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ABSTRACT

How to synthesize efficient, controllable, and semantically relevant high-quality
images based on text is currently a very challenging task. Combining genera-
tive adversarial networks with CLIP models to improve the quality of synthesized
images has revitalized GAN in the field of generation. Compared with diffusion
models, GAN has faster generation speed, fewer training resources and param-
eters, and more controllable generation results. However, the current methods
for combining CLIP and GAN are relatively rough, mostly used as text encoders
and feature bridges, without fully utilizing the semantic alignment ability of CLIP
networks, ignoring the structural and hierarchical nature of semantic features, and
resulting in poor semantic consistency in synthesized images. In response to these
problems, we propose HSPC-GAN, which is a method of constructing structural
semantic prompts and using them to hierarchically guide CLIP to adjust visual
features for generation of high-quality images with controllable semantic consis-
tency. HSPC-GAN extracts semantic concepts through part of speech analysis,
constructs a prompt generator and a prompt adaptor to generate learnable hier-
archical semantic prompts, and using these prompts to selectively guide CLIP
adaptors to adjust image features to improve semantic consistency between syn-
thesized images and conditional texts. At the same time, we introduced the mining
of hard negative samples into the construction of the discriminator loss function
for the first time, improving the discriminator’s ability to distinguish mismatched
samples and reducing the impact of the generated model’s requirements for batch
size and epoch on training results. A large number of experimental results have
proven the effectiveness of our method, which can quickly synthesize high-quality
images with consistent semantics, and achieve SOTA score on public datasets.

1 INTRODUCTION

Recently, the field of generative models has undergone tremendous changes with the introduction of
large-scale pre-trainde autoregressive models (Rombach et al., 2021; Nichol et al.,2021; Yu et al.,
2022; Saharia et al., 2022) and Diffusion Model (Ramesh et al., 2021; Robin et al., 2022). These
methods demonstrat the synthesis performance far beyond traditional methods (Tao et al., 2022; Liao
et al., 2022) and many appealing applications based on them are appearring. Research on related
works has also received more attention, especially for text-to-images synthesis.

How to synthesize efficient, controllable, and semantically relevant high-quality images based on
context is currently a very challenging task in the field of text image generation. Although large
pre-trained multimodal models and diffusion models can synthesize images that look very realistic,
they rely too heavily on large-scale training data, massive parameters, and artificial prompts and
adjustments for the generation process. And the slow reasoning speed and huge computational
resource overhead are also very daunting. Similarly, generative adversarial network (GAN) has
faster generation speed and more smooth latent controllable training space, which enables more
controllable synthesis, but the quality of generated images is not not excellent. To generate high-
quality text-images more quickly, some recent work (Kang et al., 2023; Tao et al., 2023) began to
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Figure 1: Generation examples in CUB and COCO. Our model can generate images with higher-
semantic-consistency, compared with groud truth and other generation methods include the tradi-
tional GAN (SSA-GAN), GAN with CLIP(GALIP), Diffusion Model(LDM). Speed is calculated
on 1x3090 GPU

combine GANs with CLIP models (Radford et al., 2021; Li et al., 2022; Yu et al., 2022; Wang
et al., 2022) which have a capability of aligning cross-modal semantic. However, these methods
are relatively rough for the use of CLIP, which is mostly used as text encoders or feature bridges,
without fully utilizing the semantic alignment ability of CLIP. These methods neglect to consider the
semantic structure and hierarchy of the existence in the text description, and ignore the specificity
of named entities, which results in poor semantic consistency of the synthesized image with text.

In response to slove the above problems, we propose a novel method of using CLIP in GAN for
text-to-image generation, named HSPC-GAN. CLIP is no longer just a tool for cross modal feature
transformation, but rather participates in visual feature generation and adjustment hierarchically
based on prompt guidance. Instead of directly encoding and transforming conditional contextual
information into visual features for generation, we extract structured semantic concepts from text
descriptions, and construct learnable local prompts containing entity, attribute, and relationship in-
formations. These prompts guide the CLIP adaptor to adjust image features hierarchically together
with global prompts containing complete context, which can enable GAN to synthesize semantically
related images in a more refined manner.

