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Abstract

Program induction is a typical approach that001
helps Large Language Models (LLMs) in com-002
plex knowledge-intensive question answering003
over knowledge bases (KBs) to alleviate the004
hallucination of LLMs. However, accurate pro-005
gram induction requires extensive high-quality006
parallel data for a specific KB, which is scarce007
for low-resource KBs. Moreover, the hetero-008
geneity of questions and KB schemas limits009
the transferability of models trained on a single010
dataset. To this end, we propose REPANA,011
a reasoning path navigated program induction012
framework that enables LLMs to reason over013
heterogeneous KBs. We decouple the program014
induction into perceiving the KB and mapping015
questions to program sketches. Accordingly,016
our framework consists of (1) an LLM-based017
navigator, which retrieves reasoning paths of018
the input question from the given KB; (2) and019
a KB-agnostic parser trained on multiple het-020
erogeneous datasets, which takes the retrieved021
paths and the question as input and generates022
the corresponding program. Experiments show023
that REPANA exhibits strong generalization024
and transferability. It can directly perform in-025
ference on datasets not seen during training,026
outperforming other SoTA low-resource meth-027
ods, even approaching the performance of su-028
pervised methods.029

1 Introduction030

Recently, incorporating knowledge bases (KBs)031

as external knowledge to augment large language032

models (LLMs) (Brown et al., 2020; OpenAI, 2023)033

in knowledge-intensive question answering has be-034

come a typical approach (Jiang et al., 2023a; Li035

et al., 2023b; Xie et al., 2022) to address the chal-036

lenge of hallucination (Huang et al., 2023), namely037

the tendency that LLMs confidently make up factu-038

ally incorrect answers.039

Among these works, there are two typical meth-040

ods. The first is program induction (PI) (Gu et al.,041

Question:
What is the mountain with the highest elevation in France?

Path Navigation in :
 [France, located in(backward), type: mountain, elevation]
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 Find(France).Relate(located in, backward).FilterConcept

(mountain).SelectAmong(elevation, largest)
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Figure 1: The PI model trained on datasets built on
Wikidata fails to reason on Freebase since the label
“highest point” in Freebase is not included in its schema.
The typical search-and-prune agent-based method (Sun
et al., 2024) may fails to deal with some complex ques-
tions due to lack of dialogue history or corresponding
operation such as back-reference.

2021) that translate a given question into an inter- 042

pretable logical form, such as KoPL (Cao et al., 043

2022a) or SPARQL (Pérez et al., 2006), which is 044

executable against the KB to obtain the answer. 045

Multiple techniques are employed to boost perfor- 046

mance, such as retrieval augmentation (Ye et al., 047

2022), in-context learning (Li et al., 2023a), and 048

instruction tuning (Luo et al., 2023). However, to 049

achieve strong performance, these works typically 050

require training on a single KB with a large number 051

of question-program pairs, which are difficult to 052

obtain by manual annotation. The second is the 053

agent-based method (Jiang et al., 2023a; Sun et al., 054

2024; Gu et al., 2023) that uses LLMs to dynam- 055

ically explore the knowledge graph step by step 056

with predefined actions such as searching and prun- 057
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ing. However, these methods may be restricted by058

