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ABSTRACT

The proliferation of large language models (LLMs) has triggered an influx of AI-
generated content, making robust detection of such content paramount for main-
taining academic, journalistic, and regulatory integrity. However, the commu-
nity has largely overlooked a time-tested resource that classical n-gram models,
trained exclusively on human-authored corpora, may serve as a de facto gold stan-
dard for identifying machine-generated writing. In this paper, we build upon
well-trained pre-AI N-Gram models to form the backbone of a lightweight AI-
text detection system called GramGuard. Specifically, by generating paraphrased
variants via temperature-controlled decoding from LLMs, we measure the shifts
in log-likelihood, entropy, and token frequency variance between original texts
and perturbed versions. These delta features then feed into an ensemble classi-
fier to yield interpretable decisions about authorship. Extensive experiments on
PubMed, WritingPrompts, and XSum demonstrate that GramGuard matches or
exceeds state-of-the-art detectors in performance and robustness. Our findings
reaffirm the enduring value of pre-AI n-gram models and introduce a scalable,
transparent solution for AI-text detection. The code and datasets are released at
https://github.com/N-Gram-dev/GramGuard.

1 INTRODUCTION

The rapid advancement of large language models (LLMs) has ushered in a new era of AI-generated
text that increasingly saturates digital communication spaces Brown et al. (2020). With capabil-
ities that rival or even surpass those of human experts in fluency and coherence, LLMs are now
widely employed to produce persuasive news articles, academic essays, and algorithmically gener-
ated contentWu et al. (2025). While these models hold tremendous potential, they also introduce
profound social risks, such as news fabrication and academic ghostwritten submissions Kumarage
et al. (2024). These societal implications have motivated significant efforts in AI text detection, lead-
ing to a growing body of research aimed at distinguishing machine-generated content from human-
written text Zellers et al. (2019); Chakraborty et al. (2024). As LLMs evolve, their outputs become
increasingly indistinguishable from natural human texts, narrowing the detectable gaps that early de-
tectors once relied upon Fang et al. (2025); Krishna et al. (2023). Despite continual methodological
improvements, existing detection approaches often struggle to keep pace with the sophistication of
modern generative models, highlighting a pressing need for more robust and resilient solutions Zhou
et al. (2025).

The state-of-the-art detection techniques encompass a variety of approaches, particularly the main-
streaming of curvature statistics-driven zero-shot classifiers Mitchell et al. (2023); Bao et al. (2024);
Ma & Wang (2024). For instance, a recent study attempted to reconstruct truncated text and then
inspect the N-Gram-wise difference between the original text and its reconstructed versions in a
black-box manner Yang et al. (2024). While these methods have demonstrated promising gains in
detecting AI text, they are also sensitive to the architectural idiosyncrasies of specific LLMs. In
contrast, the enduring legacy of pre‑AI n‑gram language models that were merely trained on hu-
man‑authored text has been largely overlooked Brants et al. (2007); Heafield (2011). These “an-
tique” models encode pure human linguistic patterns, rendering them inherently adversarial to ma-
chine‑generated sequences. Upon that, we raise an inspiration: could such “antique” n-grammod-
els exclusively trained on human text serve as a natural “gold standard” for machine-generated
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Figure 1: LLM scoring vs. Pre-AI Ngram model scoring. The log-likelihood tendencies of LLM-
paraphrased human text 𝑥ℎ ∼ 𝑞𝜏 (· | 𝑥ℎ𝑢𝑚𝑎𝑛) and Machine generated text 𝑥𝑚 ∼ 𝑞𝜏 (· | 𝑥𝑚𝑎𝑐ℎ𝑖𝑛𝑒)
compared with their original texts while using either LLMs (left) or Pre-AI Ngram model (right) for
text probability scoring. 𝜏 is a source model used for text perturbation.
text detection? The intrinsic strength of N-gram models lies in establishing a statistically rigor-
ous baseline for human-written distributions, which offer inherent sensitivity to statistical deviations
in AI-generated texts, thereby enabling discrimination through probabilistic divergences, entropy
anomalies, and other measures Shannon (1948); Jurafsky & Martin (2023). Furthermore, their com-
putational efficiency, low resource requirements, and interpretable decision metrics further establish
them as practical, transparent tools for lightweight detection frameworks.

