
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Model Selection for Off-policy Evaluation:
New Algorithms and Experimental Protocol

Anonymous Authors1

Abstract
Holdout validation and hyperparameter tuning
from data is a long-standing problem in offline re-
inforcement learning (RL). A standard framework
is to use off-policy evaluation (OPE) methods to
evaluate and select between different policies, but
OPE methods either incur exponential variance
(e.g., importance sampling) or have hyperparam-
eters of their own (e.g., FQE and model-based).
We focus on model selection for OPE itself, which
is even more under-investigated. Concretely, we
select among candidate value functions (“model-
free”) or dynamics (“model-based”) to best assess
the performance of a target policy. Our contribu-
tions are two fold. We develop: (1) new model-
free and model-based selectors with theoretical
guarantees, and (2) a new experimental proto-
col for empirically evaluating them. Compared
to the model-free protocol in prior works, our
new protocol allows for more stable generation
and better control of candidate value functions in
an optimization-free manner, and evaluation of
model-free and model-based methods alike. We
exemplify the protocol on a Gym environment,
and find that our new model-free selector, LSTD-
Tournament, demonstrates promising empirical
performance.

1. Introduction
Offline reinforcement learning (RL) is a promising paradigm
for applying RL to important application domains where
perfect simulators are not available and we must learn from
data [LKTF20; JX24]. Despite the significant progress
made in devising more performant training algorithms, how
to perform holdout validation and model selection—an in-
dispensable component of any practical machine learning

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

pipeline—remains an open problem and has hindered the
deployment of RL in real-life scenarios. Concretely, after
multiple training algorithms (or instances of the same algo-
rithm with different hyperparameter settings) have produced
candidate policies, the primary task (which contrasts the
secondary task which we focus on) is to select a good pol-
icy from these candidates, much like how we select a good
classifier/regressor in supervised learning. To do so, we
may estimate the performance (i.e., expected return) of each
policy, and select the one with the highest estimated return.

Unfortunately, estimating the performance of a new target
policy based on data collected from a different behavior pol-
icy is a highly challenging task, known as off-policy evalua-
tion (OPE). Popular OPE algorithms can be roughly divided
into two categories, each with their own critical weaknesses:
the first is importance sampling [PSS00; JL16; TB16],
which has elegant unbiasedness guarantees but suffers vari-
ance that is exponential in the horizon, limiting applicability
beyond short-horizon settings such as contextual bandits
[LCLW11]. The second category includes algorithms such
as Fitted-Q Evaluation (FQE) [EGW05; LVY19; Pai+20],
marginalized importance sampling [LLTZ18; NCDL19;
UHJ20], and model-based approaches [VJY21], which
avoid the exponential variance; unfortunately, this comes at
the cost of introducing their own hyperparameters (choice of
neural architecture, learning rates, etc.). While prior works
have reported the effectiveness of these methods [Pai+20],
they also leave a chicken-and-egg problem: if these algo-
rithms tune the hyperparameters of training, who tunes
their hyperparameters?

In this work, we make progress on this latter problem,
namely model selection for OPE algorithms themselves,
in multiple dimensions. Concretely, we consider two set-
tings: in the model-based setting, evaluation algorithms
build dynamics models to evaluate a target policy. Given the
uncertainty of hyperparameters in model building, we as-
sume that multiple candidate models are given, and the task
is to select one that we believe evaluates the performance of
the target policy most accurately. In the model-free setting,
evaluation algorithms only output value functions. Similar
to above, the task is to select a value function out of the
candidate value functions.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Model Selection for OPE: New Algorithms and Experimental Protocol

Our contributions are 4-fold:

1. New selectors (model-free): We propose a new selec-
tion algorithm (or simply selector), LSTD-Tournament,
for selecting between candidate value functions by ap-
proximately checking whether the function satisfies the
Bellman equation. The key technical difficulty here is
the infamous double sampling problem [Bai95; SB18;
CJ19]. Our derivation builds on BVFT [XJ21; ZJ21],
which is the only existing selector that addresses double
sampling in a theoretically rigorous manner without ad-
ditional function-approximation assumptions. Our new
selector relies on more plausible assumptions, enjoys
better statistical rates (1/ϵ2 vs. 1/ϵ4), and empirically
outperforms BVFT and other baselines.

2. New selectors (model-based): When comparing candi-
date models, popular losses in model-based RL exhibit
biases under stochastic transitions [Jia24]. Instead, we
propose novel estimators with theoretical guarantees, in-
cluding novel adaptation of previous model-free selectors
that require additional assumptions to the model-based
setting [ASM08; ZDMAK23].

3. New experiment protocol: To empirically evaluate the
selection algorithms, prior works often use FQE to pre-
pare candidate Q-functions [ZJ21; NFBJSB22], which
suffers from unstable training1 and lack of control in the
quality of the candidate functions. We propose a new ex-
periment protocol, where the candidate value functions
are induced from variations of the groundtruth environ-
ment. This bypasses the caveats of FQE and allows
for the computation of Q-values in an optimization-free
and controllable manner. Moreover, the protocol can
also be used to evaluate and compare estimators for the
model-based setting. Implementation-wise, we use lazy
evaluation and Monte-Carlo roll-outs to generate the
needed Q-values. Combined with parallelization and
caching, we reduce the computational cost and make the
evaluation of new algorithms easier.

4. Preliminary experiments: We instantiate the protocol in
Gym Hopper and demonstrate the various ways in which
we can evaluate and understand different selectors.

2. Preliminaries
Markov Decision Process (MDP). An MDP is specified
by (S,A, P,R, γ, d0), where S is the state space, A is the
action space, P : S×A → ∆(S) is the transition dynamics,
R : S × A → [0, Rmax] is the reward function, γ ∈ [0, 1)
is the discount factor, and d0 is the initial state distribu-
tion. A policy π : S → ∆(A) induces a distribution over

1For example, our preliminary investigation has found that
FQE often diverges with CQL-trained policies [KZTL20], which
is echoed by [NFBJSB22] in personal communications.

random trajectories, generated as s0 ∼ d0, at ∼ π(·|st),
rt = R(st, at), st+1 ∼ P (·|st, at), ∀t ≥ 1. We use Prπ[·]
and Eπ[·] to denote such a distribution and the expecta-
tion thereof. The performance of a policy is defined as
J(π) := Eπ[

∑∞
t=0 γ

trt], which is in the range of [0, Vmax]
where Vmax := Rmax/(1− γ).

Value Function and Bellman Operator. The Q-function
Qπ ∈ RS×A is the fixed point of T π : RS×A →
RS×A, i.e., Qπ = T πQπ, where for any f ∈ RS×A,
(T πf)(s, a) := R(s, a) + γEs∼P (·|s,a)[f(s

′, π)]. We use
the shorthand f(s′, π) for Ea′∼π(·|s′)[f(s

′, a′)].

Off-policy Evaluation (OPE). OPE is about estimating
the performance of a given target policy π in the real en-
vironment denoted as M⋆ = (S,A, P ⋆, R, γ, d0), namely
JM⋆(π), using an offline dataset D sampled from a behavior
policy πb. For simplicity, from now on we may drop the
M⋆ in the subscript when referring to properties of M⋆,
e.g., J(π) ≡ JM⋆(π), Qπ ≡ Qπ

M⋆ , etc. As a standard
simplification, our theoretical derivation assumes that the
dataset D consists of n i.i.d. tuples (s, a, r, s′) generated as
(s, a) ∼ µ, r = R(s, a), s′ ∼ P ⋆(·|s, a). We use Eµ[·] to
denote the true expectation under the data distribution, and
ED[·] denotes the empirical approximation from D.

Model Selection. We assume that there are multiple OPE
instances that estimate J(π), and our goal is to choose
among them based on the offline dataset D. Our setup is
agnostic w.r.t. the details of the OPE instances, and view
them only through the intermediate objects (dynamics model
or value function) they produce. Concretely, two settings
are considered:

• Model-based: Each OPE instance produces an MDP Mi

and uses JMi
(π) as an estimate of J(π); w.l.o.g. we as-

sume Mi only differs from M⋆ in the transition Pi. The
task is to select M̂ from M := {Mi}i∈[m], such that
JM̂ (π) ≈ J(π). We assume that at least one model is
close to M⋆, and in theoretical analyses we make the sim-
plification that M⋆ ∈ M; extension to the misspecified
case (M⋆ /∈ M) is routine in RL theory [AJS23; ACK24]
and orthogonal to the insights of this work.

• Model-free: Each OPE instance provides a Q-function
that approximates Qπ. The validation task is to select Q̂
from the candidate Q-functions Q := {Qi}i∈[m],2 such
that Es∼d0

[Q̂(s, π)] ≈ J(π). Similar to the model-based
case, we will assume Qπ ∈ Q in the derivations.

The model-free setting is a more general protocol, as the
model-based setting can be reduced to it: given candidate

2In practical scenarios, the candidate models and functions,
{Mi}i∈[m] and {Qi}i∈[m], may be learned from data, and we
assume D is a holdout dataset independent of the data used for
producing {Mi}i∈[m] and {Qi}i∈[m].

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Model Selection for OPE: New Algorithms and Experimental Protocol

models {M1, . . . ,Mm}, we can induce a Q-function class
{Qπ

M1
, . . . , Qπ

Mm
} and run any model-free selection algo-

rithm over them. The model-free setup also handles broader
settings, especially when we lack prior knowledge of model
dynamics. In either case, we treat the base algorithms as
black-boxes and interact with them only through the models
and the Q-functions they produce.

3. New Model-free Selector
In this section we introduce our new model-free selector,
LSTD-Tournament. To start, we review the difficulties
in model-free selection and the idea behind BVFT [XJ21;
ZJ21] which we build on.

3.1. Challenges of Model-free Selection and BVFT

To select Qπ from Q = {Q1, . . . , Qm}, perhaps the most
natural idea is to check how much each candidate function
Qi violates the Bellman equation Qπ = T πQπ , and choose
the function that minimizes such a violation. This motivates
the Bellman error (or residual) objective:

Eµ[(Qi − T πQi)
2]. (1)

Unfortunately, this loss cannot be estimated due to the infa-
mous double-sampling problem [Bai95; SB18; CJ19], and
the naïve estimation, which squares the TD error, is a bi-
ased estimation of the Bellman error (Eq.(1)) in stochastic
environments:

(TD-sq) Eµ[(Qi(s, a)− r − γQi(s
′, π))2]. (2)

Common approaches to debiasing this objective involves
additional “helper” classes, which we show can be naturally
induced in the model-based setting; see Section 4 for details.

