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Abstract
Holdout validation and hyperparameter tuning
from data is a long-standing problem in offline re-
inforcement learning (RL). A standard framework
is to use off-policy evaluation (OPE) methods to
evaluate and select between different policies, but
OPE methods either incur exponential variance
(e.g., importance sampling) or have hyperparam-
eters of their own (e.g., FQE and model-based).
We focus on model selection for OPE itself, which
is even more under-investigated. Concretely, we
select among candidate value functions (“model-
free”) or dynamics (“model-based”) to best assess
the performance of a target policy. Our contribu-
tions are two fold. We develop: (1) new model-
free and model-based selectors with theoretical
guarantees, and (2) a new experimental proto-
col for empirically evaluating them. Compared
to the model-free protocol in prior works, our
new protocol allows for more stable generation
and better control of candidate value functions in
an optimization-free manner, and evaluation of
model-free and model-based methods alike. We
exemplify the protocol on a Gym environment,
and find that our new model-free selector, LSTD-
Tournament, demonstrates promising empirical
performance.

1. Introduction
Offline reinforcement learning (RL) is a promising paradigm
for applying RL to important application domains where
perfect simulators are not available and we must learn from
data [LKTF20; JX24]. Despite the significant progress
made in devising more performant training algorithms, how
to perform holdout validation and model selection—an in-
dispensable component of any practical machine learning

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

pipeline—remains an open problem and has hindered the
deployment of RL in real-life scenarios. Concretely, after
multiple training algorithms (or instances of the same algo-
rithm with different hyperparameter settings) have produced
candidate policies, the primary task (which contrasts the
secondary task which we focus on) is to select a good pol-
icy from these candidates, much like how we select a good
classifier/regressor in supervised learning. To do so, we
may estimate the performance (i.e., expected return) of each
policy, and select the one with the highest estimated return.

Unfortunately, estimating the performance of a new target
policy based on data collected from a different behavior pol-
icy is a highly challenging task, known as off-policy evalua-
tion (OPE). Popular OPE algorithms can be roughly divided
into two categories, each with their own critical weaknesses:
the first is importance sampling [PSS00; JL16; TB16],
which has elegant unbiasedness guarantees but suffers vari-
ance that is exponential in the horizon, limiting applicability
beyond short-horizon settings such as contextual bandits
[LCLW11]. The second category includes algorithms such
as Fitted-Q Evaluation (FQE) [EGW05; LVY19; Pai+20],
marginalized importance sampling [LLTZ18; NCDL19;
UHJ20], and model-based approaches [VJY21], which
avoid the exponential variance; unfortunately, this comes at
the cost of introducing their own hyperparameters (choice of
neural architecture, learning rates, etc.). While prior works
have reported the effectiveness of these methods [Pai+20],
they also leave a chicken-and-egg problem: if these algo-
rithms tune the hyperparameters of training, who tunes
their hyperparameters?

In this work, we make progress on this latter problem,
namely model selection for OPE algorithms themselves,
in multiple dimensions. Concretely, we consider two set-
tings: in the model-based setting, evaluation algorithms
build dynamics models to evaluate a target policy. Given the
uncertainty of hyperparameters in model building, we as-
sume that multiple candidate models are given, and the task
is to select one that we believe evaluates the performance of
the target policy most accurately. In the model-free setting,
evaluation algorithms only output value functions. Similar
to above, the task is to select a value function out of the
candidate value functions.
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Our contributions are 4-fold:

1. New selectors (model-free): We propose a new selec-
tion algorithm (or simply selector), LSTD-Tournament,
for selecting between candidate value functions by ap-
proximately checking whether the function satisfies the
Bellman equation. The key technical difficulty here is
the infamous double sampling problem [Bai95; SB18;
CJ19]. Our derivation builds on BVFT [XJ21; ZJ21],
which is the only existing selector that addresses double
sampling in a theoretically rigorous manner without ad-
ditional function-approximation assumptions. Our new
selector relies on more plausible assumptions, enjoys
better statistical rates (1/ϵ2 vs. 1/ϵ4), and empirically
outperforms BVFT and other baselines.

2. New selectors (model-based): When comparing candi-
date models, popular losses in model-based RL exhibit
biases under stochastic transitions [Jia24]. Instead, we
propose novel estimators with theoretical guarantees, in-
cluding novel adaptation of previous model-free selectors
that require additional assumptions to the model-based
setting [ASM08; ZDMAK23].

3. New experiment protocol: To empirically evaluate the
selection algorithms, prior works often use FQE to pre-
pare candidate Q-functions [ZJ21; NFBJSB22], which
suffers from unstable training1 and lack of control in the
quality of the candidate functions. We propose a new ex-
periment protocol, where the candidate value functions
are induced from variations of the groundtruth environ-
ment. This bypasses the caveats of FQE and allows
for the computation of Q-values in an optimization-free
and controllable manner. Moreover, the protocol can
also be used to evaluate and compare estimators for the
model-based setting. Implementation-wise, we use lazy
evaluation and Monte-Carlo roll-outs to generate the
needed Q-values. Combined with parallelization and
caching, we reduce the computational cost and make the
evaluation of new algorithms easier.

4. Preliminary experiments: We instantiate the protocol in
Gym Hopper and demonstrate the various ways in which
we can evaluate and understand different selectors.

2. Preliminaries
Markov Decision Process (MDP). An MDP is specified
by (S,A, P,R, γ, d0), where S is the state space, A is the
action space, P : S×A → ∆(S) is the transition dynamics,
R : S × A → [0, Rmax] is the reward function, γ ∈ [0, 1)
is the discount factor, and d0 is the initial state distribu-
tion. A policy π : S → ∆(A) induces a distribution over

1For example, our preliminary investigation has found that
FQE often diverges with CQL-trained policies [KZTL20], which
is echoed by [NFBJSB22] in personal communications.

random trajectories, generated as s0 ∼ d0, at ∼ π(·|st),
rt = R(st, at), st+1 ∼ P (·|st, at), ∀t ≥ 1. We use Prπ[·]
and Eπ[·] to denote such a distribution and the expecta-
tion thereof. The performance of a policy is defined as
J(π) := Eπ[

∑∞
t=0 γ

trt], which is in the range of [0, Vmax]
where Vmax := Rmax/(1− γ).

Value Function and Bellman Operator. The Q-function
Qπ ∈ RS×A is the fixed point of T π : RS×A →
RS×A, i.e., Qπ = T πQπ, where for any f ∈ RS×A,
(T πf)(s, a) := R(s, a) + γEs∼P (·|s,a)[f(s

′, π)]. We use
the shorthand f(s′, π) for Ea′∼π(·|s′)[f(s

′, a′)].

Off-policy Evaluation (OPE). OPE is about estimating
the performance of a given target policy π in the real en-
vironment denoted as M⋆ = (S,A, P ⋆, R, γ, d0), namely
JM⋆(π), using an offline dataset D sampled from a behavior
policy πb. For simplicity, from now on we may drop the
M⋆ in the subscript when referring to properties of M⋆,
e.g., J(π) ≡ JM⋆(π), Qπ ≡ Qπ

M⋆ , etc. As a standard
simplification, our theoretical derivation assumes that the
dataset D consists of n i.i.d. tuples (s, a, r, s′) generated as
(s, a) ∼ µ, r = R(s, a), s′ ∼ P ⋆(·|s, a). We use Eµ[·] to
denote the true expectation under the data distribution, and
ED[·] denotes the empirical approximation from D.

Model Selection. We assume that there are multiple OPE
instances that estimate J(π), and our goal is to choose
among them based on the offline dataset D. Our setup is
agnostic w.r.t. the details of the OPE instances, and view
them only through the intermediate objects (dynamics model
or value function) they produce. Concretely, two settings
are considered:

• Model-based: Each OPE instance produces an MDP Mi

and uses JMi
(π) as an estimate of J(π); w.l.o.g. we as-

sume Mi only differs from M⋆ in the transition Pi. The
task is to select M̂ from M := {Mi}i∈[m], such that
JM̂ (π) ≈ J(π). We assume that at least one model is
close to M⋆, and in theoretical analyses we make the sim-
plification that M⋆ ∈ M; extension to the misspecified
case (M⋆ /∈ M) is routine in RL theory [AJS23; ACK24]
and orthogonal to the insights of this work.

