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Abstract

Retrieval-augmented generation (RAG) systems typically rely on static retrieval1

methods, limiting their adaptability to dynamic environments. In this paper, we2

propose a novel online learning framework called Dynamic Memory Alignment3

(DMA), designed specifically to enhance retrieval performance and content genera-4

tion in RAG through adaptive incorporation of multi-level human feedback. DMA5

systematically integrates real-time feedback signals at document, list, and response6

levels, effectively adjusting memory management strategies to optimize relevance7

and adaptability in online interactive environments. Extensive evaluations demon-8

strate DMA’s competitive foundational retrieval performance across multiple stan-9

dard knowledge-intensive benchmarks. DMA achieves significant improvements10

on datasets reflecting natural conversational interactions (TriviaQA, HotpotQA),11

confirming its suitability for online GenAI dialogue applications. Moreover, a12

multi-month industrial deployment demonstrates that DMA substantially improves13

user engagement in real-world applications. These results underscore DMA’s abil-14

ity to maintain robust foundational retrieval capabilities while excelling at dynamic,15

real-time adaptation in interactive online environments.16

1 Introduction17

Retrieval-augmented generation (RAG) has become a core paradigm for enhancing the factuality and18

adaptability of LLMs in knowledge-intensive tasks (Lewis et al., 2020; Borgeaud et al., 2022). By19

decoupling parametric memory from non-parametric retrieval, RAG enables models to access external20

information dynamically, grounding responses on up-to-date and domain-specific knowledge without21

modifying internal parameters. This separation has powered recent advances across open-domain QA22

(Izacard & Grave, 2021), multi-hop reasoning (Yang et al., 2018), and instruction-based augmentation23

(Lin et al., 2024; Gao et al., 2023).24

Despite these advances, conventional RAG pipelines exhibit critical limitations in dynamic online25

settings: (i) Static retrieval strategies cannot adapt to evolving user intent or content drift. Most dense26

retrievers are trained offline and remain fixed at deployment time, failing to reflect live interaction27

signals (Lin et al., 2023; Jiang et al., 2024). (ii) Given the limited context length of mainstream LLMs28

(Liu et al., 2023), retrieval must prioritize highly relevant information. Sole reliance on top-k dense29

similarity often results in suboptimal recall and necessitates robust re-ranking strategies (Nogueira30

et al., 2020; Glass et al., 2022b; Qin et al., 2024). (iii) While dedicated rankers and hybrid retrievers31

can improve retrieval precision (Ma et al., 2023; Izacard et al., 2022), they often lack the flexibility32

and generalization needed for personalized, real-time adaptation (Zhang et al., 2024a). These issues33

collectively suggest that current RAG systems require an adaptive interface between user feedback34

and memory control.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Motivated by these challenges, our goal is to build an adaptive online learning framework for RAG36

systems that effectively integrates and utilizes dynamic human feedback, enabling continuous real-37

time refinement of memory and retrieval decisions. Recent studies demonstrate that instruction-tuned38

LLMs can effectively align responses with user intent through task-specific fine-tuning (Liu et al.,39

2024b; Lin et al., 2024). Real-time human feedback across document-, list-, and response-level40

granularity can serve as actionable supervision signals for adaptive retrieval. DMA incorporates these41

signals through continuous feedback-driven memory alignment.42

To this end, we propose Dynamic Memory Alignment (DMA), an innovative online learning frame-43

work designed to systematically organize, interpret, and incorporate adaptive human feedback signals,44

dynamically optimizing retrieval strategies and memory prioritization within RAG workflows.45

Specifically, DMA addresses the core challenge of online adaptability through three key components:46

(1) a multi-granularity feedback taxonomy tailored for conversational GenAI scenarios; (2) a suite of47

reward modeling techniques that interpret heterogeneous user signals into structured supervision; (3)48

online knowledge fusion mechanisms that prioritize high-value memory traces and modulate retrieval49

policy accordingly.50

As a result, the DMA framework is particularly suited to real-time, user-facing applications such as51

chat assistants and enterprise QA bots, where system adaptability is key to sustained performance52