BVFT. The idea behind BVFT [XJ21] is to find an OPE
algorithm for learning Qπ from a function class F , such
that to achieve polynomial sample-complexity guarantees,
it suffices if F satisfies 2 assumptions:

1. Realizability, that Qπ ∈ F .

2. Some structural (as opposed to expressivity) assumption
on F , e.g., smoothness, linearity, etc.

Standard learning results in RL typically require stronger
expressivity assumption than realizability, such as the
widely adopted Bellman-completeness assumption (T πf ∈
F ,∀f ∈ F). However, exceptions exist, and BVFT shows
that they can be converted into a pairwise-comparison sub-
routine for selecting between two candidates {Qi, Qj}, and
extension to multiple candidates can be done via a tourna-
ment procedure. Crucially, we can use {Qi, Qj} to auto-
matically create an F needed by the algorithm without

additional side information or prior knowledge. We refer
the readers to [XJ21] for further details, and we will also
demonstrate such a process in the next subsection.

In short, BVFT provides a general recipe for converting a
special kind of “base” OPE methods into selectors of fa-
vorable guarantees. Intuitively, the “base” method/analysis
will determine the properties of the resulting selector. For
BVFT, such a “base” is learning with Qπ-irrelevant abstrac-
tions [LWL06; Jia18], where the structural assumption on
F is being piecewise-constant. Our novel insight is that for
learning Qπ , there exists another algorithm, namely LSTDQ
[LP03], which satisfies the needed criteria and has superior
properties compared to Qπ-irrelevant abstractions, thus can
induce better selectors than BVFT.

3.2. LSTD-Tournament

We now provide a theoretical analysis of LSTDQ (which
is simplified from the literature [MPW23; PKBK23]), and
show how to transform it into a selector via the BVFT recipe.
In LSTDQ, we learn Qπ via linear function approximation,
i.e., it is assumed that a feature map ϕ : S × A → Rd is
given, such that Qπ(s, a) = ϕ(s, a)⊤θ⋆, where θ⋆ ∈ Rd is
the groundtruth linear coefficient. Equivalently, this asserts
that the induced linear class, Fϕ := {ϕ⊤θ : θ ∈ Rd}
satisfies realizability, Qπ ∈ Fϕ.

LSTDQ provides a closed-form estimation of θ⋆ by first
estimating the following moment matrices:

Σ := Eµ[ϕ(s, a)ϕ(s, a)
⊤], Σcr := Eµ[ϕ(s, a)ϕ(s

′, π)⊤],

A := Σ− γΣcr, b := Eµ[ϕ(s, a)r]. (3)

As a simple algebraic fact, Aθ⋆ = b. Therefore, when A
is invertible, we immediately have that θ⋆ = A−1b. The
LSTDQ algorithm thus simply estimates A and b from data,
denoted as Â and b̂, respectively, and estimate θ⋆ as Â−1b̂.
Alternatively, for any candidate θ, ∥Aθ − b∥∞ can serve as
a loss function that measures the violation of the equation
Aθ⋆ = b, which we can minimize over.3 Its finite-sample
guarantee is given below. All proofs of the paper can be
found in Appendix B.

Theorem 1. Let Θ ⊂ Rd be a set of parameters such
that θ⋆ ∈ Θ. Assume maxs,a∥ϕ(s, a)∥2 ≤ Bϕ and
maxθ∈Θ∥θ∥2 ≤ 1. Let θ̂ := argminθ∈Θ ∥Âθ− b̂∥∞. Then,
with probability at least 1− δ,

∥Qπ − ϕ̂⊤θ∥∞ ≤ 6max{Rmax, Bϕ}2

σmin(A)

√
d log(2d|Θ|/δ)

n
,

where σmin(·) is the smallest singular value.

3When Â−1b̂ ∈ Θ, it will be a minimizer of the loss, so the loss-
minimization version is a regularized generalization of LSTDQ.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Model Selection for OPE: New Algorithms and Experimental Protocol

Besides the realizability of Qπ , the guarantee also depends
on the invertibility of A, which can be viewed as a coverage
condition, since A changes with the data distribution µ
[AJX20; AJS23; JX24]. In fact, in the on-policy setting (µ
is an invariant distribution under π), σmin(A) can be shown
to be lower-bounded away from 0 [MPW23].

LSTD-Tournament. We are now ready to describe our
new selector. Recall that we first deal with the case of two
candidate functions, {Qi, Qj}, where Qπ ∈ {Qi, Qj}. To
apply the LSTDQ algorithm and guarantee, all we need is to
create the feature map ϕ such that Qπ is linearly realizable
in ϕ. In the spirit of BVFT, we design the feature map as

ϕi,j(s, a) := [Qi(s, a), Qj(s, a)]
⊤. (4)

The subscript “i, j” makes it clear that the feature is cre-
ated based on Qi and Qj as candidates, and we will use
similar conventions for all quantities induced from ϕi,j ,
e.g., Ai,j , bi,j , etc. Obviously, Qπ is linear in ϕi,j with
θ⋆ ∈ {[1, 0]⊤, [0, 1]⊤}. Therefore, to choose between Qi

and Qj , we can calculate the LSTDQ loss of [1, 0]⊤ and
[0, 1]⊤ under feature ϕi,j and choose the one with smaller
loss. For θ = [1, 0]⊤, we have Ai,jθ − bi,j =

Eµ

{[
Qi(s, a)
Qj(s, a)

]
([Qi(s, a), Qj(s, a)]

− γ[Qi(s
′, π), Qj(s

′, π)])
}[

1
0

]
− Eµ

[
[Qi(s, a), Qj(s, a)] · r

] [1
0

]
= Eµ

[[
Qi(s, a)
Qj(s, a)

]
(Qi(s, a)− r − γQi(s

′, π))

]
.

Taking the infinity-norm of the loss vector, we have

∥Ai,j

[
1
0

]
− bi,j∥∞

= max
k∈{i,j}

|Eµ[Qk(s, a)(Qi(s, a)− r − γQi(s
′, π))]|.

The loss for θ = [0, 1]⊤ is similar, where Qi is replaced by
Qj . Following BVFT, we can generalize the procedure to m
candidate functions {Q1, . . . , Qm} by pairwise comparison
and recording the worst-case loss, this leads to our final loss
function: L(Qi; {Qj}j∈[m], π) :=

max
k∈[m]

|Eµ[Qk(s, a)(Qi(s, a)− r − γQi(s
′, π))]|. (5)

The actual algorithm replaces Eµ with the empirical estima-
tion from data, and chooses the Qi that minimizes the loss.
Building on Theorem 1, we have the following guarantee:

Theorem 2. Given Qπ := Qi⋆ ∈ {Qi}i∈[m], the Qî that
minimizes the empirical estimation of L(Qi; {Qj}j∈[m], π)

(Eq.(5)) satisfies that w.p. ≥ 1−δ, |J(π)−Es∼d0
[Qî(s, π)|

≤ max
i∈[m]\{i⋆}

24V 3
max

σmin(Ai,i⋆)

√
log(8m/δ)

n
.

Comparison to BVFT [XJ21]. BVFT’s guarantee has
a slow 1/ϵ4 rate for OPE [ZJ21; JRSW24], whereas our
method enjoys the standard 1/ϵ2 rate. The additional 1/ϵ2

is due to an adaptive discretization step in BVFT, which
also makes its implementation somewhat complicated as
the resolution needs to be heuristically chosen. By compar-
ison, the implementation of LSTD-Tournament is simple
and straightforward. Both methods inherit the coverage
assumptions from their base algorithms and are not immedi-
ately comparable. We leave a detailed comparison of their
differences for future work.

Variants. A key step in the derivation is to design the
linearly realizable feature of Eq.(4), but the design is not
unique as any non-degenerate linear transformation would
also suffice. For example, we can use ϕi,j = [Qi/ci, (Qj −
Qi)/cj,i]; the “diff-of-value” term Qj −Qi has shown im-
proved numerical properties in practice [KZTL20; CXJA22],
and ci, cj,i can normalize the discriminators to unit vari-
ance for further numerical stability; this will also be the
version we use in the main-text experiments. Preliminary
empirical comparison across these variants can be found in
Appendix E.2.

4. Model-based Selectors
We now turn to the model-based setting, i.e., choosing a
model from {Mi}i∈[m]. This is a practical scenario when
we have structural knowledge of the system dynamics and
can build reasonable simulators, but simulators of complex
real-world systems will likely have many design choices
and knobs that cannot be set from prior knowledge alone.
In some sense, the task is not very different from system
identification in control and model learning in model-based
RL, except that (1) we focus on a finite and small number of
plausible models, instead of a rich and continuous hypoth-
esis class, and (2) the ultimate goal is to perform accurate
OPE, and learning the model is only an intermediate step.

Existing Methods. Given the close relation to model
learning, a natural approach is to simply minimize the model
prediction loss [Jia24]: a candidate model M is scored by

E(s,a,s′)∼µ,s̃∼P (·|s,a)[d(s
′, s̃)], (6)

where s′ is in the data and generated according to the real
dynamics P ⋆(·|s, a), and s̃ is generated from the candidate
model M ’s dynamics P . d(·, ·) is a distance metric that
measures the difference between states.

Despite its wide use and simplicity [NKFL18], the method
has major caveats: first, the distance metric d(·, ·) is a design

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Model Selection for OPE: New Algorithms and Experimental Protocol

choice. When the state is represented as a real-valued vector,
it is natural to use the ℓ2 distance as d(·, ·), which changes
if we simply normalize/rescale the coordinates. Second, the
metric is biased for stochastic environments as discussed in
prior works [Jia24; VAAGF23], which we will also demon-
strate in the experiment section (Section 6); essentially this
is a version of the double-sampling issue but for the model-
based setting [AFJKM24].

There are alternative methods that address these issues.
For example, in the theoretical literature, MLE losses are
commonly used, i.e., Eµ[logP (s′|s, a)] [AKKS20; UZS21;
LNSJ23], which avoids d(·, ·) and works properly for
stochastic MDPs by effectively measuring the KL diver-
gence between P ⋆(·|s, a) and P (·|s, a). Unfortunately,
most complex simulators do not provide explicit probabili-
ties P (s′|s, a), making it difficult to use in practice. More-
over, when the support of P ⋆(·|s, a) is not fully covered by
P (·|s, a), the loss can become degenerate.