In this work, we introduce how to construct structured semantic prompts through a prompt generator
Fig.3 and prompt adaptor Fig.4(a) . We use natural language processing tools (Qi et al., 2020) to
analyse conditional text, include phrase segmentation, part-of-speech and named entity recognition.
For ”John and his wife are attending a cocktail party”,is marked as entyties ”person john, wife,
party ”, attributes ”cocktail ”, relationships ”and, attend ”. After padding semantic patches, textual
concepts are fused by controling through text semantic scene maps, then construct local prompts by
computing attention with global text. We use local prompts and global prompts to guide the frozen-
parameter CLIP’s transformer block hierarchically adjust feature maps. Global prompts are added
at both ends of the prompt sequence to ensure that global semantic information is not lost. At the
same time, each prompt independently selects whether to replace the class token, to avoid redundant
prompts problem for text with different amounts of information.

In addition, referring to the resemblance of cross-modal retrieval task(Faghri et al., 2017), we novely
design the Hard Mining Matching-Aware Loss (HMMAL) for mismatch sample in one batch, which
can accelerate our training speed and improve the semantic consistency of generated image and
conditional text. This loss can be generalized to apply most generation methods involving semantic
matching. We will do more work in the future to prove this viewpoint.

Furthermore, HSPC-GAN has faster synthesis speed, fewer computing resources and higher seman-
tic consistency between images and texts compared to diffusion and autoregressive models. As
shown in Fig.1, compared to other GAN with CLIP methods, our method is able to focus on more
detailed information in text and have a stronger ability to synthesize complex real images. Numer-
ous experiments on publicly datasets have proven the effectiveness of our method. In COCO dataset,
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our FID score has decreased to 4.97, and our CLIP Score has reached 0.3507. The CLIP Score of
testing in CUB dataset has reached 0.3306.

• We propose an intuitive and effective text-to-image synthesis method which guides CLIP
adjustment of visual features hierarchically, by using Structural semantics prompts. The
method can synthesize highly semantically relevant text images.

• We propose a method for constructing structured semantic prompts from the conditional
text. This method can fully extract fine-grained semantic information for guiding CLIP.

• We introduce difficult negative mining (Hard Mining) into the discriminative loss of the
generated model for the first time, which can accelerate model training and improve se-
mantic consistency of generated images and texts.

• Extensive experiments demonstrate the effectiveness of our proposed HSPC-GAN, which
achieves the state of art on multiple public datasets.

2 RELATED WORK

GAN-based image synthesis GAN-based image synthesis often necessitates the determination of
the underlying probability distribution corresponding to given images, a process commonly referred
to as inversion (Zhu et al., 2016: Xis et al, 2021). One prevailing approach in the GAN-based Image
Synthesis is based on optimization techniques (Abdal et al., 2019; 2020; Zhu et al., 2020; Gu et al.,
2020). This involves iteratively adjusting latent variables to synthesize images that match the given
input image, effectively reversing the generative process. Optimization-based inversion methods
offer flexibility, particularly when handling novel or unseen concepts. Alternatively, an encoder-
based approach has been employed (Richardson et al., 2020; Zhu et al., 2020a; Pidhorskyi et al.,
2020; Tov et al., 2021) to perform image-to-latent space mapping. Encoders aim to learn a mapping
function that can project images into the latent space of the GAN, effectively enabling image manip-
ulation within the learned embedding space. However, encoders face more stringent generalization
requirements and often necessitate training on extensive, web-scale datasets to achieve comparable
versatility as optimization-based methods. In our work, we provide a detailed analysis of our embed-
ding space in the context of the GAN inversion literature, elucidating the fundamental principles that
persist and those that have evolved over time. This analysis contributes to a deeper understanding of
the strengths and limitations of different inversion techniques within GAN-based image synthesis.