(Asai et al., 2024b; Jeong et al., 2024).53

Our contributions can be summarized as follows:54

• We propose DMA, a novel online learning framework enabling RAG systems to continuously refine55

adaptive retrieval based on multi-level user feedback. DMA systematically captures sparse yet56

valuable user signals to dynamically enhance system responsiveness in dynamic online settings.57

• Through extensive evaluations on widely-used knowledge-intensive benchmarks, DMA achieves58

strong results on conversational datasets such as TriviaQA and HotpotQA, showing state-of-art59

performance than prior leading methods.60

• Most critically, DMA demonstrates notable real-world applicability, as evidenced by a 24.57%61

improvement in positive user feedback during a multi-month randomized controlled industrial trial,62

validating its effectiveness and adaptability in practical deployment.63

The remainder of this paper is structured as follows: § 2 surveys related work. § 3 formalizes the RAG64

problem and highlights key limitations of static pipelines. § 4 presents the proposed DMA framework.65

Experimental setup and results are detailed in § 5, while remaining challenges are discussed in § 6.66

We conclude in § 7.67

2 Related Work68

RAG has emerged as a core solution for knowledge-intensive NLP tasks (Lewis et al., 2020; Borgeaud69

et al., 2022). In standard RAG pipelines, a dense retriever (e.g., (Karpukhin et al., 2020)) encodes70

queries and documents into a shared embedding space, retrieving top-k relevant contexts from an71

external corpus. These retrieved contexts are then fused with the input query and processed by an72

LLM to generate grounded responses (Izacard & Grave, 2021; Izacard et al., 2023).73

Recent research has focused on enhancing this pipeline along several directions. One thread optimizes74

retrieval to better align with the downstream generation needs of LLMs (Shi et al., 2024; Lin et al.,75

2024; Ye et al., 2023). Another line introduces multi-step and interleaved retrieval-generation76

mechanisms to capture complex reasoning chains (Trivedi et al., 2023; Shao et al., 2023; Jeong et al.,77

2024). Meanwhile, context filtering and selection strategies have been developed to remove noisy78

evidence before generation (Wang et al., 2023; Xu et al., 2024; Yoran et al., 2024), improving both79

factuality and efficiency.80

In parallel, instruction tuning has become a critical enabler for aligning LLMs with retrieval-enhanced81

tasks. From supervised instruction collections like FLAN and Self-Instruct (Wei et al., 2022; Wang82

et al., 2022) to open-source alignment efforts such as ChatGPT and Claude (OpenAI, 2023; Anthropic,83

2023), LLMs increasingly learn to operate over retrieved evidence. Recent studies demonstrate that84

retrieval-augmented instruction tuning significantly boosts performance across QA and reasoning85

tasks (Liu et al., 2024b; Asai et al., 2024b; Lin et al., 2024; Luo et al., 2023; Wang et al., 2024).86
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Nevertheless, integrating retrieval into LLM training remains challenging due to the need for surrogate87

losses and continuous re-indexing (Guu et al., 2020; Shi et al., 2024; Sachan et al., 2021; Izacard88

et al., 2023; Dong et al., 2024).89

Ranking-based enhancements have been extensively used to improve retrieved context quality before90

generation. Early neural ranking models (Mitra et al., 2018; Chen et al., 2020) were later extended91

to dual-stage architectures such as Re2G (Glass et al., 2022b), PARADE (Drozdov et al., 2023),92

and RA-DIT (Lin et al., 2024), enabling more flexible reordering. However, these rankers often93

rely on moderate-sized encoder models (e.g., BERT or T5), which struggle with complex semantics94

and generalization (Ram et al., 2023). Recent evidence suggests that full-scale LLMs can act as95