• Model-free: Each OPE instance provides a Q-function
that approximates Qπ. The validation task is to select Q̂
from the candidate Q-functions Q := {Qi}i∈[m],2 such
that Es∼d0

[Q̂(s, π)] ≈ J(π). Similar to the model-based
case, we will assume Qπ ∈ Q in the derivations.

The model-free setting is a more general protocol, as the
model-based setting can be reduced to it: given candidate

2In practical scenarios, the candidate models and functions,
{Mi}i∈[m] and {Qi}i∈[m], may be learned from data, and we
assume D is a holdout dataset independent of the data used for
producing {Mi}i∈[m] and {Qi}i∈[m].
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models {M1, . . . ,Mm}, we can induce a Q-function class
{Qπ

M1
, . . . , Qπ

Mm
} and run any model-free selection algo-

rithm over them. The model-free setup also handles broader
settings, especially when we lack prior knowledge of model
dynamics. In either case, we treat the base algorithms as
black-boxes and interact with them only through the models
and the Q-functions they produce.

3. New Model-free Selector
In this section we introduce our new model-free selector,
LSTD-Tournament. To start, we review the difficulties
in model-free selection and the idea behind BVFT [XJ21;
ZJ21] which we build on.

3.1. Challenges of Model-free Selection and BVFT

To select Qπ from Q = {Q1, . . . , Qm}, perhaps the most
natural idea is to check how much each candidate function
Qi violates the Bellman equation Qπ = T πQπ , and choose
the function that minimizes such a violation. This motivates
the Bellman error (or residual) objective:

Eµ[(Qi − T πQi)
2]. (1)

Unfortunately, this loss cannot be estimated due to the infa-
mous double-sampling problem [Bai95; SB18; CJ19], and
the naïve estimation, which squares the TD error, is a bi-
ased estimation of the Bellman error (Eq.(1)) in stochastic
environments:

(TD-sq) Eµ[(Qi(s, a)− r − γQi(s
′, π))2]. (2)

Common approaches to debiasing this objective involves
additional “helper” classes, which we show can be naturally
induced in the model-based setting; see Section 4 for details.

BVFT. The idea behind BVFT [XJ21] is to find an OPE
algorithm for learning Qπ from a function class F , such
that to achieve polynomial sample-complexity guarantees,
it suffices if F satisfies 2 assumptions:

1. Realizability, that Qπ ∈ F .

2. Some structural (as opposed to expressivity) assumption
on F , e.g., smoothness, linearity, etc.

Standard learning results in RL typically require stronger
expressivity assumption than realizability, such as the
widely adopted Bellman-completeness assumption (T πf ∈
F ,∀f ∈ F). However, exceptions exist, and BVFT shows
that they can be converted into a pairwise-comparison sub-
routine for selecting between two candidates {Qi, Qj}, and
extension to multiple candidates can be done via a tourna-
ment procedure. Crucially, we can use {Qi, Qj} to auto-
matically create an F needed by the algorithm without

additional side information or prior knowledge. We refer
the readers to [XJ21] for further details, and we will also
demonstrate such a process in the next subsection.

In short, BVFT provides a general recipe for converting a
special kind of “base” OPE methods into selectors of fa-
vorable guarantees. Intuitively, the “base” method/analysis
will determine the properties of the resulting selector. For
BVFT, such a “base” is learning with Qπ-irrelevant abstrac-
tions [LWL06; Jia18], where the structural assumption on
F is being piecewise-constant. Our novel insight is that for
learning Qπ , there exists another algorithm, namely LSTDQ
[LP03], which satisfies the needed criteria and has superior
properties compared to Qπ-irrelevant abstractions, thus can
induce better selectors than BVFT.

3.2. LSTD-Tournament

We now provide a theoretical analysis of LSTDQ (which
is simplified from the literature [MPW23; PKBK23]), and
show how to transform it into a selector via the BVFT recipe.
In LSTDQ, we learn Qπ via linear function approximation,
i.e., it is assumed that a feature map ϕ : S × A → Rd is
given, such that Qπ(s, a) = ϕ(s, a)⊤θ⋆, where θ⋆ ∈ Rd is
the groundtruth linear coefficient. Equivalently, this asserts
that the induced linear class, Fϕ := {ϕ⊤θ : θ ∈ Rd}
satisfies realizability, Qπ ∈ Fϕ.

LSTDQ provides a closed-form estimation of θ⋆ by first
estimating the following moment matrices:

Σ := Eµ[ϕ(s, a)ϕ(s, a)
⊤], Σcr := Eµ[ϕ(s, a)ϕ(s

′, π)⊤],

A := Σ− γΣcr, b := Eµ[ϕ(s, a)r]. (3)

As a simple algebraic fact, Aθ⋆ = b. Therefore, when A
is invertible, we immediately have that θ⋆ = A−1b. The
LSTDQ algorithm thus simply estimates A and b from data,
denoted as Â and b̂, respectively, and estimate θ⋆ as Â−1b̂.
Alternatively, for any candidate θ, ∥Aθ − b∥∞ can serve as
a loss function that measures the violation of the equation
Aθ⋆ = b, which we can minimize over.3 Its finite-sample
guarantee is given below. All proofs of the paper can be
found in Appendix B.

Theorem 1. Let Θ ⊂ Rd be a set of parameters such
that θ⋆ ∈ Θ. Assume maxs,a∥ϕ(s, a)∥2 ≤ Bϕ and
maxθ∈Θ∥θ∥2 ≤ 1. Let θ̂ := argminθ∈Θ ∥Âθ− b̂∥∞. Then,
with probability at least 1− δ,

∥Qπ − ϕ̂⊤θ∥∞ ≤ 6max{Rmax, Bϕ}2

σmin(A)

√
d log(2d|Θ|/δ)

n
,

where σmin(·) is the smallest singular value.

3When Â−1b̂ ∈ Θ, it will be a minimizer of the loss, so the loss-
minimization version is a regularized generalization of LSTDQ.

3
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Besides the realizability of Qπ , the guarantee also depends
on the invertibility of A, which can be viewed as a coverage
condition, since A changes with the data distribution µ
[AJX20; AJS23; JX24]. In fact, in the on-policy setting (µ
is an invariant distribution under π), σmin(A) can be shown
to be lower-bounded away from 0 [MPW23].

LSTD-Tournament. We are now ready to describe our
new selector. Recall that we first deal with the case of two
candidate functions, {Qi, Qj}, where Qπ ∈ {Qi, Qj}. To
apply the LSTDQ algorithm and guarantee, all we need is to
create the feature map ϕ such that Qπ is linearly realizable
in ϕ. In the spirit of BVFT, we design the feature map as

ϕi,j(s, a) := [Qi(s, a), Qj(s, a)]
⊤. (4)

The subscript “i, j” makes it clear that the feature is cre-
ated based on Qi and Qj as candidates, and we will use
similar conventions for all quantities induced from ϕi,j ,
e.g., Ai,j , bi,j , etc. Obviously, Qπ is linear in ϕi,j with
θ⋆ ∈ {[1, 0]⊤, [0, 1]⊤}. Therefore, to choose between Qi

and Qj , we can calculate the LSTDQ loss of [1, 0]⊤ and
[0, 1]⊤ under feature ϕi,j and choose the one with smaller
loss. For θ = [1, 0]⊤, we have Ai,jθ − bi,j =

Eµ

{[
Qi(s, a)
Qj(s, a)

]
([Qi(s, a), Qj(s, a)]

− γ[Qi(s
′, π), Qj(s

′, π)])
}[

1
0

]
− Eµ

[
[Qi(s, a), Qj(s, a)] · r

] [1
0

]
= Eµ

[[
Qi(s, a)
Qj(s, a)

]
(Qi(s, a)− r − γQi(s

′, π))

]
.