the incompleteness of actions, unable to answer059

questions that require complex reasoning opera-060

tions. Although Jiang et al. (2024) defines a more061

comprehensive toolbox, the application of complex062

tools still relies on large amounts of training data.063

As shown in Figure 1, existing PI methods heav-064

ily rely on high-quality training data and lack trans-065

ferability across heterogeneous datasets; mean-066

while, agent-based methods may only handle lim-067

ited types of complex questions due to incomplete068

actions. To tackle these problems, we propose069

REPANA, the reasoning path navigated PI frame-070

work that enables LLMs to reason over heteroge-071

neous questions and KBs.072

Inspired by the idea indicated by recent stud-073

ies (Cao et al., 2022b), we hypothesize that the074

ability to map questions to program sketches (i.e.075

the composition of program functions) is trans-076

ferable across KBs. Unlike existing PI models077

that simultaneously learn the KB schema and the078

question-to-program mapping from parallel data,079

we decouples and reconstructs the process into two080

stages. Specifically, the process corresponds to081

two key modules in the framework. The first is082

the LLM-based KB navigator that locates the rea-083

soning path that contains the necessary program084

arguments such as relation labels in KB, enabling085

the system to perceive the local schema of the KB.086

The other is the KB-agnostic parser trained on087

rich-resource KB, primarily learning the program’s088

syntax and grammar and mapping question to pro-089

gram sketches that is transferable across KBs.090

Through this novel two-stage design, we ensure091

retrieval efficiency and accuracy, reducing noise092

while enabling reasoning on low-resource KBs093

without additional training. Specifically, in the first094

stage, we design an LLM-based KB-walk search095

strategy similar to beam search. Starting from the096

root entity of question, the navigator selects the097

most relevant relations in each walking step and re-098

turn the most viable path through backtracking. In099

the second stage, to prevent the parser from memo-100

rizing the KB schema, we expand the rich-resource101

KB into more diverse training data through para-102

phrasing and then perform mixed instruction tuning103

on these data. Since the LLM-based KB naviga-104

tor is training-free and the KB-agnostic parser is105

trained only once, REPANA addresses the issue of106

transferability, thereby alleviating the shortage of107

annotated parallel training data.108

In the experiment, we sample the training data109

from KQA Pro (Cao et al., 2022a), which is based 110

on Wikidata (Vrandecic and Krötzsch, 2014), as 111

the rich-resource KB, and select the general do- 112

main KB Freebase (Bollacker et al., 2008) and 113

the domain-specific KB WikiMovies (Miller et al., 114

2016) as the low-resource target. Extensive ex- 115

periments demonstrate that REPANA outperforms 116

SoTA low-resource PI methods with up to 20 times 117

smaller backbone model, even approaching the per- 118

formance of supervised methods. Our contributions 119

in this paper include: (1) proposing REPANA, a 120

novel reasoning path navigated program induction 121

framework that enables LLMs to universally rea- 122

son over the low-resource datasets; (2) demonstrat- 123

ing the effectiveness and indispensability of our 124

decoupled two-stage generation strategy through 125

extensive experiments and ablation studies. 126

2 Related Work 127

2.1 Knowledge Base Question Answering 128

Knowledge Base Question Answering (KBQA) 129

aims to answer natural language questions based 130

on fact triples stored in the KB, such as Wiki- 131

data (Vrandecic and Krötzsch, 2014) and Free- 132

base (Bollacker et al., 2008). Typical methods 133

for solving KBQA can be broadly divided into 134

two groups: (1) program induction-based method, 135

which converts questions to executable logical 136

forms called program. The programs are usually 137

generated by step-by-step graph search (Gu et al., 138

2021; Jiang et al., 2023b,a; Gu et al., 2023) or by 139

sequence-to-sequence model trained with parallel 140

data (Ye et al., 2022; Cao et al., 2022b; Shu et al., 141

2022; Yu et al., 2023; Luo et al., 2023); (2) infor- 142

mation retrieval-based method, which usually out- 143

puts the answer by retrieving triples and subgraphs 144

related to the question from KB or embedded mem- 145

ory (Sun et al., 2019; Shi et al., 2021; Zhang et al., 146

2022; Oguz et al., 2022; Dong et al., 2023). Re- 147

cent works (Jiang et al., 2023a,b; Sun et al., 2024) 148

that leverage LLMs as agents to explore the KB 149

also belong to this group. They search the KB 150

by prompting the LLMs step by step for the next 151

action. However, they can only handle a limited 152

range of questions with their pre-defined actions, 153

and cannot easily adapt between different KBs. 154

2.2 Low-resource Program Induction 155

One line of work is utilizing the in-context-learning 156

ability of LLMs to perform few-shot program gen- 157

eration (Li et al., 2023a; Bogin et al., 2023; Gu 158
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et al., 2023), but their performance usually is lim-159

