.04
Full Retrieve 50.00 68.47 40.90 66.33 24.62 47.64 38.95 61.47 50.16
RepoFormer 48.63 68.97 38.34 68.29 26.37 47.52 37.06 60.49 48.12
REPOFILTER 51.12 70.63 41.46 71.04 27.47 48.33 39.40 63.05 51.03

CodeLlama-13B

No Retrieve 39.25 62.55 28.89 58.14 21.76 41.06 29.07 55.19 43.62
Full Retrieve 51.81 71.92 42.28 69.42 26.59 49.00 40.95 65.67 47.82
RepoFormer 50.06 69.03 41.59 69.16 26.25 48.73 41.10 65.38 49.96
REPOFILTER 52.94 72.76 42.71 72.59 27.69 49.99 41.80 65.34 54.69

Table 3: Code completion in data instances containing negative cross-file chunks.

Model RAG-strategy
Left-to-right Infilling

RepoEval-Line RepoEval-API RepoEval-Line RepoEval-API
EM ES EM ES EM ES EM ES

Starcoderbase-7B
No Retrieve 7.82 34.92 3.36 35.98 17.13 42.92 11.02 44.04
Full Retrieve 7.23 37.39 5.46 39.46 16.39 42.15 10.63 47.45
REPOFILTER 28.92 57.84 16.03 55.79 29.28 62.36 22.83 63.90

CodeLlama-7b
No Retrieve 7.83 38.99 3.36 34.47 17.13 46.36 10.24 42.44
Full Retrieve 6.62 38.01 6.30 43.24 12.15 44.23 9.84 43.14
REPOFILTER 22.89 55.31 17.64 54.71 34.25 65.25 20.47 63.21

6 RESULTS & ANALYSIS

6.1 MAIN RESULTS

We evaluate the code completion performance of REPOFILTER in two settings across different
models and compare it with several baseline RAG strategies. The results, presented in Tables 1 and
2, demonstrate that incorporating retrieved cross-file chunks significantly improves performance
over models that rely solely on preceding code for generation. This improvement is evident across
both reference-based and execution-based evaluation metrics. When compared to full and adaptive
retrieval methods, REPOFILTER consistently achieves notable enhancements across various tasks.
For example, in the infilling setting, the performance of StarCoderBase-3B under REPOFILTER
framework is comparable to, or even surpasses, that of the StarCoderBase-7B model using full
retrieval. Furthermore, the gains achieved by REPOFILTER in this setting mirror those observed
when negative chunks are removed from the prompt, as shown in Table (a) in Section 3.2. This
indicates that our method effectively filters out noise in cross-file chunks, retaining only those that
positively contribute to code generation.

We also evaluate code completion performance across two settings: Infilling and Left-to-right com-
pletion. The results in Tables 1 and 2 show that incorporating subsequent code snippets significantly
enhances the model’s completion capabilities. For line-level and chunk-level tasks, including sub-
sequent code results in nearly a 10% improvement compared to the Left-to-right setting under the
same RAG strategy. However, for function-level completion, the benefit of incorporating in-file sub-
sequent code is less pronounced. This may be due to the function body serving as an independent
module, making subsequent code (i.e., code outside the function) less relevant to the function’s con-
tent. Additionally, RepoFormer underperforms compared to the full-retrieval strategy in some tasks
under the Left-to-right setting, and the improvements achieved by REPOFILTER in this setting are
less substantial than those observed in the Infilling setting. We hypothesize that the model’s ability
to assess the utility of retrieved chunks for completion depends on its understanding of the code’s in-
tention. However, with only the preceding code available, identifying the code’s intention becomes
more challenging, leading to a decline in performance compared to the Infilling setting.
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Figure 3: Cross-file Length of different benchmarks when applying different RAG Strategies.

Table 4: Model performance on RepoEval-API when provided with cross-file contexts filtered by
REPOFILTER-3B.