CLIP Encoder Compared to unimodal vision feature extraction methods like CNN (Liu et al., 2022;
Shen et al., 2023), Vision Transformer (Dosovitskiy et al., 2020; Liu et al., 2021) and hybird (Dai
et al., 2021; Tu et al., 2022), CLIP stands out as a multimodal feature extraction approach (Radford
et al., 2021; Li et al., 2022; Yu et al., 2022; Wang et al., 2022) that achieves enhanced general-
ization capabilities. CLIP’s pretraining on large-scale image-text datasets, coupled with contrastive
learning, facilitates the creation of a joint latent space, particularly advantageous in zero-shot and
few-shot downstream tasks.

Prompt in generation In the field of NLP, the use of prompts has gained significant popularity.
With prompt design(Liu et al., 2021), Large-scale pretrained models have demonstrated impressive
generalization capabilities without the need for fine-tuning. In recent years, Large Language-Image
(LLI) models(Saharia et al., 2022; Ramesh et al., 2022; Rombach et al., 2022) have exhibited re-
markable semantic generation and compositional abilities, garnering unprecedented attention from
both the research community and the public. However, achieving optimal generation results with
these large-scale LLI models often requires the use of complex prompts. Compared to the manually
designed (Radford et al., 2021) and discrete prompts (Jiang et al., 2020; Gao et al., 2021c) , employ-
ing learned continuous prompts (Zhou et al., 2022; Gao et al., 2023; Khattak et al., 2023) tailored
for specific tasks has proven to be more effective in eliciting superior performance.

3 METHOD

In this section, we start with the contruction of learnable hierachical semantic prompts, introduce
how to generate hierachical semantic prompts from conditional context, and adjust discrete prompts
into continuous learnable vectors. Next, we descibe the concrete technical details of how we use
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Figure 2: The architecture of the Generator. It includes text concept mining module, prompt gener-
ator and adaptor , feature predictor, CLIP feature adaptor, text encoder, and image generator.

hierarchical semantic prompts to guide the frozen parameter CLIP-VIT to update the coarse-grained
visual features, and generate fine-grained visual features with hierarchical semantic information.
Finally, we discuss the impact of difficult negative sample mining on the discriminative loss of
generate adversarial networks..

3.1 GENERATOR

The architecture of our HSPC-GAN’s generator is shown in Fig.2. We follow the end-to-end basic
structure proposed in (Ming et al., 2023), but add text concept mining, the hierarchical semantic
prompt generator and adaptor, replace their CLIP-VIT module with our CLIP-Adaptor module, and
adjust the image generation blocks.

3.1.1 TEXT CONCEPT MINING

We annotate the conditional context with text concept mining, using natural language processing
tools (Qi et al., 2020) which can perform tokenization, phrase segmentation, named entity recogni-
tion, part-of-speech & morphological features tagging et al. on a piece of text descripition. Through
NLP tools, we convert complex descriptive text into a form that is easy to understand by text en-
coder, such as ”George Johnson” being labeled as ”Person” and ”Stanford” being labeled as ”or-
ganization”. So, the complex text description is transformed into collections of entities, attributes,
and relationships to represent all semantic conceptual information. They are represented entity sets
E{e1, w2, ..., en}, attributes sets A{a1, a2, ..., az}, and relationship sets R{r1, r2, ..., rm}. Mean-
while, this conditional context information is fed into a text encoder for encoding to obtain text
vector t. We adopt the pre-trained text encoder provided by (Radford et al 2021). In many existing
works, this text encoder is generally adptopted by fixing its parameters, because relevant experiments
(Xu et al. 2018) have proven that the fine-tuning text encoder does not improve the performance of
text-to-image synthesis.

3.1.2 HIERARCHICAL SEMANTIC PROMPT GENERATOR

Prompt has a significant improvement effect on controlling and adjusting the generation target in
the generation task (Li et al., 2021; Li et al., 2022; Robin et al., 2022 ). Inspired by Prompt’s
application in text generation tasks (Li et al., 2022) and text classification tasks (Ronald et al., 2021),
we design a hierarchical semantic prompt generator to replace the method of directly predicting
prompts based on sentence and noise vectors through an FC layer. The generator module is shown
Fig.3. It consists of three parts: a text encoder, a scene graph parser, and a hierarchical semantic
fusion gating controller.