powerful rankers with minimal prompting (Qin et al., 2024; Sun et al., 2023; Khalifa et al., 2023), yet96

leveraging this capacity in online RAG systems remains under-explored.97

Crucially, most prior work optimizes retrieval and re-ranking on static datasets, assuming fixed user98

intent and corpus distribution. This paradigm fails to accommodate the non-stationary dynamics in99

real-world online systems, where user behavior, topic drift, and feedback evolve continuously. To100

bridge this gap, emerging approaches such as Self-RAG (Asai et al., 2024a), ReFeed (Yu et al., 2024),101

and Pistis-RAG (Bai et al., 2024) propose adaptive mechanisms incorporating implicit or explicit102

feedback. These methods are typically confined to limited settings and do not offer general-purpose103

integration into end-to-end retrieval and memory control.104

In contrast, the DMA framework introduces a unified online learning architecture that encodes105

multi-level user feedback at document-, list-, and response-level granularity into dynamic retrieval106

optimization. Our approach maintains continuous feedback loops to enable retrieval and generation107

components to co-adapt during deployment, which supports sustained performance in open-ended,108

user-facing GenAI systems.109

3 Preliminaries110

This section formalizes the RAG pipeline that serves as the foundation for our work. We then identify111

key limitations of existing RAG approaches in dynamic online settings, which motivate the design of112

our proposed DMA framework.113

3.1 Problem Setup114

Let C = {d1, d2, . . . , dN} denote a corpus of external knowledge documents. Given a user query115

q ∈ Q, a retriever R computes similarity scores using dense embeddings, typically in a dual-encoder116

setting (Karpukhin et al., 2020), where Relevance(q, di) = ⟨Eq(q), Ed(di)⟩ and Eq, Ed are the query117

and document encoders. The top-k documents are selected as Dretrieve = Topk{Relevance(q, di) |118

di ∈ C}. A reranker Rerankm may be applied to reorder and truncate this list to the top-m items,119

yielding D = Rerankm(q,Dretrieve), where m ≤ k (Cao et al., 2007; Glass et al., 2022a). The final120

context set D = {d(1), . . . , d(m)} is concatenated with the query and fed into a language model121

G to generate a grounded response a = G(q,D). While the retriever R and generator G may be122

trained separately or jointly (Sachan et al., 2021; Izacard et al., 2023), most real-world systems adopt123

modular training due to scalability and deployment constraints.124

3.2 Limitations of Current Approaches125

Despite their success in open-domain question answering and related tasks (Lewis et al., 2020;126

Borgeaud et al., 2022; Guu et al., 2020), current RAG systems exhibit structural limitations when127

deployed in dynamic, user-facing environments.128

First, conventional RAG methods rely on static retrievers trained offline over frozen corpora, using129

task-specific training signals (e.g., NQ, TriviaQA) that do not generalize well to continuously evolving130

user needs (Lewis et al., 2020; Guu et al., 2020; Izacard et al., 2023). This fixed retrieval logic fails to131

accommodate domain drift, long-term user preferences, or topic shifts typical of online applications.132

Second, although mechanisms such as reranking or filtering (Chen et al., 2020; Wang et al., 2023; Xu133

et al., 2024) can improve precision, they are typically rule-based or learned from fixed supervised134

data. These components rarely leverage live user feedback signals, and even when available, such135

signals are often aggregated in limited forms (e.g., binary preference) or only utilized post hoc.136
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Figure 1: Overview of the DMA feedback loop. Multi-level human feedback is organized, modeled,
and fused to guide online retrieval strategies. Reranker training and distillation are detailed in
Figure 2.