Contemporary detection paradigms claim that large language models tend to preferentially gener-
ate tokens with elevated conditional likelihoods due to their probability‑biased sampling mecha-
nisms Gehrmann et al. (2019). This proclivity yields sequences that exhibit low perplexity and in-
creased curvature in the log-probability landscape Bao et al. (2024); Fang et al. (2025). In contrast,
human authors compose text with intent, rather than maximizing probability, which likely results in
more diffuse token-wise distributions. Under perturbation, the process of rephrasing machine text
tends to sample the tokens with lower probabilities compared with their original sample. Yet, such a
phenomenon is uncertain in human text. Building on this consensus, we have the following corollary:
Corollary 1.1. When adopting an n-gram model trained exclusively on human corpora for prob-
ability scoring, human-written text tends to exhibit higher n-gram log-likelihoods than machine-
generated content. Upon perturbation, the log-likelihood of human text typically decreases consis-
tently, reflecting disruption of human-style linguistic patterns. In contrast, rewritten machine text
often yields smaller or inconsistent changes in n-gram probability, indicating statistical rigidity or
instability under perturbation.

Fig. 1 demonstrates the N-Gram-wise log-likelihood discrepancies between human texts and AI ones
after perturbation, which is opposite to the phenomenon of mainstream LLM-based scoring models.
Specifically, when scoring using a pre-AI n-gram model (see right side of Fig. 1) exclusively trained
on human corpora, human text exhibits higher log-likelihoods and undergoes a consistent drop in
likelihood across variants. Yet, AI text shows lower likelihoods and erratic shifts upon paraphrasing.
To verify the feasibility of the above assertion, we present a novel N-Gram-based AI text detection
framework – GramGuard to identify whether a text is generated from a specific model. Specifi-
cally, we measure how the N-Gram properties of a text shift from an N-Gram perspective after LLM
perturbation via: (1) text paraphrasing using LLM under various decoding temperature settings; (2)
Text N-Gram-wise scoring using N-Gram models trained on human corpora with a backoff strategy,
where the probability of an N-Gram is the log-likelihood of its last token by taking the N-1 prefix into
account; (3) discrepancy analysis based on three interpretable metrics: log-likelihood shifts, entropy
changes, and token frequency variance deltas; (4) decision-making by feeding these features into a
shallow classifier for prediction. The main contributions of this study are threefold:

• We propose using pre-LLM KenLM n-gram models as a “gold standard” for detecting AI-
generated text, given their exclusive exposure to human-authored corpora.

• We design GramGuard, a delta-based framework that computes N-Gram-wise log-
likelihood, entropy, and frequency variance shifts across paraphrased variants to reveal
stylistic rigidity.

• Our method achieves state-of-the-art detection accuracy across three datasets and maintains
robustness under paraphrastic attacks, while requiring only CPU-based inference.
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Figure 2: Overview of the GramGuard detection pipeline. Input text is paraphrased using LLMs
across multiple decoding temperatures, evaluated by fixed KenLM n-gram models, and scored across
three statistical metrics: log-likelihood, entropy, and frequency variance. Delta-based deviations are
computed between the original and variants, and these features are classified using a lightweight
ensemble XGBoost for AI authorship prediction.
2 RELATED WORK

The rapid proliferation of large language models (LLMs) has prompted an urgent need for robust
detection systems capable of distinguishing between human-authored and AI-generated content Ku-
marage et al. (2024). Research in this area spans four methodological paradigms: watermarking-
based detection, probability-based scoring, statistical feature analysis, and hybrid ensemble ap-
proaches Wu et al. (2025). Watermarking methods embed imperceptible signals during the text gen-
eration process. Early examples, such as logit-based token biasing Kirschenbauer et al. (2024), were
followed by improvements like context-aware token partitioning Guo et al. (2024b) and SBERT-based
rejection sampling in SEMSTAMP Hou et al. (2024). Despite their innovation, watermarking meth-
ods degrade under paraphrasing and domain shifts, as demonstrated by recent work on watermark
collisions Luo et al. (2025) and adversarial stress tests Zhou et al. (2025).

