
DMA: Enhancing Retrieval-Augmented Generation with Adaptive Human Feedback

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Retrieval-augmented generation (RAG) systems typically rely on static retrieval
2 methods, limiting their adaptability to dynamic environments. In this paper, we
3 propose a novel online learning framework called Dynamic Memory Alignment
4 (DMA), designed specifically to enhance retrieval performance and content genera-
5 tion in RAG through adaptive incorporation of multi-level human feedback. DMA
6 systematically integrates real-time feedback signals at document, list, and response
7 levels, effectively adjusting memory management strategies to optimize relevance
8 and adaptability in online interactive environments. Extensive evaluations demon-
9 strate DMA’s competitive foundational retrieval performance across multiple stan-
10 dard knowledge-intensive benchmarks. DMA achieves significant improvements
11 on datasets reflecting natural conversational interactions (TriviaQA, HotpotQA),
12 confirming its suitability for online GenAI dialogue applications. Moreover, a
13 multi-month industrial deployment demonstrates that DMA substantially improves
14 user engagement in real-world applications. These results underscore DMA’s abil-
15 ity to maintain robust foundational retrieval capabilities while excelling at dynamic,
16 real-time adaptation in interactive online environments.

17

1 Introduction

18 Retrieval-augmented generation (RAG) has become a core paradigm for enhancing the factuality and
19 adaptability of LLMs in knowledge-intensive tasks (Lewis et al., 2020; Borgeaud et al., 2022). By
20 decoupling parametric memory from non-parametric retrieval, RAG enables models to access external
21 information dynamically, grounding responses on up-to-date and domain-specific knowledge without
22 modifying internal parameters. This separation has powered recent advances across open-domain QA
23 (Izacard & Grave, 2021), multi-hop reasoning (Yang et al., 2018), and instruction-based augmentation
24 (Lin et al., 2024; Gao et al., 2023).

25 Despite these advances, conventional RAG pipelines exhibit critical limitations in dynamic online
26 settings: (i) Static retrieval strategies cannot adapt to evolving user intent or content drift. Most dense
27 retrievers are trained offline and remain fixed at deployment time, failing to reflect live interaction
28 signals (Lin et al., 2023; Jiang et al., 2024). (ii) Given the limited context length of mainstream LLMs
29 (Liu et al., 2023), retrieval must prioritize highly relevant information. Sole reliance on top- k dense
30 similarity often results in suboptimal recall and necessitates robust re-ranking strategies (Nogueira
31 et al., 2020; Glass et al., 2022b; Qin et al., 2024). (iii) While dedicated rankers and hybrid retrievers
32 can improve retrieval precision (Ma et al., 2023; Izacard et al., 2022), they often lack the flexibility
33 and generalization needed for personalized, real-time adaptation (Zhang et al., 2024a). These issues
34 collectively suggest that current RAG systems require an adaptive interface between user feedback
35 and memory control.

36 Motivated by these challenges, our goal is to build an adaptive online learning framework for RAG
37 systems that effectively integrates and utilizes dynamic human feedback, enabling continuous real-
38 time refinement of memory and retrieval decisions. Recent studies demonstrate that instruction-tuned
39 LLMs can effectively align responses with user intent through task-specific fine-tuning (Liu et al.,
40 2024b; Lin et al., 2024). Real-time human feedback across document-, list-, and response-level
41 granularity can serve as actionable supervision signals for adaptive retrieval. DMA incorporates these
42 signals through continuous feedback-driven memory alignment.

43 To this end, we propose Dynamic Memory Alignment (DMA), an innovative online learning frame-
44 work designed to systematically organize, interpret, and incorporate adaptive human feedback signals,
45 dynamically optimizing retrieval strategies and memory prioritization within RAG workflows.

46 Specifically, DMA addresses the core challenge of online adaptability through three key components:
47 (1) a multi-granularity feedback taxonomy tailored for conversational GenAI scenarios; (2) a suite of
48 reward modeling techniques that interpret heterogeneous user signals into structured supervision; (3)
49 online knowledge fusion mechanisms that prioritize high-value memory traces and modulate retrieval
50 policy accordingly.

51 As a result, the DMA framework is particularly suited to real-time, user-facing applications such as
52 chat assistants and enterprise QA bots, where system adaptability is key to sustained performance
53 (Asai et al., 2024b; Jeong et al., 2024).

54 Our contributions can be summarized as follows:

- 55 • We propose DMA, a novel online learning framework enabling RAG systems to continuously refine
56 adaptive retrieval based on multi-level user feedback. DMA systematically captures sparse yet
57 valuable user signals to dynamically enhance system responsiveness in dynamic online settings.
- 58 • Through extensive evaluations on widely-used knowledge-intensive benchmarks, DMA achieves
59 strong results on conversational datasets such as TriviaQA and HotpotQA, showing state-of-art
60 performance than prior leading methods.
- 61 • Most critically, DMA demonstrates notable real-world applicability, as evidenced by a 24.57%
62 improvement in positive user feedback during a multi-month randomized controlled industrial trial,
63 validating its effectiveness and adaptability in practical deployment.

64 The remainder of this paper is structured as follows: § 2 surveys related work. § 3 formalizes the RAG
65 problem and highlights key limitations of static pipelines. § 4 presents the proposed DMA framework.
66 Experimental setup and results are detailed in § 5, while remaining challenges are discussed in § 6.
67 We conclude in § 7.

68 2 Related Work

69 RAG has emerged as a core solution for knowledge-intensive NLP tasks (Lewis et al., 2020; Borgeaud
70 et al., 2022). In standard RAG pipelines, a dense retriever (e.g., (Karpukhin et al., 2020)) encodes
71 queries and documents into a shared embedding space, retrieving top- k relevant contexts from an
72 external corpus. These retrieved contexts are then fused with the input query and processed by an
73 LLM to generate grounded responses (Izacard & Grave, 2021; Izacard et al., 2023).

74 Recent research has focused on enhancing this pipeline along several directions. One thread optimizes
75 retrieval to better align with the downstream generation needs of LLMs (Shi et al., 2024; Lin et al.,
76 2024; Ye et al., 2023). Another line introduces multi-step and interleaved retrieval-generation
77 mechanisms to capture complex reasoning chains (Trivedi et al., 2023; Shao et al., 2023; Jeong et al.,
78 2024). Meanwhile, context filtering and selection strategies have been developed to remove noisy
79 evidence before generation (Wang et al., 2023; Xu et al., 2024; Yoran et al., 2024), improving both
80 factuality and efficiency.

81 In parallel, instruction tuning has become a critical enabler for aligning LLMs with retrieval-enhanced
82 tasks. From supervised instruction collections like FLAN and Self-Instruct (Wei et al., 2022; Wang
83 et al., 2022) to open-source alignment efforts such as ChatGPT and Claude (OpenAI, 2023; Anthropic,
84 2023), LLMs increasingly learn to operate over retrieved evidence. Recent studies demonstrate that
85 retrieval-augmented instruction tuning significantly boosts performance across QA and reasoning
86 tasks (Liu et al., 2024b; Asai et al., 2024b; Lin et al., 2024; Luo et al., 2023; Wang et al., 2024).