Taking the infinity-norm of the loss vector, we have

∥Ai,j

[
1
0

]
− bi,j∥∞

= max
k∈{i,j}

|Eµ[Qk(s, a)(Qi(s, a)− r − γQi(s
′, π))]|.

The loss for θ = [0, 1]⊤ is similar, where Qi is replaced by
Qj . Following BVFT, we can generalize the procedure to m
candidate functions {Q1, . . . , Qm} by pairwise comparison
and recording the worst-case loss, this leads to our final loss
function: L(Qi; {Qj}j∈[m], π) :=

max
k∈[m]

|Eµ[Qk(s, a)(Qi(s, a)− r − γQi(s
′, π))]|. (5)

The actual algorithm replaces Eµ with the empirical estima-
tion from data, and chooses the Qi that minimizes the loss.
Building on Theorem 1, we have the following guarantee:

Theorem 2. Given Qπ := Qi⋆ ∈ {Qi}i∈[m], the Qî that
minimizes the empirical estimation of L(Qi; {Qj}j∈[m], π)

(Eq.(5)) satisfies that w.p. ≥ 1−δ, |J(π)−Es∼d0
[Qî(s, π)|

≤ max
i∈[m]\{i⋆}

24V 3
max

σmin(Ai,i⋆)

√
log(8m/δ)

n
.

Comparison to BVFT [XJ21]. BVFT’s guarantee has
a slow 1/ϵ4 rate for OPE [ZJ21; JRSW24], whereas our
method enjoys the standard 1/ϵ2 rate. The additional 1/ϵ2

is due to an adaptive discretization step in BVFT, which
also makes its implementation somewhat complicated as
the resolution needs to be heuristically chosen. By compar-
ison, the implementation of LSTD-Tournament is simple
and straightforward. Both methods inherit the coverage
assumptions from their base algorithms and are not immedi-
ately comparable. We leave a detailed comparison of their
differences for future work.

Variants. A key step in the derivation is to design the
linearly realizable feature of Eq.(4), but the design is not
unique as any non-degenerate linear transformation would
also suffice. For example, we can use ϕi,j = [Qi/ci, (Qj −
Qi)/cj,i]; the “diff-of-value” term Qj −Qi has shown im-
proved numerical properties in practice [KZTL20; CXJA22],
and ci, cj,i can normalize the discriminators to unit vari-
ance for further numerical stability; this will also be the
version we use in the main-text experiments. Preliminary
empirical comparison across these variants can be found in
Appendix E.2.

4. Model-based Selectors
We now turn to the model-based setting, i.e., choosing a
model from {Mi}i∈[m]. This is a practical scenario when
we have structural knowledge of the system dynamics and
can build reasonable simulators, but simulators of complex
real-world systems will likely have many design choices
and knobs that cannot be set from prior knowledge alone.
In some sense, the task is not very different from system
identification in control and model learning in model-based
RL, except that (1) we focus on a finite and small number of
plausible models, instead of a rich and continuous hypoth-
esis class, and (2) the ultimate goal is to perform accurate
OPE, and learning the model is only an intermediate step.

Existing Methods. Given the close relation to model
learning, a natural approach is to simply minimize the model
prediction loss [Jia24]: a candidate model M is scored by

E(s,a,s′)∼µ,s̃∼P (·|s,a)[d(s
′, s̃)], (6)

where s′ is in the data and generated according to the real
dynamics P ⋆(·|s, a), and s̃ is generated from the candidate
model M ’s dynamics P . d(·, ·) is a distance metric that
measures the difference between states.

Despite its wide use and simplicity [NKFL18], the method
has major caveats: first, the distance metric d(·, ·) is a design

4
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choice. When the state is represented as a real-valued vector,
it is natural to use the ℓ2 distance as d(·, ·), which changes
if we simply normalize/rescale the coordinates. Second, the
metric is biased for stochastic environments as discussed in
prior works [Jia24; VAAGF23], which we will also demon-
strate in the experiment section (Section 6); essentially this
is a version of the double-sampling issue but for the model-
based setting [AFJKM24].

There are alternative methods that address these issues.
For example, in the theoretical literature, MLE losses are
commonly used, i.e., Eµ[logP (s′|s, a)] [AKKS20; UZS21;
LNSJ23], which avoids d(·, ·) and works properly for
stochastic MDPs by effectively measuring the KL diver-
gence between P ⋆(·|s, a) and P (·|s, a). Unfortunately,
most complex simulators do not provide explicit probabili-
ties P (s′|s, a), making it difficult to use in practice. More-
over, when the support of P ⋆(·|s, a) is not fully covered by
P (·|s, a), the loss can become degenerate.

To address these issues, we propose to estimate the Bellman
error Eµ[(Qi − T πQi)

2], where Qi := Qπ
Mi

. As discussed
earlier, this objective suffers the double-sampling issue in
the model-free setting, which we show can be addressed
when we have access to candidate models {M1, . . . ,Mm}
that contains the true dynamics M⋆. Moreover, the Bellman
error |Qπ

Mi
(s, a)− (T πQπ

Mi
)(s, a)| =

γ|Es′∼P⋆(·|s,a)[Qi(s
′, π)]− Es′∼Pi(·|s,a)[Qi(s

′, π)]|,

which can be viewed as an IPM loss [Mül97] that mea-
sures the divergence between P ⋆(·|s, a) and P (·|s, a) under
Qi(·, π) as a discriminator. IPM is also a popular choice of
model learning objective in theory [SJKAL19; VJY21], and
the Bellman error provides a natural discriminator relevant
for the ultimate task of interest, namely OPE.

4.1. Regression-based Selector

Recall that the difficulty in estimating the Bellman error
Eµ[(Qi − T πQi)

2] is the uncertainty in T π. To overcome
this, we leverage the following observation from [ASM08],
where for any f : S ×A → R,

T πf ∈ argmin
g:S×A→R

Eµ[(g(s, a)− r − γf(s′, π))2], (7)

which shows that we can estimate T πQi by solving a
sample-based version of the above regression problem with
f = Qi. Statistically, however, we cannot afford to min-
imize the objective over all possible functions g; we can
only search over a limited set Gi that ideally captures the
target T πQi. Crucially, in the model-based setting we can
generate such a set directly from the candidates {Mi}i∈[m]:

Proposition 3. Let Gi := {T π
Mj

Qi : j ∈ [m]}. Then if
M⋆ ∈ {Mi}i∈[m], it follows that T πQi = T π

M⋆Qi ∈ Gi.

The constructed Gi ensures that regression is statistically
tractable given its small cardinality, |Gi| = m. To select Qi,
we choose Qi with the smallest loss defined as follows:

1. ĝi := argming∈Gi
ED[(g(s, a)− r − γQi(s

′, π))2].

2. The loss of Qi is ED[(ĝi(s, a)−Qi(s, a))
2].

The 2nd step follows from [ZDMAK23]. Alternatively, we
can also use the min value of Eq.(7) (instead of the argmin
function) to correct for the bias in TD-squared (Eq.(2))
[ASM08]; see [LNPW23] for another related variant. These
approaches share similar theoretical guarantees under stan-
dard analyses [XJ21; XCJMA21], and we only state the
guarantee for the [ZDMAK23] version below, but will in-
clude both in the experiments.

Theorem 4. Let Cπ := Eπ

[
dπ(s,a)
µ(s,a)

]
. For Qî that minimizes

ED[(ĝi(s, a)−Qi(s, a))
2] we have w.p. ≥ 1− δ,

J(π)− Ed0

[
Qî(s, π)

]
≤ Vmax

1− γ

√
152 · Cπ · log

(
4m
δ

)
n

.

4.2. Sign-flip Average Bellman Error

We now present another selector that leverages the infor-
mation of Gi = {T π

Mj
: j ∈ [m]} in a different manner.