Third, most RAG systems lack a principled framework to incorporate multi-granular feedback—such137

as document-level usefulness, list-level coverage, or response-level satisfaction—into real-time138

retrieval decisions. While reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022)139

and browser-based systems such as WebGPT (Nakano et al., 2021) have demonstrated the potential140

of fine-grained supervision, these approaches remain decoupled from the retrieval components and141

are difficult to generalize to streaming environments.142

As a result, retrieval behavior remains largely fixed during deployment, limiting the system’s ability to143

improve with usage, personalize to users, or adapt to shifts in content distribution. These limitations144

call for an online learning mechanism capable of dynamically integrating human feedback into145

memory and retrieval policies—precisely the gap that our proposed DMA framework aims to address.146

4 Dynamic Memory Alignment147

To address the limitations mentioned in the previous section, we introduce DMA, an online learning148

framework designed to continuously refine retrieval strategies in RAG systems by leveraging real-time149

user feedback. Unlike conventional static pipelines, DMA forms a closed-loop system that adaptively150

aligns memory and retrieval decisions with evolving user preferences.151

4.1 Framework Overview152

As illustrated in Figure 1, DMA comprises three core components: (1) Feedback Taxonomy,153

which structures heterogeneous user signals into well-defined levels; (2) Reward Modeling, which154

transforms these signals into trainable supervision; and (3) Online Adaptation, which updates155

retrieval strategies based on real-time feedback. Together, these modules form a dynamic feedback156

loop, enabling memory alignment in continually evolving GenAI interactions.157

4.2 Human Feedback Taxonomy158

Effective capture and utilization of user feedback in industrial settings require systematic organization.159

Addressing the challenge of sparse and heterogeneous feedback across user contexts, we investigate160

prominent LLMs, including ChatGPT (Achiam et al., 2023), Gemini (Team et al., 2023), QWen (Bai161
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et al., 2023), DeepSeek (Liu et al., 2024a), ChatGML (GLM et al., 2024), and Kimi (Team et al.,162

2025), to identify and categorize various forms of human feedback signals.163

This taxonomy provides a systematic structure to interpret diverse feedback signals and optimize164

system behavior. As illustrated in Figure 1, feedback signals are categorized into four levels of165

granularity:166

1) Document-level feedback reflects user evaluations of individual retrieved snippets, typically167

through direct actions such as upvoting or downvoting. This feedback is formalized into a preference168

dataset Dpref,doc = {(qi, di, yqi,di
)}Ni=1, enabling optimization of document-level relevance.169

2) List-level Feedback captures user preferences over a set of retrieved documents, evaluating the170

overall quality of system outputs for a query qi based on a list Dqi and system response yqi . This171

includes both explicit (e.g., copy, regenerate) and implicit feedback. It is formalized into a preference172

dataset Dpref,list, providing insights into document relevance and ranking consistency for a list subset173

Dsub,qi .174

3) Response-level feedback refers to user preference between two (or more) response options175

generated from distinct document sets D1 and D2. The feedback signal y indicates the pre-176

ferred response, implying a preference between the document sets. This is formalized as Dresp =177

{(qi, r1,i, r2,i, D1,i, D2,i, yi)}
Nresp
i=1 . This data is valuable for alignment methods and can be scaled.178

Although the feedback is collected at the response level, each response is generated based on a179

specific document list. As such, user preference over responses implicitly reflects preference over the180

underlying document sets, which we leverage to supervise document-level reranking.181

4) Session-level feedback aggregates user evaluations across an entire interaction session si, capturing182

overall user perceptions such as task satisfaction fsi . While this high-level signal is not used directly183

to train granular reward models, it is employed in two key roles: (i) as an external metric for evaluating184

DMA variants (§5.1); and (ii) as a dynamic weight signal to adjust fusion importance across feedback185

types during GBDT distillation (see §4.3) (Friedman, 2001).186

By structuring feedback into these levels and formalizing the associated datasets, our taxonomy offers187

a robust framework for systematically interpreting user inputs and optimizing GenAI systems.188

4.3 Reward Construction and Memory Alignment189

To leverage the multi-granular feedback captured by the taxonomy for optimal DMA performance,190

we design specific modeling methods for each granularity level and develop strategies to combine191

their outputs to influence memory alignment. A multi-task modeling approach integrates diverse192

feedback signals to construct reward signals suitable for training memory alignment components.193