ited by the context window. They also face chal-160

lenges in distinguishing similar schema items in161

the KB, causing models to overly rely on post-162

processing steps like relation linking. A varia-163

tion (Li et al., 2024) is using LLMs to few-shot164

generate question given the program, then train-165

ing a smaller model with the generated pseudo166

pairs. But their programs either come from exist-167

ing datasets or templates, leading to insufficient168

diversity and scalability.169

The other line is program transfer method, which170

leverages the annotation from rich-resource KB to171

aid program induction for low-resource KB. Cao172

et al. proposes a two-stage parsing framework that173

first generates the program sketch, then fills in the174

rest arguments by searching the KB. However, due175

to the heterogeneity, it performs poorly without176

fine-tuning using annotated data from low-resource177

KB. Zhang et al. proposes a plug-and-play frame-178

work that encodes the KB schema into the param-179

eters of a LoRA (Hu et al., 2022) module. But180

parameterizing the KB may introduce additional181

errors and result in a loss of interpretability.182

We follow the second line of work, aiming to ad-183

dress the challenge of transferability, interpretabil-184

ity, and accuracy at the same time.185

3 Preliminary186

In this section, we introduce the formal definition187

of the knowledge base and then formulate our task.188

Knowledge Base (KB). A knowledge base can be189

formally described by G = {E , C,R, T }, where E ,190

C, R and T denote the set of entities, concepts, re-191

lations and triples, respectively. Each entity e ∈ E192

is assigned a unique ID and belongs to one or193

more concepts c ∈ C. R contains the special194

relation re =“instanceOf”, rc = “subClassOf”195

and the general relation set Rl = {rl}. Given196

E , C and R, T can be divided into three subsets:197

(1) “instanceOf” triple set Te = {(e, re, c)|e ∈198

E , c ∈ C} ; (2) “subClassOf” triple set Tc =199

{(ci, rc, cj)|ci, ci ∈ C}; (3) general relation set200

Tl = {(ei, rl, ej)|ei, ej ∈ E}.201

Program. As stated before, we choose KoPL202

as the program language, for it is well modu-203

larized and LLM-friendly. KoPL is composed204

of symbolic functions with arguments arranged205

in tree structure. Each function defines a fun-206

damental operation in KB. This tree can be207

serialized with post-order traversal into y =208

⟨f1(arg1), · · · , fi(argi), · · · , f|y|(arg|y|)⟩ where 209

fi ∈ F , argi ∈ E ∪ C ∪ Rl ∪ {∅} 210

Problem Formulation. We assume that the 211

KB is available and there are one or more root 212

entities in the given question. We further assume 213

that there exists a viable reasoning path from 214

the root entity to the answer. Formally, given a 215

KB G and a natural language question x with 216

its root entity {e1, · · · , em}, we aim to first 217

retrieve the corresponding reasoning path p = 218

{⟨e1, r11, · · · , r1k1⟩, · · · , ⟨em, rm1, · · · , rmk2⟩}, 219

where rij ∈ R, k1, k2 ≤ k - the maximum path 220

length. Then use x along with p as input to 221

generate the program y. 222

4 Framework 223

In this section, we introduce the main components 224

of our reasoning path navigation framework and 225

how they work together. 226

First, we want to give an overview of the frame- 227

work. As mentioned in the introduction, we face 228

two major challenges in implementing the system: 229

(1) how to make sure the knowledge retrieving is 230

accurate and concise, while applicable to all KBs; 231

(2) how to ensure the parser does not over fit to one 232

KB’s schema. To address these two problems, we 233

introduce our reasoning path navigated program in- 234

duction framework, containing the KB navigator 235

with KB-walk search strategy and the KB-agnostic 236

parser with denoising mixed instruction tuning 237

strategy, shown in Figure 2. 238

The framework generally follows the two- 239

stage retrieve-and-generate paradigm. In the 240

training phase, we first employ the KB navi- 241

gator module to extract the reasoning path p 242

of the input question q from the corresponding 243

KB. Then we gather all the questions QS = 244

{QS1 , QS2 , · · · , QSn} from n expanded KBs 245

KBS = {KBS1 ,KBS2 , · · · ,KBSn} and their 246

corresponding reasoning path to construct an in- 247

struction dataset RS = {(q, p, o)}, where o is the 248

output program. After instruction tuning the KB- 249

agnostic parser using the mixed dataset, it is ready 250

to inference on the target low-resource KBT . Sim- 251

ilar to the training phase, the framework also need 252

to first retrieve the reasoning path p from the target 253

KBT , and then feed both the input question q and 254

its retrieved path p with instructions to the parser, 255

which will finally output the program executable 256

on the target KBT . 257

In the following sections, we will introduce the 258

3



initialize root
filter relations (     )
filter entities (     )
prompt LLM
walking step x

backtracking & ranking(     )
Reasoning Path

1. France – [start] – highest point(forward) – elevation above sea
2. France – [start] – country(backward)

KB

Question:
What is the elevation of the highest mountain in France? {“instruction”: Given a question and its possible 

reasoning path from root entities …
“input”: Reasoning path: [ France, [start]. …  ],
question: what is the elevation of the …
“output”: Find (France). Relate (highest point, 
forward).QueryAttribution(elevation above sea}

Navigator

Navigator

4808.7m

France

EU

Macron

Mt. Blanc(1)

Europe

Aiguille
du Midi(1) Louvre

Country(1)
Country(1)

head of state

elevation 
above sea(2)

continent

part of 
highest point(1)

Training Phase

Inference Phase

…
𝐾𝐵!! 𝐾𝐵!"

𝐾𝐵"

𝑄!! = {(𝑞, 𝑜)} 𝑄!" = {(𝑞, 𝑜)}
𝑅! = {(𝑞, 𝑝, 𝑜)}

𝑅" = {(𝑞, 𝑝)}

𝑄" = {𝑞}

Instruction tuning

{“instruction”: Given a question 
and its possible reasoning path 
from root entities in KB, …
“input”: Reasoning path: [ … ],
question: who is the coach of the 
team owned by Steve Bisciotti }

“output”: Find(Steve Bisciotti ). 
Relate(sports.professional_ 
sports_team.owner_s, forward). 
Relate(american_football.footba
ll_team.current_head_coach, 
forward)

Inference

Parser

LoRA

(x)

Figure 2: An illustration of the training and inference of REPANA framework.