Instead of measuring the squared Bellman error, we can also
measure the absolute error, which can be written as (some
(s, a) argument to functions are omitted):

Eµ[|Qi − T π
M⋆Qi|]

= Eµ[sgn(Qi(s, a)− (T πQi)(s, a))(Qi − T πQi)]

= Eµ[sgn(Qi − T πQi)(Qi(s, a)− r − γQi(s
′, π))]

≤ max
g∈Gi

Eµ[sgn(Qi − g)(Qi(s, a)− r − γQi(s
′, π))]. (8)

Here, the Gi from Proposition 3 induces a set of sign func-
tions sgn(Qi − g), which includes Qi − T πQi, that will
negate any negative TD errors. The guarantee is as follows:

Theorem 5. Let Qî be the minimizer of the empirical esti-
mate of Eq.(8), and Cπ

∞ := maxs,a
dπ(s,a)
µ(s,a) . W.p. ≥ 1− δ,

J(π)− Ed0

[
Qî(s, π)

]
≤ 4 · Cπ

∞ · Vmax

√
log(2m/δ)

n
.

5. A Model-based Experiment Protocol
Given the new selectors, we would like to evaluate and
compare them empirically. However, as alluded to in the
introduction, current experiment protocols have various
caveats and make it difficult to evaluate the estimators in
well-controlled settings. In this section, we describe a novel
model-based experiment protocol, which can be used to
evaluate both model-based and model-free selectors.
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5.1. The Protocol

Our protocol consists of experiment units defined by the
following elements:

1. Groundtruth model M⋆.

2. Candidate model list M = {Mi}i∈[m].

3. Behavior policy πb and offline sample size n.

4. Target policies Π = {π1, . . . , πl}.

Given the specification of a unit, we will draw a dataset of
size n from M⋆ using behavior policy πb. For each target
policy π ∈ Π, we apply different selectors to choose a model
M ∈ M to evaluate π. Model-free algorithms will access
M only through its Q-function, Qπ

M , effectively choosing
from the set Q = {Qπ

M : M ∈ M}. Finally, the prediction
error |JM (π) − JM⋆(π)| is recorded and averaged over
the target policies in Π. Moreover, we may gather results
from multiple units that share the same M⋆ but differ in
M and/or the behavior policy to investigate issues such as
robustness to misspecification and data coverage, as we will
demonstrate in the next section.

Lazy Evaluation of Q-values via Monte Carlo. While the
pipeline is conceptually straightforward, practically access-
ing the Q-function Qπ

M is nontrivial: we could run TD-style
algorithms in M to learn Qπ

M , but that invokes a separate
RL algorithm that may require additional tuning and veri-
fication, and it can be difficult to control the quality of the
learned function.

Our innovation here is to note that, for all the model-free
algorithms we are interested in evaluating, they all ac-
cess Qπ

M exclusively through the value of Qπ
M (s, a) and

Qπ
M (s′, π) for (s, a, r, s′) in the offline dataset D. That

is, given n data points in D, we only need to know 2n
scalar values about Qπ

M . Therefore, we propose to di-
rectly compute these values without explicitly representing
Qπ

M , and each value can be easily estimated by averag-
ing over multiple Monte-Carlo rollouts, i.e., Qπ

M (s, a) =
Eπ[

∑∞
t=0 γ

trt|s0 = s, a0 = a] can be approximated by
rolling out multiple trajectories starting from (s, a) and tak-
ing actions according to π.

Moreover, for the model-based estimators proposed in
Section 4, we need access to quantities in the form of
(T π

Mj
Qπ

Mi
)(s, a). This value can also be obtained by Monte-

Carlo simulation: (1) start in (s, a) and simulate one step in
Mj , then (2) switch to Mi, simulate from step 2 onwards
and rollout the rest of the trajectory.

5.2. Computational Efficiency

Despite not involving neural-net optimization, the experi-
ment can still be computationally intensive due to rolling out
a large number of trajectories. In our code, we incorporate
the following measures to reduce the computational cost:
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Figure 1. Left: JM (π) in M ∈ Mg for different target policies.
Right: Convergence of Monte-Carlo estimates of J(π). Each
curve corresponds to a target policy.

Q-caching. The most intensive part of the pipeline is to
roll-out Monte-Carlo trajectories for Q-value estimation. In
contrast, the cost of running the actual selection algorithms
is often much lower and negligible. Therefore, we generate
these Monte-Carlo Q-estimates and save them to files, and
retrieve them during the selection period. This makes it
efficient to experiment with new selection algorithms or
add extra baselines, and also enables fast experiment that
involves a subset of the candidate models (see Section 6.2).

Bootstrapping. To account for the randomness due to
D, we use bootstrapping to sample (with replacement) mul-
tiple datasets and run the algorithms on each dataset, and
report the mean performance across these bootstrapped sam-
ples with 95% confidence intervals. Using bootstrapping
maximally reuses the cached Q-values and avoids the high
computational costs of sampling multiple datasets and per-
forming Q-caching in each of them, which is unavoidable if
we were to repeat each experiment verbatim multiple times.

6. Exemplification of the Protocol
In this section we instantiate our protocol in the Gym Hop-
per environment to demonstrate its utility, while also pro-
viding preliminary empirical results for our algorithms.

6.1. Experiment Setup and Main Results

Our experiments will be based on the Hopper-v4 environ-
ment. To create a variety of environments, we add different
levels of stochastic noise in the transitions and change the
gravity constant (see Appendix C.1). Each environment
is then parameterized by the gravity constant g and noise
level n. We consider arrays of such environments as the set
of candidate simulator M: in most of our results, we con-
sider a “gravity grid” (denoted using MF.G in the figures)
Mg := {M0

g . . . ,M14
g } (fixed noise level, varying grav-

ity constants from −51 to −9) and a “noise grid” (MF.N)
Mn := {M0

n . . . ,M14
n } (fixed gravity constant, varying

noise level from 10 to 100). Each array contains 15 environ-
ments, though some subsequent results may only involve

6
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Figure 2. Main results for comparing model-
free selectors in the gravity grid (MF.G; top
row) and the noise grid (MF.N; bottom row).
Each plot corresponds to a different M⋆ as
indicated in the plot title. “mb_naive” is model-
based but still included since it does not require
Bellman operator rollouts.

a subset of them (Section 6.2). Some of these simulators
will also be treated as groundtruth environment M⋆, which
determines the groundtruth performance of target policies
and produces the offline dataset D.

Behavior and target policies. We create 15 target policies
by running DDPG [Lil+15] in one of the environments and
take checkpoints. For each M⋆, the behavior policy is the
randomized version of one of the target policies; see Ap-
pendix C.2 for details. A dataset is collected by sampling
trajectories until n = 3200 transition tuples are obtained. As
a sanity check, we plot JM (π) for π ∈ Πg and M ∈ Mg in
Figure 1. As can be shown in the figure, the target policies
have different performances, and also vary in a nontrivial
manner w.r.t. the gravity constant g. It is important to per-
form such a sanity check to avoid degenerate settings, such
as JM (π) varies little across M ∈ M (then even a random
selection will be accurate) or across π ∈ Π.

Number of Rollouts. We then decide the two important
parameters for estimating the Q-value, the number of Monte-
Carlo rollouts l and the horizon (i.e., trajectory length) H .
For horizon, we set H = 1024 which is substantially longer
than typically observed trajectories from the target policies.
For l, we plot the convergence of JM (π) estimation and
choose l = 128 accordingly (see Figure 1R).

Compared Methods. We compare our methods with
baselines, including TD-square (Eq.(2)), naïve model-
based (Eq.(6)), BVFT [ZJ21], and “average Bellman error”
|ED[Qi(s, a) − r − γQi(s

′, π)]| [JKALS17], which can
be viewed as our LSTD-Tournament but with a trivial con-
stant discriminator. The model-based methods in Section 4
require MC rollouts for {Tπ

Mj
Qπ

Mi
: i, j ∈ [m]}, which

requires O(m2) computational complexity. Therefore, we
first compare other selectors (mostly model-free) in Figure 2
with m = 15; the relatively large number of candidate simu-

lators will also enable the later subgrid studies in Section 6.2.
We then perform a separate experiment with m = 5 for the
model-based selectors (Figure 3).