To address these issues, we propose to estimate the Bellman
error Eµ[(Qi − T πQi)

2], where Qi := Qπ
Mi

. As discussed
earlier, this objective suffers the double-sampling issue in
the model-free setting, which we show can be addressed
when we have access to candidate models {M1, . . . ,Mm}
that contains the true dynamics M⋆. Moreover, the Bellman
error |Qπ

Mi
(s, a)− (T πQπ

Mi
)(s, a)| =

γ|Es′∼P⋆(·|s,a)[Qi(s
′, π)]− Es′∼Pi(·|s,a)[Qi(s

′, π)]|,

which can be viewed as an IPM loss [Mül97] that mea-
sures the divergence between P ⋆(·|s, a) and P (·|s, a) under
Qi(·, π) as a discriminator. IPM is also a popular choice of
model learning objective in theory [SJKAL19; VJY21], and
the Bellman error provides a natural discriminator relevant
for the ultimate task of interest, namely OPE.

4.1. Regression-based Selector

Recall that the difficulty in estimating the Bellman error
Eµ[(Qi − T πQi)

2] is the uncertainty in T π. To overcome
this, we leverage the following observation from [ASM08],
where for any f : S ×A → R,

T πf ∈ argmin
g:S×A→R

Eµ[(g(s, a)− r − γf(s′, π))2], (7)

which shows that we can estimate T πQi by solving a
sample-based version of the above regression problem with
f = Qi. Statistically, however, we cannot afford to min-
imize the objective over all possible functions g; we can
only search over a limited set Gi that ideally captures the
target T πQi. Crucially, in the model-based setting we can
generate such a set directly from the candidates {Mi}i∈[m]:

Proposition 3. Let Gi := {T π
Mj

Qi : j ∈ [m]}. Then if
M⋆ ∈ {Mi}i∈[m], it follows that T πQi = T π

M⋆Qi ∈ Gi.

The constructed Gi ensures that regression is statistically
tractable given its small cardinality, |Gi| = m. To select Qi,
we choose Qi with the smallest loss defined as follows:

1. ĝi := argming∈Gi
ED[(g(s, a)− r − γQi(s

′, π))2].

2. The loss of Qi is ED[(ĝi(s, a)−Qi(s, a))
2].

The 2nd step follows from [ZDMAK23]. Alternatively, we
can also use the min value of Eq.(7) (instead of the argmin
function) to correct for the bias in TD-squared (Eq.(2))
[ASM08]; see [LNPW23] for another related variant. These
approaches share similar theoretical guarantees under stan-
dard analyses [XJ21; XCJMA21], and we only state the
guarantee for the [ZDMAK23] version below, but will in-
clude both in the experiments.

Theorem 4. Let Cπ := Eπ

[
dπ(s,a)
µ(s,a)

]
. For Qî that minimizes

ED[(ĝi(s, a)−Qi(s, a))
2] we have w.p. ≥ 1− δ,

J(π)− Ed0

[
Qî(s, π)

]
≤ Vmax

1− γ

√
152 · Cπ · log

(
4m
δ

)
n

.

4.2. Sign-flip Average Bellman Error

We now present another selector that leverages the infor-
mation of Gi = {T π

Mj
: j ∈ [m]} in a different manner.

Instead of measuring the squared Bellman error, we can also
measure the absolute error, which can be written as (some
(s, a) argument to functions are omitted):

Eµ[|Qi − T π
M⋆Qi|]

= Eµ[sgn(Qi(s, a)− (T πQi)(s, a))(Qi − T πQi)]

= Eµ[sgn(Qi − T πQi)(Qi(s, a)− r − γQi(s
′, π))]

≤ max
g∈Gi

Eµ[sgn(Qi − g)(Qi(s, a)− r − γQi(s
′, π))]. (8)

Here, the Gi from Proposition 3 induces a set of sign func-
tions sgn(Qi − g), which includes Qi − T πQi, that will
negate any negative TD errors. The guarantee is as follows:

Theorem 5. Let Qî be the minimizer of the empirical esti-
mate of Eq.(8), and Cπ

∞ := maxs,a
dπ(s,a)
µ(s,a) . W.p. ≥ 1− δ,

J(π)− Ed0

[
Qî(s, π)

]
≤ 4 · Cπ

∞ · Vmax

√
log(2m/δ)

n
.

5. A Model-based Experiment Protocol
Given the new selectors, we would like to evaluate and
compare them empirically. However, as alluded to in the
introduction, current experiment protocols have various
caveats and make it difficult to evaluate the estimators in
well-controlled settings. In this section, we describe a novel
model-based experiment protocol, which can be used to
evaluate both model-based and model-free selectors.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Model Selection for OPE: New Algorithms and Experimental Protocol

5.1. The Protocol

Our protocol consists of experiment units defined by the
following elements:

1. Groundtruth model M⋆.

2. Candidate model list M = {Mi}i∈[m].

3. Behavior policy πb and offline sample size n.

4. Target policies Π = {π1, . . . , πl}.

Given the specification of a unit, we will draw a dataset of
size n from M⋆ using behavior policy πb. For each target
policy π ∈ Π, we apply different selectors to choose a model
M ∈ M to evaluate π. Model-free algorithms will access
M only through its Q-function, Qπ

M , effectively choosing
from the set Q = {Qπ

M : M ∈ M}. Finally, the prediction
error |JM (π) − JM⋆(π)| is recorded and averaged over
the target policies in Π. Moreover, we may gather results
from multiple units that share the same M⋆ but differ in
M and/or the behavior policy to investigate issues such as
robustness to misspecification and data coverage, as we will
demonstrate in the next section.

Lazy Evaluation of Q-values via Monte Carlo. While the
pipeline is conceptually straightforward, practically access-
ing the Q-function Qπ

M is nontrivial: we could run TD-style
algorithms in M to learn Qπ

M , but that invokes a separate
RL algorithm that may require additional tuning and veri-
fication, and it can be difficult to control the quality of the
learned function.

Our innovation here is to note that, for all the model-free
algorithms we are interested in evaluating, they all ac-
cess Qπ

M exclusively through the value of Qπ
M (s, a) and

Qπ
M (s′, π) for (s, a, r, s′) in the offline dataset D. That

is, given n data points in D, we only need to know 2n
scalar values about Qπ

M . Therefore, we propose to di-
rectly compute these values without explicitly representing
Qπ

M , and each value can be easily estimated by averag-
ing over multiple Monte-Carlo rollouts, i.e., Qπ

M (s, a) =
Eπ[

∑∞
t=0 γ

trt|s0 = s, a0 = a] can be approximated by
rolling out multiple trajectories starting from (s, a) and tak-
ing actions according to π.

Moreover, for the model-based estimators proposed in
Section 4, we need access to quantities in the form of
(T π

Mj
Qπ

Mi
)(s, a). This value can also be obtained by Monte-

Carlo simulation: (1) start in (s, a) and simulate one step in
Mj , then (2) switch to Mi, simulate from step 2 onwards
and rollout the rest of the trajectory.

5.2. Computational Efficiency

Despite not involving neural-net optimization, the experi-
ment can still be computationally intensive due to rolling out
a large number of trajectories. In our code, we incorporate
the following measures to reduce the computational cost:

40 20
Noise

80

100

120

140

160

Re
tu

rn

MF.G

0 100 200
Number of Rollouts

0

50

100

150

200

M
on

te
-C

ar
lo

 E
st

im
at

es

MF.G

Figure 1. Left: JM (π) in M ∈ Mg for different target policies.
Right: Convergence of Monte-Carlo estimates of J(π). Each
curve corresponds to a target policy.

Q-caching. The most intensive part of the pipeline is to
roll-out Monte-Carlo trajectories for Q-value estimation. In
contrast, the cost of running the actual selection algorithms
is often much lower and negligible. Therefore, we generate
these Monte-Carlo Q-estimates and save them to files, and
retrieve them during the selection period. This makes it
efficient to experiment with new selection algorithms or
add extra baselines, and also enables fast experiment that
involves a subset of the candidate models (see Section 6.2).

Bootstrapping. To account for the randomness due to
D, we use bootstrapping to sample (with replacement) mul-
tiple datasets and run the algorithms on each dataset, and
report the mean performance across these bootstrapped sam-
ples with 95% confidence intervals. Using bootstrapping
maximally reuses the cached Q-values and avoids the high
computational costs of sampling multiple datasets and per-
forming Q-caching in each of them, which is unavoidable if
we were to repeat each experiment verbatim multiple times.

6. Exemplification of the Protocol
In this section we instantiate our protocol in the Gym Hop-
per environment to demonstrate its utility, while also pro-
viding preliminary empirical results for our algorithms.

6.1. Experiment Setup and Main Results

Our experiments will be based on the Hopper-v4 environ-
ment. To create a variety of environments, we add different
levels of stochastic noise in the transitions and change the
gravity constant (see Appendix C.1). Each environment
is then parameterized by the gravity constant g and noise
level n. We consider arrays of such environments as the set
of candidate simulator M: in most of our results, we con-
sider a “gravity grid” (denoted using MF.G in the figures)
Mg := {M0

g . . . ,M14
g } (fixed noise level, varying grav-

ity constants from −51 to −9) and a “noise grid” (MF.N)
Mn := {M0

n . . . ,M14
n } (fixed gravity constant, varying

noise level from 10 to 100). Each array contains 15 environ-
ments, though some subsequent results may only involve

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Model Selection for OPE: New Algorithms and Experimental Protocol

0 1000 2000 3000
Sample Size

0.0

2.5

5.0

7.5

10.0

12.5
MF.G: g=-51, =100.0

0 1000 2000 3000
Sample Size

2

4

6

8

10

12
MF.G: g=-30, =100.0

0 1000 2000 3000
Sample Size

10

15

20

25

30

35
MF.G: g=-9, =100.0

0 1000 2000 3000
Sample Size

0

1

2

3

4
MF.N: g=-30, =10.0

0 1000 2000 3000
Sample Size

1

2

3

4
MF.N: g=-30, =55.0

0 1000 2000 3000
Sample Size

2

3

4

5

6

7
MF.N: g=-30, =100.0

OP
E

Er
ro

r

random
mf_td_square
mf_avg_bellman_error
mf_lstdq_tournament
mf_bvft
mb_naive

Figure 2. Main results for comparing model-
free selectors in the gravity grid (MF.G; top
row) and the noise grid (MF.N; bottom row).
Each plot corresponds to a different M⋆ as
indicated in the plot title. “mb_naive” is model-
based but still included since it does not require
Bellman operator rollouts.

a subset of them (Section 6.2). Some of these simulators
will also be treated as groundtruth environment M⋆, which
determines the groundtruth performance of target policies
and produces the offline dataset D.

