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Abstract

Retrieval-augmented generation (RAG) systems typically rely on static retrieval
methods, limiting their adaptability to dynamic environments. In this paper, we
propose a novel online learning framework called Dynamic Memory Alignment
(DMA), designed specifically to enhance retrieval performance and content genera-
tion in RAG through adaptive incorporation of multi-level human feedback. DMA
systematically integrates real-time feedback signals at document, list, and response
levels, effectively adjusting memory management strategies to optimize relevance
and adaptability in online interactive environments. Extensive evaluations demon-
strate DMA’s competitive foundational retrieval performance across multiple stan-
dard knowledge-intensive benchmarks. DMA achieves significant improvements
on datasets reflecting natural conversational interactions (TriviaQA, HotpotQA),
confirming its suitability for online GenAl dialogue applications. Moreover, a
multi-month industrial deployment demonstrates that DMA substantially improves
user engagement in real-world applications. These results underscore DMA’s abil-
ity to maintain robust foundational retrieval capabilities while excelling at dynamic,
real-time adaptation in interactive online environments.

1 Introduction

Retrieval-augmented generation (RAG) has become a core paradigm for enhancing the factuality and
adaptability of LLMs in knowledge-intensive tasks (Lewis et al., 2020; Borgeaud et al., 2022). By
decoupling parametric memory from non-parametric retrieval, RAG enables models to access external
information dynamically, grounding responses on up-to-date and domain-specific knowledge without
modifying internal parameters. This separation has powered recent advances across open-domain QA
(Izacard & Grave, 2021), multi-hop reasoning (Yang et al., 2018), and instruction-based augmentation
(Lin et al., 2024; Gao et al., 2023).

Despite these advances, conventional RAG pipelines exhibit critical limitations in dynamic online
settings: (i) Static retrieval strategies cannot adapt to evolving user intent or content drift. Most dense
retrievers are trained offline and remain fixed at deployment time, failing to reflect live interaction
signals (Lin et al., 2023; Jiang et al., 2024). (ii) Given the limited context length of mainstream LLMs
(Liu et al., 2023), retrieval must prioritize highly relevant information. Sole reliance on top-%k dense
similarity often results in suboptimal recall and necessitates robust re-ranking strategies (Nogueira
et al., 2020; Glass et al., 2022b; Qin et al., 2024). (iii) While dedicated rankers and hybrid retrievers
can improve retrieval precision (Ma et al., 2023; Izacard et al., 2022), they often lack the flexibility
and generalization needed for personalized, real-time adaptation (Zhang et al., 2024a). These issues
collectively suggest that current RAG systems require an adaptive interface between user feedback
and memory control.
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Motivated by these challenges, our goal is to build an adaptive online learning framework for RAG
systems that effectively integrates and utilizes dynamic human feedback, enabling continuous real-
time refinement of memory and retrieval decisions. Recent studies demonstrate that instruction-tuned
LLMs can effectively align responses with user intent through task-specific fine-tuning (Liu et al.,
2024b; Lin et al., 2024). Real-time human feedback across document-, list-, and response-level
granularity can serve as actionable supervision signals for adaptive retrieval. DMA incorporates these
signals through continuous feedback-driven memory alignment.

To this end, we propose Dynamic Memory Alignment (DMA), an innovative online learning frame-
work designed to systematically organize, interpret, and incorporate adaptive human feedback signals,
dynamically optimizing retrieval strategies and memory prioritization within RAG workflows.

Specifically, DMA addresses the core challenge of online adaptability through three key components:
(1) a multi-granularity feedback taxonomy tailored for conversational GenAl scenarios; (2) a suite of
reward modeling techniques that interpret heterogeneous user signals into structured supervision; (3)
online knowledge fusion mechanisms that prioritize high-value memory traces and modulate retrieval
policy accordingly.

As a result, the DMA framework is particularly suited to real-time, user-facing applications such as
chat assistants and enterprise QA bots, where system adaptability is key to sustained performance
(Asai et al., 2024b; Jeong et al., 2024).

Our contributions can be summarized as follows:

* We propose DMA, a novel online learning framework enabling RAG systems to continuously refine
adaptive retrieval based on multi-level user feedback. DMA systematically captures sparse yet
valuable user signals to dynamically enhance system responsiveness in dynamic online settings.