implementation details of the main components of259

our framework: KB Navigator (Section 4.1) and260

KB-agnostic parser (Section 4.2). We will also in-261

troduce other modules that contribute to the frame-262

work (Section 4.2.2).263

4.1 KB Navigator264

Given a question, the KB navigator leverages its un-265

derlying KB to identify the corresponding reason-266

ing paths. We propose the KB-walk search strategy267

based on two observations: (1) despite differences268

between schemas of KBs, all KBs are constructed269

with knowledge elements such as entity, relation270

and concept, and are organized as a graph. So it is271

plausible to perform a walk algorithm on the graph272

in all KBs. (2) LLMs are extremely good at select-273

ing the correct relations relate to the question from274

a bunch of candidates without further fine-tuning,275

which is suitable for navigation.276

4.1.1 Reasoning Path Construction277

Section 3 has given a general description of KB.278

Based on it, here we define four groups of knowl-279

edge elements in KBs: entity, concept, relation,280

qualifier. Entity, concept and relation are consis-281

tent with their meanings in KB, except that the282

“relation” encompasses both relations between en-283

tities (e.g., part of) and attributes between a entity284

and a value (i.e., population), which in this paper285

we uniformly refer to it as relation. The qualifier286

is the extra description related to the triple in some287

KBs, e.g., ((France, part of, EU), start time, 1957).288

In the construction of our reasoning path, we289

take the entity e and relation r to form the main290

structure of the path. A reasoning path can be291

generally denoted as pr = ⟨er, [start], r1, · · · , rk⟩, 292

where er represents the root entity of the path, and 293

k is the walking range. Additionally, the concept 294

c and qualifier u are also appended to path p as an 295

extra list for the convenience of parsing. Note that 296

there might be multiple root entities {er}r=1,2,··· ,m, 297

in which case the KB navigator will return a path 298

list p = {pr}, each corresponding to one root entity. 299

Some paths may partially overlap, and all of them 300

are fed to the next step of parsing as the input. 301

4.1.2 KB-walk Search Process 302

The process of KB-walk contains the following 303

4 steps: initialize, filter relations, filter entities, 304

backtrack & rank. The 2nd and 3rd steps will be 305

repeated k rounds. k is maximum walk range. 306

Initialize. In this step, KB navigator mainly initial- 307

izes the root entities {er}r=1,2,··· ,m of the search 308

algorithm. We use the topic entities of the input 309

question as the root entities, which is often pro- 310

vided by the dataset. Existing off-the-shelf named 311

entity recognition models can also satisfy the need, 312

which is not the main focus in this work. 313

Filter relations. This step aims to explore the 314

surroundings of the given start nodes, and to select 315

suitable directions for advancement from the root 316

nodes in each of the total k rounds of traversal. 317

Therefore, there are two main actions in this step: 318

(1) Query. In the i-th round, the start entities 319

are denoted as Ei = {e1,i, e2,i, · · · , eb,i}, where 320

b = m when i = 1, otherwise b equals beam 321

size. We query the KB and gather all the rela- 322

tions R̂ = {(r1,1, r1,2, · · · ), · · · , (rb,1, rb,2, · · · )} 323

that connects the each entity in Ei inwardly and 324

outwardly. In Figure 2, E1 = { France }, R1 = { 325
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highest point, part of, head of state, country }.326