Behavior and target policies. We create 15 target policies
by running DDPG [Lil+15] in one of the environments and
take checkpoints. For each M⋆, the behavior policy is the
randomized version of one of the target policies; see Ap-
pendix C.2 for details. A dataset is collected by sampling
trajectories until n = 3200 transition tuples are obtained. As
a sanity check, we plot JM (π) for π ∈ Πg and M ∈ Mg in
Figure 1. As can be shown in the figure, the target policies
have different performances, and also vary in a nontrivial
manner w.r.t. the gravity constant g. It is important to per-
form such a sanity check to avoid degenerate settings, such
as JM (π) varies little across M ∈ M (then even a random
selection will be accurate) or across π ∈ Π.

Number of Rollouts. We then decide the two important
parameters for estimating the Q-value, the number of Monte-
Carlo rollouts l and the horizon (i.e., trajectory length) H .
For horizon, we set H = 1024 which is substantially longer
than typically observed trajectories from the target policies.
For l, we plot the convergence of JM (π) estimation and
choose l = 128 accordingly (see Figure 1R).

Compared Methods. We compare our methods with
baselines, including TD-square (Eq.(2)), naïve model-
based (Eq.(6)), BVFT [ZJ21], and “average Bellman error”
|ED[Qi(s, a) − r − γQi(s

′, π)]| [JKALS17], which can
be viewed as our LSTD-Tournament but with a trivial con-
stant discriminator. The model-based methods in Section 4
require MC rollouts for {Tπ

Mj
Qπ

Mi
: i, j ∈ [m]}, which

requires O(m2) computational complexity. Therefore, we
first compare other selectors (mostly model-free) in Figure 2
with m = 15; the relatively large number of candidate simu-

lators will also enable the later subgrid studies in Section 6.2.
We then perform a separate experiment with m = 5 for the
model-based selectors (Figure 3).

Main Results. Figure 2 shows the main model-free results.
Our LSTD-Tournament method demonstrates strong and
reliable performance. Note that while some methods some-
times outperform it, they suffer catastrophic performances
when the true environment changes. For example, the naïve
model-based method performs poorly in high-noise envi-
ronment, as predicted by theory (Section 4). BVFT’s per-
formance mostly coincides with TD-sq, which is a possible
degeneration predicted by [ZJ21]. This is particularly plau-
sible when the number of data points n is not large enough
to allow for meaningful discretization and partition of the
state space required by the method.

Figure 3 shows the result on smaller candidate model sets
(MB.G and MB.N; see Appendix C.2), where we imple-
ment the 3 model-based selectors in Section 4 whose com-
putational complexities grow quadratically with |M|. Our
expectation was that (1) these algorithms should address
the double-sampling issue and will outperform naïve model-
based when the latter fails catastrophically, and (2) by hav-
ing access to more information (the model, and in particular,
the Bellman operators), model-based should outperform
model-free algorithms under realizability. While the first
prediction is largely verified, we are surprised to find that the
second prediction went wrong, and our LSTD-Tournament
method is more robust and generally outperforms the more
complicated model-based selectors.

6.2. Subgrid Studies: Gaps and Misspecifications

We now demonstrate how to extract additional insights from
the Q-values cached earlier. Due to space limit we are only
able to show representative results in Figure 4, and more

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Model Selection for OPE: New Algorithms and Experimental Protocol

0 1000 2000 3000
Sample Size

1

2

3

4
MB.G: g=-36, =100.0

0 1000 2000 3000
Sample Size

2.00

2.25

2.50

2.75

3.00

MB.G: g=-30, =100.0

0 1000 2000 3000
Sample Size

4

6

8

MB.G: g=-24, =100.0

0 1000 2000 3000
Sample Size

0

1

2

3

4

MB.N: g=-30, =10.0

0 1000 2000 3000
Sample Size

1

2

3

4

5
MB.N: g=-30, =55.0

0 1000 2000 3000
Sample Size

2

4

6

8

MB.N: g=-30, =100.0

OP
E

Er
ro

r

random
mf_lstdq_tournament
mb_naive
mb_ZDMAK23
mb_sign_flip
mb_ASM08

Figure 3. Main results for comparing model-
based selectors. LSTD-Tournament is included
as the best model-free selector for comparison,
which surprisingly outperforms the more so-
phisticated model-based selectors in Section 4.

20 40
Noise Gap

0

1

2

3

OP
E

Er
ro

r

MF.N: g=-30, =55.0

0 5 10
Misspecification Level

0

2

4

6

OP
E

Er
ro

r

MF.N: g=-30, =10.0

0.0 0.5 1.0
Ratio of Target Data

0

5

10

15

20
OP

E
Er

ro
r

MF.G: g=-51, =100.0
random
mf_td_square
mf_avg_bellman_error
mf_lstdq_tournament
mf_bvft

Figure 4. Left: OPE error vs. simulator gaps. Middle: OPE error vs. misspecification. Right: OPE error vs. data coverage.

comprehensive results can be found in Appendix D.

Gaps. We investigate an intellectually interesting question:
is the selection problem easier if the candidate simulators are
very similar to each other, or when they are very different?
We argue that the answer is neither, and an intermediate
difference (or gap) is the most challenging: if the simulators
are too similar, their JM (π) predictions will all be close to
JM⋆(π) since M ≈ M⋆, and any selection algorithm will
perform well; if the simulators are too dissimilar, it should
be easy to tell them apart, which also makes the task easy.

We show how we can empirically test this. We let
M⋆ = M7

n, and run the experiments with different 3-
subsets of Mn, including {6, 7, 8} (least gap), {5, 7, 9},
. . . , {0, 7, 14} (largest gap). Since the needed Q-values
have already been cached in the main experiments, we can
skip caching and directly run the selection algorithms. We
plot the prediction error as a function of gap size in Fig-
ure 4L, and observe the down-U curves (except for trivial
methods such as random) as predicted by theory.

Misspecification. Similarly, we can study the effect of
misspecification, that is, M⋆ ∈ M. For example, we can
take M⋆ = M0

σ , and consider different subsets of Mn:

0–4 (realizable), 1–5 (low misspecification), . . . , 10–14
(high misspecification). Figure 4M plots prediction error
vs. misspecification level for different methods, where we
expect to observe potential difference in the sensitivity to
misspecification. The actual result is not that interesting
given similar increasing trends for all methods.

6.3. Data Coverage

In the previous subsection, we have seen how multiple ex-
periment units that only differ in M can provide useful
insights. Here we show that we can also probe the methods’
sensitivity to data coverage by looking at experiment units
that only differ in the dataset D. In Figure 4R, we take
a previous experiment setting (Mg) and isolate a particu-
lar target policy π; then, we create two datasets: (1) Dπ

sampled using π; (2) Doff sampled using a policy that is
created to be very different from the target policies and offer
very little coverage (see Appendix C.2). Then, we run the
algorithm with λ fraction of data from Dπ combined with
(1−λ) from Doff; as predicted by theory, most methods per-
form better with better coverage (large λ), and performance
degrades as λ goes to 0.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Model Selection for OPE: New Algorithms and Experimental Protocol

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
[ACK24] Philip Amortila, Tongyi Cao, and Akshay

Krishnamurthy. “Mitigating covariate shift
in misspecified regression with applica-
tions to reinforcement learning”. In: arXiv
preprint arXiv:2401.12216 (2024).

[AFJKM24] Philip Amortila, Dylan J Foster, Nan
Jiang, Akshay Krishnamurthy, and Zakaria
Mhammedi. “Reinforcement Learning un-
der Latent Dynamics: Toward Statistical
and Algorithmic Modularity”. In: arXiv
preprint arXiv:2410.17904 (2024).

[AJS23] Philip Amortila, Nan Jiang, and Csaba
Szepesvári. “The optimal approximation
factors in misspecified off-policy value
function estimation”. In: International
Conference on Machine Learning. PMLR.
2023, pp. 768–790.

[AJX20] Philip Amortila, Nan Jiang, and Tengyang
Xie. “A Variant of the Wang-Foster-
Kakade Lower Bound for the Dis-
counted Setting”. In: arXiv preprint
arXiv:2011.01075 (2020).

[AKKS20] Alekh Agarwal, Sham Kakade, Akshay Kr-
ishnamurthy, and Wen Sun. “FLAMBE:
Structural Complexity and Representation
Learning of Low Rank MDPs”. In: arXiv
preprint arXiv:2006.10814 (2020).

[ASM08] András Antos, Csaba Szepesvári, and
Rémi Munos. “Learning near-optimal poli-
cies with Bellman-residual minimization
based fitted policy iteration and a sin-
gle sample path”. In: Machine Learning
(2008).

[Bai95] Leemon Baird. “Residual algorithms: Re-
inforcement learning with function approx-
imation”. In: Machine Learning Proceed-
ings 1995. Elsevier, 1995, pp. 30–37.

[CJ19] Jinglin Chen and Nan Jiang. “Information-
Theoretic Considerations in Batch Rein-
forcement Learning”. In: Proceedings of
the 36th International Conference on Ma-
chine Learning. 2019, pp. 1042–1051.

[CXJA22] Ching-An Cheng, Tengyang Xie, Nan
Jiang, and Alekh Agarwal. “Adversarially

trained actor critic for offline reinforce-
ment learning”. In: International Confer-
ence on Machine Learning (2022).

[Dee] Google Deepmind. MuJoCo Documen-
tation. URL: https : / / mujoco .
readthedocs . io / en / stable /
computation/index.html.

[EGW05] Damien Ernst, Pierre Geurts, and Louis
Wehenkel. “Tree-based batch mode re-
inforcement learning”. In: Journal of
Machine Learning Research 6 (2005),
pp. 503–556.

[FMPNG22] Scott Fujimoto, David Meger, Doina Pre-
cup, Ofir Nachum, and Shixiang Shane
Gu. “Why should i trust you, bellman?
the bellman error is a poor replace-
ment for value error”. In: arXiv preprint
arXiv:2201.12417 (2022).

[Jia18] Nan Jiang. CS 598: Notes on State Ab-
stractions. http://nanjiang.cs.
illinois . edu / files / cs598 /
note4 . pdf. University of Illinois at
Urbana-Champaign. 2018.

[Jia24] Nan Jiang. “A Note on Loss Functions and
Error Compounding in Model-based Re-
inforcement Learning”. In: arXiv preprint
arXiv:2404.09946 (2024).

[JKALS17] Nan Jiang, Akshay Krishnamurthy, Alekh
Agarwal, John Langford, and Robert E
Schapire. “Contextual decision processes
with low Bellman rank are PAC-learnable”.
In: International Conference on Machine
Learning. 2017.

[JL16] Nan Jiang and Lihong Li. “Doubly Robust
Off-policy Value Evaluation for Reinforce-
ment Learning”. In: Proceedings of the
33rd International Conference on Machine
Learning. Vol. 48. 2016, pp. 652–661.