Main Results. Figure 2 shows the main model-free results.
Our LSTD-Tournament method demonstrates strong and
reliable performance. Note that while some methods some-
times outperform it, they suffer catastrophic performances
when the true environment changes. For example, the naïve
model-based method performs poorly in high-noise envi-
ronment, as predicted by theory (Section 4). BVFT’s per-
formance mostly coincides with TD-sq, which is a possible
degeneration predicted by [ZJ21]. This is particularly plau-
sible when the number of data points n is not large enough
to allow for meaningful discretization and partition of the
state space required by the method.

Figure 3 shows the result on smaller candidate model sets
(MB.G and MB.N; see Appendix C.2), where we imple-
ment the 3 model-based selectors in Section 4 whose com-
putational complexities grow quadratically with |M|. Our
expectation was that (1) these algorithms should address
the double-sampling issue and will outperform naïve model-
based when the latter fails catastrophically, and (2) by hav-
ing access to more information (the model, and in particular,
the Bellman operators), model-based should outperform
model-free algorithms under realizability. While the first
prediction is largely verified, we are surprised to find that the
second prediction went wrong, and our LSTD-Tournament
method is more robust and generally outperforms the more
complicated model-based selectors.

6.2. Subgrid Studies: Gaps and Misspecifications

We now demonstrate how to extract additional insights from
the Q-values cached earlier. Due to space limit we are only
able to show representative results in Figure 4, and more
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Figure 3. Main results for comparing model-
based selectors. LSTD-Tournament is included
as the best model-free selector for comparison,
which surprisingly outperforms the more so-
phisticated model-based selectors in Section 4.
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Figure 4. Left: OPE error vs. simulator gaps. Middle: OPE error vs. misspecification. Right: OPE error vs. data coverage.

comprehensive results can be found in Appendix D.

Gaps. We investigate an intellectually interesting question:
is the selection problem easier if the candidate simulators are
very similar to each other, or when they are very different?
We argue that the answer is neither, and an intermediate
difference (or gap) is the most challenging: if the simulators
are too similar, their JM (π) predictions will all be close to
JM⋆(π) since M ≈ M⋆, and any selection algorithm will
perform well; if the simulators are too dissimilar, it should
be easy to tell them apart, which also makes the task easy.

We show how we can empirically test this. We let
M⋆ = M7

n, and run the experiments with different 3-
subsets of Mn, including {6, 7, 8} (least gap), {5, 7, 9},
. . . , {0, 7, 14} (largest gap). Since the needed Q-values
have already been cached in the main experiments, we can
skip caching and directly run the selection algorithms. We
plot the prediction error as a function of gap size in Fig-
ure 4L, and observe the down-U curves (except for trivial
methods such as random) as predicted by theory.

Misspecification. Similarly, we can study the effect of
misspecification, that is, M⋆ ∈ M. For example, we can
take M⋆ = M0

σ , and consider different subsets of Mn:

0–4 (realizable), 1–5 (low misspecification), . . . , 10–14
(high misspecification). Figure 4M plots prediction error
vs. misspecification level for different methods, where we
expect to observe potential difference in the sensitivity to
misspecification. The actual result is not that interesting
given similar increasing trends for all methods.

6.3. Data Coverage

In the previous subsection, we have seen how multiple ex-
periment units that only differ in M can provide useful
insights. Here we show that we can also probe the methods’
sensitivity to data coverage by looking at experiment units
that only differ in the dataset D. In Figure 4R, we take
a previous experiment setting (Mg) and isolate a particu-
lar target policy π; then, we create two datasets: (1) Dπ

sampled using π; (2) Doff sampled using a policy that is
created to be very different from the target policies and offer
very little coverage (see Appendix C.2). Then, we run the
algorithm with λ fraction of data from Dπ combined with
(1−λ) from Doff; as predicted by theory, most methods per-
form better with better coverage (large λ), and performance
degrades as λ goes to 0.
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A. Other Related Works
Here we review some existing works on model selection in offline RL. Most of them are not concerned about new selection
algorithms with theoretical guarantees (apart from [XJ21; ZJ21; ZDMAK23; LNPW23] which are already discussed in
the main text) or experiment protocol for OPE model selection (see [VLJY19; KKKKNS23] for experiment protocol and
benchmarks of OPE itself), so their focus is different and often provides insights complementary to our work. For example,
[NFBJSB22] discuss data splitting in offline model selection; this is a question we avoid by assuming a fixed holdout dataset
for OPE model selection. An exception is [UKNST23] who studies the model selection problem for OPE itself, but focuses
on the bandit case and makes heavy use of the importance sampling estimator, which we do not consider due to the focus on
long-horizon tasks.

[FMPNG22] challenge the idea of using Bellman errors for model selection due to their surrogacy and poor correlation with
actual objective; despite the valid criticisms, there are no clear alternatives that address the pain points of Bellman errors, and
the poor performance is often due to lack of data coverage, which makes the task fundamentally difficult for any algorithms.
We still believe that Bellman-error-like objectives (defined in a broad sense, which includes our LSTD-Tournament) are
promising for model selection, and the improvement on OPE error is the right goal to pursue instead of correlation (which
we know could be poor due to the surrogacy).

As mentioned above and demonstrated in our experiments, the lack of data coverage is a key factor that determines the
difficulty of the selection tasks. [LTND22] propose feature selection algorithms for offline contextual bandits that account
for the different coverage effects of candidate features. On a related note, ideas from offline RL training, such as version-
space-based pessimism [XCJMA21], can also be incorporated in our method. This will unlikely improve the accuracy
of OPE itself, but may be helpful if we measure performance by how OPE can eventually lead to successful selection of
performant policies, which we leave for future investigation.

B. Proofs
B.1. Proof of Theorem 1

Proof. Define the following loss vectors,

ℓ(θ) := Aθ − b ∈ Rd,

ℓ̂(θ) := Âθ − b̂ ∈ Rd

and recall that we select as the estimator

θ̂ := argmin
θ∈Θ

∥ℓ̂(θ)∥∞.

Since θ⋆ = A
−1
b, we can write the desired bound as a function of ℓ(θ) as follows,

∥Qπ(·)− ϕ⊤(·)θ̂∥∞ = ∥ϕ⊤(·)(θ̂ − θ⋆)∥∞
= ∥ϕ⊤(·)A−1

(Aθ̂ − b)∥∞
= ∥ϕ⊤(·)A−1

ℓ(θ̂)∥∞
= max

s,a
|ϕ⊤(s, a)A

−1
ℓ(θ̂)|

≤
(
max
s,a

∥∥ϕ⊤(s, a)
∥∥
2

)
·
∥∥A−1

∥∥
2
· ∥ℓ(θ̂)∥2

≤
√
dBϕ ·

∥∥A−1
∥∥
2
· ∥ℓ(θ̂)∥∞

Next, we control the ℓ(θ̂) term. In the sequel we will establish via concentration that

∥ℓ(θ)− ℓ̂(θ)∥∞ ≤ εstat := 3 ·max{Rmax, Bϕ}2 ·
√

log(2d|Θ|δ−1)

n
, ∀θ ∈ Θ. (9)
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Model Selection for OPE: New Algorithms and Experimental Protocol

Then, we have that

∥ℓ(θ̂)∥∞ ≤ ∥ℓ̂(θ̂)∥∞ + εstat

≤ ∥ℓ̂(θ⋆)∥∞ + εstat

≤ ∥ℓ(θ⋆)∥∞ + 2 · εstat
= 2 · εstat,

where we recall that θ̂ = argminθ∈Θ ∥ℓ̂(θ)∥∞ in the second inequality, and that Aθ⋆ = b in the last line. Combining the
above, we obtain

∥Qπ − ϕ⊤θ̂∥∞ ≤ 2
√
dBϕ ·

∥∥A−1
∥∥
2
· εstat

= 6
√
d ·

∥∥A−1
∥∥
2
·max{Rmax, Bϕ}2 ·

√
log(2d|Θ|δ−1)

n
,

as desired. We now establish the concentration result of Equation (9).