The entity set E, attribute set A, and relationship set R are respectively input into the text encoder for
encoding to vectors VE ,VA,VR. Before being encoded, entities are added with a semantic prompt
patch ”a photo of a ” to strengthen entity attributes. The others are also similar. The reason for this is
that the training process of CLIP adopts the form of semantic prompt patch added label for training,
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Figure 3: The architecture of the Hierarchical Semantic Prompt Generator.

which can better align the text features described by each entity through semantic patches. This has
also been proven in our subsequent experiments.

The conditional context is fed into the semantic scene graph parser (Peter et al., 2016) to generate
a text scene graph G, which is used to control the fusion of hierarchical semantics. When entity
vector vei and attribute vector vaj

pass through the gate of control, they are queried in the semantic
scene graph whether there is a connection between the entity ei and the attribute ak. If there is an
edge between this entity ei and this attribute aj , they are weighted together to generate additional
attribute entity vector set V ′

E . Similarly, for the relational features vector set VR and the attribute
entity vector v′

ei , when there is a tuple (ei, rij , ej) present in the scene graph G, the inner product
of the relationship vector vrij and entity vector v′

ej will be used to update entity feature vector v′
ei .

In this way, we define the entity prompts PE generation:

V ′
E = fgate(VE ,VA,⊕)

PE = fgate(V
′
E ,VR,⊗)

pei = v′
ei +

∑
j,(ei,rij ,ej)∈G

vrij ∗ v′
ej , (1)

fgate represents a fusion gate controller according to the sence scene graph. For the global prompt,
we concatenate the conditional context vectors t with a random noise n to generate global contextual
semantic prompt pglobal through a self-attention layer and a FC layer.

3.1.3 LOCAL PROMPT ADAPTOR

The module of the prompt adaptor is to transform the prompts pe into learnable local prompt vector
features pl (Fig 4a). We add the position embedding vector vpos of the entity in the sentence to the
entity prompt vector pe, and the generation of position embedding vector using the method (wang
et al. 2020). To a entity prompt pei :

p′
ei = pei + gi(pos) (2)

gi is a function of embedding the entity ei position from its word index. We calculate the cross-
attention between prompt vector p′ and context vector t to update p′, and also through an FC layer
to learn local prompt plocal.

3.1.4 HIERARCHICAL SEMANTIC PROMPT CLIP ADPTOR

The predicted hierarchical semantic prompts are used to guide CLIP to adapt the fine-grained visual
features. The pretrained CLIP-ViT has the ability to obtain visual concepts from text features and can
bridge the gap between modal semantics. We design a brand new structure which can hierarchically
extract different visual concepts from the CLIP of frozen parameters to adjust the image feature
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Fig.4b. We input semantic prompts in the order of global, local, and global, and use gating to
adaptively determine whether to replace class tokens to obtain visual information from CLIP. The
reason for this is that the number of target entities in the context is limited and different, and not all
local prompts can work. Global prompts are used to ensure that all information in the text is taken
into account and local prompts guide personalized generation.

(a) (b)

Figure 4: (a)The architecture of the Prompt Adaptor. (b) The architecture of the Hierarchical se-
mantic CLIP Adaptor

3.2 DISCRIMINATOR

3.2.1 BASIC OBJECTIVE FUNCTIONS

The adversarial loss is used to train the ability of the generator and discriminator. For the basic loss,
we follow the function designed by (Tao et al., 2023). It adopts the hinge loss (Zhang et al., 2019)
and one-way discriminator (Tao et al., 2022). The basic formulation is shown as follows:

LD = −Ex∼Pr
[min(0,−1 +D(x, e))]

− (1/2)EG(z,e)∼Pg
[min(0,−1−D(C(G(z, e)), e))]

− (1/2)Ex∼Pmis
[min(0,−1−D(x, e))]

+ kEx∼Pr [(||∇xD(x, e)||+ ||∇eD(x, e)||)p]