Setting RAG Strategy Starcoder-7B Starcoder-15B Starcoder2-7B CodeLlama-7B CodeLlama-13B DeepSeek-16B QwenCoder-7B GPT-3.5-turbo

EM ES EM ES EM ES EM ES EM ES EM ES EM ES EM ES

Infilling Full Retrieve 48.16 74.62 50.66 75.73 40.90 67.14 47.59 72.21 48.66 73.39 49.78 73.60 41.84 69.19 34.21 56.13
REPOFILTER 50.28 74.81 51.72 77.08 42.21 70.33 49.22 73.34 49.47 73.78 51.59 76.05 45.97 71.41 36.27 58.75

Left-to-right Full Retrieve 39.96 65.97 42.46 70.34 37.34 62.12 40.90 66.33 42.28 69.42 42.03 70.14 42.56 69.02 31.14 56.35
REPOFILTER 41.90 66.70 42.90 69.92 38.84 63.77 41.65 69.06 43.46 70.85 42.96 71.47 42.63 69.10 32.02 57.03

6.2 PERFORMANCE ON INSTANCES RETRIEVED WITH NEGATIVE CONTEXTS

REPOFILTER is designed to filter out irrelevant and noisy retrieved chunks that may negatively
impact the model’s completion. Although REPOFILTER demonstrates improvements over baseline
RAG strategies, it remains unclear how the model performs when provided with negative chunks.
To address this, we use the method proposed in Section 3.2 to identify instances containing negative
chunks among the top-10 retrieved cross-file code chunks in the RepoEval-API and RepoEval-Line
tasks. Out of the 1,600 test instances, we identified 285 and 166 instances containing negative
chunks for API and line-level completion, respectively. We then evaluate REPOFILTER on these
subsets in both the Infilling and Left-to-right settings to investigate whether the model can effectively
filter out noisy information. The results, summarized in Table 3, show that full retrieval exhibits poor
performance on these samples, often performing worse than directly generating code based solely on
in-file context in most scenarios. This finding validates that these identified negative chunks directly
degrade the model’s completion performance. In contrast, REPOFILTER outperforms full retrieval
by a significant margin across both tasks and settings, confirming that our model can effectively
filter chunks based on their supportiveness for completion, thereby mitigating the impact of potential
noise.

6.3 LENGTH OF CROSS-FILE CONTEXTS

In code completion, the lack of explicit information about the code’s intent often results in inac-
curate retrievals. To address this, a common practice is to provide the generator with up to 10
candidate chunks. However, this approach results in overly lengthy contexts, and as analyzed in
Section 3.2, only a small portion of these chunks are truly relevant to the completion task. We use
the length of cross-file context tokens provided to the generator as an indicator of both efficiency
and attributability. Figure 3 illustrates the final cross-file context lengths under three strategies: full
retrieval, RepoFormer, and REPOFILTER, evaluated across multiple benchmarks in the infilling
setting. Notably, REPOFILTER refers to its StarCoderBase-3B variant, and similar context lengths
were observed with other model variants of REPOFILTER after filtering. We observe that full re-
trieval with 10 cross-file chunks leads to excessively lengthy contexts, all exceeding 1,500 tokens.
RepoFormer, which selectively determines the necessity of retrieving cross-file contexts, reduces
context length by approximately 30%. Building on this, REPOFILTER further filters out irrelevant
chunks, reducing context length by nearly 80% compared to full retrieval. This substantial reduc-
tion in context length not only improves efficiency but also increases information density, thereby
enhancing the attributability of the model’s completions without compromising performance.

6.4 REPOFILTER AS FILTERING POLICY

We investigate whether the filtering decisions made by a smaller model can effectively generalize
to larger models from different families and sizes. In our experiments, the StarCoderBase-3B vari-
ant of REPOFILTER is used to perform adaptive retrieval and context filtering, with the filtered
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Figure 4: Ablations of threshold setting of signal tokens

prompts subsequently provided to larger models for code completion. The evaluation is conducted
on the RepoEval-API task under both Infilling and Left-to-right settings. Larger models, including
StarCoderBase-7B/16B, StarCoder2-7B, CodeLlama-7B/13B, DeepSeek-16B, QWen2.5-Coder-7B,
and GPT-3.5-turbo (Hui et al., 2024), are tested to assess their performance using the filtered con-
texts. The results, shown in Table 4, demonstrate consistent improvements in both EM and ES
scores, along with significantly shorter prompt lengths when larger models generate code using the
filtered contexts compared to full retrieval. These findings suggest that the filtering decisions made
by the smaller model generalize well across diverse architectures, highlighting the potential of our
method to serve as a plug-and-play module for enhancing both the performance and efficiency of
larger models in code completion tasks.