87 Nevertheless, integrating retrieval into LLM training remains challenging due to the need for surrogate
88 losses and continuous re-indexing (Guu et al., 2020; Shi et al., 2024; Sachan et al., 2021; Izacard
89 et al., 2023; Dong et al., 2024).

90 Ranking-based enhancements have been extensively used to improve retrieved context quality before
91 generation. Early neural ranking models (Mitra et al., 2018; Chen et al., 2020) were later extended
92 to dual-stage architectures such as Re2G (Glass et al., 2022b), PARADE (Drozdov et al., 2023),
93 and RA-DIT (Lin et al., 2024), enabling more flexible reordering. However, these rankers often
94 rely on moderate-sized encoder models (e.g., BERT or T5), which struggle with complex semantics
95 and generalization (Ram et al., 2023). Recent evidence suggests that full-scale LLMs can act as
96 powerful rankers with minimal prompting (Qin et al., 2024; Sun et al., 2023; Khalifa et al., 2023), yet
97 leveraging this capacity in online RAG systems remains under-explored.

98 Crucially, most prior work optimizes retrieval and re-ranking on static datasets, assuming fixed user
99 intent and corpus distribution. This paradigm fails to accommodate the non-stationary dynamics in
100 real-world online systems, where user behavior, topic drift, and feedback evolve continuously. To
101 bridge this gap, emerging approaches such as Self-RAG (Asai et al., 2024a), ReFeed (Yu et al., 2024),
102 and Pistis-RAG (Bai et al., 2024) propose adaptive mechanisms incorporating implicit or explicit
103 feedback. These methods are typically confined to limited settings and do not offer general-purpose
104 integration into end-to-end retrieval and memory control.

105 In contrast, the DMA framework introduces a unified online learning architecture that encodes
106 multi-level user feedback at document-, list-, and response-level granularity into dynamic retrieval
107 optimization. Our approach maintains continuous feedback loops to enable retrieval and generation
108 components to co-adapt during deployment, which supports sustained performance in open-ended,
109 user-facing GenAI systems.

110 3 Preliminaries

111 This section formalizes the RAG pipeline that serves as the foundation for our work. We then identify
112 key limitations of existing RAG approaches in dynamic online settings, which motivate the design of
113 our proposed DMA framework.

114 3.1 Problem Setup

115 Let $\mathcal{C} = \{d_1, d_2, \dots, d_N\}$ denote a corpus of external knowledge documents. Given a user query
116 $q \in \mathbb{Q}$, a retriever R computes similarity scores using dense embeddings, typically in a dual-encoder
117 setting (Karpukhin et al., 2020), where $\text{Relevance}(q, d_i) = \langle E_q(q), E_d(d_i) \rangle$ and E_q, E_d are the query
118 and document encoders. The top- k documents are selected as $D_{\text{retrieve}} = \text{Top}_k\{\text{Relevance}(q, d_i) \mid$
119 $d_i \in \mathcal{C}\}$. A reranker Rerank_m may be applied to reorder and truncate this list to the top- m items,
120 yielding $D = \text{Rerank}_m(q, D_{\text{retrieve}})$, where $m \leq k$ (Cao et al., 2007; Glass et al., 2022a). The final
121 context set $D = \{d^{(1)}, \dots, d^{(m)}\}$ is concatenated with the query and fed into a language model
122 G to generate a grounded response $a = G(q, D)$. While the retriever R and generator G may be
123 trained separately or jointly (Sachan et al., 2021; Izacard et al., 2023), most real-world systems adopt
124 modular training due to scalability and deployment constraints.

125 3.2 Limitations of Current Approaches

126 Despite their success in open-domain question answering and related tasks (Lewis et al., 2020;
127 Borgeaud et al., 2022; Guu et al., 2020), current RAG systems exhibit structural limitations when
128 deployed in dynamic, user-facing environments.

129 First, conventional RAG methods rely on static retrievers trained offline over frozen corpora, using
130 task-specific training signals (e.g., NQ, TriviaQA) that do not generalize well to continuously evolving
131 user needs (Lewis et al., 2020; Guu et al., 2020; Izacard et al., 2023). This fixed retrieval logic fails to
132 accommodate domain drift, long-term user preferences, or topic shifts typical of online applications.

133 Second, although mechanisms such as reranking or filtering (Chen et al., 2020; Wang et al., 2023; Xu
134 et al., 2024) can improve precision, they are typically rule-based or learned from fixed supervised
135 data. These components rarely leverage live user feedback signals, and even when available, such
136 signals are often aggregated in limited forms (e.g., binary preference) or only utilized post hoc.

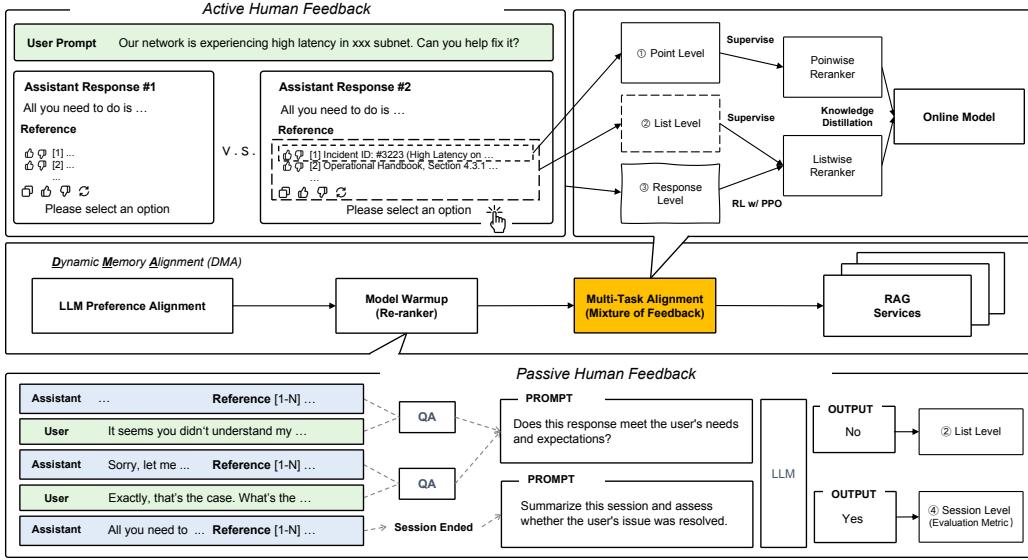


Figure 1: Overview of the DMA feedback loop. Multi-level human feedback is organized, modeled, and fused to guide online retrieval strategies. Reranker training and distillation are detailed in Figure 2.