[JRSW24] Zeyu Jia, Alexander Rakhlin, Ayush
Sekhari, and Chen-Yu Wei. “Offline Re-
inforcement Learning: Role of State Ag-
gregation and Trajectory Data”. In: arXiv
preprint arXiv:2403.17091 (2024).

[JX24] Nan Jiang and Tengyang Xie. “Offline
reinforcement learning in large state
spaces: Algorithms and guarantees”. In:
(2024). https : / / nanjiang . cs .
illinois . edu / files / STS _
Special _ Issue _ Offline _ RL .
pdf.

[KKKKNS23] Haruka Kiyohara, Ren Kishimoto, Kosuke
Kawakami, Ken Kobayashi, Kazuhide
Nakata, and Yuta Saito. “SCOPE-RL: A

9

https://mujoco.readthedocs.io/en/stable/computation/index.html
https://mujoco.readthedocs.io/en/stable/computation/index.html
https://mujoco.readthedocs.io/en/stable/computation/index.html
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf
https://nanjiang.cs.illinois.edu/files/STS_Special_Issue_Offline_RL.pdf
https://nanjiang.cs.illinois.edu/files/STS_Special_Issue_Offline_RL.pdf
https://nanjiang.cs.illinois.edu/files/STS_Special_Issue_Offline_RL.pdf
https://nanjiang.cs.illinois.edu/files/STS_Special_Issue_Offline_RL.pdf

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Model Selection for OPE: New Algorithms and Experimental Protocol

Python Library for Offline Reinforcement
Learning and Off-Policy Evaluation”. In:
arXiv preprint arXiv:2311.18206 (2023).

[KZTL20] Aviral Kumar, Aurick Zhou, George
Tucker, and Sergey Levine. “Conservative
q-learning for offline reinforcement learn-
ing”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 1179–
1191.

[LCLW11] Lihong Li, Wei Chu, John Langford, and
Xuanhui Wang. “Unbiased Offline Eval-
uation of Contextual-bandit-based News
Article Recommendation Algorithms”. In:
Proceedings of the 4th International Con-
ference on Web Search and Data Mining.
2011, pp. 297–306.

[Lil+15] Timothy P. Lillicrap, Jonathan J. Hunt,
Alexander Pritzel, Nicolas Manfred Otto
Heess, Tom Erez, Yuval Tassa, David Sil-
ver, and Daan Wierstra. “Continuous con-
trol with deep reinforcement learning”.
In: CoRR abs/1509.02971 (2015). URL:
https://api.semanticscholar.
org/CorpusID:16326763.

[LKTF20] Sergey Levine, Aviral Kumar, George
Tucker, and Justin Fu. “Offline reinforce-
ment learning: Tutorial, review, and per-
spectives on open problems”. In: arXiv
preprint arXiv:2005.01643 (2020).

[LLTZ18] Qiang Liu, Lihong Li, Ziyang Tang, and
Dengyong Zhou. “Breaking the curse of
horizon: Infinite-horizon off-policy estima-
tion”. In: Advances in Neural Information
Processing Systems. 2018, pp. 5356–5366.

[LNPW23] Vincent Liu, Prabhat Nagarajan, Andrew
Patterson, and Martha White. “When is
Offline Policy Selection Sample Efficient
for Reinforcement Learning?” In: arXiv
preprint arXiv:2312.02355 (2023).

[LNSJ23] Qinghua Liu, Praneeth Netrapalli, Csaba
Szepesvari, and Chi Jin. “Optimistic mle:
A generic model-based algorithm for par-
tially observable sequential decision mak-
ing”. In: Proceedings of the 55th Annual
ACM Symposium on Theory of Computing.
2023, pp. 363–376.

[LP03] Michail G Lagoudakis and Ronald Parr.
“Least-squares policy iteration”. In: The
Journal of Machine Learning Research 4
(2003), pp. 1107–1149.

[LTND22] Jonathan Lee, George Tucker, Ofir
Nachum, and Bo Dai. “Model selection
in batch policy optimization”. In: Interna-

tional Conference on Machine Learning.
PMLR. 2022, pp. 12542–12569.

[LVY19] Hoang Le, Cameron Voloshin, and Yisong
Yue. “Batch Policy Learning under Con-
straints”. In: International Conference on
Machine Learning. 2019, pp. 3703–3712.

[LWL06] Lihong Li, Thomas J Walsh, and Michael
L Littman. “Towards a unified theory of
state abstraction for MDPs”. In: Proceed-
ings of the 9th International Symposium
on Artificial Intelligence and Mathematics.
2006, pp. 531–539.

[MPW23] Wenlong Mou, Ashwin Pananjady, and
Martin J Wainwright. “Optimal oracle in-
equalities for projected fixed-point equa-
tions, with applications to policy evalua-
tion”. In: Mathematics of Operations Re-
search 48.4 (2023), pp. 2308–2336.

[Mül97] Alfred Müller. “Integral probability met-
rics and their generating classes of func-
tions”. In: Advances in Applied Probability
(1997).

[NCDL19] Ofir Nachum, Yinlam Chow, Bo Dai, and
Lihong Li. “Dualdice: Behavior-agnostic
estimation of discounted stationary distri-
bution corrections”. In: Advances in Neu-
ral Information Processing Systems 32
(2019).

[NFBJSB22] Allen Nie, Yannis Flet-Berliac, Deon Jor-
dan, William Steenbergen, and Emma
Brunskill. “Data-efficient pipeline for of-
fline reinforcement learning with limited
data”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 14810–
14823.

[NKFL18] Anusha Nagabandi, Gregory Kahn,
Ronald S Fearing, and Sergey Levine.
“Neural network dynamics for model-
based deep reinforcement learning with
model-free fine-tuning”. In: 2018 IEEE
international conference on robotics
and automation (ICRA). IEEE. 2018,
pp. 7559–7566.

[Pai+20] Tom Le Paine, Cosmin Paduraru, An-
drea Michi, Caglar Gulcehre, Konrad
Zolna, Alexander Novikov, Ziyu Wang,
and Nando de Freitas. “Hyperparameter
Selection for Offline Reinforcement Learn-
ing”. In: arXiv preprint arXiv:2007.09055
(2020).

[PKBK23] Juan C Perdomo, Akshay Krishnamurthy,
Peter Bartlett, and Sham Kakade. “A Com-
plete Characterization of Linear Estima-

10

https://api.semanticscholar.org/CorpusID:16326763
https://api.semanticscholar.org/CorpusID:16326763

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Model Selection for OPE: New Algorithms and Experimental Protocol

tors for Offline Policy Evaluation”. In:
Journal of Machine Learning Research
24.284 (2023), pp. 1–50.

[PSS00] Doina Precup, Richard S Sutton, and Satin-
der P Singh. “Eligibility Traces for Off-
Policy Policy Evaluation”. In: Proceedings
of the Seventeenth International Confer-
ence on Machine Learning. 2000, pp. 759–
766.

[SB18] Richard S Sutton and Andrew G Barto.
Reinforcement learning: An introduction.
MIT press, 2018.

[SJKAL19] Wen Sun, Nan Jiang, Akshay Krishna-
murthy, Alekh Agarwal, and John Lang-
ford. “Model-based RL in Contextual De-
cision Processes: PAC bounds and Expo-
nential Improvements over Model-free Ap-
proaches”. In: Conference on Learning
Theory. 2019.

[TB16] Philip Thomas and Emma Brunskill.
“Data-Efficient Off-Policy Policy Evalua-
tion for Reinforcement Learning”. In: Pro-
ceedings of the 33rd International Confer-
ence on Machine Learning. 2016.

[UHJ20] Masatoshi Uehara, Jiawei Huang, and Nan
Jiang. “Minimax Weight and Q-Function
Learning for Off-Policy Evaluation”. In:
Proceedings of the 37th International
Conference on Machine Learning. 2020,
pp. 1023–1032.

[UKNST23] Takuma Udagawa, Haruka Kiyohara,
Yusuke Narita, Yuta Saito, and Kei Tateno.
“Policy-adaptive estimator selection for off-
policy evaluation”. In: Proceedings of the
AAAI Conference on Artificial Intelligence.
Vol. 37. 8. 2023, pp. 10025–10033.

[UZS21] Masatoshi Uehara, Xuezhou Zhang, and
Wen Sun. “Representation learning for on-
line and offline rl in low-rank mdps”. In:
arXiv preprint arXiv:2110.04652 (2021).

[VAAGF23] Claas A Voelcker, Arash Ahmadian,
Romina Abachi, Igor Gilitschenski,
and Amir-massoud Farahmand. “λ-AC:
Learning latent decision-aware models
for reinforcement learning in contin-
uous state-spaces”. In: arXiv preprint
arXiv:2306.17366 (2023).

[VJY21] Cameron Voloshin, Nan Jiang, and Yisong
Yue. “Minimax Model Learning”. In: In-
ternational Conference on Artificial In-
telligence and Statistics. PMLR. 2021,
pp. 1612–1620.

[VLJY19] Cameron Voloshin, Hoang M Le, Nan
Jiang, and Yisong Yue. “Empirical Study
of Off-Policy Policy Evaluation for Rein-
forcement Learning”. In: arXiv preprint
arXiv:1911.06854 (2019).

[XCJMA21] Tengyang Xie, Ching-An Cheng, Nan
Jiang, Paul Mineiro, and Alekh Agarwal.
“Bellman-consistent Pessimism for Of-
fline Reinforcement Learning”. In: arXiv
preprint arXiv:2106.06926 (2021).

[XJ21] Tengyang Xie and Nan Jiang. “Batch
value-function approximation with only
realizability”. In: International Confer-
ence on Machine Learning. PMLR. 2021,
pp. 11404–11413.

[ZDMAK23] Joshua P Zitovsky, Daniel De Marchi,
Rishabh Agarwal, and Michael Rene
Kosorok. “Revisiting bellman errors for
offline model selection”. In: International
Conference on Machine Learning. PMLR.
2023, pp. 43369–43406.

[ZJ21] Siyuan Zhang and Nan Jiang. “Towards
hyperparameter-free policy selection for
offline reinforcement learning”. In: Ad-
vances in Neural Information Processing
Systems 34 (2021), pp. 12864–12875.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Model Selection for OPE: New Algorithms and Experimental Protocol

A. Other Related Works
Here we review some existing works on model selection in offline RL. Most of them are not concerned about new selection
algorithms with theoretical guarantees (apart from [XJ21; ZJ21; ZDMAK23; LNPW23] which are already discussed in
the main text) or experiment protocol for OPE model selection (see [VLJY19; KKKKNS23] for experiment protocol and
benchmarks of OPE itself), so their focus is different and often provides insights complementary to our work. For example,
[NFBJSB22] discuss data splitting in offline model selection; this is a question we avoid by assuming a fixed holdout dataset
for OPE model selection. An exception is [UKNST23] who studies the model selection problem for OPE itself, but focuses
on the bandit case and makes heavy use of the importance sampling estimator, which we do not consider due to the focus on
long-horizon tasks.