Document-Level Modeling. A model is trained using explicit document-level feedback Dpref,doc194

with Binary Cross-Entropy (BCE) loss LBCE = −y log σ(s) − (1 − y) log(1 − σ(s)), where s is195

the predicted score and y ∈ {0, 1} is the label. This produces a pointwise reranker focused on196

fine-grained precision.197

List-Level Modeling. To capture relative importance among retrieved results, listwise rerankers are198

trained using user feedback. The ListNet loss LListNet = −
∑

i Ptrue(i) logPpred(i), where P (i) =199

exp(si)/
∑

j exp(sj), ensures alignment between predicted and target ranking distributions.200

Response-Level Modeling. We collect pairwise user feedback comparing responses (r1, r2) gen-201

erated from different document lists D1, D2, forming preference data Dresp = {(q,D1, D2, y)}202

with binary preference label y. A reward model R(D) is trained via pairwise loss Lpairwise =203

−y log σ(R(D1) − R(D2)) − (1 − y) log σ(R(D2) − R(D1)), where σ(·) is the sigmoid func-204

tion. To inject response-level preferences into the reranker, we apply Proximal Policy Optimization205

(PPO) (Schulman et al., 2017), optimizing a listwise policy using the clipped surrogate objective206

LPPO = −Et[min(rtÂt, clip(rt, 1 − ϵ, 1 + ϵ)Ât)], where rt = πθ(at|st)/πθold(at|st) and Ât is the207

advantage estimated from the reward model. This approach effectively aligns a listwise reranker208

using response-level feedback, producing the PPO-aligned listwise reranker, which captures global209

user satisfaction signals beyond document or list-level heuristics.210
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Fusion and Distillation for Online Serving To meet the latency requirements of online serving,211

we distill the outputs of upstream feedback-supervised rerankers into a lightweight ensemble model.212

Specifically, we adopt a Gradient Boosting Decision Tree (GBDT) as the final online scoring module.213

This GBDT model is trained using soft labels derived from upstream reranking components and214

provides efficient inference without sacrificing alignment quality. In production deployment, it enables215

real-time document ranking with sub-10ms latency while preserving the benefits of multi-granular216

feedback supervision.217

Figure 2 illustrates the high-level training pipeline. Additional modeling and supervision details are218

omitted for brevity and deployment sensitivity.219
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Pointwise

Figure 2: Training and distillation architecture in DMA. Three types of feedback supervise specialized
ranking models, which are fused via PPO and distilled into a lightweight online reranker. Full pipeline
details in § 4.3

5 Experiment220

We evaluate DMA across two settings: (1) real-world online interactions with online users, and221

(2) public open-domain QA benchmarks. The former validates DMA’s online learning ability in222

production; the latter assesses generalization under static evaluation protocols.223

5.1 Experiment Setup224

Evaluations on API Distribution. We conduct a multi-month randomized controlled trial (RCT) on225

a Chinese-language GenAI system operated by a major telecommunications and cloud provider. To226

support multilingual retrieval, DMA uses BGE-m3 as the retriever backbone and an instruction-tuned227

decoder for response generation.228

To characterize domain diversity, session queries are categorized into seven application areas: Techni-229

cal support (37%), Performance and monitoring (21%), API and developer support (16%), Security230

and compliance (10%), Service and resource management (9%), Migration and deployment (4%),231

and Product features and updates (3%). The query distribution reflects the industrial and technically232

specialized nature of the evaluation environment.233

For measurement, we define session-level satisfaction as S(si) = 1
ni

∑ni

j=1 I(LLM(qi,j , yi,j) ̸=234

dissatisfied), where each session si contains ni user turns. Because explicit user ratings are235

sparse, we employ QWen2-72B (Yang et al., 2024) as an automated annotator to infer satisfaction236

labels, calibrated via in-context few-shot learning using high-quality examples from online human237

feedback.238

To ensure alignment with human judgment, these labeled sessions are treated as ground-truth su-239

pervision during prompt construction. The prompt template (Table 1) specifies the annotator’s240

role, input-output format, and exemplar completions. The structured outputs include a categorical241

label (satisfied, neutral, or dissatisfied), a confidence score in [0, 1], and a short list of242

improvement suggestions.243
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This automated feedback serves as the primary evaluation signal for DMA under real-world usage.244