137 Third, most RAG systems lack a principled framework to incorporate multi-granular feedback—such
 138 as document-level usefulness, list-level coverage, or response-level satisfaction—into real-time
 139 retrieval decisions. While reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022)
 140 and browser-based systems such as WebGPT (Nakano et al., 2021) have demonstrated the potential
 141 of fine-grained supervision, these approaches remain decoupled from the retrieval components and
 142 are difficult to generalize to streaming environments.

143 As a result, retrieval behavior remains largely fixed during deployment, limiting the system’s ability to
 144 improve with usage, personalize to users, or adapt to shifts in content distribution. These limitations
 145 call for an online learning mechanism capable of dynamically integrating human feedback into
 146 memory and retrieval policies—precisely the gap that our proposed DMA framework aims to address.

147 4 Dynamic Memory Alignment

148 To address the limitations mentioned in the previous section, we introduce **DMA**, an online learning
 149 framework designed to continuously refine retrieval strategies in RAG systems by leveraging real-time
 150 user feedback. Unlike conventional static pipelines, DMA forms a closed-loop system that adaptively
 151 aligns memory and retrieval decisions with evolving user preferences.

152 4.1 Framework Overview

153 As illustrated in Figure 1, DMA comprises three core components: (1) **Feedback Taxonomy**,
 154 which structures heterogeneous user signals into well-defined levels; (2) **Reward Modeling**, which
 155 transforms these signals into trainable supervision; and (3) **Online Adaptation**, which updates
 156 retrieval strategies based on real-time feedback. Together, these modules form a dynamic feedback
 157 loop, enabling memory alignment in continually evolving GenAI interactions.

158 4.2 Human Feedback Taxonomy

159 Effective capture and utilization of user feedback in industrial settings require systematic organization.
 160 Addressing the challenge of sparse and heterogeneous feedback across user contexts, we investigate
 161 prominent LLMs, including ChatGPT (Achiam et al., 2023), Gemini (Team et al., 2023), QWen (Bai

162 et al., 2023), DeepSeek (Liu et al., 2024a), ChatGML (GLM et al., 2024), and Kimi (Team et al.,
163 2025), to identify and categorize various forms of human feedback signals.
164 This taxonomy provides a systematic structure to interpret diverse feedback signals and optimize
165 system behavior. As illustrated in Figure 1, feedback signals are categorized into four levels of
166 granularity:
167 1) **Document-level feedback** reflects user evaluations of individual retrieved snippets, typically
168 through direct actions such as upvoting or downvoting. This feedback is formalized into a preference
169 dataset $\mathcal{D}_{\text{pref,doc}} = \{(q_i, d_i, y_{q_i, d_i})\}_{i=1}^N$, enabling optimization of document-level relevance.
170 2) **List-level Feedback** captures user preferences over a set of retrieved documents, evaluating the
171 overall quality of system outputs for a query q_i based on a list D_{q_i} and system response y_{q_i} . This
172 includes both explicit (e.g., copy, regenerate) and implicit feedback. It is formalized into a preference
173 dataset $\mathcal{D}_{\text{pref,list}}$, providing insights into document relevance and ranking consistency for a list subset
174 D_{sub, q_i} .
175 3) **Response-level feedback** refers to user preference between two (or more) response options
176 generated from distinct document sets D_1 and D_2 . The feedback signal y indicates the pre-
177 ferred response, implying a preference between the document sets. This is formalized as $\mathcal{D}_{\text{resp}} =$
178 $\{(q_i, r_{1,i}, r_{2,i}, D_{1,i}, D_{2,i}, y_i)\}_{i=1}^{N_{\text{resp}}}$. This data is valuable for alignment methods and can be scaled.
179 Although the feedback is collected at the response level, each response is generated based on a
180 specific document list. As such, user preference over responses implicitly reflects preference over the
181 underlying document sets, which we leverage to supervise document-level reranking.
182 4) **Session-level feedback** aggregates user evaluations across an entire interaction session s_i , capturing
183 overall user perceptions such as task satisfaction f_{s_i} . While this high-level signal is not used directly
184 to train granular reward models, it is employed in two key roles: (i) as an external metric for evaluating
185 DMA variants (§5.1); and (ii) as a dynamic weight signal to adjust fusion importance across feedback
186 types during GBDT distillation (see §4.3) (Friedman, 2001).
187 By structuring feedback into these levels and formalizing the associated datasets, our taxonomy offers
188 a robust framework for systematically interpreting user inputs and optimizing GenAI systems.

189 4.3 Reward Construction and Memory Alignment

190 To leverage the multi-granular feedback captured by the taxonomy for optimal DMA performance,
191 we design specific modeling methods for each granularity level and develop strategies to combine
192 their outputs to influence memory alignment. A multi-task modeling approach integrates diverse
193 feedback signals to construct reward signals suitable for training memory alignment components.
194 **Document-Level Modeling.** A model is trained using explicit document-level feedback $\mathcal{D}_{\text{pref,doc}}$
195 with Binary Cross-Entropy (BCE) loss $\mathcal{L}_{\text{BCE}} = -y \log \sigma(s) - (1 - y) \log(1 - \sigma(s))$, where s is
196 the predicted score and $y \in \{0, 1\}$ is the label. This produces a pointwise reranker focused on
197 fine-grained precision.
198 **List-Level Modeling.** To capture relative importance among retrieved results, listwise rerankers are
199 trained using user feedback. The ListNet loss $\mathcal{L}_{\text{ListNet}} = -\sum_i P_{\text{true}}(i) \log P_{\text{pred}}(i)$, where $P(i) =$
200 $\exp(s_i) / \sum_j \exp(s_j)$, ensures alignment between predicted and target ranking distributions.
201 **Response-Level Modeling.** We collect pairwise user feedback comparing responses (r_1, r_2) gen-
202 erated from different document lists D_1, D_2 , forming preference data $\mathcal{D}_{\text{resp}} = \{(q, D_1, D_2, y)\}$
203 with binary preference label y . A reward model $R(D)$ is trained via pairwise loss $\mathcal{L}_{\text{pairwise}} =$
204 $-y \log \sigma(R(D_1) - R(D_2)) - (1 - y) \log \sigma(R(D_2) - R(D_1))$, where $\sigma(\cdot)$ is the sigmoid
205 function. To inject response-level preferences into the reranker, we apply Proximal Policy Optimization
206 (PPO) (Schulman et al., 2017), optimizing a listwise policy using the clipped surrogate objective
207 $\mathcal{L}_{\text{PPO}} = -\mathbb{E}_t[\min(r_t \hat{A}_t, \text{clip}(r_t, 1 - \epsilon, 1 + \epsilon) \hat{A}_t)]$, where $r_t = \pi_\theta(a_t | s_t) / \pi_{\theta_{\text{old}}}(a_t | s_t)$ and \hat{A}_t is the
208 advantage estimated from the reward model. This approach effectively aligns a listwise reranker
209 using response-level feedback, producing the **PPO-aligned listwise reranker**, which captures global
210 user satisfaction signals beyond document or list-level heuristics.