* Through extensive evaluations on widely-used knowledge-intensive benchmarks, DMA achieves
strong results on conversational datasets such as TriviaQA and HotpotQA, showing state-of-art
performance than prior leading methods.

* Most critically, DMA demonstrates notable real-world applicability, as evidenced by a 24.57%
improvement in positive user feedback during a multi-month randomized controlled industrial trial,
validating its effectiveness and adaptability in practical deployment.

The remainder of this paper is structured as follows: § 2 surveys related work. § 3 formalizes the RAG
problem and highlights key limitations of static pipelines. § 4 presents the proposed DMA framework.
Experimental setup and results are detailed in § 5, while remaining challenges are discussed in § 6.
We conclude in § 7.

2 Related Work

RAG has emerged as a core solution for knowledge-intensive NLP tasks (Lewis et al., 2020; Borgeaud
et al., 2022). In standard RAG pipelines, a dense retriever (e.g., (Karpukhin et al., 2020)) encodes
queries and documents into a shared embedding space, retrieving top-k relevant contexts from an
external corpus. These retrieved contexts are then fused with the input query and processed by an
LLM to generate grounded responses (Izacard & Grave, 2021; Izacard et al., 2023).

Recent research has focused on enhancing this pipeline along several directions. One thread optimizes
retrieval to better align with the downstream generation needs of LLMs (Shi et al., 2024; Lin et al.,
2024; Ye et al., 2023). Another line introduces multi-step and interleaved retrieval-generation
mechanisms to capture complex reasoning chains (Trivedi et al., 2023; Shao et al., 2023; Jeong et al.,
2024). Meanwhile, context filtering and selection strategies have been developed to remove noisy
evidence before generation (Wang et al., 2023; Xu et al., 2024; Yoran et al., 2024), improving both
factuality and efficiency.

In parallel, instruction tuning has become a critical enabler for aligning LLMs with retrieval-enhanced
tasks. From supervised instruction collections like FLAN and Self-Instruct (Wei et al., 2022; Wang
et al., 2022) to open-source alignment efforts such as ChatGPT and Claude (OpenAl, 2023; Anthropic,
2023), LLMs increasingly learn to operate over retrieved evidence. Recent studies demonstrate that
retrieval-augmented instruction tuning significantly boosts performance across QA and reasoning
tasks (Liu et al., 2024b; Asai et al., 2024b; Lin et al., 2024; Luo et al., 2023; Wang et al., 2024).
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Nevertheless, integrating retrieval into LLM training remains challenging due to the need for surrogate
losses and continuous re-indexing (Guu et al., 2020; Shi et al., 2024; Sachan et al., 2021; Izacard
et al., 2023; Dong et al., 2024).

Ranking-based enhancements have been extensively used to improve retrieved context quality before
generation. Early neural ranking models (Mitra et al., 2018; Chen et al., 2020) were later extended
to dual-stage architectures such as Re2G (Glass et al., 2022b), PARADE (Drozdov et al., 2023),
and RA-DIT (Lin et al., 2024), enabling more flexible reordering. However, these rankers often
rely on moderate-sized encoder models (e.g., BERT or T5), which struggle with complex semantics
and generalization (Ram et al., 2023). Recent evidence suggests that full-scale LLMs can act as
powerful rankers with minimal prompting (Qin et al., 2024; Sun et al., 2023; Khalifa et al., 2023), yet
leveraging this capacity in online RAG systems remains under-explored.

Crucially, most prior work optimizes retrieval and re-ranking on static datasets, assuming fixed user
intent and corpus distribution. This paradigm fails to accommodate the non-stationary dynamics in
real-world online systems, where user behavior, topic drift, and feedback evolve continuously. To
bridge this gap, emerging approaches such as Self-RAG (Asai et al., 2024a), ReFeed (Yu et al., 2024),
and Pistis-RAG (Bai et al., 2024) propose adaptive mechanisms incorporating implicit or explicit
feedback. These methods are typically confined to limited settings and do not offer general-purpose
integration into end-to-end retrieval and memory control.