6.5 ABLATIONS

We ablate the impact of different thresholds for <MC> and <pos> on code completion performance
and resource efficiency. The experiments are conducted using the StarCoderBase-3B model on
the RepoEval-API task under the infilling setting, while ablations on other tasks are presented in
Appendix E. Figure 4 presents the results across three key metrics: Exact Match (EM), cross-file
context length, and the number of generated signal tokens.

Thresholds vs. Exact Match: The left figure of 4 shows that EM values are highly sensitive to
thresholds for <MC> and <pos> tokens. For <MC>, EM remains stable and relatively high (50.16%
to 50.59%) between thresholds 0.0 and 0.3 but drops sharply beyond this range, reaching 41.15%
at a threshold of 1.0 due to disabled retrieval excluding relevant information. A similar pattern is
observed for <pos>: a higher threshold prevents identifying positive chunks, while a lower threshold
risks including noise, reducing accuracy.

Thresholds vs. Cross-file Context Lengths: The middle figure of 4 shows that increasing thresh-
olds for <MC> and <pos> reduces cross-file context length, improving efficiency. This effect is
more pronounced for <pos>, with a sharp reduction as its threshold rises. At a threshold of 0.3 for
both tokens, the context length is reduced to 355 tokens—less than 30% of the original—balancing
minimal context length and high EM scores.

Thresholds vs. Generated Signal Tokens: While REPOFILTER improves completion perfor-
mance and reduces prompt length, filtering incurs additional computational costs compared to direct
generation. The number of generated signal tokens indicates this cost. As shown in the right fig-
ure of 4, the <pos> threshold minimally affects this metric, while the <MC> threshold significantly
impacts it. A lower <MC> threshold causes more chunks to be evaluated, increasing signal token
counts, which drop sharply from 10.85 tokens at a threshold of 0.0 to 1.0 token at a threshold of 1.0.

Model performance is highly sensitive to the signal token thresholds. A low <MC> threshold in-
creases resource demand without improving performance, while a high threshold enhances effi-
ciency but reduces completion quality. A threshold of 0.3 achieves the best trade-off.

7 CONCLUSION

In this paper, we introduced a metric to evaluate the influence of retrieved cross-file chunks on code
completion and constructed a labeled dataset to categorize these chunks by their impact. We devel-
oped REPOFILTER, a framework that adaptively retrieves and filters relevant contexts, improving
both accuracy and efficiency in code generation. Our results show that REPOFILTER significantly
enhances performance, particularly by mitigating the effects of misleading contexts, while reduc-
ing the computational load. Additionally, the framework generalizes well across various models,
demonstrating its versatility and effectiveness in repository-level code completion. Further discus-
sion regarding the limitations and potential impact of our work can be found in Appendix D.
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A DETAILS OF DATASET CONSTRUCTION

Data Collection We collected a dataset comprising 5,824 distinct projects from Stack (Kocetkov
et al., 2022), each with a minimum of 10 stars, ensuring no overlap with the RepoEval and Cross-
CodeEval datasets used as test sets in our main experiments. To ensure interaction with other mod-
ules within the repository, target code lines were randomly sampled from files containing at least
three local import statements. These target code segments include a variety of formats to promote
model generalization, ranging from single lines and chunks of 2-20 lines to full functions with fewer
than 50 lines. Additionally, target lines were filtered to exclude comments and include at least six
tokens. The sampled data was divided equally into two completion settings: the left-to-right setting,
where only the preceding code is provided, and the infilling setting, which includes both preceding
and subsequent code as in-file context.