(2) Filter. After the Ri is gathered, we prompt327

the LLM to choose up to b relations from Ri (could328

be ’no answer’) given the question and Ei, and329

get Fi = {r1, r2, · · · , rb}. In the case of Figure 2,330

Fi = { highest point, country }.331

Filter entities. This step aims to take a step for-332

ward along Fi, walk onto the target entity, and then333

filter them and form Ei+1 as the start nodes of i+1334

round. There are also two actions:335

(1) Query. In the i-th round, we start from Ei336

along Fi = {r1, r2, · · · , rb}, yielding b beams of337

target Ê = {(e1,1, e1,2, · · · ), · · · , (eb,1, eb,2, · · · )}.338

In Figure 2, the Ê = {(Mt. Blanc),(Louvre, Aigu-339

ille du Midi)}.340

(2) Filter. We need to select one entity from each341

of the beam buckets to get Ei+1. We can prompt342

the LLM multiple times to get the answer, but in343

practice, considering the cost, we randomly select344

one entity from each bucket, assuming that entities345

in one bucket are of the same type and share similar346

relations. Since there is no intermediate entity in347

the reasoning path, we find it works fine in our348

framework. In Figure 2, Ei+1 = {Mt. Blanc}.349

Backtrack & rank. In the final step, we backtrack350

the path to the root entity and collect the path of all351

lengths as candidates, and then prompt the LLM352

to rank the path based on relevance to the question.353

Noted that the relations in the path are tagged with354

their original direction. In the case of Figure 2,355

there are two candidates and LLM gives a rank.356

4.2 KB-agnostic Parser357

To avoid overfitting the parser to a single KB358

schema, making it difficult to transfer to other ques-359

tion datasets built on different KBs, we employ de-360

noising instruction tuning with the reasoning path361

as part of the input. Since the reasoning path may362

contain a small amount of noise, such as the omis-363

sion of some schema items, the parser must denoise364

from the input to construct the program.365

As introduced above, we gather questions from366

multiple questions from the rich-resource KB and367

retrieve their reasoning path to construct a dataset368

Rs = {(q, p, o)}, where o is the output program.369

To construct the instruction tuning dataset, we first370

convert the entity IDs (e.g., m.0f8l9c) into friendly371

names (e.g., France). Then we standardize these372

data into a unified format, where q and p are put373

into “input” tag and o is in “output” tag, as shown374

in Figure 2. The “instruction” is consistent across375

the training and testing sets.376

4.2.1 Training Data Expanding 377

To increase the diversity of the training set, we 378

also paraphrase the training set into n expanded 379

sets. Not only the input question, but also the 380

schema items in the output program are para- 381

phrased. For example, the relation “Highest point” 382

may be paraphrased into “Peak elevation”. In this 383

way, we expand the original KB into n variations 384

KBS = {KBS1 ,KBS2 , · · · ,KBSn}. Through 385

the denoising mixed instruction tuning, the parser 386

is expected to focus more on program’s sketches 387

(i.e., the function names and their structure), so that 388

generating the function’s argument will be more 389

like a selection and completion task. 390

4.2.2 Parameter Efficient Fine-tuning 391

REPANA also adopts the parameter efficient fine- 392

tuning technique with LoRA (Hu et al., 2022), a 393

popular type of expandable module for LLMs with 394

fewer trainable parameters. Specifically, LoRA 395

adds an extra forward pass to the specified matrix 396

Wi ∈ Rm×n within the LLM, changing the original 397

pass h = Wix into h = (Wi + AiBi)x, where 398

Ai ∈ Rm×r, Bi ∈ Rr×n, r ≪ min(m,n). During 399

training, the original parameter Wi is frozen and 400

only Ai, Bi is trainable. In this way, REPANA 401

is able to reduce training costs while using larger 402

LLMs as the backbone model. 403

4.3 Post-Validation Modules 404

The post-validation modules in the framework con- 405

sist of a direction check and a relation check. In 406

the experiment, we observe that the parser often 407

makes mistakes in the direction of relation, even 408

the directions are already indicated in the reason- 409

ing path. To solve this problem, we leverage a 410

rule-based correction module, where the final pro- 411

gram undergoes verification based on the direction 412

of the same relations contained in the reasoning 413

path of the question. We found that this strategy 414

alone can significantly improve the accuracy of the 415

final model. Additionally, due to the possible ab- 416

sence of schema items in the reasoning path, the 417

model sometimes generates a similar label based 418

on the training data. In this case, we substitute the 419

label with the most similar label in the target KB. 420

5 Experiments 421

5.1 Datasets 422

Rich-resource Dataset. KQA Pro (Cao et al., 423

2022a) built on Wikidata is a popular and well- 424
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annotated rich-resource KBQA dataset. We sample425