LG = −EG(z,e)∼Pg
[D(C(G(z, e)), e)]− λEG(z,e)∼Pg

[S(G(z, e), e)] (3)

where z is the noise vector sampled from N (0, 1) , e is the sentence vector. k and p are two hyper-
parameters of gradient penalty; λ is the coefficients of the text-image similarity. Pg,Pr,Pmis denote
the synthetic data distribution, real data distribution, and mismatching data distribution, respectively

3.2.2 HARD MINING MATCHING-AWARE LOSS

Ignoring gradient penalty ∇, the basic discriminator loss can be divided image-text matching-aware
loss during synthetic data distribution Lfake, real data distribution Lreal, and mismatching data
distribution Lmis. For one training batchsize N , LD equals:

N∑
i

LDi
=

N∑
i

Lreal(xi, ei) + (1/2)

N∑
i

Lfake(x̂i, ei) + (1/2)

N∑
i

Lmis(xi, êi) +∇

= (1/2)

N∑
i

(Lreal(xi, ei) + Lfake(x̂i, ei)) + (1/2)

N∑
i

(Lreal(xi, ei) + Lmis(xi, êi)) +∇

= (1/2)

N∑
i

[α−D(xi, ei) +D(x̂i, ei)]+ + (1/2)

N∑
i

[α−D(xi, ei) +D(xi, êi)]+ +∇

(4)
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Figure 5: The Hard Mining Match-Aware
loss in COCO training with different batch
size.

Figure 6: Qualitative experiments on the CUB
dataset, results of synthesized images with text
descriptions changing.

For mismatching data common loss, referring to cross-modal retrieval (Faghri et al., 2017), We
present a new change to loss functions for learning visual-semantic embeddings:

L̂D = (1/2)

N∑
i

[α−D(xi, ei) +D(x̂i, ei)]+ + (1/2)max
i

[α−D(xi, ei) +D(xi, êi)]+ +∇

(5)

Instead of finding hardest negatives in entire training set. We find them within each mini-batch,
which can improve computational efficiency and reduce the dependence of generation quality on
batchsize and epoch. But this modification is not suitable for synthetic data loss, because generating
networks is an adversarial process. Hard negative mining of synthesized data loss will prematurely
improve the discriminator’s ability, resulting in the generator being unable to learn.

4 EXPERIMENTS

In this section, we introduce the datasets, and evaluation metrics, training setting, then evaluate our
proposed HSPC-GAN method quantitatively and qualitatively to provide comparisons to the state-
of-the-art.

4.1 EXPERIMENTS SETTING

Datasets Our experiments are conduct on two popular public datasets: CUB bird (Wah et al., 2011)
and COCO (Lin et al., 2014). For the CUB bird dataset, there are 11,788 images belonging to 200
bird species, with each image corresponding to ten language descriptions. The cub provide rich at-
tribute descriptions include shapes, colors, and postures et al., which is always employed to evaluate
the performance of fine-grained content synthesis. COCO dataset contains 80000 images for train-
ing and 40000 images for testing, with each image provided to 5 image captions. The COCO image
usually contains multiple objects under different scenes, which is employed to evaluate the perfor-
mance of complex image synthesis. We use NLP tools to perform part of speech analysis on two
datasets, extracting entities, attributes, and relationships described in the text to form new additional
datasets. In the experiment, we replaced some descption texts for qualitative analysis, hoping that
the model could focus on different information and generate images with different representations.

Training and evaluation details Follow the previous text-to-image works, we adopt the Fréchet
Inception Distance (FID) (Heusel et al., 2017) and CLIP score (Wu et al., 2022) to evaluate the image
fidelity and measure text-image semantic consistency. We also compared the convergence speed and
training time of the model to prove that our loss function improvement is helpful for training. We
choose the pretrained ViT-B/32 (Radford et al., ) as the CLIP model frozen with parameters. Based
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on statistical experience in the dataset, the number of local entity prompts is limited to 6. Other
parameter settings follow the basic model to ensure fairness. We employ the Adam optimizer with
β1 = 0.0 and β2 = 0.9 to train our model.The learning rate is set to 0.0001 for the generator and
0.0004 for the discriminator. All models are trained on 8×3090 GPUs or 2xA800 GPUs.