Data Labeling We then chunked the cross-file contexts and constructed queries based on the in-file
context for each target Y . For each query, we retrieved the top 10 cross-file chunks and labeled
them with a polarity—positive, neutral, or negative—using our likelihood-based metric, as detailed
in Pseudo-code 2. To determine the thresholds for classifying positive and negative chunks, we ex-
perimented with various threshold settings to generate different sets of positive and negative chunks.
The StarCoder-3B model’s completion performance was then evaluated on the validation set using
only positive chunks or using top-10 retrieved contexts excluding negative chunks, allowing us to
identify the optimal threshold. The adaptive retrieval token in our model is designed to indicate
whether the current in-file and cross-file contexts provide sufficient information for code comple-
tion. To ensure this condition is met when constructing the training data, we evaluated the Edit
Similarity (ES) score between the in-file context and the retrieved positive cross-file chunks. Only
instances where the ES score exceeded 0.5 were included in the dataset, ensuring that the retrieved
contexts contributed meaningfully to the completion task. This filtering process guarantees that the
final training instances contain sufficient and relevant information. After the filtering process, we
finally got 43k instances of labelling with more than 400k cross-file chunks. The instance-level
statistics are presented in Table 5, and the chunk-level polarity distributions are shown in Figure
5. We observe that positive chunks make up 20-30% of the retrieved chunks, while 10-20% of in-
stances contain negative chunks. The remaining chunks are generally irrelevant to the completion
task, reflecting a distribution similar to the RepoEval-API test set.

Algorithm 2: Cross-file chunks labeling
Input: Generator G, Retriever R, In-file contexts Cin = (Cp, Cs), Cross-file code Cout,

Window size w, stride size s, Polarity thresholds Tp, T, n

Output: Labeled Cross-file Chunk set Ĉcc

Ĉcc ← ∅
Q← Cp[−w :] /* Query */
Cout ← chunklize cross-file contexts with w and s
Ccc ← R(Q,Cout) /* Retrieve the top-10 cross-file contexts */

L(Y |cin) =
∑T

t=1 logP (yt|y1, .., yt−1, Cin;G) /* Compute likelihood */
foreach chunk ci ∈ Ccc do

L(Y |Cin, ci) =
∑T

t=1 logP (yt|y1, .., yt−1, Cin, ci;G)

S(ci|Cin, Y ) = L(Y |Cin,ci)−L(Y |Cin)
L(Y |Cin)

Polarity(ci|Cin, Y )← (S(ci|Cin, Y ), Tp, Tn) /* Polarity of ci */

Ĉcc ← Append(ci, Polarity(ci|Cin, Y ))

return Ĉcc

B IMPLEMENTATION DETAILS

Since our methods primarily focus on how the generator utilizes the retrieved contexts, we maintain
the same setup for the retrieval process across all experiments. The details of truncation, query
formation, and the retrieval procedure have been introduced in previous sections. In this section, we
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Table 5: Training data statistics.

Completion Setting Line Chunk Function Total

Left-to-right Infilling Left-to-right Infilling Left-to-right Infilling

Instances 6982 7056 7850 7746 7415 6561 43610
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Figure 5: The statistics of chunk polarities of training data.

will outline the basic prompt structure used for code generation, followed by the implementation
details of both the baseline models and our proposed methods.

Prompt Format. We adopt the same prompt format for both the baselines and our proposed methods
to ensure consistency. Since our experiments are conducted in both the left-to-right and infilling
settings, we standardize the prompt format using the fill-in-the-middle structure for fair comparison.
Additionally, following the approach in (Zhang et al., 2023; Wu et al., 2024), we represent the cross-
file contexts using both natural language descriptions and the token # to denote code snippets. To
provide structural information, the original file path of each code chunk is also included. A typical
chunk is verbalized as:

#Here are relevant code fragments from other files of the repo:
# -----
# the below code fragment can be found in:
# huggingface diffusers/examples/dreambooth/train dreambooth lora.py
# -----
# pipeline = DiffusionPipeline.from pretrained(
# args.pretrained model name or path, revision=args.revision,
# torch dtype=weight dtype
# )
# pipeline.scheduler = ...
# ...