from it to construct a 60k training set, where there426

is at least one topic entity in each question.427

Low-resource Dataset. Apart from KQA Pro, we428

adopt GrailQA (Gu et al., 2021), WebQuestions429

Semantic Parses(WebQSP) (Yih et al., 2016), Com-430

plexWebQuestions (ComplexWQ) (Talmor and Be-431

rant, 2018) and MetaQA (Zhang et al., 2018) as432

the target low-resource datasets. The first three433

datasets are built on Freebase, a general domain434

KB. For MetaQA, it is built on WikiMovies in the435

domain of movies. So it can evaluate our frame-436

work’s transferability to specific domains in detail.437

In addition, it is divided into three subsets by the438

reasoning hops, making it convenient to study per-439

formance in single-hop and multi-hop scenarios.440

Since most relation in MetaQA’s KB are covered441

by KQA Pro, we remove certain data entry to make442

sure that these schema items are not included in the443

KQA Pro training set. Overall, almost all schema444

items in the target datasets are unseen in the source445

datasets. We use the test questions of KQA Pro446

to validate if REPANA can well generalize on the447

mixed training data, and use the test question from448

the latter four aims to validate the transferability.449

5.2 Baselines450

In this section, we mainly introduce the super-451

vised and low-resource PI methods for the WebQSP,452

CWQ and MetaQA.453

The supervised models include: (1) Pull-454

Net (Sun et al., 2019) proposes to iteratively con-455

struct a subgraph from KB and text for effective456

multi-hop reasoning; (2) TransferNet (Shi et al.,457

2021) presents a model that incorporates transpar-458

ent graph searching and attention-based method459

to perform interpretable reasoning. (3) RnG-460

KBQA (Ye et al., 2022) introduces a retrieve-and-461

generate framework that enumerates and ranks all462

relevant paths for program generation. (4) ChatK-463

BQA (Luo et al., 2023) presents an instruction464

tuning method for LLMs, which perform PI by first465

generating and then grounding labels to the KB.466

(5) KG-Agent (Jiang et al., 2024) introduces an467

LLM agent that is able to explore the KB with a468

set of pre-defined tools and performs a step-by-step469

reasoning by asking the LLM to take appropriate470

actions based on the history information.471

The low-resource methods are as follows: (1)472

StructGPT (Jiang et al., 2023a) can be regarded473

as an early version of KG-Agent with fewer opera-474

tions, but it has a wider range of applicability and475

does not require training data. (2) ToG (Sun et al., 476

2024) proposed a explore-and-think strategy based 477

on the knowledge graph, starting from the topic en- 478

tity, leverage LLM to select relevant relations and 479

reason on it. (3) KB-Binder (Li et al., 2023a) first 480

proposed to utilize the in-context learning ability 481

of LLMs to generate program with a few question- 482

program examples provided in the prompt. (3) 483

Pangu (Gu et al., 2023) introduces an PI method 484

that utilizes the LLM to rank the candidates in the 485

process of rule-based program expansion with in- 486

context learning. (4) ProgramTrans (Cao et al., 487

2022b) is the first to propose the program transfer 488

paradigm for low-resource scenarios, leveraging a 489

two-stage generation framework with an ontology- 490

guided pruning strategy. (5) KB-Plugin (Zhang 491

et al., 2024) presents a method that encodes the 492

KB schema into the model’s parameters to build a 493

plug-and-play framework for low-resource KBs. 494

5.3 Metrics 495

Following prior works (Cao et al., 2022a; Zhang 496

et al., 2024; Jiang et al., 2024), we use F1 score for 497

GrailQA, WebQSP and CWQ, and use Hit@1 for 498

MetaQA, and accuracy for KQA Pro. 499

5.4 Implementation 500

In experiments, we use the Llama-2-7B (Touvron 501

et al., 2023) and Meta-Llama-3-8B-Instruct (Meta, 502

2024) as the backbone LLM to train the parser. 503

The parameter of LoRA is set to r = 8, α = 32 504

during training. With respect to the KB navigator, 505

we use ChatGPT-3.5-turbo (OpenAI, 2024b) as the 506

navigation LLM and set the beam size to 5 and 507

walk range to 3. We utilize 4×A100 GPUs to train 508

the parser for 5 epochs with learning rate 1e − 4, 509

batch size 64, gradient accumulation 2 and weight 510

decay 0.01, with total time cost of about 20 gpu 511

hours. All the prompts used in the framework can 512

be found in Appendix A. 513

6 Results 514

6.1 Main Results 515

In this work, we focus on the transferability on the 516

low-resource KB. Therefore, we mainly compare 517

REPANA with low-resource methods. The results 518

are presented in Table 1 and 2. 519

In Table 1, the three datasets are all unseen dur- 520

ing training. On GrailQA and WebQSP, REPANA 521

outperforms most low-resource methods by a large 522

margin, despite models like StructGPT and Pangu 523
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Model 0GrailQA0 0WebQSP0 ComplexWQ0 MetaQA
01-hop0 02-hop0 03-hop0

Supervised

PullNet - 62.8 - 97.0 99.9 91.4
Transfernet - - - 97.5 100.0 100.0
RnG-KBQA 76.9 75.6 - - - -
ChatKBQA - 79.8 77.8 97.2 98.4 97.1
KG-Agent 86.1 81.0 69.8 97.1 98.0 92.1

Low-resource

ProgramTrans† - 53.8 45.9 - - -
KB-Binder(6 shots) 56.0 53.2 - 93.5 99.6 96.4
KB-Plugin 65.0 61.1 - 97.1 100.0 99.3
Pangu(100 shots) 62.7 68.3 - - - -
StructGPT† - 69.6 - 97.1 97.3 87.0
ToG(w/ ChatGPT) 68.7 76.2 57.1 - - -
ours(Llama2-7B)† 78.6 76.7 51.5 94.6 100.0 95.1

-w/o DC 64.2 58.6 26.3 89.3 94.6 90.5
ours(Llama3-8B)† 81.3 79.2 57.6 96.2 100.0 97.5

Table 1: F1 results on GrailQA, WebQSP and ComplexWQ. Hits@1 results on MetaQA. The † means the method
uses the oracle topic entities. DC means direction correcting. For all low-resource baselines, we report their results
without using any parallel data from the target dataset.

Model Accuracy

Supervised

RGCN (Schlichtkrull et al., 2018) 35.1
BART+KoPL (Cao et al., 2022a) 90.6
CFQ IR (Herzig et al., 2021) 89.0
GraphQ IR (Nie et al., 2022) 91.7
KG-Agent 92.2
Ours* 90.2

Low-resource

Fine-tuning 22.5
LLM-ICL 31.8
FlexKBQA (Li et al., 2024) 46.9

Table 2: Accuracy on KQA Pro. * is result of dev set.

using much larger backbone models, and is even524

comparable to some supervised methods. This indi-525

cates that REPANA performs excellently on ques-526

tions with fewer inference hops in WebQSP. We527

believe this is because REPANA can accurately pro-528

vide paths in the target KB that include the correct529

relations for the parser to select from, thus generat-530

ing correct programs. On the more difficult CWQ531

dataset with more hops, REPANA’s performance532

only exceeds ToG by 0.5%. In our observations,533

we found that REPANA’s path navigation is prone534

to errors in questions with longer inference chains,535

leading to much lower performance compared to536

supervised methods. Regarding MetaQA, since its537

KB is relatively small, most recent low-resource538

methods have achieved or even surpassed super-539

vised methods, and REPANA has also reached the540

level of SoTA. We noticed that all methods perform541

worse on 1-hop set compared to multi-hop sets. For542

REPANA, it is because the 1-hop dataset includes 543

“tag_to_movie” types, involving lookup of entities 544

from attributes. REPANA currently cannot handle 545

such questions that lack a topic entity, resulting in 546

relatively lower performance. 547

Table 2 presents the result on the dev set of KQA 548

Pro. We use the dev set so that we can exclude ques- 549

tions that have schema overlap with the training set, 550

so it can actually be regarded as zero-shot on un- 551

seen KB schema items, but we still put REPANA 552

into the supervised group. The results indicate 553

that REPANA’s performance on KQA Pro is com- 554

parable to supervised SoTA. Considering the fact 555

that we did not use the complete training set, and 556

the noise introduced in the retrieved path, we can 557

safely conclude that, REPANA generalizes well on 558

the paraphrased mixed heterogeneous training set. 559

6.2 Ablation Study 560

6.2.1 Mixed Training Effectiveness Evaluation 561

To evaluate the effectiveness of the proposed mixed 562

instruction tuning strategy, we compare REPANA 563

that trained on the original KQA Pro, and a differ- 564

ent number of the mixed variations of the original 565

dataset with the Llama-2-7B as the backbone model 566

for the parser. 567

On one hand, the results in Table 3 indicate that 568

even without paraphrasing the original KQA Pro 569

into a mix of variations of datasets, RENAPA with 570

only the help of input reasoning path can already 571

achieve 64.9 F1 score on WebQSP, which is com- 572
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Model WebQSP CWQ

REPANAkqapro 69.5 45.6
REPANAmixed−2 72.4 49.1
REPANAmixed−3 75.5 50.4
REPANAmixed−4 76.7 51.5

Table 3: Ablation on the effectiveness of mixed instruc-
tion tuning. kqapro, grailqa and mixed represents the
model trained on KQA Pro only, GrailQA only and the
mixed training set, respectively.