Concentration results. For j ∈ [d], let ϕj(s, a) ∈ R refer to the j’th entry of the vector. For any (s, a, s′) and θ, define

Bπ(s, a, s′; θ) := ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

Recall that ∥ϕ(s, a)∥2 ≤ Bϕ for all (s, a) and that ∥θ∥2 ≤ BΘ for all θ ∈ Θ. We have that, for all j ∈ [d], θ ∈ Θ, and
s, a ∈ S ×A we have that ϕj(s, a)B

π(s, a, s′; θ) is bounded, since:

ϕj(s, a)
(
ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

)
≤ ∥ϕ(s, a)∥∞(∥ϕ(s, a)∥2∥θ∥2 + γ∥ϕ(s′, π)∥2∥θ∥2 +Rmax)

≤ max
s,a

∥ϕ(s, a)∥2
(
max
s,a

∥ϕ(s, a)∥2∥θ∥2 + γmax
s,a

∥ϕ(s, a)∥2∥θ∥2 +Rmax

)
≤ (1 + γ)B2

ϕ +RmaxBϕ

≤ 3max{Bϕ, Rmax}2.

Thus, from Hoeffding’s inequality and a union bound, we have that for all j ∈ [d] and θ ∈ Θ:

∣∣∣Eµ

[
ϕj(s, a)Bπ(s, a, s′; θ)

]
− Êµ

[
ϕj(s, a)Bπ(s, a, s′; θ)

]∣∣∣ ≤ 3max{Bϕ, Rmax}2
√

2 log(d|Θ|δ−1)

n
= εstat,

with probability at least 1− δ. As a result, we can write∥∥∥ℓ(θ)− ℓ̂(θ)
∥∥∥
∞

=
∥∥∥Eµ

[
ϕ(s, a)

(
ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

)]
− Êµ

[
ϕ(s, a)

(
ϕ⊤(s, a)θ − γϕ⊤(s′, π)θ − r(s, a)

)]∥∥∥
∞

=
∥∥∥Eµ[ϕ(s, a)B

π(s, a, s′; θ)]− Êµ[ϕ(s, a)B
π(s, a, s′; θ)]

∥∥∥
∞

≤ ∥1 · εstat∥∞
≤ εstat.

This concludes the proof.

B.2. Proof of Theorem 2

Proof. We first note that the proposed algorithm is equivalent to the following tournament procedure:

• ∀i ∈ [m], j ̸= i :

– Define ϕi,j(s, a) := [Qi(s, a), Qj(s, a)]
⊤ and associated Âi,j matrix and b̂i,j vector (Eq. 3)

– Define ℓ̂i,j = Âi,je1 − b̂i,j ∈ R2

• Pick argmini∈[m] maxj ̸=i∥ℓ̂i,j∥∞

13
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Let i⋆ ∈ [m] denote the index of Qπ in the enumeration of Q. We start with the upper bound

|JM⋆(π)− Es∼d0
[Qî(s, π)]| = |Es∼d0

[Qπ(s, π)]− Es∼d0
[Qî(s, π)]| ≤ ∥Qπ(·)−Qî(·)∥∞.

Let ℓi,j := Ai,je1 − bi,j denote the population loss. We recall the concentration result from Equation (9), which, for any
fixed i and j, implies:

∥ℓi,j − ℓ̂i,j∥∞ ≤ εstat = 3 ·max{Bϕ, Rmax}2 ·
√

log(2dδ−1)

n
,

with probability at least 1− δ. This further implies |∥ℓi,j∥∞ − ∥ℓ̂i,j∥∞| ≤ εstat. Taking a union bound over all (i, j) where
either i or j equal i⋆, this implies that

∥ℓi,j − ℓ̂i,j∥∞ ≤ εstat = 3 ·max{Bϕ, Rmax}2 ·
√

log(4dmδ−1)

n
∀(i, j) ∈ ([m]× {i⋆}) ∪ ({i⋆} × [m])

If î = i⋆ then we are done. If not, then there exists a comparison in the tournament where i = î and j = i⋆. For these
features ϕî,i⋆(s, a) = [Qî(s, a), Qi⋆(s, a)]

⊤, we have:

∥Qπ(·)−Qî(·)∥∞ = ∥ϕ⊤
î,i⋆

(e2 − e1)∥∞
= ∥ϕ⊤

î,i⋆
A−1

î,i⋆
Aî,i⋆(e2 − e1)∥∞

= max
s,a

|ϕ⊤
î,i⋆

(s, a)A−1

î,i⋆
Aî,i⋆(e2 − e1)|

≤
(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥Aî,i⋆(e2 − e1)∥2

≤
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥Aî,i⋆(e2 − e1)∥∞

=
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥Aî,i⋆e1 − bî,i⋆∥∞

=
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2∥ℓî,i⋆∥∞

≤
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(
∥ℓ̂î,i⋆∥∞ + εstat

)
≤

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(

max
j∈[m]\{i⋆}

∥ℓ̂î,j∥∞ + εstat

)
≤

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(

max
j∈[m]\{i⋆}

∥ℓ̂i⋆,j∥∞ + εstat

)
≤

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2
(

max
j∈[m]\{i⋆}

∥ℓi⋆,j∥∞ + 2εstat

)
≤ 2

√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)
∥A−1

î,i⋆
∥2εstat.

≤ 2
√
d

(
max
s,a

∥ϕî,i⋆(s, a)∥2
)

max
i∈[m]\{i⋆}

1

σmin(Ai,i⋆)
εstat.

To conclude, we note that d = 2 in our application and that maxs,a∥ϕi,j(s, a)∥22 = Q2
i (s, a)+Q2

j (s, a) ≤ 2V 2
max. Plugging

in the value for εstat, this gives a final bound of

|JM⋆(π)− Es∼d0 [Qî(s, π)]| ≤ 4Vmax max
i∈[m]\{i⋆}

1

σmin(Ai,i⋆)
εstat

= 24V 3
max max

i∈[m]\{i⋆}

1

σmin(Ai,i⋆)

√
log(4dmδ−1)

n
.
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B.3. Proof of Theorem 4

We bound

J(π)− Ed0

[
Q̂(s, π)

]
= Ed0,π

[
Qπ(s, a)− Q̂(s, a)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− γQπ(s′, π)− Q̂(s, a)− γQ̂(s′, π)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− [T πQπ](s, a)− Q̂(s, a) +

[
T πQ̂

]
(s, a)

]
=

1

1− γ
Edπ

[[
T πQ̂

]
(s, a)− Q̂(s, a)

]
≤ 1

1− γ

√
Cπ · Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]

where the second line follows from Bellman flow. Now we consider the term under the square root, and let ĝQ̂ =

argming∈GQ̂
ℓ̂(g, Q̂).

Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]
≤ 2 · Eµ

[([
T πQ̂

]
(s, a)− ĝQ̂(s, a)

)]2
︸ ︷︷ ︸

(T1)

+2 · Eµ

[(
ĝQ̂(s, a)− Q̂(s, a)

)2
]

︸ ︷︷ ︸
(T2)

We consider each term above individually. (T1) is the regression error between ĝQ and the population regression solution
T πQ, which we can control using well-established bounds. The second term (T2) measure how close the Q-value is to its
estimated Bellman backup. To bound these two terms we utilize the following results. The first controls the error between
the squared-loss minimizer ĝQ and the population solution T πQ, and is adapted from [XJ21].

Lemma 6 (Lemma 9 from [XJ21]). Suppose that we have |g|∞ ≤ Vmax for all g ∈ GQ and Q ∈ Q, and define

ĝQ := argmin
g∈GQ

ED

[
(g(s, a)− r − γQ(s′, π))

2
]
.

Then with probability at least 1− δ, for all i ∈ [m] we have

Eµ

[
(ĝQ(s, a)− [T πQ](s, a))

2
]
≤

16V 2
max log

(
2m
δ

)
n

:= ε2reg.

The second controls the error of estimating the objective for choosing î from finite samples, and a proof is included at the
end of this section.