Inter-annotator agreement analysis confirms high label reliability, with a Cohen’s Kappa of 0.962245

between model predictions and human annotations.246

Table 1: Session-level User Satisfaction Evaluation Prompt Design
Intent Prompt

Role You are an AI assistant responsible for evaluating user satisfaction at the session
level.

Task Assess overall user satisfaction based on the entire conversation history, including
user queries and system responses.

Input A session si consisting of ni turns: {(qi,j , yi,j)}ni
j=1, where qi,j is the user query

and yi,j is the system-generated response.
Few-shot Examples {few_shot_examples} illustrating different types of session outcomes.

Output Format User Satisfaction: satisfied / neutral / dissatisfied
Confidence: A numerical value in [0, 1] representing model confidence.
Improvements: A short list of suggestions to improve the user experience.

Evaluations on public static benchmarks. To evaluate generalization in static settings, we test247

DMA on four standard open-domain QA datasets: Natural Questions (NQ: 79.2k train / 8.7k dev /248

3.6k test) (Kwiatkowski et al., 2019), TriviaQA (78.8k / 8.8k / 11.3k) (Joshi et al., 2017), HotpotQA249

(88.9k / 5.6k / 5.6k) (Yang et al., 2018), and WebQSP (2.8k / 250 / 1.6k) (Berant et al., 2013). These250

benchmarks span a range of query types, from open-ended to structured factoid-style tasks. We report251

Hit@1 and F1 following prior work. To ensure comparability with existing methods. All generations252

were performed using a unified LLaMA2-7B decoder (Touvron et al., 2023), controlling for decoding253

variability and isolating retrieval alignment effects.254

Implementation Details. DMA’s online update pipeline is triggered after accumulating 500 new255

feedback samples using Flink-based monitoring. This threshold was empirically selected to balance256

the need for timely adaptation against the computational cost of frequent retraining. It ensures257

that model updates are based on sufficient feedback to generate stable gradient signals, while also258

preventing excessive latency in high-throughput environments. In practice, this results in update259

intervals ranging from several minutes to an hour, depending on traffic volume.260

To accommodate variable traffic conditions, the feedback monitoring system automatically defers261

updates if insufficient feedback is collected, avoiding retraining on sparse or noisy signals. This262

adaptive scheduling ensures robustness across deployment scales, from high-traffic production263

environments to slower-feedback applications.264

The full DMA update cycle includes: (1) training pointwise and listwise teacher models, (2) generating265

soft distillation targets, and (3) training a 10K-tree GBDT model. Over 90% of the latency is spent266

on teacher model training (≈ 6 minutes) and distillation (≈ 3 minutes), with model checkpoint267

updates taking less than 1 minute. The system runs on 8 A800 GPUs per training job, yielding an268

average end-to-end update latency of 10 minutes (range: 6–15 minutes). To maintain sub-15-minute269

updates as feedback volume grows, GPU capacity is scaled proportionally. Online response generator270

QWen2-72B (Yang et al., 2024) is served via vLLM (Kwon et al., 2023) to support high-throughput271

inference. Feedback events are streamed through Apache Flink pipelines.272

5.2 Main Results273

We evaluate DMA in two complementary settings: a multi-month industrial deployment to assess its274

real-world effectiveness in large-scale online environments, and four public QA benchmarks to verify275

its retrieval and generation performance under standard static protocols.276

Results on Real-World Online Evaluation. As shown in Table 2, Full DMA yields a 24.57% increase277

in session-level user satisfaction over an online BGE-based reranker baseline. This improvement is278

statistically significant (p < 0.001, two-tailed z-test), based on 100,000 user sessions collected via279

a randomized controlled trial. For detailed results on the impact of different feedback signals and280

alignment strategies, see § 5.3.281
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Table 2: User satisfaction across four evaluation settings. (A) compares DMA against a static baseline
(BGE-Reranker). (B) reports the effect of removing individual feedback signals from DMA. (C)
analyzes fusion strategies. (D) compares online learning to weekly batch updates.