211 **Fusion and Distillation for Online Serving** To meet the latency requirements of online serving,
 212 we distill the outputs of upstream feedback-supervised rerankers into a lightweight ensemble model.
 213 Specifically, we adopt a Gradient Boosting Decision Tree (GBDT) as the final online scoring module.
 214 This GBDT model is trained using soft labels derived from upstream reranking components and
 215 provides efficient inference without sacrificing alignment quality. In production deployment, it enables
 216 real-time document ranking with sub-10ms latency while preserving the benefits of multi-granular
 217 feedback supervision.
 218 Figure 2 illustrates the high-level training pipeline. Additional modeling and supervision details are
 219 omitted for brevity and deployment sensitivity.

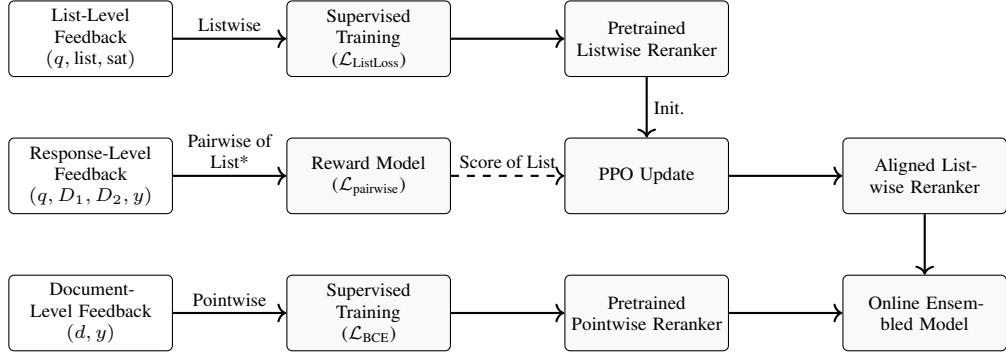


Figure 2: Training and distillation architecture in DMA. Three types of feedback supervise specialized ranking models, which are fused via PPO and distilled into a lightweight online reranker. Full pipeline details in § 4.3

220 5 Experiment

221 We evaluate DMA across two settings: (1) real-world online interactions with online users, and
 222 (2) public open-domain QA benchmarks. The former validates DMA’s online learning ability in
 223 production; the latter assesses generalization under static evaluation protocols.

224 5.1 Experiment Setup

225 **Evaluations on API Distribution.** We conduct a multi-month randomized controlled trial (RCT) on
 226 a Chinese-language GenAI system operated by a major telecommunications and cloud provider. To
 227 support multilingual retrieval, DMA uses BGE-m3 as the retriever backbone and an instruction-tuned
 228 decoder for response generation.

229 To characterize domain diversity, session queries are categorized into seven application areas: Technical
 230 support (37%), Performance and monitoring (21%), API and developer support (16%), Security
 231 and compliance (10%), Service and resource management (9%), Migration and deployment (4%),
 232 and Product features and updates (3%). The query distribution reflects the industrial and technically
 233 specialized nature of the evaluation environment.

234 For measurement, we define session-level satisfaction as $S(s_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbb{I}(\text{LLM}(q_{i,j}, y_{i,j}) \neq$
 235 *dissatisfied*), where each session s_i contains n_i user turns. Because explicit user ratings are
 236 sparse, we employ QWen2-72B (Yang et al., 2024) as an automated annotator to infer satisfaction
 237 labels, calibrated via in-context few-shot learning using high-quality examples from online human
 238 feedback.

239 To ensure alignment with human judgment, these labeled sessions are treated as ground-truth su-
 240 pervision during prompt construction. The prompt template (Table 1) specifies the annotator’s
 241 role, input-output format, and exemplar completions. The structured outputs include a categorical
 242 label (*satisfied*, *neutral*, or *dissatisfied*), a confidence score in $[0, 1]$, and a short list of
 243 improvement suggestions.

244 This automated feedback serves as the primary evaluation signal for DMA under real-world usage.
 245 Inter-annotator agreement analysis confirms high label reliability, with a Cohen’s Kappa of 0.962
 246 between model predictions and human annotations.

Table 1: Session-level User Satisfaction Evaluation Prompt Design

Intent	Prompt
Role	You are an AI assistant responsible for evaluating user satisfaction at the session level.
Task	Assess overall user satisfaction based on the entire conversation history, including user queries and system responses.
Input	A session s_i consisting of n_i turns: $\{(q_{i,j}, y_{i,j})\}_{j=1}^{n_i}$, where $q_{i,j}$ is the user query and $y_{i,j}$ is the system-generated response.
Few-shot Examples	{few_shot_examples} illustrating different types of session outcomes.
Output Format	<p>User Satisfaction: satisfied / neutral / dissatisfied</p> <p>Confidence: A numerical value in [0, 1] representing model confidence.</p> <p>Improvements: A short list of suggestions to improve the user experience.</p>

247 **Evaluations on public static benchmarks.** To evaluate generalization in static settings, we test
 248 DMA on four standard open-domain QA datasets: Natural Questions (NQ: 79.2k train / 8.7k dev /
 249 3.6k test) (Kwiatkowski et al., 2019), TriviaQA (78.8k / 8.8k / 11.3k) (Joshi et al., 2017), HotpotQA
 250 (88.9k / 5.6k / 5.6k) (Yang et al., 2018), and WebQSP (2.8k / 250 / 1.6k) (Berant et al., 2013). These
 251 benchmarks span a range of query types, from open-ended to structured factoid-style tasks. We report
 252 Hit@1 and F1 following prior work. To ensure comparability with existing methods. All generations
 253 were performed using a unified LLaMA2-7B decoder (Touvron et al., 2023), controlling for decoding
 254 variability and isolating retrieval alignment effects.

255 **Implementation Details.** DMA’s online update pipeline is triggered after accumulating 500 new
 256 feedback samples using Flink-based monitoring. This threshold was empirically selected to balance
 257 the need for timely adaptation against the computational cost of frequent retraining. It ensures
 258 that model updates are based on sufficient feedback to generate stable gradient signals, while also
 259 preventing excessive latency in high-throughput environments. In practice, this results in update
 260 intervals ranging from several minutes to an hour, depending on traffic volume.

261 To accommodate variable traffic conditions, the feedback monitoring system automatically defers
 262 updates if insufficient feedback is collected, avoiding retraining on sparse or noisy signals. This
 263 adaptive scheduling ensures robustness across deployment scales, from high-traffic production
 264 environments to slower-feedback applications.