[FMPNG22] challenge the idea of using Bellman errors for model selection due to their surrogacy and poor correlation with
actual objective; despite the valid criticisms, there are no clear alternatives that address the pain points of Bellman errors, and
the poor performance is often due to lack of data coverage, which makes the task fundamentally difficult for any algorithms.
We still believe that Bellman-error-like objectives (defined in a broad sense, which includes our LSTD-Tournament) are
promising for model selection, and the improvement on OPE error is the right goal to pursue instead of correlation (which
we know could be poor due to the surrogacy).

As mentioned above and demonstrated in our experiments, the lack of data coverage is a key factor that determines the
difficulty of the selection tasks. [LTND22] propose feature selection algorithms for offline contextual bandits that account
for the different coverage effects of candidate features. On a related note, ideas from offline RL training, such as version-
space-based pessimism [XCJMA21], can also be incorporated in our method. This will unlikely improve the accuracy
of OPE itself, but may be helpful if we measure performance by how OPE can eventually lead to successful selection of
performant policies, which we leave for future investigation.

B. Proofs
B.1. Proof of Theorem 1

Proof. Define the following loss vectors,

ℓ(θ) := Aθ − b ∈ Rd,

ℓ̂(θ) := Âθ − b̂ ∈ Rd

and recall that we select as the estimator

θ̂ := argmin
θ∈Θ

∥ℓ̂(θ)∥∞.

Since θ⋆ = A
−1
b, we can write the desired bound as a function of ℓ(θ) as follows,

∥Qπ(·)− ϕ⊤(·)θ̂∥∞ = ∥ϕ⊤(·)(θ̂ − θ⋆)∥∞
= ∥ϕ⊤(·)A−1

(Aθ̂ − b)∥∞
= ∥ϕ⊤(·)A−1

ℓ(θ̂)∥∞
= max

s,a
|ϕ⊤(s, a)A

−1
ℓ(θ̂)|

≤
(
max
s,a

∥∥ϕ⊤(s, a)
∥∥
2

)
·
∥∥A−1

∥∥
2
· ∥ℓ(θ̂)∥2

≤
√
dBϕ ·

∥∥A−1
∥∥
2
· ∥ℓ(θ̂)∥∞

Next, we control the ℓ(θ̂) term. In the sequel we will establish via concentration that

∥ℓ(θ)− ℓ̂(θ)∥∞ ≤ εstat := 3 ·max{Rmax, Bϕ}2 ·
√

log(2d|Θ|δ−1)

n
, ∀θ ∈ Θ. (9)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Model Selection for OPE: New Algorithms and Experimental Protocol

Then, we have that

∥ℓ(θ̂)∥∞ ≤ ∥ℓ̂(θ̂)∥∞ + εstat

≤ ∥ℓ̂(θ⋆)∥∞ + εstat

≤ ∥ℓ(θ⋆)∥∞ + 2 · εstat
= 2 · εstat,

where we recall that θ̂ = argminθ∈Θ ∥ℓ̂(θ)∥∞ in the second inequality, and that Aθ⋆ = b in the last line. Combining the
above, we obtain

∥Qπ − ϕ⊤θ̂∥∞ ≤ 2
√
dBϕ ·

∥∥A−1
∥∥
2
· εstat

= 6
√
d ·

∥∥A−1
∥∥
2
·max{Rmax, Bϕ}2 ·

√
log(2d|Θ|δ−1)

n
,

as desired. We now establish the concentration result of Equation (9).

Concentration results. For j ∈ [d], let ϕj(s, a) ∈ R refer to the j’th entry of the vector. For any (s, a, s′) and θ, define

Bπ(s, a, s′; θ) := ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

Recall that ∥ϕ(s, a)∥2 ≤ Bϕ for all (s, a) and that ∥θ∥2 ≤ BΘ for all θ ∈ Θ. We have that, for all j ∈ [d], θ ∈ Θ, and
s, a ∈ S ×A we have that ϕj(s, a)B

π(s, a, s′; θ) is bounded, since:

ϕj(s, a)
(
ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

)
≤ ∥ϕ(s, a)∥∞(∥ϕ(s, a)∥2∥θ∥2 + γ∥ϕ(s′, π)∥2∥θ∥2 +Rmax)

≤ max
s,a

∥ϕ(s, a)∥2
(
max
s,a

∥ϕ(s, a)∥2∥θ∥2 + γmax
s,a

∥ϕ(s, a)∥2∥θ∥2 +Rmax

)
≤ (1 + γ)B2

ϕ +RmaxBϕ

≤ 3max{Bϕ, Rmax}2.

Thus, from Hoeffding’s inequality and a union bound, we have that for all j ∈ [d] and θ ∈ Θ:

∣∣∣Eµ

[
ϕj(s, a)Bπ(s, a, s′; θ)

]
− Êµ

[
ϕj(s, a)Bπ(s, a, s′; θ)

]∣∣∣ ≤ 3max{Bϕ, Rmax}2
√

2 log(d|Θ|δ−1)

n
= εstat,

with probability at least 1− δ. As a result, we can write∥∥∥ℓ(θ)− ℓ̂(θ)
∥∥∥
∞

=
∥∥∥Eµ

[
ϕ(s, a)

(
ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

)]
− Êµ

[
ϕ(s, a)

(
ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

)]∥∥∥
∞

=
∥∥∥Eµ[ϕ(s, a)B

π(s, a, s′; θ)]− Êµ[ϕ(s, a)B
π(s, a, s′; θ)]

∥∥∥
∞

≤ ∥1 · εstat∥∞
≤ εstat.

This concludes the proof.

B.2. Proof of Theorem 2

Proof. We first note that the proposed algorithm is equivalent to the following tournament procedure:

• ∀i ∈ [m], j ̸= i :

– Define ϕi,j(s, a) := [Qi(s, a), Qj(s, a)]
⊤ and associated Âi,j matrix and b̂i,j vector (Eq. 3)

– Define ℓ̂i,j = Âi,je1 − b̂i,j ∈ R2

• Pick argmini∈[m] maxj ̸=i∥ℓ̂i,j∥∞

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Model Selection for OPE: New Algorithms and Experimental Protocol

Let i⋆ ∈ [m] denote the index of Qπ in the enumeration of Q. We start with the upper bound

|JM⋆(π)− Es∼d0
[Qî(s, π)]| = |Es∼d0

[Qπ(s, π)]− Es∼d0
[Qî(s, π)]| ≤ ∥Qπ(·)−Qî(·)∥∞.

Let ℓi,j := Ai,je1 − bi,j denote the population loss. We recall the concentration result from Equation (9), which, for any
fixed i and j, implies:

∥ℓi,j − ℓ̂i,j∥∞ ≤ εstat = 3 ·max{Bϕ, Rmax}2 ·
√

log(2dδ−1)

n
,

with probability at least 1− δ. This further implies |∥ℓi,j∥∞ − ∥ℓ̂i,j∥∞| ≤ εstat. Taking a union bound over all (i, j) where
either i or j equal i⋆, this implies that

∥ℓi,j − ℓ̂i,j∥∞ ≤ εstat = 3 ·max{Bϕ, Rmax}2 ·
√

log(4dmδ−1)

n
∀(i, j) ∈ ([m]× {i⋆}) ∪ ({i⋆} × [m])

If î = i⋆ then we are done. If not, then there exists a comparison in the tournament where i = î and j = i⋆. For these
features ϕî,i⋆(s, a) = [Qî(s, a), Qi⋆(s, a)]

⊤, we have:

∥Qπ(·)−Qî(·)∥∞ = ∥ϕ⊤
î,i⋆

(e2 − e1)∥∞
= ∥ϕ⊤

î,i⋆
A−1

î,i⋆
Aî,i⋆(e2 − e1)∥∞

= max
s,a

|ϕ⊤
î,i⋆

(s, a)A−1

î,i⋆
Aî,i⋆(e2 − e1)|

≤
(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥Aî,i⋆(e2 − e1)∥2

≤
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥Aî,i⋆(e2 − e1)∥∞

=
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥Aî,i⋆e1 − bî,i⋆∥∞

=
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥ℓî,i⋆∥∞

≤
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(
∥ℓ̂î,i⋆∥∞ + εstat

)
≤

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(

max
j∈[m]\{i⋆}

∥ℓ̂î,j∥∞ + εstat

)
≤

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(

max
j∈[m]\{i⋆}

∥ℓ̂i⋆,j∥∞ + εstat

)
≤

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(

max
j∈[m]\{i⋆}

∥ℓi⋆,j∥∞ + 2εstat

)
≤ 2

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2εstat.

≤ 2
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)

max
i∈[m]\{i⋆}

1

σmin(Ai,i⋆)
εstat.

To conclude, we note that d = 2 in our application and that maxs,a∥ϕi,j(s, a)∥22 = Q2
i (s, a)+Q2

j (s, a) ≤ 2V 2
max. Plugging

in the value for εstat, this gives a final bound of

|JM⋆(π)− Es∼d0 [Qî(s, π)]| ≤ 4Vmax max
i∈[m]\{i⋆}

1

σmin(Ai,i⋆)
εstat

= 24V 3
max max

i∈[m]\{i⋆}

1

σmin(Ai,i⋆)

√
log(4dmδ−1)

n
.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Model Selection for OPE: New Algorithms and Experimental Protocol

B.3. Proof of Theorem 4

We bound

J(π)− Ed0

[
Q̂(s, π)

]
= Ed0,π

[
Qπ(s, a)− Q̂(s, a)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− γQπ(s′, π)− Q̂(s, a)− γQ̂(s′, π)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− [T πQπ](s, a)− Q̂(s, a) +

[
T πQ̂

]
(s, a)

]
=

1

1− γ
Edπ

[[
T πQ̂

]
(s, a)− Q̂(s, a)

]
≤ 1

1− γ

√
Cπ · Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]

where the second line follows from Bellman flow. Now we consider the term under the square root, and let ĝQ̂ =

argming∈GQ̂
ℓ̂(g, Q̂).

Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]
≤ 2 · Eµ

[([
T πQ̂

]
(s, a)− ĝQ̂(s, a)

)]2
︸ ︷︷ ︸

(T1)

+2 · Eµ

[(
ĝQ̂(s, a)− Q̂(s, a)

)2
]

︸ ︷︷ ︸
(T2)

We consider each term above individually. (T1) is the regression error between ĝQ and the population regression solution
T πQ, which we can control using well-established bounds. The second term (T2) measure how close the Q-value is to its
estimated Bellman backup. To bound these two terms we utilize the following results. The first controls the error between
the squared-loss minimizer ĝQ and the population solution T πQ, and is adapted from [XJ21].