4.2 QUANTITATIVE EVALUATION

Table 1: The results of FID and CLIP score (CS) compared with the state-of-the-art methods on the
test set of CUB and COCO.

Methods Type CUB COCO

FID_ CS^ FID_ CS^

AttnGAN (Xu et al. 2018) GAN 23.98 - 35.49 -
DM-GAN (Zhu et al. 2019) GAN 16.09 - 32.64 -

XMC-GAN (Zhang et al. 2021) GAN - - 9.30 -
DAE-GAN (Ruan et al. 2021) GAN 15.19 - 28.12 -

DF-GAN (Tao et al. 2022) GAN 14.81 0.2920 19.32 0.2972
LAFITE (Zhou et al. 2022) GAN 14.58 0.3125 16.09 0.3335

VQ-Diffusion (Gu et al. 2022) DM 10.32 - 19.24 -
LDM (Rombach et al. 2022) DM - - 12.63 -
GigaGAN (Kang et al. 2023) GAN - - 9.18 0.307

GALIP (Tao et al. 2023) GAN 10.08 0.3164 5.85 0.3338

Baseline(GALIP*) GAN 11.2 0.3160 5.75 0.3385
Ours GAN 10.11 0.3306 4.97 0.3507

To evaluate the performance of our HSPC-GAN, we follow the standard evaluation process and
compare our method with several state-of-the-art methods, which have achieved impressive results
in text-to-image synthesis. Table 1. shows the quantitative analysis results of our method compared
to the current latest methods on the CUB dataset and COCO dataset. Compared with other leading
models, our method has a significant improvement on both CUB and COCO datasets. Especially,
compared to the latest methods, our HSPC-GAN improves the CLIP score (CS) from 0.3164 to
0.3306 on the CUB dataset and the CLIP score of COCO from 0.3338 to 0.3507. This indicates
that our method can significantly improve the semantic consistency between text and image, and
proves the effectiveness of the method based on hierarchical semantic prompts guided CLIP to align
structured semantic concepts. With the recently proposed methods, GigaGAN and GALIP, which
use GAN with the pre-training CLIP, our also has a significant lead in the COCO dataset. Our
method decreases the FID metric from 5.85 to 4.97. Compared with diffusion model, VQ-Diffusion
and LDM, we also have a better FID in the COCO dataset, which indicate that our synthesized image
is closer to the semantics of the real image. To the FID of the CUB dataset, our baseline model is
trained follow the parameter settings provided by the author. When the CLIP score is close, the FID
do not reach the paper value, only 11.2. According to our method, the FID is reduced to 10.11 from
11.2, proving that our method is equally effective on the CUB dataset.

The influence of Hard Mining Matching-Aware Loss (HMMA Loss) is shown in Table 2. For the
same training batch size, the loss can accelerate the convergence speed of the model and achieve
better results. As Fig 5. shown, the mini training batch size adopt hard mining matching-aware
loss can approach the learning effect in a large batch size than before. Additionally, experimental
results show that when the hard mining matching-aware loss is applied to the synthesized sample,
the generator will not be able to learn properly.

4.3 QUALITATIVE EVALUATION

Fig 1 shows the generated images of our method, which are compared with the traditional GAN
network method SSA-GAN (Liao et al., 2022), other methods combining CLIP and GAN network
GALIP, diffusion model SDM, and real samples. From this figure, we can find that CLIP can greatly
improve the generation quality of traditional GAN networks, and our method focus on more fine-
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Table 2: The impact of hard mining matching-aware loss during the model training on the CUB
dataset. Epoch indicates the number of rounds for model to reach convergence, Max(·) indicates
sample pair type of hard mining