Baseline Implementation. To ensure consistency across different baselines, we formatted prompts
for the no-retrieval and full-retrieval settings based on the same retrieval setup and prompt structure.
In the full-retrieval baseline, cross-file contexts are ordered by their Jaccard similarity score. For
the adaptive retrieval baseline i.e., RepoFormer, due to the absence of an open-source dataset as
well as its model, we trained RepoFormer on the same dataset used for REPOFILTER to ensure
a fair comparison. RepoFormer is designed to determine whether retrieval is necessary for code
completion. To achieve this, we adapted our dataset, labeling instances with no positive cross-file
samples as no retrieval needed, while those with relevant cross-file contexts were labeled as retrieval
needed. This resulted in 20,076 instances labeled as the no retrieval needed and 23,534 instances
labeled as the retrieval needed. Additionally, we introduced the special token <MC> to indicate
whether retrieval is required in the prompt for model training. RepoFormer was trained using the
same data construction process and hyperparameter settings as REPOFILTER, ensuring that the
comparison between the two models remains fair and consistent.
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Table 6: Code completion performance when adopting UniXcoder as a retriever.

Completion Setting RAG Strategy Line API Function

EM ES EM ES ES

Infilling Full Retrieve 57.81 77.45 46.40 72.83 49.86
RepoCoder 60.50 78.79 48.16 75.33 55.03

REPOFILTER 60.88 79.53 49.09 77.62 53.62
REPOFILTER + RepoCoder 61.38 79.80 50.72 77.80 55.17

Left-to-right Full Retrieve 48.06 68.75 38.15 63.70 48.28
RepoCoder 51.44 70.16 39.90 65.91 49.07

REPOFILTER 51.00 69.52 40.34 67.48 48.90
REPOFILTER + RepoCoder 52.44 71.64 40.84 69.17 50.07

C GENERALIZATION OF REPOFILTER ON OTHER RETRIEVERS

We employ sparse retrieval in our main experiments, as previous work has demonstrated that sparse
retrievers perform well in repository-level code completion, offering comparable results to dense
retrievers. However, since our methods primarily focus on filtering the retrieved contexts, they
should, in principle, be generalized to different retrieval methods, regardless of whether they are
sparse or dense.

C.1 UNIXCODER

To explore the generalizability of our approach to dense retrievers, which may produce different
retrieved contexts, we experimented with UniXcoder (Guo et al., 2022) as the dense retriever. We
leverage UniXCoder to embed each cross-file chunk as well as the query from the in-file preceding
code chunk. Then the candidate chunks are retrieved by the cosine similarity between the embedded
vector of cross-file chunks and the query chunk. We maintained all indexing and query settings
unchanged to ensure consistency in evaluation. Our model was then tested on the RepoEval dataset
under the left-to-right and infilling settings. The results in terms of reference-based metrics are
shown in Table 6.

The results show that REPOFILTER consistently improves performance compared to full-retrieve,
which aligns with our findings from the main experiments. This suggests that REPOFILTER can
generalize to other retrieval methods. Furthermore, when comparing the results with those from
the main experiments, we observe that using UniXcoder does not outperform sparse retrieval and
slightly reduces efficiency. This outcome is consistent with previous research (Zhang et al., 2023;
Ding et al., 2024a), and we hypothesize that in repository-level code completion, the preceding
code may not always convey the necessary intent for completion. As a result, semantically similar
chunks retrieved by dense methods may not always contribute meaningfully to the task. While sparse
retrieval also does not specifically capture the intent behind the code, its token-level similarity can
help retrieve useful chunks, particularly when similar API or function names are involved. However,
this approach is still suboptimal. Future research should explore methods that extract the underlying
intent of the incomplete code and retrieve truly relevant chunks based on that intent.