Lemma 6 (Lemma 9 from [XJ21]). Suppose that we have |g|∞ ≤ Vmax for all g ∈ GQ and Q ∈ Q, and define

ĝQ := argmin
g∈GQ

ED

[
(g(s, a)− r − γQ(s′, π))

2
]
.

Then with probability at least 1− δ, for all i ∈ [m] we have

Eµ

[
(ĝQ(s, a)− [T πQ](s, a))

2
]
≤

16V 2
max log

(
2m
δ

)
n

:= ε2reg.

The second controls the error of estimating the objective for choosing î from finite samples, and a proof is included at the
end of this section.

Lemma 7 (Objective estimation error). Suppose that we have ∥g∥∞ ≤ Vmax for all g ∈ GQ and Q ∈ Q. Then with
probability at least 1− δ, for all g ∈ GQ and Q ∈ Q we have

max

{
1

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]
− ED

[
(g(s, a)−Q(s, a))

2
]
,

ED

[
(g(s, a)−Q(s, a))

2
]
− 3

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]}

≤
3V 2

max log
(
2m
δ

)
n

:= εobj.

Using lem:model-reg-concentration, we directly obtain that with probability at 1− δ,

(T1) ≤ ε2reg.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Model Selection for OPE: New Algorithms and Experimental Protocol

By leveraging lem:model-obj-concentration, we have that with probability at least 1− δ,

(T2) = Eµ

[(
ĝQ̂(s, a)− Q̂(s, a)

)2
]

≤ 2 · εobj + 2 · ED

[(
ĝQ̂(s, a)− Q̂(s, a)

)2
]

≤ 2 · εobj + 2 · ED

[
(ĝQπ (s, a)−Qπ(s, a))

2
]

≤ 4 · εobj + 3 · Eµ

[
(ĝQπ (s, a)−Qπ(s, a))

2
]

= 4 · εobj + 3 · Eµ

[
(ĝQπ (s, a)− [T πQπ](s, a))

2
]

≤ 4 · εobj + 3 · ε2reg

where in the first inequality we apply Lemma 7 (by lower bounding the LHS with the first expression in the max); in the
second we use the Q-value realizability assumption Qπ ∈ Q with the fact that Q̂ is the minimizer of the empirical objective;
and in the third we again apply Lemma 7 (now lower bounding the LHS with the second expression in the max). Then we
use the identity that Qπ = T πQπ , and apply the squared-loss regression guarantee. The bounds for (T1) and (T2) mean that

Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]
≤ 8

(
εobj + ε2reg

)
,

resulting in the final estimation bound of

J(π)− Ed0

[
Q̂(s, π)

]
≤ 1

1− γ

√
Cπ · Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]

≤ 1

1− γ

√
8 · Cπ ·

(
εobj + ε2reg

)
,

=
Vmax

1− γ

√
152 · Cπ · log

(
2m
δ

)
n

,

which holds with probability at least 1− 2δ.

Proof of Lemma 7. Observe that the random variable (g(s, a)−Q(s, a))
2 ∈ [−V 2

max, V
2
max], and

Vµ

[
(g(s, a)−Q(s, a))

2
]
≤ Eµ

[
(g(s, a)−Q(s, a))

4
]

≤ V 2
max · Eµ

[
(g(s, a)−Q(s, a))

2
]
.

Then, applying Bernstein’s inequality with union bound, we have that, for any g ∈ GQ and Q ∈ Q with probability at least
1− δ, ∣∣∣Eµ

[
(g(s, a)−Q(s, a))

2
]
− ED

[
(g(s, a)−Q(s, a))

2
]∣∣∣

≤

√√√√4Vµ

[
(g(s, a)−Q(s, a))

2
]
log

(
2m
δ

)
n

+
V 2
max log

(
2m
δ

)
n

≤

√√√√4V 2
maxEµ

[
(g(s, a)−Q(s, a))

2
]
log

(
2m
δ

)
n

+
V 2
max log

(
2m
δ

)
n

≤
Eµ

[
(g(s, a)−Q(s, a))

2
]

2
+

3V 2
max log

(
2m
δ

)
n

.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Model Selection for OPE: New Algorithms and Experimental Protocol

Expanding the absolute value on the LHS and rearranging, this then implies that

1

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]
≤ ED

[
(g(s, a)−Q(s, a))

2
]
+

3V 2
max log

(
2m
δ

)
n

,

ED

[
(g(s, a)−Q(s, a))

2
]
≤ 3

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]
+

3V 2
max log

(
2m
δ

)
n

.

Combining these statements completes the proof.

B.4. Proof of Theorem 5

We bound

J(π)− Ed0

[
Q̂(s, π)

]
= Ed0,π

[
Qπ(s, a)− Q̂(s, a)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− γQπ(s′, π)− Q̂(s, a)− γQ̂(s′, π)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− [T πQπ](s, a)− Q̂(s, a) +

[
T πQ̂

]
(s, a)

]
=

1

1− γ
Edπ

[[
T πQ̂

]
(s, a)− Q̂(s, a)

]
≤ Cπ

∞
1− γ

· Eµ

[∣∣∣[T πQ̂
]
(s, a)− Q̂(s, a)

∣∣∣]
≤ max

g∈GQ̂

Eµ

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]
By assumption, maxq∈Q∥q∥∞ ≤ Vmax, and similarly maxg∈GQ

∥g∥∞ ≤ Vmax for all Q ∈ Q. Then for any Q ∈ Q and
g ∈ GQ and (s, a) ∈ S ×A and r ∈ [0, Rmax],

sgn(Q(s, a)− g(s, a))(Q(s, a)− r − γQ(s′, π)) ∈ [−Vmax, Vmax],

and, using Hoeffding’s inequality, we have for all Q ∈ Q and g ∈ GQ that, with probability at least 1− δ,∣∣∣Eµ

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]
− ED

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]∣∣∣
≤ 2Vmax

√
log

(
2m
δ

)
n

:= εobj.

Then using this concentration in the last line of the previous block,

J(π)− Ed0

[
Q̂(s, π)

]
≤ max

g∈GQ̂

ED

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]
+ εobj

≤ max
g∈GQπ

ED[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)− r − γQπ(s′, π))] + εobj

≤ max
g∈GQπ

Eµ[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)− r − γQπ(s′, π))] + 2 · εobj

= max
g∈GQπ

Eµ[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)− [T πQπ](s, a))] + 2 · εobj

= max
g∈GQπ

Eµ[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)−Qπ(s, a))] + 2 · εobj

= 2 · εobj,

where in the first and third inequalities we apply the above concentration inequality, and in the second inequality we use the
fact that Q̂ is the minimizer of the empirical objective, i.e.,

Q̂ = argmin
Q∈Q

max
g∈GQ

ED[sgn(Q(s, a)− g(s, a))(Q(s, a)− r −Q(s′, π))].

Combining the above inequalities, we obtain the theorem statement,

J(π)− Ed0

[
Q̂(s, π)

]
≤ 2 · Cπ

∞ · εobj.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Model Selection for OPE: New Algorithms and Experimental Protocol

C. Experiment Details
C.1. Environment Setup: Noise and State Resetting

State Resetting. Monte-Carlo rollouts for Q-value estimation rely on the ability to (re)set the simulator to a particular state
from the offline dataset. To the best of our knowledge, Mujoco environment does not natively support state resetting, and
assigning values to the observation vector does not really change the underlying state. However, state resetting can still be
implemented by manually assigning the values of the position vector qpos and the velocity vector qvel.

Noise. As mentioned in Section 6, we add noise to Hopper to create more challenging stochastic environments and create
model selection tasks where candidate simulators have different levels of stochasticity. Here we provide the details about how
we inject randomness into the deterministic dynamics of Hopper. Mujoco engine realizes one-step transition by leveraging
mjData.{ctrl, qfrc_applied, xfrc_applied} objects [Dee], where mjData.ctrl corresponds to the
action taken by our agent, and mjData.{qfrc_applied, xfrc_applied} are the user-defined perturbations in the
joint space and Cartesian coordinates, respectively. To inject randomness into the transition at a noise level of σ, we first
sample an isotropic Gaussian noise with variance σ2 as the stochastic force in mjData.xfrc[:3] upon each transition,
which jointly determines the next state with the input action mjData.ctrl, leaving the joint data mjData.qfrc intact.

C.2. Experiment Settings

MF/MB.G/N. The settings of different experiments are summarized in Table 1. We first run DDPG in the environment of
g = −30, σ = 32, and obtain 15 deterministic policies {π0:14} from the checkpoints. The first 10 are used as target policies
in MF.G/N experiments, and MB.G/N use fewer due to the high computational cost. For the main results (Section 6.1), the
choice of M⋆ is usually the two ends plus the middle point of the grid (Mg or Mn). The corresponding behavior policy is
an epsilon-greedy version of one of the target policies, denoted as πϵ

i , which takes the deterministic action of πi(s) with
probability 0.7, and add a unit-variance Gaussian noise to πi(s) with the remaining 0.3 probability.

MF/MB.Off.G/N. In the above setup, the behavior and the target policies all stem from the same DDPG training procedure.
While these policies still have significant differences (see Figure 1L), the distribution shift is relatively mild. For the data
coverage experiments (Section 6.3), we prepare a different set of behavior policies that intentionally offer poor coverage:
these policies, denoted as πpoor

i , are obtained by running DDPG with a different neural architecture (than the one used for
generating π0:14) in a different environment of g = −60, σ = 100. We also provide the parallel of our main experiments in
Figures 2 and 3 under these behavior policies with poor coverage in Appendix E.1.

MF.T.G. This experiment is for data coverage (Section 6.3), where D is a mixture of two datasets, one sampled from π7

(which is the sole target policy being considered) and one from πpoor
i that has poor coverage. They are mixed together under

different ratios as explained in Section 6.3.