In contrast, the DMA framework introduces a unified online learning architecture that encodes
multi-level user feedback at document-, list-, and response-level granularity into dynamic retrieval
optimization. Our approach maintains continuous feedback loops to enable retrieval and generation
components to co-adapt during deployment, which supports sustained performance in open-ended,
user-facing GenAl systems.

3 Preliminaries

This section formalizes the RAG pipeline that serves as the foundation for our work. We then identify
key limitations of existing RAG approaches in dynamic online settings, which motivate the design of
our proposed DMA framework.

3.1 Problem Setup

Let C = {di,ds,...,dn} denote a corpus of external knowledge documents. Given a user query
q € Q, aretriever R computes similarity scores using dense embeddings, typically in a dual-encoder
setting (Karpukhin et al., 2020), where Relevance(q, d;) = (E4(q), Eq(d;)) and E,, Eq are the query
and document encoders. The top-k documents are selected as Dreyieve = Topy, {Relevance(q, d;) |
d; € C}. A reranker Rerank,,, may be applied to reorder and truncate this list to the top-m items,
yielding D = Rerank,,, (¢, Dretieve ), Where m < k (Cao et al., 2007; Glass et al., 2022a). The final
context set D = {d),... d(™} is concatenated with the query and fed into a language model
G to generate a grounded response a = G(q, D). While the retriever R and generator G may be
trained separately or jointly (Sachan et al., 2021; Izacard et al., 2023), most real-world systems adopt
modular training due to scalability and deployment constraints.

3.2 Limitations of Current Approaches

Despite their success in open-domain question answering and related tasks (Lewis et al., 2020;
Borgeaud et al., 2022; Guu et al., 2020), current RAG systems exhibit structural limitations when
deployed in dynamic, user-facing environments.

First, conventional RAG methods rely on static retrievers trained offline over frozen corpora, using
task-specific training signals (e.g., NQ, TriviaQA) that do not generalize well to continuously evolving
user needs (Lewis et al., 2020; Guu et al., 2020; Izacard et al., 2023). This fixed retrieval logic fails to
accommodate domain drift, long-term user preferences, or topic shifts typical of online applications.

Second, although mechanisms such as reranking or filtering (Chen et al., 2020; Wang et al., 2023; Xu
et al., 2024) can improve precision, they are typically rule-based or learned from fixed supervised
data. These components rarely leverage live user feedback signals, and even when available, such
signals are often aggregated in limited forms (e.g., binary preference) or only utilized post hoc.
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Figure 1: Overview of the DMA feedback loop. Multi-level human feedback is organized, modeled,
and fused to guide online retrieval strategies. Reranker training and distillation are detailed in
Figure 2.

Third, most RAG systems lack a principled framework to incorporate multi-granular feedback—such
as document-level usefulness, list-level coverage, or response-level satisfaction—into real-time
retrieval decisions. While reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022)
and browser-based systems such as WebGPT (Nakano et al., 2021) have demonstrated the potential
of fine-grained supervision, these approaches remain decoupled from the retrieval components and
are difficult to generalize to streaming environments.

As aresult, retrieval behavior remains largely fixed during deployment, limiting the system’s ability to
improve with usage, personalize to users, or adapt to shifts in content distribution. These limitations
call for an online learning mechanism capable of dynamically integrating human feedback into
memory and retrieval policies—precisely the gap that our proposed DMA framework aims to address.

4 Dynamic Memory Alignment

To address the limitations mentioned in the previous section, we introduce DMA, an online learning
framework designed to continuously refine retrieval strategies in RAG systems by leveraging real-time
user feedback. Unlike conventional static pipelines, DMA forms a closed-loop system that adaptively
aligns memory and retrieval decisions with evolving user preferences.

4.1 Framework Overview

As illustrated in Figure 1, DMA comprises three core components: (1) Feedback Taxonomy,
which structures heterogeneous user signals into well-defined levels; (2) Reward Modeling, which
transforms these signals into trainable supervision; and (3) Online Adaptation, which updates
retrieval strategies based on real-time feedback. Together, these modules form a dynamic feedback
loop, enabling memory alignment in continually evolving GenAl interactions.