Configuration User Satisfaction (%) Relative Change (%)

(A) Overall Performance
Zero-Aligned reranker (baseline) 62.11 Reference
Full DMA (ours) 77.37 +24.57

(B) Feedback Ablation
Full DMA (baseline) 77.37 Reference
w/o List-Level Feedback 65.32 –15.57
w/o Response-Level Feedback 68.70 –11.21
w/o Document-Level Feedback 73.29 –5.27

(C) Fusion Strategy
Cascading Fusion (baseline) 72.79 Reference
Distillation (Full DMA) 77.34 +6.25

(D) Online Learning
Weekly Batch Learning (baseline) 76.21 Reference
Online Learning (Full DMA) 77.54 +1.75

Impact of Fusion Strategy. To evaluate the performance of our model fusion strategies at scale, we282

compare distillation against a cascading approach using the online RCT setup. Table 2 shows that283

distillation outperforms cascading by +6.25% under similar latency constraints.284

Impact of Online Learning. User preferences evolve over time, necessitating continuous model285

updates. We evaluate the impact of DMA’s online learning mechanism, which performs incremental286

daily retraining and real-time feedback adaptation, compared to a baseline of weekly batch updates.287

As shown in Table 2, online learning improves session-level satisfaction by +1.75% compared to288

batch learning, providing qualitative evidence for the value of continuous adaptation.289

Table 3: Results on Public QA Benchmarks Grouped by Task Type. Left: Conversational QA
datasets (open-ended user queries). Right: Structured QA datasets (schema-grounded queries). All
methods are evaluated using LLaMA2-7B as the reader model, which serves as the largest publicly
available common denominator across prior work to ensure fair and standardized comparison.

Conversational QA Tasks Structured QA Tasks

Method TriviaQA HotpotQA NQ WebQSP

Hit@1 F1 Hit@1 F1 Hit@1 F1 Hit@1 F1

KnowPAT (Zhang et al., 2023) 63.20 65.20 29.00 37.40 51.42 54.82 68.73 65.31
RRHF (Yuan et al., 2023) 62.50 60.20 28.16 35.40 50.11 52.01 66.90 63.10
RAFT (Zhang et al., 2024b) 60.10 57.40 30.20 35.80 50.24 53.86 – –
FILCO (Wang et al., 2023) 67.30 (2) 67.80 (2) 32.70 (2) 40.80 (2) 52.71 (1) 55.32 (1) 69.96 (1) 68.34 (1)
DMA (Ours) 68.81 (1) 68.90 (1) 33.92 (1) 41.88 (1) 51.11 (3) 54.92 (2) 67.26 (3) 65.03 (3)

Results on Public QA Benchmarks. To evaluate DMA under standardized retrieval conditions,290

we assess its performance on four widely used public datasets: TriviaQA (Joshi et al., 2017),291

HotpotQA (Yang et al., 2018), NQ (Kwiatkowski et al., 2019), and WebQSP (Berant et al., 2013).292

These span open-ended (TriviaQA, HotpotQA) and schema-grounded (NQ, WebQSP) query types,293

supporting analysis of generalization across formats. We compare against several alignment-optimized294