Likelihood-based detectors exploit model curvature patterns Mitchell et al. (2023), with Fast-
DetectGPT Bao et al. (2024) offering faster inference through curvature binarization. These methods,
however, suffer from temperature sensitivity and model mismatch, and are vulnerable to paraphras-
tic attacks Krishna et al. (2023), Cheng et al. (2025). In contrast, statistical approaches use token
distributions, entropy, and rank features to detect text anomalies Yang et al. (2024), Wu et al. (2023),
Gehrmann et al. (2019). These build on classical stylometry methods Cavnar & Trenkle (1994), Bur-
rows (2002), Stamatatos (2006), which analyzed authorship using n-gram frequencies and function-
word variance. More recent hybrid detectors such as StackMore Gritsai et al. (2024) and contrastive
paraphrase filters Fang et al. (2025) Guo et al. (2024a) attempt to fuse these paradigms, but still
face reproducibility and robustness challenges. In this context, our delta-based approach offers an
interpretable and lightweight alternative that leverages paraphrastic shifts in fluency, entropy, and
frequency variance, yielding competitive performance under black-box conditions.

3 TASK SETTINGS

3.1 DETECTION ASSUMPTIONS AND PROBLEM SETUP

We propose GramGuard, a hybrid detection framework for binary classification. Unlike state-of-
the-art methods such as DetectGPT and Fast-DetectGPT that rely on zero-shot and white-box as-
sumptions Zhu et al. (2023), our approach operates in a supervised black-box setting. We measure
how N-Gram properties of text, specifically log-likelihoods, entropy, and frequency variance shifts
under paraphrastic transformations induced by powerful LLMs.

We adopt KenLM-based n-gram models, trained exclusively on pre-LLM human corpora, as a gold
standard language model, denoted as 𝑝. Given an input text 𝑥, we compute the delta between the
original and its paraphrased variants 𝑥 ∼ 𝑞𝜏 (· | 𝑥), where 𝑞𝜏 represents an LLM decoder at tem-
perature 𝜏. We aim to capture systematic rigidity or instability in scoring behavior, enabling reliable
authorship classification through shallow classifiers.
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A key hypothesis behind GramGuard is that the human-written text in the current age aligns more
closely with older human corpora than machine-generated text does. This reflects findings from Bao
et al. (2024), where LLMs are shown to prefer tokens with higher model probabilities. We formalize
this stylistic deviation assumption as:

Variation of human text after paraphrasing (Δℎ )︷                                                                    ︸︸                                                                    ︷
𝚫(𝑥ℎ, 𝑝N, 𝑞) = log 𝑝N (𝑥ℎ) − E𝑥̃ℎ∼𝑞𝜏 ( · |𝑥ℎ ) log 𝑝N (𝑥ℎ)

>

𝚫(𝑥𝑚, 𝑝N, 𝑞) = log 𝑝N (𝑥𝑚) − E𝑥̃𝑚∼𝑞𝜏 ( · |𝑥𝑚 ) log 𝑝N (𝑥𝑚)︸                                                                       ︷︷                                                                       ︸
Variation of machine text after paraphrasing(Δ𝑚 )

(1)

Here, 𝑥ℎ and 𝑥𝑚 denote human and machine-generated texts, respectively. The scoring model 𝑝N
is a classical n-gram language model trained on pre-LLM human corpora, and 𝑞𝜏 represents the
LLM-based paraphrasing function under decoding temperature 𝜏. This equation expresses the core
assumption that human-authored text exhibits greater stylistic and lexical shift under paraphrasing,
reflected as a larger drop in n-gram log-likelihood compared to machine-generated text.