4.2 Human Feedback Taxonomy

Effective capture and utilization of user feedback in industrial settings require systematic organization.
Addressing the challenge of sparse and heterogeneous feedback across user contexts, we investigate
prominent LLMs, including ChatGPT (Achiam et al., 2023), Gemini (Team et al., 2023), QWen (Bai
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et al., 2023), DeepSeek (Liu et al., 2024a), ChatGML (GLM et al., 2024), and Kimi (Team et al.,
2025), to identify and categorize various forms of human feedback signals.

This taxonomy provides a systematic structure to interpret diverse feedback signals and optimize
system behavior. As illustrated in Figure 1, feedback signals are categorized into four levels of
granularity:

1) Document-level feedback reflects user evaluations of individual retrieved snippets, typically
through direct actions such as upvoting or downvoting. This feedback is formalized into a preference
dataset Dyref.doc = {(¢i, dis Yqi.d; )} 1, enabling optimization of document-level relevance.

2) List-level Feedback captures user preferences over a set of retrieved documents, evaluating the
overall quality of system outputs for a query g; based on a list D, and system response ¥,,. This
includes both explicit (e.g., copy, regenerate) and implicit feedback. It is formalized into a preference
dataset Dyrerylist» providing insights into document relevance and ranking consistency for a list subset
D sub,q; +

3) Response-level feedback refers to user preference between two (or more) response options
generated from distinct document sets D1 and Ds. The feedback signal y indicates the pre-

ferred response, implying a preference between the document sets. This is formalized as Dyegp =
Nresp

{(gi, 714,72, D14, Do s, y;) };-7 - This data is valuable for alignment methods and can be scaled.
Although the feedback is collected at the response level, each response is generated based on a
specific document list. As such, user preference over responses implicitly reflects preference over the
underlying document sets, which we leverage to supervise document-level reranking.

4) Session-level feedback aggregates user evaluations across an entire interaction session s;, capturing
overall user perceptions such as task satisfaction f,,. While this high-level signal is not used directly
to train granular reward models, it is employed in two key roles: (i) as an external metric for evaluating
DMA variants (§5.1); and (ii) as a dynamic weight signal to adjust fusion importance across feedback
types during GBDT distillation (see §4.3) (Friedman, 2001).

By structuring feedback into these levels and formalizing the associated datasets, our taxonomy offers
a robust framework for systematically interpreting user inputs and optimizing GenAl systems.

4.3 Reward Construction and Memory Alignment

To leverage the multi-granular feedback captured by the taxonomy for optimal DMA performance,
we design specific modeling methods for each granularity level and develop strategies to combine
their outputs to influence memory alignment. A multi-task modeling approach integrates diverse
feedback signals to construct reward signals suitable for training memory alignment components.

Document-Level Modeling. A model is trained using explicit document-level feedback Dpre doc
with Binary Cross-Entropy (BCE) loss Lgcg = —yloga(s) — (1 — y)log(1l — o(s)), where s is
the predicted score and y € {0, 1} is the label. This produces a pointwise reranker focused on
fine-grained precision.

List-Level Modeling. To capture relative importance among retrieved results, listwise rerankers are
trained using user feedback. The ListNet loss Lyisnet = — ) _; Pirue(?) 108 Pprea(i), where P(i) =
exp(si)/ >_; exp(s;), ensures alignment between predicted and target ranking distributions.

Response-Level Modeling. We collect pairwise user feedback comparing responses (71, 72) gen-
erated from different document lists Dy, Dy, forming preference data Dyeqy = {(q, D1, D2,y)}
with binary preference label y. A reward model R(D) is trained via pairwise 108 Lpgirwise =
—ylogo(R(D1) — R(D3)) — (1 — y)logo(R(D3) — R(D1)), where o(+) is the sigmoid func-
tion. To inject response-level preferences into the reranker, we apply Proximal Policy Optimization
(PPO) (Schulman et al., 2017), optimizing a listwise policy using the clipped surrogate objective
Lppo = —E[min(r A¢, clip(ry, 1 — €,1 + €) A¢)], where 7, = mg(ae|st)/mo,, (ar|se) and A, is the
advantage estimated from the reward model. This approach effectively aligns a listwise reranker
using response-level feedback, producing the PPO-aligned listwise reranker, which captures global
user satisfaction signals beyond document or list-level heuristics.
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Fusion and Distillation for Online Serving To meet the latency requirements of online serving,
we distill the outputs of upstream feedback-supervised rerankers into a lightweight ensemble model.
Specifically, we adopt a Gradient Boosting Decision Tree (GBDT) as the final online scoring module.