RAG baselines, including KnowPAT (Zhang et al., 2023), RRHF (Yuan et al., 2023), RAFT (Zhang295

et al., 2024b), and FILCO (Wang et al., 2023). This selection balances method comparability (all adopt296

alignment-based RAG optimization), result availability (publicly reported scores), and experimental297

fairness (standardized decoding with LLaMA2-7B (Touvron et al., 2023)). As shown in Table 3,298

DMA achieves the highest Hit@1 and F1 scores on conversational datasets, and remains competitive299

on structured tasks. These results underscore DMA’s advantage in open-ended, user-facing QA300

scenarios.301
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5.3 Ablation Studies302

We conduct ablation studies to assess the contribution of each feedback granularity in DMA. Table 2303

shows that removing list-level feedback results in the largest performance drop (–15.57%), followed304

by response-level (–11.21%) and document-level feedback (–5.27%). This validates our design choice305

to integrate multi-granular feedback.306

Hierarchical impact of feedback types. These results reveal a natural hierarchy in feedback utility:307

list-level signals provide coarse but globally informative supervision for document ranking; response-308

level feedback reflects downstream user preferences across document sets; and document-level309

labels offer fine-grained, local guidance. Their removal leads to progressively degraded satisfaction,310

confirming their complementary roles.311

Complementarity and alignment. Pointwise (document) signals alone are insufficient for ranking312

complex lists, while listwise and response-level supervision offer stronger alignment with holistic313

user intent. This stack of feedback levels enables DMA to optimize both local document quality and314

global retrieval behavior, especially in dynamic online environments.315

Takeaway. Among all components, listwise feedback plays the most critical role in guiding DMA316

toward globally aligned memory selection. Our multi-granularity design not only enhances overall317

quality but also ensures adaptability to diverse user preferences in real-world deployments.318

6 Limitations319

While DMA demonstrates robust performance across both public datasets and industrial deployments,320

two practical limitations remain when applying the framework to broader scenarios:321

Scalability in low-resource or interface-constrained environments. DMA is designed for large-322

scale, high-throughput production systems where continuous user feedback is available for online323

adaptation. In low-traffic or offline settings, feedback signals may be too sparse to support timely324

model updates. DMA relies on multi-level behavioral signals such as document-, list-, and response-325

level feedback, which are primarily available in interactive dialogue systems. In structured API-style326

tasks or static document editing scenarios, such fine-grained feedback is either unavailable or hard327

to instrument, limiting DMA’s adaptability. To mitigate this, DMA includes an adaptive retraining328

scheduler that defers updates under low-feedback conditions, and future work may explore synthetic329

or proxy signals to fill these gaps.330

Generalization to schema-bound QA benchmarks. Although DMA achieves strong results on331

open-ended, user-facing datasets (e.g., TriviaQA, HotpotQA), its gains are less pronounced on schema-332

constrained tasks such as NQ and WebQSP. These datasets often feature fixed entity-relation structures333

or short factual queries that benefit less from multi-granular reranking or feedback-driven adaptation.334

In such settings, static retrievers and minimal re-ranking may already suffice. This suggests that335

DMA’s dynamic memory alignment is most beneficial in open-ended or conversational environments,336

and additional strategies—such as symbolic augmentation or knowledge graph integration—may be337

required to improve performance on interface-like or structured retrieval tasks.338

7 Conclusion339

We present DMA, an online learning framework that systematically incorporates multi-level human340

feedback (document, list, and response) to enable real-time retrieval alignment in RAG systems.341

DMA enables adaptive memory selection guided by user preferences, addressing the rigidity of static342

retrieval pipelines.343

DMA achieves state-of-the-art performance on QA tasks and demonstrates significant gains in a large-344

scale industrial RCT. Its adaptive scheduling and fusion strategies ensure robustness and efficiency,345

while ablation studies highlight the importance of feedback granularity in performance gains.346

Future work will explore extensions to low-resource domains, alternative feedback modalities, and347

real-time interpretability for memory selection. Overall, DMA demonstrates that structured user348

interaction signals can powerfully guide online retrieval learning in deployed GenAI systems.349
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