3.2 PRE-AI N-GRAM PREPARATION

To ensure stylistic purity and reliable scoring, we construct four KenLM-based n-gram models trained
exclusively on human-authored corpora predating LLMs. Specifically, we use official 3-gram and
4-gram models from the LibriSpeech Language Modeling benchmark Panayotov et al. (2015), and
train additional 2-gram and 5-gram models using KenLM’s lmplz utility on the same corpus. All
models are built on the librispeech-lm-norm.txt.gz dataset, sourced from the OpenSLR repos-
itory and comprising over 800 million words from 14,500 books in the Project Gutenberg archive.
It is noteworthy that these texts, authored well before the rise of generative LLMs, offer a clean rep-
resentation of human-authored language patterns. This uncontaminated foundation is essential to
our detection framework, which compares statistical behaviors of input sentences before and after
paraphrasing.

We then compute log-likelihood, entropy, and frequency variance scores across these models us-
ing N-Gram-embraced KenLM Heafield (2011), which are used to quantify deviations in linguistic
structure and token distribution. This pretraining step ensures that all subsequent scoring reflects
genuine human stylistic baselines, enhancing the sensitivity and interpretability of our delta-based
metrics. In the next Section, we illustrate the steps of GramGuard that include: (1) text perturbation
using LLM prompting under various decoding temperature settings; (2) N-Gram-based scoring using
pre-AI N-Gram models via KenLM; (3) discrepancy quantification in perspectives of log-likelihood
shifts, entropy changes, and token frequency variance deltas; (4) decision-making by feeding the
three features into shallow classifiers for binary prediction.

4 GRAMGUARD

To simulate realistic textual transformations and expose brittleness in synthetic content, we para-
phrase each text by adopting the state-of-the-art LLM (GPT-4_1-mini OpenAI (2023) as the source
model. The perturbed variants of data are acquired under a controllable decoding temperature:
𝜏 ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.1}. The variant sampling process can be formalized as:

𝑥𝑡 ∼ 𝑞𝜏 (· | 𝑥), 𝑡 ∈ [1, 𝑚] (2)
where 𝑞𝜏 denotes a temperature-specified source morel, and 𝑥𝑡 is the 𝑡th variant of original text 𝑥
sampled via source model paraphrasing. The prompting templates for LLM perturbation are demon-
strated in Appendix A (See the Supplementary Materials). Next, the N-Gram-wise statistical scoring
will be accomplished via three features for “delta” analysis.

4.1 TEXT SCORING USING N-GRAMS

Once paraphrased variants are generated, each text, either original or rewritten, is passed through
four pre-trained KenLM n-gram models (2-gram to 5-gram) to extract three core statistical metrics:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

log-likelihood, Shannon entropy, and token frequency variance. These metrics collectively charac-
terize how fluency, lexical diversity, and repetition patterns shift under controlled perturbations.

Log-Likelihood Estimation: To quantify sequence-level fluency, we compute the conditional
log-likelihood of each message using KenLM-based 𝑛-gram models. Let a tokenized message be
defined as 𝑥 = {𝑤1, 𝑤2, . . . , 𝑤𝐿}, where 𝑤𝑖 denotes the 𝑖th token and 𝐿 is the total number of tokens.
Given an 𝑛-gram modelM𝑛, we define the 𝑛-gram ending at position 𝑖 as 𝑔𝑖𝑛 = {𝑤𝑖−𝑛+1, . . . , 𝑤𝑖}.
The joint log-likelihood of the sequence 𝑥 is then:

L𝑛 (𝑥) =
𝐿∑
𝑖=𝑛

log 𝑝N (𝑔𝑖𝑛) (3)

This formulation aggregates the log-probabilities of all overlapping 𝑛-grams in the sentence, pro-
viding a compact estimate of the sequence’s fluency under an 𝑛-gram assumption. Each token 𝑤𝑖 is
conditioned only on its 𝑛−1 predecessors, reflecting a Markovian assumption. For 𝑛-grams 𝑔𝑖𝑛 ∉M𝑛

(i.e., those with zero count in the training corpus), KenLM applies recursive backoff:

log 𝑝N (𝑔𝑖𝑛) =
{

log 𝑝N (𝑤𝑖 |𝑤𝑖−𝑛+1 : 𝑖−1), if 𝑔𝑖𝑛 ∈ M𝑛

𝜆 · log 𝑝N (𝑔𝑖𝑛−1), otherwise
(4)