This GBDT model is trained using soft labels derived from upstream reranking components and
provides efficient inference without sacrificing alignment quality. In production deployment, it enables
real-time document ranking with sub-10ms latency while preserving the benefits of multi-granular
feedback supervision.

Figure 2 illustrates the high-level training pipeline. Additional modeling and supervision details are
omitted for brevity and deployment sensitivity.

List-Level S Supervised .
Feedback Listwise > Training > Li 'tPr‘igzﬁr;:nker
(g, list, sat) (ListLoss) S
Init.
Response-Level Pairwise of -
Feedback List > Rezv[e:irq Mo)del _S_C o_re_ni ]:“_[> PPO Update I\ A‘hgrl;ed Ll;t_
(¢, D1, D2,y) pairwise wise Reranker
b\
Document- P Supervised . .
Level Feedback Pointwise 3 Training > . Ecaincd > Oulinelns oy
d C Pointwise Reranker bled Model
(d,y) (LpcE)

Figure 2: Training and distillation architecture in DMA. Three types of feedback supervise specialized
ranking models, which are fused via PPO and distilled into a lightweight online reranker. Full pipeline
details in § 4.3

5 Experiment

We evaluate DMA across two settings: (1) real-world online interactions with online users, and
(2) public open-domain QA benchmarks. The former validates DMA’s online learning ability in
production; the latter assesses generalization under static evaluation protocols.

5.1 Experiment Setup

Evaluations on API Distribution. We conduct a multi-month randomized controlled trial (RCT) on
a Chinese-language GenAl system operated by a major telecommunications and cloud provider. To
support multilingual retrieval, DMA uses BGE-m3 as the retriever backbone and an instruction-tuned
decoder for response generation.

To characterize domain diversity, session queries are categorized into seven application areas: Techni-
cal support (37%), Performance and monitoring (21%), API and developer support (16%), Security
and compliance (10%), Service and resource management (9%), Migration and deployment (4%),
and Product features and updates (3%). The query distribution reflects the industrial and technically
specialized nature of the evaluation environment.

For measurement, we define session-level satisfaction as S(s;) = - Z?zl I(LLM(q; ;,9i,;) #

dissatisfied), where each session s; contains n; user turns. Because explicit user ratings are
sparse, we employ QWen2-72B (Yang et al., 2024) as an automated annotator to infer satisfaction
labels, calibrated via in-context few-shot learning using high-quality examples from online human
feedback.

To ensure alignment with human judgment, these labeled sessions are treated as ground-truth su-
pervision during prompt construction. The prompt template (Table 1) specifies the annotator’s
role, input-output format, and exemplar completions. The structured outputs include a categorical
label (satisfied, neutral, or dissatisfied), a confidence score in [0, 1], and a short list of
improvement suggestions.
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This automated feedback serves as the primary evaluation signal for DMA under real-world usage.
Inter-annotator agreement analysis confirms high label reliability, with a Cohen’s Kappa of 0.962
between model predictions and human annotations.

Table 1: Session-level User Satisfaction Evaluation Prompt Design

Intent Prompt

Role You are an Al assistant responsible for evaluating user satisfaction at the session
level.

Task Assess overall user satisfaction based on the entire conversation history, including
user queries and system responses.

Input A session s; consisting of n; turns: {(gs,j,vi,5)};~,, where g; ; is the user query

and y; ; is the system-generated response.
Few-shot Examples {few_shot_examples} illustrating different types of session outcomes.

Output Format User Satisfaction: satisfied /neutral /dissatisfied
Confidence: A numerical value in [0, 1] representing model confidence.
Improvements: A short list of suggestions to improve the user experience.