Loss Type Batch Size FID_ CS^ Epoch

base 32 11.2 0.3160 1360
base 64 10.87 0.3171 1400

Max(fake) 32 +∞ - -
Max(fake)+Max(mis) 32 +∞ - -

Max(mis) 16 10.83 0.3185 1340
Max(mis) 32 10.87 0.3184 820
Max(mis) 64 10.7 0.3192 1100

grained semantic information in the context, such as the color of the bird’s breast, the attribute
of party ”cocktail” and so on. These attribute information are always ignored by other methods.
Fig.6 shows the generated results of our method when semantic changes occur. As the attributes
described in the text change or increase, the visual information in the generated image will also
change accordingly and other information remain unchanged. For example, only ”white body” turns
to ”yello body”, which indicates that hierarchical semantic prompts do indeed focus on changes in
attribute information and affect the generated content based on the changes.

4.4 ABLATION STUDY

Table 3: The performance of different components of our model on the test CUB datasets

Architecture FID _ CS ^

Baseline (with simple global prompt) 11.2 0.3160
+Local Prompts (6) 10.83 0.3237
+Local Prompts (4) 10.97 0.3209

+Hierarchical Semantic Prompts (6) 10.51 0.3273
+Hard Mining Matching-Aware Loss 10.87 0.3184

+Hierarchical Semantic Prompts (6), +Prompt CLIP Adaptor 10.42 0.3284
+Hierarchical Semantic Prompts (6), +Prompt CLIP Adaptor, +Hard Mining Matching-Aware Loss 10.11 0.3306

To verify the effectiveness of each component in the proposed HSPC-GAN, we conduct ablation
studies on the test set of the CUB dataset. The components being evaluated in this subsection include
different Prompts and Hierarchical Semantic Prompts (HSP). We also test the CLIP adaptor and hard
mining matching-mware Loss.As shown in Table 3., replacing simple global prompts with hierar-
chical semantic prompts can introduce more contextual semantic information. Selective adjustment
of CLIP improves the semantic consistency of synthesized images. Hard mining Matching-Aware
Loss results in further performance improvement. In addition, maximum number of entity prompts
has an impact on the experimental results, becuase fewer entity prompts will limit the extraction and
alignment of relational semantics. And more relevant ablation experiment results will be presented
in the appendix.

5 CONCLUSION

In this work, we propose HSPC-GAN for the text-to-image generation tasks. We present a construc-
tion method of hierarchical semantics prompts and introduce how to use hierarchical prompts to se-
lectively adjust visual features in order by freezing CLIP parameters. Also, we propose a novel Hard
Mining Matching-Aware Loss in mis-sample for image generation. It can further enhance the tex-
timage semantic consistency, accelerate training, and reduce the demand for computing resources.
Extensive experiment results demonstrate that our method HSPC-GAN significantly outperforms
current state-of-the-art models on the CUB dataset and COCO dataset.
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A APPENDIX

We provide other additional sections Here.

A.1 THE INFLUENCE OF HIERARCHICAL SEMANTIC PROMPT ORDER

Table 4: The influence of hierarchical Semantic Prompt order, G is global prompt, L is local prompt.
The results on the CUB dataset

Prompt Type FID_ CS^

only G 10.71 0.3174
only L 10.67 0.3182
L, G 10.55 0.3174
G, L 10.39 0.3200

G ,L ,G 10.11 0.3306

We discuss how Prompts use different combinations and orders to guide CLIP adaptors in adjusting
the impact of image features on the generated results. The experiment is tested on the CUB dataset
with detailed attribute descriptions.The results are shown in Table 4. Using only global or local
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prompts both can cause semantic information loss, and attaching global prompts before and after
local prompts can better ensure the semantical structure of visual feature information.

A.2 COMPARISON OF SYNTHESIZED IMAGES WITH OTHER METHODS

Figure 7: Comparisons of image generation results with different methods on the COCO dataset

The fig.7 shows more comparisons between our results and other motheds on the COCO dataset ,
include GALIP, Stable Diffusion Model. Compared to other methods, we focus more on the detailed
semantic information in the text. For example, the entity ”juice” and ”door”, the attribute ”wooden”.
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