Lemma 7 (Objective estimation error). Suppose that we have ∥g∥∞ ≤ Vmax for all g ∈ GQ and Q ∈ Q. Then with
probability at least 1− δ, for all g ∈ GQ and Q ∈ Q we have

max

{
1

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]
− ED

[
(g(s, a)−Q(s, a))

2
]
,

ED

[
(g(s, a)−Q(s, a))

2
]
− 3

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]}

≤
3V 2

max log
(
2m
δ

)
n

:= εobj.

Using lem:model-reg-concentration, we directly obtain that with probability at 1− δ,

(T1) ≤ ε2reg.
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By leveraging lem:model-obj-concentration, we have that with probability at least 1− δ,

(T2) = Eµ

[(
ĝQ̂(s, a)− Q̂(s, a)

)2
]

≤ 2 · εobj + 2 · ED

[(
ĝQ̂(s, a)− Q̂(s, a)

)2
]

≤ 2 · εobj + 2 · ED

[
(ĝQπ (s, a)−Qπ(s, a))

2
]

≤ 4 · εobj + 3 · Eµ

[
(ĝQπ (s, a)−Qπ(s, a))

2
]

= 4 · εobj + 3 · Eµ

[
(ĝQπ (s, a)− [T πQπ](s, a))

2
]

≤ 4 · εobj + 3 · ε2reg

where in the first inequality we apply Lemma 7 (by lower bounding the LHS with the first expression in the max); in the
second we use the Q-value realizability assumption Qπ ∈ Q with the fact that Q̂ is the minimizer of the empirical objective;
and in the third we again apply Lemma 7 (now lower bounding the LHS with the second expression in the max). Then we
use the identity that Qπ = T πQπ , and apply the squared-loss regression guarantee. The bounds for (T1) and (T2) mean that

Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]
≤ 8

(
εobj + ε2reg

)
,

resulting in the final estimation bound of

J(π)− Ed0

[
Q̂(s, π)

]
≤ 1

1− γ

√
Cπ · Eµ

[([
T πQ̂

]
(s, a)− Q̂(s, a)

)2
]

≤ 1

1− γ

√
8 · Cπ ·

(
εobj + ε2reg

)
,

=
Vmax

1− γ

√
152 · Cπ · log

(
2m
δ

)
n

,

which holds with probability at least 1− 2δ.

Proof of Lemma 7. Observe that the random variable (g(s, a)−Q(s, a))
2 ∈ [−V 2

max, V
2
max], and

Vµ

[
(g(s, a)−Q(s, a))

2
]
≤ Eµ

[
(g(s, a)−Q(s, a))

4
]

≤ V 2
max · Eµ

[
(g(s, a)−Q(s, a))

2
]
.

Then, applying Bernstein’s inequality with union bound, we have that, for any g ∈ GQ and Q ∈ Q with probability at least
1− δ, ∣∣∣Eµ

[
(g(s, a)−Q(s, a))

2
]
− ED

[
(g(s, a)−Q(s, a))

2
]∣∣∣

≤

√√√√4Vµ

[
(g(s, a)−Q(s, a))

2
]
log

(
2m
δ

)
n

+
V 2
max log

(
2m
δ

)
n

≤

√√√√4V 2
maxEµ

[
(g(s, a)−Q(s, a))

2
]
log

(
2m
δ

)
n

+
V 2
max log

(
2m
δ

)
n

≤
Eµ

[
(g(s, a)−Q(s, a))

2
]

2
+

3V 2
max log

(
2m
δ

)
n

.
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Expanding the absolute value on the LHS and rearranging, this then implies that

1

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]
≤ ED

[
(g(s, a)−Q(s, a))

2
]
+

3V 2
max log

(
2m
δ

)
n

,

ED

[
(g(s, a)−Q(s, a))

2
]
≤ 3

2
· Eµ

[
(g(s, a)−Q(s, a))

2
]
+

3V 2
max log

(
2m
δ

)
n

.

Combining these statements completes the proof.

B.4. Proof of Theorem 5

We bound

J(π)− Ed0

[
Q̂(s, π)

]
= Ed0,π

[
Qπ(s, a)− Q̂(s, a)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− γQπ(s′, π)− Q̂(s, a)− γQ̂(s′, π)

]
=

1

1− γ
Edπ

[
Qπ(s, a)− [T πQπ](s, a)− Q̂(s, a) +

[
T πQ̂

]
(s, a)

]
=

1

1− γ
Edπ

[[
T πQ̂

]
(s, a)− Q̂(s, a)

]
≤ Cπ

∞
1− γ

· Eµ

[∣∣∣[T πQ̂
]
(s, a)− Q̂(s, a)

∣∣∣]
≤ max

g∈GQ̂

Eµ

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]
By assumption, maxq∈Q∥q∥∞ ≤ Vmax, and similarly maxg∈GQ

∥g∥∞ ≤ Vmax for all Q ∈ Q. Then for any Q ∈ Q and
g ∈ GQ and (s, a) ∈ S ×A and r ∈ [0, Rmax],

sgn(Q(s, a)− g(s, a))(Q(s, a)− r − γQ(s′, π)) ∈ [−Vmax, Vmax],

and, using Hoeffding’s inequality, we have for all Q ∈ Q and g ∈ GQ that, with probability at least 1− δ,∣∣∣Eµ

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]
− ED

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]∣∣∣
≤ 2Vmax

√
log

(
2m
δ

)
n

:= εobj.

Then using this concentration in the last line of the previous block,

J(π)− Ed0

[
Q̂(s, π)

]
≤ max

g∈GQ̂

ED

[
sgn

(
Q̂(s, a)− g(s, a)

)(
Q̂(s, a)− r − γQ̂(s′, π)

)]
+ εobj

≤ max
g∈GQπ

ED[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)− r − γQπ(s′, π))] + εobj

≤ max
g∈GQπ

Eµ[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)− r − γQπ(s′, π))] + 2 · εobj

= max
g∈GQπ

Eµ[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)− [T πQπ](s, a))] + 2 · εobj

= max
g∈GQπ

Eµ[sgn(Qπ(s, a)− g(s, a))(Qπ(s, a)−Qπ(s, a))] + 2 · εobj

= 2 · εobj,

where in the first and third inequalities we apply the above concentration inequality, and in the second inequality we use the
fact that Q̂ is the minimizer of the empirical objective, i.e.,

Q̂ = argmin
Q∈Q

max
g∈GQ

ED[sgn(Q(s, a)− g(s, a))(Q(s, a)− r −Q(s′, π))].

Combining the above inequalities, we obtain the theorem statement,

J(π)− Ed0

[
Q̂(s, π)

]
≤ 2 · Cπ

∞ · εobj.
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C. Experiment Details
C.1. Environment Setup: Noise and State Resetting

State Resetting. Monte-Carlo rollouts for Q-value estimation rely on the ability to (re)set the simulator to a particular state
from the offline dataset. To the best of our knowledge, Mujoco environment does not natively support state resetting, and
assigning values to the observation vector does not really change the underlying state. However, state resetting can still be
implemented by manually assigning the values of the position vector qpos and the velocity vector qvel.

Noise. As mentioned in Section 6, we add noise to Hopper to create more challenging stochastic environments and create
model selection tasks where candidate simulators have different levels of stochasticity. Here we provide the details about how
we inject randomness into the deterministic dynamics of Hopper. Mujoco engine realizes one-step transition by leveraging
mjData.{ctrl, qfrc_applied, xfrc_applied} objects [Dee], where mjData.ctrl corresponds to the
action taken by our agent, and mjData.{qfrc_applied, xfrc_applied} are the user-defined perturbations in the
joint space and Cartesian coordinates, respectively. To inject randomness into the transition at a noise level of σ, we first
sample an isotropic Gaussian noise with variance σ2 as the stochastic force in mjData.xfrc[:3] upon each transition,
which jointly determines the next state with the input action mjData.ctrl, leaving the joint data mjData.qfrc intact.