Model WebQSP CWQ

REPANAnone 12.6 05.3
REPANAlist 43.1 23.9
REPANApath 76.7 51.5

Table 4: Ablation on the form of path. none, list and
path means the input of no KB info, lists, and path.

parable to many low-resource methods such as KB-573

Plugin and Pangu. On the other hand, the increase574

of the different variations of the original KQA Pro575

dataset can indeed improve the performance on the576

task of transferring to low-resource heterogeneous577

data. Integrating three paraphrased variations with578

original KQA Pro dataset results in a 7% improve-579

ment in performance, validating the effectiveness580

of mixed training. Based on this, we can reasonably581

speculate that incorporating more heterogeneous582

training data would further enhance the model’s583

transfer capabilities.584

6.2.2 Reasoning Path Effectiveness Evaluation585

To validate the importance of the structure of rea-586

soning path as part of the input, we compare parsers587

that trained with three input of KB information: (1)588

gold program and reasoning path; (2) gold program589

and lists of schema items (entity, relation, concept,590

qualifier) (3) gold program only.591

Results in Table 4 show that apart from the ac-592

curate names of schema items in the target KB, the593

structures included in the reasoning paths are also594

crucial for the performance of transferability. If595

the input only includes the relevant schema items596

but lacks their structural information, the model597

will struggle to organize them correctly, resulting598

in a performance drop of more than half. More-599

over, the parser learning the KB schema solely600

from program-question pairs from the training set601

clearly cannot transfer to other heterogeneous KBs.602

6.2.3 LLMs Navigation Evaluation603

In this section we validate the basic observation604

that LLMs are highly skilled at selecting the cor-605

rect relations related to the question without further 606

fine-tuning. We evaluate ChatGPT-3.5-turbo (Ope- 607

nAI, 2024b), GPT-4o (OpenAI, 2024a), GLM-3- 608

Turbo (ThuDM, 2024) and GLM-4-9B on 100 one- 609

hop questions sampled from GrailQA. 610

In the experiment, we ask LLM to choose K 611

(K = {1, · · · , 5}) relations from the list of can- 612

didates, and record the recall score in the top-K 613

result (Hit@K). We run the experiment for three 614

times and results are shown in Figure 3. 615

1 2 3 4 5
Top-K

20

30

40

50

60

70

80

90

Re
ca

ll
Model

GLM-4-9B
GLM-3-Turbo
GPT-4o
ChatGPT-3.5-Turbo

Figure 3: Popular LLMs’ zero-shot performance of se-
lecting the one-hop relation based on the given question.

Note that here K is equivalent to the beam size 616

in our algorithm. The results show that these LLMs 617

perform well on this task under zero-shot condi- 618

tions, considering that Freebase is quite dense and 619

contains many similar relations. Specifically, GLM- 620

4-9B and GPT-4o are on par, both achieving a recall 621

rate of over 90% when the beam size is set to 5. 622

7 Conclusion 623

In this paper, we propose REPANA, a reasoning 624

path navigated program induction framework that 625

enables LLMs to universally perform reasoning 626

on low-resource datasets by providing the KB- 627

agnostic parser with the reasoning paths in tar- 628

get KBs with the help of the novel KB navigator. 629

REPANA achieves better performance on the four 630

heterogeneous target datasets with much smaller 631

backbone models compared to other low-resource 632

PI methods, even on par with some supervised 633

methods. The ablation studies further validate 634

the effectiveness of our proposed KB-walk retriev- 635

ing strategy and mixed instruction tuning in low- 636

resource scenarios. Although there are limitations 637

such as the path retrieval accuracy may drop with 638

the increase of the hops of question, we plan to 639

address these issues in the future work. 640
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Limitations641

In this section, we will discuss several limitations642

of this work. (1) The first limitation is that the643

proposed framework requires an initial node in the644

KB, hence it cannot answer questions that do not645

include any specific entity. For the future improve-646

ment of reasoning path retrieval, we believe a fea-647

sible approach is to sample pseudo-topic entities648

from the knowledge base (KB) based on the con-649

cept or other descriptions in the question, using650

them as the starting points for the walk. (2) Cur-651

rent path searching module is fully unsupervised by652

prompting LLMs, and its performance may drop653

when the hops of question increases, turning the654

reasoning path into noises. We will strive to address655

this issue in future work. (3) Due to the limited656

computing resources, we only use Llama-2-7B and657

Llama-3-8B-Instruct as backbone and adopted the658

parameter efficient training. A larger backbone and659

a fine-tuning on full parameters are expected to660

further improve the performance.661

8 Ethical Considerations662

All the datasets and models used in this work are663

publicly published with licenses. Our framework664

can effectively mitigates the hallucination of LLMs,665

preventing the generation of untrue content and666

false information. However, because it can be trans-667

ferred to any KB, there is a risk of being hacked by668

injecting harmful or false information into the KB.669

Therefore, additional protective measures should670

be taken in practical applications.671
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A Used Prompts in Experiment978