Gravity g Noise Level σ Groundtruth Model M⋆ and
Behavior Policy πb

Target
Policies Π

MF.G LIN(−51,−9, 15) 100 {(Mi, π
ϵ
i), i ∈ {0, 7, 14}} {π0:9}

MF.N -30 LIN(10, 100, 15) {(Mi, π
ϵ
i), i ∈ {0, 7, 14}} {π0:9}

MB.G LIN(−36,−24, 5) 100 {(Mi, π
ϵ
i), i ∈ {0, 2, 4}} {π0:5}

MB.N -30 LIN(10, 100, 5) {(Mi, π
ϵ
i), i ∈ {0, 2, 4}} {π0:5}

MF.OFF.G LIN(−51,−9, 15) 100 {(Mi, π
poor
i), i ∈ {0, 7, 14}} {π0:9}

MF.OFF.N -30 LIN(10, 100, 15) {(Mi, π
poor
i), i ∈ {0, 7, 14}} {π0:9}

MF.T.G LIN(−51,−9, 15) 100 {(Mi, π8 & πpoor
i), i ∈ {0, 7, 14}} {π8}

Table 1. Details of experiment settings. LIN(a, b, n) (per numpy convention) refers to the arithmetic sequence with n elements, starting
from a and ending in b (e.g. LIN(0, 1, 6) = {0, 0.2, 0.4, 0.6, 0.8, 1.0}).

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Model Selection for OPE: New Algorithms and Experimental Protocol

D. Additional Experiment Results

E. Subgrid Studies and Coverage Experiments
Subgrid Studies. Figures 6 and 5 show more complete results for investigating the sensitivity to misspecification and gaps
in Section 6.2 across 4 settings (good/poor coverage and gravity/noise grid).

5 10 15 20
Gravity Gap

0

5

10

15

20

OP
E

Er
ro

r

MF.G: g=-30, =100.0

20 40
Noise Gap

0

1

2

3

OP
E

Er
ro

r

MF.N: g=-30, =55.0

5 10 15 20
Gravity Gap

0

5

10

15

20

OP
E

Er
ro

r

MF.OFF.G: g=-30, =100.0

20 40
Noise Gap

0

1

2

3

4

5

OP
E

Er
ro

r

MF.OFF.N: g=-30, =55.0

random mf_td_square mf_avg_bellman_error mf_lstdq_tournament mf_bvft

Figure 5. Subgrid studies for gaps. Plot MF.N is identical to Figure 4L.

0 5 10
Misspecification Level

0

5

10

15

OP
E

Er
ro

r

MF.G: g=-51, =100.0

0 5 10
Misspecification Level

0

2

4

6

OP
E

Er
ro

r

MF.N: g=-30, =10.0

0 5 10
Misspecification Level

5

10

15

20

25

OP
E

Er
ro

r

MF.OFF.G: g=-51, =100.0

0 5 10
Misspecification Level

2

4

6

OP
E

Er
ro

r

MF.OFF.N: g=-30, =10.0

random mf_td_square mf_avg_bellman_error mf_lstdq_tournament mf_bvft

Figure 6. Subgrid studies for misspecification. Plot MF.N is identical to Figure 4M.

Data Coverage. Figure 7 shows more complete results for the data coverage experiment in Section 6.3, including more
choices of M⋆.

0.0 0.5 1.0
Ratio of Target Data

0

5

10

15

20

OP
E

Er
ro

r

MF.G: g=-51, =100.0

0.0 0.5 1.0
Ratio of Target Data

5

10

15

20

25

OP
E

Er
ro

r

MF.G: g=-30, =100.0

0.0 0.5 1.0
Ratio of Target Data

10

20

30

40

OP
E

Er
ro

r

MF.G: g=-9, =100.0
random
mf_td_square
mf_avg_bellman_error
mf_lstdq_tournament
mf_bvft

Figure 7. Data coverage results. Left figure is identical to Figure 4L.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Model Selection for OPE: New Algorithms and Experimental Protocol

E.1. Poor Coverage Results

We now show the counterpart of our model-free main results (Figure 2) under behavior policies that offer poor coverage. This
makes the problem very challenging and no single algorithm have strong performance across the board. For example, naïve
model-based demonstrate strong performance in MF.OFF.G (top row of Figure 8) and resilience to poor coverage, while
still suffers catastrophic failures in MF.OFF.N. While LSTD-Tournament generally is more reliable than other methods, it
also has worse-than-random performance in one of the environments in MF.OFF.G.

0 1000 2000 3000
Sample Size

5

10

15

20

25

MF.OFF.G: g=-51, =100.0

0 1000 2000 3000
Sample Size

2.5

5.0

7.5

10.0

12.5

15.0
MF.OFF.G: g=-30, =100.0

0 1000 2000 3000
Sample Size

10

15

20

25

30

MF.OFF.G: g=-9, =100.0

0 1000 2000 3000
Sample Size

0

1

2

3

4
MF.OFF.N: g=-30, =10.0

0 1000 2000 3000
Sample Size

1

2

3

4
MF.OFF.N: g=-30, =55.0

0 1000 2000 3000
Sample Size

2

4

6

MF.OFF.N: g=-30, =100.0

OP
E

Er
ro

r

random
mf_td_square
mf_avg_bellman_error
mf_lstdq_tournament
mf_bvft
mb_naive

Figure 8. Model-free selection re-
sults under behavior policies with
poor coverage (MF.OFF.G/N).

E.2. LSTDQ Family

As mentioned at the end of Section 3, our LSTD-Tournament can have several variants depending on how we design and
transform the linear features. Here we compare 3 of them in Figure 9. The LSTD-Tournament method in all other figures
corresponds to the “normalized_diff” version.

• Vanilla: ϕi,j = [Qi, Qj].

• Normalized: ϕi,j = [Qi/ci, Qj/cj], where ci =
√
V(s,a)∼µ[Qi(s, a)] normalizes the discriminators to unit variance

on the data distribution. In practice these variance parameters are estimated from data.

• Normalized_diff: ϕi,j = [Qi/ci, (Qj −Qi)/cj,i], where ci and cj,i performs normalization in the same way as above.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Model Selection for OPE: New Algorithms and Experimental Protocol

0 1000 2000 3000
Sample Size

2.5

5.0

7.5

10.0

12.5

OP
E

Er
ro

r

MF.G: g=-51, =100.0

0 1000 2000 3000
Sample Size

2

4

6

8

10

12

OP
E

Er
ro

r

MF.G: g=-30, =100.0

0 1000 2000 3000
Sample Size

10

15

20

25

30

OP
E

Er
ro

r

MF.G: g=-9, =100.0

0 1000 2000 3000
Sample Size

0

1

2

3

4

OP
E

Er
ro

r

MF.N: g=-30, =10.0

0 1000 2000 3000
Sample Size

1.0

1.2

1.4

1.6

1.8

OP
E

Er
ro

r

MF.N: g=-30, =55.0

0 1000 2000 3000
Sample Size

2.0

2.5

3.0

3.5

4.0

OP
E

Er
ro

r

MF.N: g=-30, =100.0

0 1000 2000 3000
Sample Size

10

12

14

16

18

20

OP
E

Er
ro

r

MF.OFF.G: g=-51, =100.0

0 1000 2000 3000
Sample Size

9

10

11

12

13

OP
E

Er
ro

r

MF.OFF.G: g=-30, =100.0

0 1000 2000 3000
Sample Size

15

20

25

30

OP
E

Er
ro

r

MF.OFF.G: g=-9, =100.0
random
vanilla
normalized_diff
normalized

0 1000 2000 3000
Sample Size

1

2

3

4

OP
E

Er
ro

r

MF.OFF.N: g=-30, =10.0

0 1000 2000 3000
Sample Size

1.0

1.5

2.0

OP
E

Er
ro

r

MF.OFF.N: g=-30, =55.0

0 1000 2000 3000
Sample Size

1

2

3

4

OP
E

Er
ro

r

MF.OFF.N: g=-30, =100.0

Figure 9. Comparison of variants of LSTD-Tournament.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Model Selection for OPE: New Algorithms and Experimental Protocol

E.3. O(1) Rollouts

In our experiment design, we use a fairly significant number of rollouts l = 128 to ensure relatively accurate estimation of
the Q-values. However, for the average Bellman error and the LSTD-Tournament algorithms, they enjoy convergence even
when l is a constant. For example, consider the average Bellman error:

ED[Qi(s, a)− r − γQi(s
′, π)],

which is an estimation of Eµ[Qi(s, a)− r − γQi(s
′, π)]. Thanks to its linearity in Qi, replacing Qi with its few-rollout (or

even single-rollout) Monte-Carlo estimates will leave the unbiasedness of the estimator intact, and Hoeffding’s inequality
implies convergence as the sample size n = |D| increases, even when l stays as a constant, which is an advantage compared
to other methods. That said, in practice, having a relatively large l can still be useful as it reduces the variance of each
individual random variable that we average across D, and the effect can be significant when n is relatively small.

A similar but slightly more subtle version of this property also holds for LSTD-Tournament. Take the vanilla version in
Section 3 as example, we need to estimate

ED[Qj(s, a)(Qi(s, a)− r − γQi(s
′, π))].

Again, we can replace Qj and Qi with their Monte-Carlo estimates, as long as the Monte-Carlo trajectories for Qi and
Qj are independent. This naturally holds in our implementation when j ̸= i, but is violated when j = i since Qj(s, a)
and Qi(s, a) will share the same set of random rollouts, leading to biases. A straightforward resolution is to divide the
Monte-Carlo rolllouts into two sets, and Qj(s, a) and Qi(s, a) can use different sets when j ̸= i. We empirically test this
procedure in Figure 10, where the OPE errors of average Bellman error and different variants of LSTD-Tournament are
plotted against the number of rollouts l. In both the left and the middle plots, a relatively small number of rollouts suffices
for good performance. However, the right plot still requires a large number of rollouts, potentially due to n not being
sufficiently large.

0 50 100
Rollouts

0

5

10

15

OP
E

Er
ro

r

MF.G: g=-51, =100.0

0 50 100
Rollouts

5

10

15

OP
E

Er
ro

r

MF.G: g=-30, =100.0

0 50 100
Rollouts

15

20

25

30

35

OP
E

Er
ro

r

MF.G: g=-9, =100.0
random
vanilla
normalized_diff
normalized
mf_avg_bellman_error

50 100
Rollouts

0

2

4

6

8

10

Lo
ss

MF.G: g=-51, =100.0

50 100
Rollouts

2

4

6

8

Lo
ss

MF.G: g=-30, =100.0

50 100
Rollouts

2

4

6

Lo
ss

MF.G: g=-9, =100.0
Env 0
Env 1
Env 2
Env 3
Env 4
Env 5
Env 6
Env 7

Env 8
Env 9
Env 10
Env 11
Env 12
Env 13
Env 14

Figure 10. The effect of small rollouts in LSTD-Tournament methods. Sample size is fixed at n = 3200 and only l (the number of
rollouts) varies. The top row shows the OPE error (i.e., final performance), whereas the bottom row shows the convergence of loss
estimates for LSTD-Tournament as a function of rollouts.

22