C.2. Experiment Settings

MF/MB.G/N. The settings of different experiments are summarized in Table 1. We first run DDPG in the environment of
g = −30, σ = 32, and obtain 15 deterministic policies {π0:14} from the checkpoints. The first 10 are used as target policies
in MF.G/N experiments, and MB.G/N use fewer due to the high computational cost. For the main results (Section 6.1), the
choice of M⋆ is usually the two ends plus the middle point of the grid (Mg or Mn). The corresponding behavior policy is
an epsilon-greedy version of one of the target policies, denoted as πϵ

i , which takes the deterministic action of πi(s) with
probability 0.7, and add a unit-variance Gaussian noise to πi(s) with the remaining 0.3 probability.

MF/MB.Off.G/N. In the above setup, the behavior and the target policies all stem from the same DDPG training procedure.
While these policies still have significant differences (see Figure 1L), the distribution shift is relatively mild. For the data
coverage experiments (Section 6.3), we prepare a different set of behavior policies that intentionally offer poor coverage:
these policies, denoted as πpoor

i , are obtained by running DDPG with a different neural architecture (than the one used for
generating π0:14) in a different environment of g = −60, σ = 100. We also provide the parallel of our main experiments in
Figures 2 and 3 under these behavior policies with poor coverage in Appendix E.1.

MF.T.G. This experiment is for data coverage (Section 6.3), where D is a mixture of two datasets, one sampled from π7

(which is the sole target policy being considered) and one from πpoor
i that has poor coverage. They are mixed together under

different ratios as explained in Section 6.3.

Gravity g Noise Level σ Groundtruth Model M⋆ and
Behavior Policy πb

Target
Policies Π

MF.G LIN(−51,−9, 15) 100 {(Mi, π
ϵ
i ), i ∈ {0, 7, 14}} {π0:9}

MF.N -30 LIN(10, 100, 15) {(Mi, π
ϵ
i ), i ∈ {0, 7, 14}} {π0:9}

MB.G LIN(−36,−24, 5) 100 {(Mi, π
ϵ
i ), i ∈ {0, 2, 4}} {π0:5}

MB.N -30 LIN(10, 100, 5) {(Mi, π
ϵ
i ), i ∈ {0, 2, 4}} {π0:5}

MF.OFF.G LIN(−51,−9, 15) 100 {(Mi, π
poor
i ), i ∈ {0, 7, 14}} {π0:9}

MF.OFF.N -30 LIN(10, 100, 15) {(Mi, π
poor
i ), i ∈ {0, 7, 14}} {π0:9}

MF.T.G LIN(−51,−9, 15) 100 {(Mi, π8 & πpoor
i ), i ∈ {0, 7, 14}} {π8}

Table 1. Details of experiment settings. LIN(a, b, n) (per numpy convention) refers to the arithmetic sequence with n elements, starting
from a and ending in b (e.g. LIN(0, 1, 6) = {0, 0.2, 0.4, 0.6, 0.8, 1.0}).
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D. Additional Experiment Results

E. Subgrid Studies and Coverage Experiments
Subgrid Studies. Figures 6 and 5 show more complete results for investigating the sensitivity to misspecification and gaps
in Section 6.2 across 4 settings (good/poor coverage and gravity/noise grid).
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Figure 5. Subgrid studies for gaps. Plot MF.N is identical to Figure 4L.
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Figure 6. Subgrid studies for misspecification. Plot MF.N is identical to Figure 4M.

Data Coverage. Figure 7 shows more complete results for the data coverage experiment in Section 6.3, including more
choices of M⋆.
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Figure 7. Data coverage results. Left figure is identical to Figure 4L.
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E.1. Poor Coverage Results

We now show the counterpart of our model-free main results (Figure 2) under behavior policies that offer poor coverage. This
makes the problem very challenging and no single algorithm have strong performance across the board. For example, naïve
model-based demonstrate strong performance in MF.OFF.G (top row of Figure 8) and resilience to poor coverage, while
still suffers catastrophic failures in MF.OFF.N. While LSTD-Tournament generally is more reliable than other methods, it
also has worse-than-random performance in one of the environments in MF.OFF.G.
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Figure 8. Model-free selection re-
sults under behavior policies with
poor coverage (MF.OFF.G/N).

E.2. LSTDQ Family

As mentioned at the end of Section 3, our LSTD-Tournament can have several variants depending on how we design and
transform the linear features. Here we compare 3 of them in Figure 9. The LSTD-Tournament method in all other figures
corresponds to the “normalized_diff” version.

• Vanilla: ϕi,j = [Qi, Qj ].

• Normalized: ϕi,j = [Qi/ci, Qj/cj ], where ci =
√
V(s,a)∼µ[Qi(s, a)] normalizes the discriminators to unit variance

on the data distribution. In practice these variance parameters are estimated from data.

• Normalized_diff: ϕi,j = [Qi/ci, (Qj −Qi)/cj,i], where ci and cj,i performs normalization in the same way as above.
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Figure 9. Comparison of variants of LSTD-Tournament.
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E.3. O(1) Rollouts

In our experiment design, we use a fairly significant number of rollouts l = 128 to ensure relatively accurate estimation of
the Q-values. However, for the average Bellman error and the LSTD-Tournament algorithms, they enjoy convergence even
when l is a constant. For example, consider the average Bellman error:

ED[Qi(s, a)− r − γQi(s
′, π)],

which is an estimation of Eµ[Qi(s, a)− r − γQi(s
′, π)]. Thanks to its linearity in Qi, replacing Qi with its few-rollout (or

even single-rollout) Monte-Carlo estimates will leave the unbiasedness of the estimator intact, and Hoeffding’s inequality
implies convergence as the sample size n = |D| increases, even when l stays as a constant, which is an advantage compared
to other methods. That said, in practice, having a relatively large l can still be useful as it reduces the variance of each
individual random variable that we average across D, and the effect can be significant when n is relatively small.

A similar but slightly more subtle version of this property also holds for LSTD-Tournament. Take the vanilla version in
Section 3 as example, we need to estimate

ED[Qj(s, a)(Qi(s, a)− r − γQi(s
′, π))].

Again, we can replace Qj and Qi with their Monte-Carlo estimates, as long as the Monte-Carlo trajectories for Qi and
Qj are independent. This naturally holds in our implementation when j ̸= i, but is violated when j = i since Qj(s, a)
and Qi(s, a) will share the same set of random rollouts, leading to biases. A straightforward resolution is to divide the
Monte-Carlo rolllouts into two sets, and Qj(s, a) and Qi(s, a) can use different sets when j ̸= i. We empirically test this
procedure in Figure 10, where the OPE errors of average Bellman error and different variants of LSTD-Tournament are
plotted against the number of rollouts l. In both the left and the middle plots, a relatively small number of rollouts suffices
for good performance. However, the right plot still requires a large number of rollouts, potentially due to n not being
sufficiently large.

0 50 100
Rollouts

0

5

10

15

OP
E 

Er
ro

r

MF.G: g=-51, =100.0

0 50 100
Rollouts

5

10

15

OP
E 

Er
ro

r

MF.G: g=-30, =100.0

0 50 100
Rollouts

15

20

25

30

35

OP
E 

Er
ro

r

MF.G: g=-9, =100.0
random
vanilla
normalized_diff
normalized
mf_avg_bellman_error

50 100
Rollouts

0

2

4

6

8

10

Lo
ss

MF.G: g=-51, =100.0

50 100
Rollouts

2

4

6

8

Lo
ss

MF.G: g=-30, =100.0

50 100
Rollouts

2

4

6

Lo
ss

MF.G: g=-9, =100.0
Env 0
Env 1
Env 2
Env 3
Env 4
Env 5
Env 6
Env 7

Env 8
Env 9
Env 10
Env 11
Env 12
Env 13
Env 14

Figure 10. The effect of small rollouts in LSTD-Tournament methods. Sample size is fixed at n = 3200 and only l (the number of
rollouts) varies. The top row shows the OPE error (i.e., final performance), whereas the bottom row shows the convergence of loss
estimates for LSTD-Tournament as a function of rollouts.
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