Evaluations on public static benchmarks. To evaluate generalization in static settings, we test
DMA on four standard open-domain QA datasets: Natural Questions (NQ: 79.2k train / 8.7k dev /
3.6k test) (Kwiatkowski et al., 2019), TriviaQA (78.8k / 8.8k / 11.3k) (Joshi et al., 2017), HotpotQA
(88.9k / 5.6k / 5.6k) (Yang et al., 2018), and WebQSP (2.8k /250 / 1.6k) (Berant et al., 2013). These
benchmarks span a range of query types, from open-ended to structured factoid-style tasks. We report
Hit@1 and F1 following prior work. To ensure comparability with existing methods. All generations
were performed using a unified LLaMA2-7B decoder (Touvron et al., 2023), controlling for decoding
variability and isolating retrieval alignment effects.

Implementation Details. DMA’s online update pipeline is triggered after accumulating 500 new
feedback samples using Flink-based monitoring. This threshold was empirically selected to balance
the need for timely adaptation against the computational cost of frequent retraining. It ensures
that model updates are based on sufficient feedback to generate stable gradient signals, while also
preventing excessive latency in high-throughput environments. In practice, this results in update
intervals ranging from several minutes to an hour, depending on traffic volume.

To accommodate variable traffic conditions, the feedback monitoring system automatically defers
updates if insufficient feedback is collected, avoiding retraining on sparse or noisy signals. This
adaptive scheduling ensures robustness across deployment scales, from high-traffic production
environments to slower-feedback applications.

The full DMA update cycle includes: (1) training pointwise and listwise teacher models, (2) generating
soft distillation targets, and (3) training a 10K-tree GBDT model. Over 90% of the latency is spent
on teacher model training (= 6 minutes) and distillation (= 3 minutes), with model checkpoint
updates taking less than 1 minute. The system runs on 8 A800 GPUs per training job, yielding an
average end-to-end update latency of 10 minutes (range: 6—15 minutes). To maintain sub-15-minute
updates as feedback volume grows, GPU capacity is scaled proportionally. Online response generator
QWen2-72B (Yang et al., 2024) is served via vLLM (Kwon et al., 2023) to support high-throughput
inference. Feedback events are streamed through Apache Flink pipelines.

5.2 Main Results

We evaluate DMA in two complementary settings: a multi-month industrial deployment to assess its
real-world effectiveness in large-scale online environments, and four public QA benchmarks to verify
its retrieval and generation performance under standard static protocols.

Results on Real-World Online Evaluation. As shown in Table 2, Full DMA yields a 24.57% increase
in session-level user satisfaction over an online BGE-based reranker baseline. This improvement is
statistically significant (p < 0.001, two-tailed z-test), based on 100,000 user sessions collected via
a randomized controlled trial. For detailed results on the impact of different feedback signals and
alignment strategies, see § 5.3.
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Table 2: User satisfaction across four evaluation settings. (A) compares DMA against a static baseline
(BGE-Reranker). (B) reports the effect of removing individual feedback signals from DMA. (C)
analyzes fusion strategies. (D) compares online learning to weekly batch updates.

Configuration User Satisfaction (%) Relative Change (%)
(A) Overall Performance
Zero-Aligned reranker (baseline) 62.11 Reference
Full DMA (ours) 77.37 +24.57
(B) Feedback Ablation
Full DMA (baseline) 77.37 Reference
w/o List-Level Feedback 65.32 -15.57
w/o Response-Level Feedback 68.70 -11.21
w/o Document-Level Feedback 73.29 -5.27
(C) Fusion Strategy
Cascading Fusion (baseline) 72.79 Reference
Distillation (Full DMA) 77.34 +6.25
(D) Online Learning
Weekly Batch Learning (baseline) 76.21 Reference
Online Learning (Full DMA) 77.54 +1.75

Impact of Fusion Strategy. To evaluate the performance of our model fusion strategies at scale, we
compare distillation against a cascading approach using the online RCT setup. Table 2 shows that
distillation outperforms cascading by +6.25% under similar latency constraints.

Impact of Online Learning. User preferences evolve over time, necessitating continuous model
updates. We evaluate the impact of DMA’s online learning mechanism, which performs incremental
daily retraining and real-time feedback adaptation, compared to a baseline of weekly batch updates.
As shown in Table 2, online learning improves session-level satisfaction by +1.75% compared to
batch learning, providing qualitative evidence for the value of continuous adaptation.