265 The full DMA update cycle includes: (1) training pointwise and listwise teacher models, (2) generating
 266 soft distillation targets, and (3) training a 10K-tree GBDT model. Over 90% of the latency is spent
 267 on teacher model training (\approx 6 minutes) and distillation (\approx 3 minutes), with model checkpoint
 268 updates taking less than 1 minute. The system runs on 8 A800 GPUs per training job, yielding an
 269 average end-to-end update latency of 10 minutes (range: 6–15 minutes). To maintain sub-15-minute
 270 updates as feedback volume grows, GPU capacity is scaled proportionally. Online response generator
 271 QWen2-72B (Yang et al., 2024) is served via vLLM (Kwon et al., 2023) to support high-throughput
 272 inference. Feedback events are streamed through Apache Flink pipelines.

273 5.2 Main Results

274 We evaluate DMA in two complementary settings: a multi-month industrial deployment to assess its
 275 real-world effectiveness in large-scale online environments, and four public QA benchmarks to verify
 276 its retrieval and generation performance under standard static protocols.

277 **Results on Real-World Online Evaluation.** As shown in Table 2, Full DMA yields a 24.57% increase
 278 in session-level user satisfaction over an online BGE-based reranker baseline. This improvement is
 279 statistically significant ($p < 0.001$, two-tailed z-test), based on 100,000 user sessions collected via
 280 a randomized controlled trial. For detailed results on the impact of different feedback signals and
 281 alignment strategies, see § 5.3.

Table 2: User satisfaction across four evaluation settings. (A) compares DMA against a static baseline (BGE-Reranker). (B) reports the effect of removing individual feedback signals from DMA. (C) analyzes fusion strategies. (D) compares online learning to weekly batch updates.

Configuration	User Satisfaction (%)	Relative Change (%)
(A) Overall Performance		
Zero-Aligned reranker (baseline)	62.11	Reference
Full DMA (ours)	77.37	+24.57
(B) Feedback Ablation		
Full DMA (baseline)	77.37	Reference
w/o List-Level Feedback	65.32	-15.57
w/o Response-Level Feedback	68.70	-11.21
w/o Document-Level Feedback	73.29	-5.27
(C) Fusion Strategy		
Cascading Fusion (baseline)	72.79	Reference
Distillation (Full DMA)	77.34	+6.25
(D) Online Learning		
Weekly Batch Learning (baseline)	76.21	Reference
Online Learning (Full DMA)	77.54	+1.75

282 *Impact of Fusion Strategy.* To evaluate the performance of our model fusion strategies at scale, we
283 compare distillation against a cascading approach using the online RCT setup. Table 2 shows that
284 distillation outperforms cascading by +6.25% under similar latency constraints.

285 *Impact of Online Learning.* User preferences evolve over time, necessitating continuous model
286 updates. We evaluate the impact of DMA’s online learning mechanism, which performs incremental
287 daily retraining and real-time feedback adaptation, compared to a baseline of weekly batch updates.
288 As shown in Table 2, online learning improves session-level satisfaction by +1.75% compared to
289 batch learning, providing qualitative evidence for the value of continuous adaptation.

Table 3: **Results on Public QA Benchmarks Grouped by Task Type.** Left: Conversational QA datasets (open-ended user queries). Right: Structured QA datasets (schema-grounded queries). All methods are evaluated using LLaMA2-7B as the reader model, which serves as the largest publicly available common denominator across prior work to ensure fair and standardized comparison.

Method	Conversational QA Tasks				Structured QA Tasks			
	TriviaQA		HotpotQA		NQ		WebQSP	
	Hit@1	F1	Hit@1	F1	Hit@1	F1	Hit@1	F1
KnowPAT (Zhang et al., 2023)	63.20	65.20	29.00	37.40	51.42	54.82	68.73	65.31
RRHF (Yuan et al., 2023)	62.50	60.20	28.16	35.40	50.11	52.01	66.90	63.10
RAFT (Zhang et al., 2024b)	60.10	57.40	30.20	35.80	50.24	53.86	—	—
FILCO (Wang et al., 2023)	67.30 (2)	67.80 (2)	32.70 (2)	40.80 (2)	52.71 (1)	55.32 (1)	69.96 (1)	68.34 (1)
DMA (Ours)	68.81 (1)	68.90 (1)	33.92 (1)	41.88 (1)	51.11 (3)	54.92 (2)	67.26 (3)	65.03 (3)

290 **Results on Public QA Benchmarks.** To evaluate DMA under standardized retrieval conditions,
291 we assess its performance on four widely used public datasets: TriviaQA (Joshi et al., 2017),
292 HotpotQA (Yang et al., 2018), NQ (Kwiatkowski et al., 2019), and WebQSP (Berant et al., 2013).
293 These span open-ended (TriviaQA, HotpotQA) and schema-grounded (NQ, WebQSP) query types,
294 supporting analysis of generalization across formats. We compare against several alignment-optimized
295 RAG baselines, including KnowPAT (Zhang et al., 2023), RRHF (Yuan et al., 2023), RAFT (Zhang
296 et al., 2024b), and FILCO (Wang et al., 2023). This selection balances method comparability (all adopt
297 alignment-based RAG optimization), result availability (publicly reported scores), and experimental
298 fairness (standardized decoding with LLaMA2-7B (Touvron et al., 2023)). As shown in Table 3,
299 DMA achieves the highest Hit@1 and F1 scores on conversational datasets, and remains competitive
300 on structured tasks. These results underscore DMA’s advantage in open-ended, user-facing QA
301 scenarios.

302 **5.3 Ablation Studies**

303 We conduct ablation studies to assess the contribution of each feedback granularity in DMA. Table 2
304 shows that removing *list-level feedback* results in the largest performance drop (**-15.57%**), followed
305 by *response-level* (**-11.21%**) and *document-level feedback* (**-5.27%**). This validates our design choice
306 to integrate multi-granular feedback.

307 **Hierarchical impact of feedback types.** These results reveal a natural hierarchy in feedback utility:
308 list-level signals provide coarse but globally informative supervision for document ranking; response-
309 level feedback reflects downstream user preferences across document sets; and document-level
310 labels offer fine-grained, local guidance. Their removal leads to progressively degraded satisfaction,
311 confirming their complementary roles.

312 **Complementarity and alignment.** Pointwise (document) signals alone are insufficient for ranking
313 complex lists, while listwise and response-level supervision offer stronger alignment with holistic
314 user intent. This stack of feedback levels enables DMA to optimize both local document quality and
315 global retrieval behavior, especially in dynamic online environments.

316 **Takeaway.** Among all components, listwise feedback plays the most critical role in guiding DMA
317 toward globally aligned memory selection. Our multi-granularity design not only enhances overall
318 quality but also ensures adaptability to diverse user preferences in real-world deployments.