C.2 REPOCODER

In addition to conventional dense or sparse retrievers, some research has specifically designed re-
trieval frameworks tailored for repository-level code completion, aiming to retrieve more accurate
and helpful cross-file contexts. A representative work in this area is RepoCoder (Zhang et al., 2023),
which employs an iterative retrieval approach, incorporating the model’s generated content into sub-
sequent retrieval rounds. In our implementation, we kept all retrieval settings consistent with our
main experiment and conducted two iterations of retrieval. The results for RepoCoder are also pre-
sented in the table 6, demonstrating consistent improvements over the one-time retrieval baseline.
Building on this foundation, we further applied REPOFILTER to their framework to filter the final
round of retrieval results. From the table, we observe that our method further enhances RepoCoder’s
performance, illustrating that our approach can generalize to other sophisticatedly designed retrieval
frameworks.
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D DISCUSSIONS

This work focuses on analyzing and filtering retrieved cross-file contexts in the scenario of
repository-level code completion. However, there are several limitations in our current study. For
instance, our analysis and experiments are confined to Python and Python repositories, without ex-
ploring whether our labeling method and REPOFILTER can be extended to other programming lan-
guages. Future work will address this limitation by investigating and expanding to a broader range
of languages. Additionally, most of our evaluations rely on reference-based metrics. In the context
of code completion and generation, especially for longer completion targets such as chunks or func-
tions, execution-based metrics, such as unit tests, provide a more accurate assessment of completion
quality. Developing such benchmarks would establish a stronger foundation for further research in
this domain. Beyond repository-level code completion, other tasks in the code domain, such as code
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Figure 6: Ablations of threshold setting of signal tokens on extended tasks

generation and code repair, could potentially benefit from retrieval-augmented generation (RAG) to
enhance model performance. Our methods can be extended to these tasks to analyze how retrieved
code snippets influence the generated outputs. Notably, our likelihood-based metric for identifying
the polarity of retrieved contexts is model-agnostic and does not impose strict requirements on data
formats, such as being specific to repository-level completion or code-related tasks. This makes it
promising for application in knowledge-intensive natural language tasks like question answering.
Exploring whether this metric remains effective for more diverse natural languages is an intriguing
direction for future research.
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E EXTENDED ABLATION STUDIES

In Section 6.5, we analyzed the impact of the threshold setting for signal tokens during the infer-
ence process on the model’s completion performance, cross-file context length, and the number of
additional tokens generated in the ReproEval-API completion task. To further explore whether this
threshold setting affects these three aspects consistently across other datasets and assess its gener-
alizability, we retained the same ablation setting and conducted ablation studies on the other four
tasks from the main experiment. The results, shown in the figure 6, indicate a similar pattern across
these tasks. Specifically, setting the threshold for the two signal tokens to 0.2–0.3 achieves a relative
balance between efficiency and performance, yielding the optimal trade-off.

F Case Study

In this section, we present a case study to illustrate how our model determines the polarity of each
chunk and utilizes filtering to facilitate correct code generation. In the example depicted below,
the <prefix> contains a portion of the preceding code, while the <suffix> section shows the
model initiating the retrieving process by first outputting <MC>. Subsequently, the model sequen-
tially evaluates each chunk, outputting the corresponding polarity token at the end of each chunk
(denoted by a special end-of-chunk token).

When a chunk is identified with <pos>, the model further evaluates the sufficiency of the context.
Once the context is deemed sufficient, the model outputs <EC> and directly proceeds with code
generation.

In this case study, we compare the generation results of the baseline with full-retrieval and our
framework. Notably, our framework’s output exactly matches the ground truth, whereas the base-
line generates incorrect results. We attribute the baseline’s failure to being misled by the first neg-
ative chunk, which involves interval computations and symbolic mappings. These suggest testing
WildFunction in a more complex applied context, leading to incorrect guidance.

In contrast, the two chunks identified as ¡pos¿ provide critical support for the correct completion.
One chunk shows how objects like Function are instantiated, directly informing the appropriate com-
pletion for WildFunction. Another chunk clearly explains the purpose and usage of WildFunction
through its docstring, further reinforcing the correct completion.