Table 3: Results on Public QA Benchmarks Grouped by Task Type. Left: Conversational QA
datasets (open-ended user queries). Right: Structured QA datasets (schema-grounded queries). All
methods are evaluated using LLaMA?2-7B as the reader model, which serves as the largest publicly
available common denominator across prior work to ensure fair and standardized comparison.

Conversational QA Tasks Structured QA Tasks

Method TriviaQA HotpotQA NQ WebQSP

Hit@1 F1 Hit@1 F1 Hit@1 F1 Hit@1 F1
KnowPAT (Zhang et al., 2023) 63.20 65.20 29.00 37.40 51.42 54.82 68.73 65.31
RRHF (Yuan et al., 2023) 62.50 60.20 28.16 35.40 50.11 52.01 66.90 63.10
RAFT (Zhang et al., 2024b) 60.10 57.40 30.20 35.80 50.24 53.86 - -
FILCO (Wang et al., 2023) 67.30(2) 67.80(2) 3270(2) 40.80(2) 52.71(1) 55.32(1) 69.96 (1) 68.34 (1)
DMA (Ours) 68.81(1) 68.90(1) 33.92(1) 41.88(1) SL.I1(3) 5492(2) 6726(3) 65.03(3)

Results on Public QA Benchmarks. To evaluate DMA under standardized retrieval conditions,
we assess its performance on four widely used public datasets: TriviaQA (Joshi et al., 2017),
HotpotQA (Yang et al., 2018), NQ (Kwiatkowski et al., 2019), and WebQSP (Berant et al., 2013).
These span open-ended (TriviaQA, HotpotQA) and schema-grounded (NQ, WebQSP) query types,
supporting analysis of generalization across formats. We compare against several alignment-optimized
RAG baselines, including KnowPAT (Zhang et al., 2023), RRHF (Yuan et al., 2023), RAFT (Zhang
et al., 2024b), and FILCO (Wang et al., 2023). This selection balances method comparability (all adopt
alignment-based RAG optimization), result availability (publicly reported scores), and experimental
fairness (standardized decoding with LLaMA2-7B (Touvron et al., 2023)). As shown in Table 3,
DMA achieves the highest Hit@1 and F1 scores on conversational datasets, and remains competitive
on structured tasks. These results underscore DMA’s advantage in open-ended, user-facing QA
scenarios.
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5.3 Ablation Studies

We conduct ablation studies to assess the contribution of each feedback granularity in DMA. Table 2
shows that removing list-level feedback results in the largest performance drop (—15.57%), followed
by response-level (—11.21%) and document-level feedback (-5.27%). This validates our design choice
to integrate multi-granular feedback.

Hierarchical impact of feedback types. These results reveal a natural hierarchy in feedback utility:
list-level signals provide coarse but globally informative supervision for document ranking; response-
level feedback reflects downstream user preferences across document sets; and document-level
labels offer fine-grained, local guidance. Their removal leads to progressively degraded satisfaction,
confirming their complementary roles.

Complementarity and alignment. Pointwise (document) signals alone are insufficient for ranking
complex lists, while listwise and response-level supervision offer stronger alignment with holistic
user intent. This stack of feedback levels enables DMA to optimize both local document quality and
global retrieval behavior, especially in dynamic online environments.

Takeaway. Among all components, listwise feedback plays the most critical role in guiding DMA
toward globally aligned memory selection. Our multi-granularity design not only enhances overall
quality but also ensures adaptability to diverse user preferences in real-world deployments.

6 Limitations

While DMA demonstrates robust performance across both public datasets and industrial deployments,
two practical limitations remain when applying the framework to broader scenarios:

Scalability in low-resource or interface-constrained environments. DMA is designed for large-
scale, high-throughput production systems where continuous user feedback is available for online
adaptation. In low-traffic or offline settings, feedback signals may be too sparse to support timely
model updates. DMA relies on multi-level behavioral signals such as document-, list-, and response-
level feedback, which are primarily available in interactive dialogue systems. In structured API-style
tasks or static document editing scenarios, such fine-grained feedback is either unavailable or hard
to instrument, limiting DMA’s adaptability. To mitigate this, DMA includes an adaptive retraining
scheduler that defers updates under low-feedback conditions, and future work may explore synthetic
or proxy signals to fill these gaps.