319 **6 Limitations**

320 While DMA demonstrates robust performance across both public datasets and industrial deployments,
321 two practical limitations remain when applying the framework to broader scenarios:

322 **Scalability in low-resource or interface-constrained environments.** DMA is designed for large-
323 scale, high-throughput production systems where continuous user feedback is available for online
324 adaptation. In low-traffic or offline settings, feedback signals may be too sparse to support timely
325 model updates. DMA relies on multi-level behavioral signals such as document-, list-, and response-
326 level feedback, which are primarily available in interactive dialogue systems. In structured API-style
327 tasks or static document editing scenarios, such fine-grained feedback is either unavailable or hard
328 to instrument, limiting DMA’s adaptability. To mitigate this, DMA includes an adaptive retraining
329 scheduler that defers updates under low-feedback conditions, and future work may explore synthetic
330 or proxy signals to fill these gaps.

331 **Generalization to schema-bound QA benchmarks.** Although DMA achieves strong results on
332 open-ended, user-facing datasets (e.g., TriviaQA, HotpotQA), its gains are less pronounced on schema-
333 constrained tasks such as NQ and WebQSP. These datasets often feature fixed entity-relation structures
334 or short factual queries that benefit less from multi-granular reranking or feedback-driven adaptation.
335 In such settings, static retrievers and minimal re-ranking may already suffice. This suggests that
336 DMA’s dynamic memory alignment is most beneficial in open-ended or conversational environments,
337 and additional strategies—such as symbolic augmentation or knowledge graph integration—may be
338 required to improve performance on interface-like or structured retrieval tasks.

339 **7 Conclusion**

340 We present DMA, an online learning framework that systematically incorporates multi-level human
341 feedback (document, list, and response) to enable real-time retrieval alignment in RAG systems.
342 DMA enables adaptive memory selection guided by user preferences, addressing the rigidity of static
343 retrieval pipelines.

344 DMA achieves state-of-the-art performance on QA tasks and demonstrates significant gains in a large-
345 scale industrial RCT. Its adaptive scheduling and fusion strategies ensure robustness and efficiency,
346 while ablation studies highlight the importance of feedback granularity in performance gains.

347 Future work will explore extensions to low-resource domains, alternative feedback modalities, and
348 real-time interpretability for memory selection. Overall, DMA demonstrates that structured user
349 interaction signals can powerfully guide online retrieval learning in deployed GenAI systems.

350 **References**

351 Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,
352 J., Altman, S., Anadkat, S., et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

353 Anthropic. Model card and evaluations for claude models. 2023.

354 Asai, A., Wu, Z., Wang, Y., Sil, A., and Hajishirzi, H. Self-RAG: Learning to retrieve, generate, and
355 critique through self-reflection. In *ICLR*, 2024a.

356 Asai, A., Zhong, Z., Chen, D., Koh, P. W., Zettlemoyer, L., Hajishirzi, H., and Yih, W.-t. Reliable,
357 adaptable, and attributable language models with retrieval. *arXiv preprint arXiv:2403.03187*,
358 2024b.

359 Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan, Y., Ge, W., Han, Y., Huang, F., et al. Qwen
360 technical report. *arXiv preprint arXiv:2309.16609*, 2023.

361 Bai, Y., Miao, Y., Chen, L., Wang, D., Li, D., Ren, Y., Xie, H., Yang, C., and Cai, X. Pistis-rag:
362 Enhancing retrieval-augmented generation with human feedback. *arXiv preprint arXiv:2407.00072*,
363 2024.

364 Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic parsing on freebase from question-answer
365 pairs. In *EMNLP*, 2013.

366 Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford, E., Millican, K., Van Den Driessche,
367 G. B., Lespiau, J.-B., Damoc, B., Clark, A., et al. Improving language models by retrieving from
368 trillions of tokens. In *ICML*. PMLR, 2022.

369 Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. Learning to rank: from pairwise approach to
370 listwise approach. In *Proceedings of the 24th international conference on Machine learning*, pp.
371 129–136, 2007.

372 Chen, W., Chang, M.-W., Schlinger, E., Wang, W., and Cohen, W. W. Open question answering over
373 tables and text. *arXiv preprint arXiv:2010.10439*, 2020.

374 Dong, G., Zhu, Y., Zhang, C., Wang, Z., Dou, Z., and Wen, J.-R. Understand what llm needs: Dual
375 preference alignment for retrieval-augmented generation. *arXiv preprint arXiv:2406.18676*, 2024.

376 Drozdzow, A., Zhuang, H., Dai, Z., Qin, Z., Rahimi, R., Wang, X., Alon, D., Iyyer, M., McCallum, A.,
377 Metzler, D., and Hui, K. PaRaDe: Passage ranking using demonstrations with LLMs. In *Findings
378 of EMNLP*, 2023.

379 Friedman, J. H. Greedy function approximation: a gradient boosting machine. *Annals of statistics*,
380 pp. 1189–1232, 2001.

381 Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., and Wang, H. Retrieval-augmented
382 generation for large language models: A survey. *arXiv preprint arXiv:2312.10997*, 2023.

383 Glass, M., Rossiello, G., Chowdhury, M. F. M., Naik, A., Cai, P., and Gliozzo, A. Re2G: Retrieve,
384 rerank, generate. In *NAACL*, 2022a.

385 Glass, M., Rossiello, G., Chowdhury, M. F. M., Naik, A. R., Cai, P., and Gliozzo, A. Re2g: Retrieve,
386 rerank, generate. *arXiv preprint arXiv:2207.06300*, 2022b.

387 GLM, T., Zeng, A., Xu, B., Wang, B., Zhang, C., Yin, D., Zhang, D., Rojas, D., Feng, G., Zhao,
388 H., et al. Chatglm: A family of large language models from glm-130b to glm-4 all tools. *arXiv
389 preprint arXiv:2406.12793*, 2024.

390 Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M. Retrieval augmented language model
391 pre-training. In *ICML*, 2020.

392 Izacard, G. and Grave, É. Leveraging passage retrieval with generative models for open domain
393 question answering. In *Proceedings of the 16th Conference of the European Chapter of the
394 Association for Computational Linguistics*, 2021.

395 Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski, P., Joulin, A., and Grave, E. Unsuper-
396 vised dense information retrieval with contrastive learning. *TMLR*, 2022.

397 Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., Dwivedi-Yu, J., Joulin, A.,
398 Riedel, S., and Grave, E. Atlas: Few-shot learning with retrieval augmented language models.
399 *JMLR*, 24(251):1–43, 2023.

400 Jeong, S., Baek, J., Cho, S., Hwang, S. J., and Park, J. C. Adaptive-rag: Learning to adapt retrieval-
401 augmented large language models through question complexity. In *NAACL*, 2024.

402 Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D. S., Casas,
403 D. d. l., Hanna, E. B., et al. Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

404 Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. TriviaQA: A large scale distantly supervised
405 challenge dataset for reading comprehension. In *ACL*, 2017.