This demonstrates how our framework effectively filters and prioritizes relevant contexts, enabling
precise code generation. <PREFIX>

1 ...
2

3 def test_sympy__core__function__Application():
4 from sympy.core.function import Application
5 assert _test_args(Application(1, 2, 3))
6

7

8 def test_sympy__core__function__AppliedUndef():
9 from sympy.core.function import AppliedUndef

10 assert _test_args(AppliedUndef(1, 2, 3))
11

12

13 def test_sympy__core__function__Derivative():
14 from sympy.core.function import Derivative
15 assert _test_args(Derivative(2, x, y, 3))
16

17

18 @SKIP("abstract class")
19 def test_sympy__core__function__Function():
20 pass
21

22

23 def test_sympy__core__function__Lambda():
24 assert _test_args(Lambda((x, y), x + y + z))
25
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26

27 def test_sympy__core__function__Subs():
28 from sympy.core.function import Subs
29 assert _test_args(Subs(x + y, x, 2))
30

31

32 def test_sympy__core__function__WildFunction():

<SUFFIX>

1 <mc>
2 # Here are some relevant code fragments from other files of the repo:
3 # -----
4 # The below code fragment can be found in Shardul555/sympy/sympy/solvers/

ode/tests/test_single.py
5 _ode_solver_test(

_get_examples_ode_sol_nth_linear_undetermined_coefficients)
6

7

8 def test_nth_order_reducible():
9 from sympy.solvers.ode.ode import _nth_order_reducible_match

10

11 F = lambda eq: _nth_order_reducible_match(eq, f(x))
12 D = Derivative
13 assert F(D(y*f(x), x, y) + D(f(x), x)) is None
14 assert F(D(y*f(y), y, y) + D(f(y), y)) is None
15 <End_of_Chunk><neu>
16

17 #####################################################
18 #####################################################
19 # -----
20 # The below code fragment can be found in Shardul555/sympy/sympy/solvers/

ode/tests/test_single.py
21 @_add_example_keys
22 def _get_examples_ode_sol_almost_linear():
23 from sympy import Ei
24 A = Symbol(’A’, positive=True)
25 f = Function(’f’)
26 d = f(x).diff(x)
27

28 return {
29 <End_of_Chunk><pos><mc>
30 #####################################################
31 #####################################################
32 # -----
33 # The below code fragment can be found in Shardul555/sympy/sympy/sets/

tests/test_sets.py
34 x = Symbol(’x’, real=True)
35 assert Interval(0, x).free_symbols == {x}
36

37

38 def test_image_interval():
39 from sympy.core.numbers import Rational
40 x = Symbol(’x’, real=True)
41 a = Symbol(’a’, real=True)
42 assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2)
43 assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \
44 <End_of_Chunk><neg>
45 #####################################################
46 #####################################################
47 # -----
48 # The below code fragment can be found in Shardul555/sympy/sympy/solvers/

ode/tests/test_ode.py
49 def test_issue_4785():
50 from sympy.abc import A

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

51 eq = x + A*(x + diff(f(x), x) + f(x)) + diff
52 (f(x), x) + f(x) + 2
53 assert classify_ode(eq, f(x)) == (’1st_linear’, ’almost_linear’,
54 ’1st_power_series’, ’lie_group’,
55 ’nth_linear_constant_coeff_undetermined_coefficients’,
56 ’nth_linear_constant_coeff_variation_of_parameters’,
57 ’1st_linear_Integral’, ’almost_linear_Integral’,
58 ’nth_linear_constant_coeff_variation_of_parameters_Integral’)
59 # issue 4864
60 <End_of_Chunk><neu>
61 #####################################################
62 #####################################################
63 # -----
64 # The below code fragment can be found in sympy/sympy/core/function.py
65 class WildFunction(Function, AtomicExpr): # type: ignore
66 """
67 A WildFunction function matches any function (with its arguments).
68

69 Examples
70 ========
71

72 >>> from sympy import WildFunction, Function, cos
73 >>> from sympy.abc import x, y
74 >>> F = WildFunction(’F’)
75 >>> f = Function(’f’)
76 """
77 <End_of_Chunk><pos><ec>

REPOFILTER COMPLETION

1 def test_sympy__core__function__WildFunction():
2 from sympy.core.function import WildFunction
3 assert _test_args(WildFunction(’f’))

BASELINE COMPLETION

1 def test_sympy__core__function__WildFunction():
2 from sympy.core.function import WildFunction
3 from sympy import Symbol, imageset, Interval
4 x = Symbol(’x’, real=True)
5 f = WildFunction(’f’)
6 assert imageset(x, f(x), Interval(-2, 2)) == imageset(x, f(x),

Interval(-2, 2))
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