All the prompts used in the framework are shown979

in Table 5. To reduce cost, the path ranking prompt980

is replaced with random selection in practice as981

mentioned in the paper.982

B Error Analysis983

In this section we analyze the main types of error984

of REPANA. As shown in Table 6, we categorized985

them into the following groups:986

• Relation direction error. This is the most987

common error in experiment. The parser tend988

to overlook the direction of relation given in989

the path, and generate wrong direction. How-990

ever, it is an easy problem. As mentioned in991

the paper, we use a rule-based correction mod-992

ule to revise the generated program according993

to the retrieved path.994

• Long path ranking error. When the hops of995

the question increases, the length of the path996

goes longer, and it is more likely to result in997

errors in one of the searching steps. And when998

the path gets longer, there are similar paths999

in candidate, or the path start from one topic1000

entity of the question to another topic entity1001

instead of the answer. In both situations, it1002

is difficult for LLM to distinguish the differ-1003

ences and could make mistakes. The example1004

in Table 6 shows the second situation, where1005

the correct path contains two branches, each1006

one is from entity (goiás, bolivia) to answer1007

(Brazil). But in the retrieved path, the red re-1008

lations are repeated, leading the path from the1009

goiás to bolivia and bolivia to goiás.1010

• Multi-hop generation error. We find that1011

sometimes when the retrieved path is correct,1012

let’s say a 3-hop path, but the parser neglects1013

the last step of the path, only generate the first1014

two hops. This error is probably related to1015

the last ranking error, due to the path mistake1016

in the training set, resulting in the mismatch1017

between the input path and gold program.1018

• Program sketch induction error. This error1019

is another common error. It happens when the1020

question and program are very complex, e.g.,1021

multiple topic entities and long reasoning path.1022

This problem is probably because of the train-1023

ing data. Since we only use 30k pairs from1024

KQA Pro and GrailQA, and the complex ques- 1025

tion is rare, especially in GrailQA. Also, the 1026

correct reasoning path of complex question is 1027

difficult to retrieve, so there is a large chance 1028

of mismatching between path and program. 1029

12



Functionality Prompt

Filter relations In order to answer the question "%s", from the relations of relevant
entities %s, select the top %s relations that are most helpful to answer
the question: [%s]. Just answer the names.

Filter entities From the entity list: [%s] that maybe relevant to the question ’%s’,
select the top %s entity that are most helpful to answer the question.
Just answer the names.

Path ranking From the given list of relation paths in the knowledge base, select
the top %s paths that are most relevant to the knowledge required to
answer question %s.

The paths are: [%s], answer the complete path.

Training instruction ### Instruction: Given a question and its possible reasoning path
from root entities in knowledge base, generate a Logical Form query
according to the question.
Input: Reasoning paths: [%s]. Other elements - concept: [%s],
qualifier: [%s]. Question: %s.
### Output: %s ###

Table 5: The used prompts and instruction of the framework. %s means the corresponding content.

Error Type Example

Relation direction Question: what does jamaican people speak?
Path: [ jamaican, [start], location.country.languages_spoken(forward) ]
Output: Find(jamaican).Relate(location.country.languages_spoken,
backward. what()

Long path ranking Question: what does bolivia border and is the country that contains goiás?
Gold program: Find(goiás).Relate(location.country.administrative_
divisions, backward).Find(bolivia).Relate(location.location.adjoin_s,
forward).Relate(location.adjoining_relationship.adjoins, forward).And()
.What()
Gold path: [[goiás, [start], location.country.administrative_divisions
(backward)], [bolivia, location.location.adjoin_s(forward), location.
adjoining_relationship.adjoins(forward)]]
Retrieved path: [[ goiás, [start], location.country.administrative_divisions
(backward), location.location.adjoin_s(forward), location.
adjoining_relationship.adjoins(forward) ],
[bolivia, [start], location.location.adjoin_s(forward), location.
adjoining_relationship.adjoins(forward), location.country.administrative
_divisions(forward)]]

Multi-hop generation Question: who is listed as screenwriter of the movies starred by
My Big Fat Greek Wedding actors?
Path: [my big fat greek wedding, [start], starred_actors(forward),
starred_actors(backward), written_by(forward)]
Output: Find(My Big Fat Greek Wedding).Relate(starred_actors, forward)
Relate(starred_actors, backward).What() (Missing written_by)

Sketch induction Question: What is the hometown of the architect who designed mount vernon?
Path: [mount vernon, [start], architecture.architect.structures_designed(backward)
people.person.place_of_birth(forward)]
Output: Find(mount vernon).Relate(architecture.architect.structures_designed,
backward).QueryAttr(people.person.place_of_birth)

Table 6: Error types and examples.
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