406 Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and Yih, W.-t. Dense
407 passage retrieval for open-domain question answering. In *EMNLP*, 2020.

408 Khalifa, M., Logeswaran, L., Lee, M., Lee, H., and Wang, L. Few-shot reranking for multi-hop QA
409 via language model prompting. In *ACL*, 2023.

410 Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein, D.,
411 Polosukhin, I., Devlin, J., Lee, K., et al. Natural questions: a benchmark for question answering
412 research. *TACL*, 2019.

413 Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., and Stoica,
414 I. Efficient memory management for large language model serving with pagedattention. In
415 *Proceedings of the 29th Symposium on Operating Systems Principles*, pp. 611–626, 2023.

416 Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kütter, H., Lewis, M., Yih,
417 W.-t., Rocktäschel, T., et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
418 *NeurIPS*, 33, 2020.

419 Lin, S.-C., Asai, A., Li, M., Oguz, B., Lin, J., Mehdad, Y., Yih, W.-t., and Chen, X. How to
420 train your dragon: Diverse augmentation towards generalizable dense retrieval. *arXiv preprint*
421 *arXiv:2302.07452*, 2023.

422 Lin, X. V., Chen, X., Chen, M., Shi, W., Lomeli, M., James, R., Rodriguez, P., Kahn, J., Szilvassy, G.,
423 Lewis, M., Zettlemoyer, L., and tau Yih, W. RA-DIT: Retrieval-augmented dual instruction tuning.
424 In *ICLR*, 2024.

425 Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., et al.
426 Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024a.

427 Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., and Liang, P. Lost in the
428 middle: How language models use long contexts. *arXiv preprint arXiv:2307.03172*, 2023.

429 Liu, Z., Ping, W., Roy, R., Xu, P., Shoeybi, M., and Catanzaro, B. Chatqa: Surpassing gpt-4 on
430 conversational qa and rag. *arXiv preprint arXiv:2401.10225*, 2024b.

431 Luo, H., Chuang, Y.-S., Gong, Y., Zhang, T., Kim, Y., Wu, X., Fox, D., Meng, H., and Glass, J. Sail:
432 Search-augmented instruction learning. *arXiv preprint arXiv:2305.15225*, 2023.

433 Ma, X., Wang, L., Yang, N., Wei, F., and Lin, J. Fine-tuning llama for multi-stage text retrieval. *arXiv*
434 *preprint arXiv:2310.08319*, 2023.

435 Mitra, B., Craswell, N., et al. An introduction to neural information retrieval. *Foundations and*
436 *Trends® in Information Retrieval*, 2018.

437 Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S., Kosaraju, V.,
438 Saunders, W., et al. Webgpt: Browser-assisted question-answering with human feedback. *arXiv*
439 *preprint arXiv:2112.09332*, 2021.

440 Nogueira, R., Jiang, Z., Pradeep, R., and Lin, J. Document ranking with a pretrained sequence-to-
441 sequence model. In *Findings of EMNLP*, 2020.

442 OpenAI. GPT-4, 2023.

443 Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
444 Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback.
445 *NeurIPS*, 35, 2022.

446 Qin, Z., Jagerman, R., Hui, K., Zhuang, H., Wu, J., Shen, J., Liu, T., Liu, J., Metzler, D., Wang,
447 X., et al. Large language models are effective text rankers with pairwise ranking prompting. In
448 *Findings of NAACL*, 2024.

449 Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A., Leyton-Brown, K., and Shoham, Y.
450 In-context retrieval-augmented language models. *TACL*, 2023.

451 Sachan, D. S., Reddy, S., Hamilton, W. L., Dyer, C., and Yogatama, D. End-to-end training of
452 multi-document reader and retriever for open-domain question answering. In *NeurIPS*, 2021.

453 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization
454 algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

455 Shao, Z., Gong, Y., Shen, Y., Huang, M., Duan, N., and Chen, W. Enhancing retrieval-augmented
456 large language models with iterative retrieval-generation synergy. In *Findings of EMNLP*, 2023.

457 Shi, W., Min, S., Yasunaga, M., Seo, M., James, R., Lewis, M., Zettlemoyer, L., and Yih, W.-t.
458 Replug: Retrieval-augmented black-box language models. In *NAACL*, 2024.

459 Sun, W., Yan, L., Ma, X., Wang, S., Ren, P., Chen, Z., Yin, D., and Ren, Z. Is ChatGPT good at
460 search? investigating large language models as re-ranking agents. In *EMNLP*, 2023.

461 Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai,
462 A. M., Hauth, A., et al. Gemini: a family of highly capable multimodal models. *arXiv preprint
arXiv:2312.11805*, 2023.

463 Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C., Li, C., Xiao, C., Du, C., Liao, C., et al.
464 Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.

465 Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
466 Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv
preprint arXiv:2307.09288*, 2023.

467 Trivedi, H., Balasubramanian, N., Khot, T., and Sabharwal, A. Interleaving retrieval with chain-of-
468 thought reasoning for knowledge-intensive multi-step questions. In *ACL*, 2023.

469 Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowdhery, A., and Zhou,
470 D. Self-consistency improves chain of thought reasoning in language models. *arXiv preprint
arXiv:2203.11171*, 2022.

471 Wang, Y., Ren, R., Li, J., Zhao, W. X., Liu, J., and Wen, J.-R. Rear: A relevance-aware retrieval-
472 augmented framework for open-domain question answering. *arXiv preprint arXiv:2402.17497*,
473 2024.

474 Wang, Z., Araki, J., Jiang, Z., Parvez, M. R., and Neubig, G. Learning to filter context for retrieval-
475 augmented generation. *arXiv preprint arXiv:2311.08377*, 2023.

476 Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-
477 thought prompting elicits reasoning in large language models. *Advances in neural information
processing systems*, 35:24824–24837, 2022.

478 Xu, F., Shi, W., and Choi, E. RECOMP: Improving retrieval-augmented LMs with context compres-
479 sion and selective augmentation. In *ICLR*, 2024.

480 Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., Li, C., Li, C., Liu, D., Huang, F., et al.
481 Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

486 Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W. W., Salakhutdinov, R., and Manning, C. D.
487 HotpotQA: A dataset for diverse, explainable multi-hop question answering. In *EMNLP*, 2018.

488 Ye, F., Fang, M., Li, S., and Yilmaz, E. Enhancing conversational search: Large language model-aided
489 informative query rewriting. In *EMNLP*, pp. 5985–6006, 2023.

490 Yoran, O., Wolfson, T., Ram, O., and Berant, J. Making retrieval-augmented language models robust
491 to irrelevant context. In *ICLR*, 2024.

492 Yu, W., Zhang, Z., Liang, Z., Jiang, M., and Sabharwal, A. Improving language models via plug-and-
493 play retrieval feedback, 2024.

494 Yuan, Z., Yuan, H., Tan, C., Wang, W., Huang, S., and Huang, F. Rrhf: Rank responses to align
495 language models with human feedback without tears, 2023.