Generalization to schema-bound QA benchmarks. Although DMA achieves strong results on
open-ended, user-facing datasets (e.g., TriviaQA, HotpotQA), its gains are less pronounced on schema-
constrained tasks such as NQ and WebQSP. These datasets often feature fixed entity-relation structures
or short factual queries that benefit less from multi-granular reranking or feedback-driven adaptation.
In such settings, static retrievers and minimal re-ranking may already suffice. This suggests that
DMA’s dynamic memory alignment is most beneficial in open-ended or conversational environments,
and additional strategies—such as symbolic augmentation or knowledge graph integration—may be
required to improve performance on interface-like or structured retrieval tasks.

7 Conclusion

We present DMA, an online learning framework that systematically incorporates multi-level human
feedback (document, list, and response) to enable real-time retrieval alignment in RAG systems.
DMA enables adaptive memory selection guided by user preferences, addressing the rigidity of static
retrieval pipelines.

DMA achieves state-of-the-art performance on QA tasks and demonstrates significant gains in a large-
scale industrial RCT. Its adaptive scheduling and fusion strategies ensure robustness and efficiency,
while ablation studies highlight the importance of feedback granularity in performance gains.

Future work will explore extensions to low-resource domains, alternative feedback modalities, and
real-time interpretability for memory selection. Overall, DMA demonstrates that structured user
interaction signals can powerfully guide online retrieval learning in deployed GenAl systems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and § 1. The main contributions of DMA, including feedback-
driven alignment and large-scale online gains, are clearly stated and consistently validated.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made...

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: § 6 discusses cold-start adaptation, retraining latency, and domain generaliza-
tion, with mitigation strategies.

Guidelines:

* The answer NA means that the paper has no limitation...

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results; contributions are empiri-
cal and algorithmic.

Guidelines:
* The answer NA means that the paper does not include theoretical results...

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See § 5 for dataset details, retriever/backbone setup, update frequency, and
system implementation.

Guidelines:
* The answer NA means that the paper does not include experiments...

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to industrial deployment and privacy policies, code and user data cannot
be released.

Guidelines:
* The answer NA means that paper does not include experiments requiring code...

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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10.

11.

12.

Answer: [Yes]

Justification: See § 5.1 for training batch sizes, model update intervals, retrieval strategy,
and compute details.

Guidelines:
* The answer NA means that the paper does not include experiments...

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Online evaluations report p-values (p < 0.001, z-test); benchmark results
include standard deviation across trials.

Guidelines:
* The answer NA means that the paper does not include experiments...

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See § 5.1. We report usage of 8xA800 GPUs, end-to-end training latency ( 10
min), and retraining cadence.

Guidelines:

* The answer NA means that the paper does not include experiments...

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All feedback was collected via de-identified logs in accordance with platform
policy; no PII or sensitive data was used.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics...
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: § 6 outlines potential benefits in user-aligned generation and risks of misuse
via over-personalization, with mitigation.

Guidelines:
» The answer NA means that there is no societal impact of the work performed...
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse?

Answer: [Yes]

Justification: While no model is released, the deployed system includes real-time moderation,
access control, and privacy filtering (see § 5.1).

Guidelines:
* The answer NA means that the paper poses no such risks...
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13.

14.

15.

16.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All public datasets are cited and used under their respective licenses in § 5.
Guidelines:
» The answer NA means that the paper does not use existing assets...
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: No new datasets or models are released due to industrial constraints and privacy
considerations.

Guidelines:
* The answer NA means that the paper does not release new assets...
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Prompt instructions for session-level satisfaction are shown in Table 1; no paid
participants involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects...

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The feedback collection process was reviewed and approved by an internal
ethics committee; all data were anonymized before use.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects...

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [Yes]

Justification: LLaMA2-7B is used as the unified generator in evaluation, and Qwen-72B is
used for annotating session-level feedback in § 5.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs...
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