496 Zhang, L., Yu, Y., Wang, K., and Zhang, C. Arl2: Aligning retrievers for black-box large language
497 models via self-guided adaptive relevance labeling. *arXiv preprint arXiv:2402.13542*, 2024a.

498 Zhang, T., Patil, S. G., Jain, N., Shen, S., Zaharia, M., Stoica, I., and Gonzalez, J. E. Raft: Adapting
499 language model to domain specific rag. *arXiv preprint arXiv:2403.10131*, 2024b.

500 Zhang, Y., Chen, Z., Fang, Y., Lu, Y., Li, F., Zhang, W., and Chen, H. Knowledgeable preference
501 alignment for llms in domain-specific question answering. *arXiv preprint arXiv:2311.06503*, 2023.

502 **NeurIPS Paper Checklist**

503 **1. Claims**

504 Question: Do the main claims made in the abstract and introduction accurately reflect the
505 paper's contributions and scope?

506 Answer: **[Yes]**

507 Justification: See Abstract and § 1. The main contributions of DMA, including feedback-
508 driven alignment and large-scale online gains, are clearly stated and consistently validated.

509 Guidelines:

- 510 • The answer NA means that the abstract and introduction do not include the claims
511 made in the paper.
- 512 • The abstract and/or introduction should clearly state the claims made...

513 **2. Limitations**

514 Question: Does the paper discuss the limitations of the work performed by the authors?

515 Answer: **[Yes]**

516 Justification: § 6 discusses cold-start adaptation, retraining latency, and domain generaliza-
517 tion, with mitigation strategies.

518 Guidelines:

- 519 • The answer NA means that the paper has no limitation...

520 **3. Theory assumptions and proofs**

521 Question: For each theoretical result, does the paper provide the full set of assumptions and
522 a complete (and correct) proof?

523 Answer: **[NA]**

524 Justification: The paper does not include formal theoretical results; contributions are empiri-
525 cal and algorithmic.

526 Guidelines:

- 527 • The answer NA means that the paper does not include theoretical results...

528 **4. Experimental result reproducibility**

529 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
530 perimental results of the paper to the extent that it affects the main claims and/or conclusions
531 of the paper (regardless of whether the code and data are provided or not)?

532 Answer: **[Yes]**

533 Justification: See § 5 for dataset details, retriever/backbone setup, update frequency, and
534 system implementation.

535 Guidelines:

- 536 • The answer NA means that the paper does not include experiments...

537 **5. Open access to data and code**

538 Question: Does the paper provide open access to the data and code, with sufficient instruc-
539 tions to faithfully reproduce the main experimental results, as described in supplemental
540 material?

541 Answer: **[No]**

542 Justification: Due to industrial deployment and privacy policies, code and user data cannot
543 be released.

544 Guidelines:

- 545 • The answer NA means that paper does not include experiments requiring code...

546 **6. Experimental setting/details**

547 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
548 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
549 results?

550 Answer: [Yes]

551 Justification: See § 5.1 for training batch sizes, model update intervals, retrieval strategy,
552 and compute details.

553 Guidelines:

- 554 • The answer NA means that the paper does not include experiments...

555 7. Experiment statistical significance

556 Question: Does the paper report error bars suitably and correctly defined or other appropriate
557 information about the statistical significance of the experiments?

558 Answer: [Yes]

559 Justification: Online evaluations report p-values ($p < 0.001$, z-test); benchmark results
560 include standard deviation across trials.

561 Guidelines:

- 562 • The answer NA means that the paper does not include experiments...

563 8. Experiments compute resources

564 Question: For each experiment, does the paper provide sufficient information on the com-
565 puter resources (type of compute workers, memory, time of execution) needed to reproduce
566 the experiments?

567 Answer: [Yes]

568 Justification: See § 5.1. We report usage of 8xA800 GPUs, end-to-end training latency (10
569 min), and retraining cadence.

570 Guidelines:

- 571 • The answer NA means that the paper does not include experiments...

572 9. Code of ethics

573 Question: Does the research conducted in the paper conform, in every respect, with the
574 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

575 Answer: [Yes]

576 Justification: All feedback was collected via de-identified logs in accordance with platform
577 policy; no PII or sensitive data was used.

578 Guidelines:

- 579 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics...

580 10. Broader impacts

581 Question: Does the paper discuss both potential positive societal impacts and negative
582 societal impacts of the work performed?

583 Answer: [Yes]

584 Justification: § 6 outlines potential benefits in user-aligned generation and risks of misuse
585 via over-personalization, with mitigation.

586 Guidelines:

- 587 • The answer NA means that there is no societal impact of the work performed...

588 11. Safeguards

589 Question: Does the paper describe safeguards that have been put in place for responsible
590 release of data or models that have a high risk for misuse?

591 Answer: [Yes]

592 Justification: While no model is released, the deployed system includes real-time moderation,
593 access control, and privacy filtering (see § 5.1).

594 Guidelines:

- 595 • The answer NA means that the paper poses no such risks...

596 12. Licenses for existing assets

597 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
598 the paper, properly credited and are the license and terms of use explicitly mentioned and
599 properly respected?

600 Answer: [Yes]

601 Justification: All public datasets are cited and used under their respective licenses in § 5.

602 Guidelines:

- The answer NA means that the paper does not use existing assets...

604 13. New assets

605 Question: Are new assets introduced in the paper well documented and is the documentation
606 provided alongside the assets?

607 Answer: [No]

608 Justification: No new datasets or models are released due to industrial constraints and privacy
609 considerations.

610 Guidelines:

- The answer NA means that the paper does not release new assets...

612 14. Crowdsourcing and research with human subjects

613 Question: For crowdsourcing experiments and research with human subjects, does the paper
614 include the full text of instructions given to participants and screenshots, if applicable, as
615 well as details about compensation (if any)?

616 Answer: [Yes]

617 Justification: Prompt instructions for session-level satisfaction are shown in Table 1; no paid
618 participants involved.

619 Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with
621 human subjects...

622 15. Institutional review board (IRB) approvals or equivalent for research with human 623 subjects

624 Question: Does the paper describe potential risks incurred by study participants, whether
625 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
626 approvals (or an equivalent approval/review based on the requirements of your country or
627 institution) were obtained?

628 Answer: [Yes]

629 Justification: The feedback collection process was reviewed and approved by an internal
630 ethics committee; all data were anonymized before use.

631 Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with
633 human subjects...

634 16. Declaration of LLM usage

635 Question: Does the paper describe the usage of LLMs if it is an important, original, or
636 non-standard component of the core methods in this research?

637 Answer: [Yes]

638 Justification: LLaMA2-7B is used as the unified generator in evaluation, and Qwen-72B is
639 used for annotating session-level feedback in § 5.

640 Guidelines:

- The answer NA means that the core method development in this research does not
642 involve LLMs...