Here, the probability of 𝑔𝑖𝑛 is calculated as the N-Gram conditional probability of 𝑔𝑖𝑛’s last token,
𝛼(𝑔𝑖𝑛−1) is the backoff weight for its (𝑛−1)-gram prefix, and 𝜆 is a hyperparameter and Brants et al.
(2007) suggests that 𝜆 works well with the value of 0.4. Such a backoff sampling strategy allows
an unknown N-Gram to access its lower-order Grams for conditional log probability estimation.
KenLM precomputes these probabilities along with their backoff weights and stores them in
ARPA-format binary tries for efficient lookup at inference time Heafield (2011). This 𝑛-gram
log-likelihood scoring framework offers interpretable insights into sequence-level fluency by
modeling how predictable a token sequence is with respect to human-authored corpora that predate
modern LLMs.

Statistical Entropy: While log-likelihood captures sequence-level fluency, it does not fully
characterize the stylistic footprint of a sentence. To provide a more nuanced view of n-gram
structure, we additionally extract two statistics from texts’ empirical n-gram distribution: Shannon
Entropy Venkatraman et al. (2024), which quantifies lexical diversity and unpredictability, and
NGram frequency variance, which reflects the unevenness or burstiness of NGram repetition. Let
𝐺N denote the N-Gram Vocabulary of the datasetD that is used for training the scoring model - 𝑝N.
We define the statistical probability of an n-gram 𝑔𝑖𝑛 ∈ 𝐺N as:

𝑝S (𝑔𝑖𝑛) =
𝐶D (𝑔𝑖𝑛)∑

𝑔𝑛∈𝐺N
𝐶D (𝑔𝑛)

(5)

where 𝐶D (𝑔𝑖𝑛) is the raw frequency count of 𝑔𝑖𝑛 in D. In this case, 𝑝S (𝑔𝑖𝑛) is the estimated N-Gram
frequency probability based on the total number of N-Grams in the scoring model. Thus, the Shannon
Entropy of a given text is calculated as:

H𝑛 (𝑥) = −
𝐿∑
𝑖=𝑛

𝑝S (𝑔𝑖𝑛) · log2 𝑝S (𝑔𝑖𝑛) (6)

where H𝑛 (𝑥) captures the spread or uncertainty across the 𝑥’s n-gram usage. Higher entropy
suggests richer and more diverse lexical usage, while lower entropy reflects repetitiveness and rigid
phrasing often characteristic of machine-generated outputs under low sampling temperatures.

N-Gram Frequency Variance: In addition to Entropy, we estimate the discrepancy between text
and perturbed versions in terms of N-gram frequency variance to offer a complementary perspective
on lexical distribution. In other words, entropy reflects the overall diversity of N-gram usage, while
variance highlights irregularities in frequency, such as repeated or dominant patterns. Together, these
two measures provide a more complete view of structural consistency within text. To complement
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this, we also compute N-Gram frequency variance, which captures the dispersion of individual n-
gram occurrences. Let the mean n-gram frequency be:

𝜇𝑛 (𝑥) =
1

𝐿 − 𝑛 + 1
·

𝐿∑
𝑖=𝑛

𝑝S (𝑔𝑖𝑛) (7)

where, 𝐿 represents the number of tokens in 𝑥, and the index 𝑖 denote the last token of a N-Gram in
𝑥. That means, the number of N-Grams in 𝑥 equals 𝐿 − 𝑛+ 1. Then, the N-Gram frequency variance
of a given text is calculated as:

V𝑛 (𝑥) =
1

𝐶𝑥 (𝑔𝑛)
·
∑
𝑔∈𝑥
(𝑝S (𝑔𝑛) − 𝜇)2 (8)

Based on the previous process of scoring (1) N-Gram log likelihood L𝑛 (𝑥); (2) statistical entropy -
H𝑛 (𝑥); and (3) N-Gram frequency -V𝑛 (𝑥); we formalize the discrepancies between the original text
and its perturbed variants as follows.

ΔM (𝑝N, 𝑞, 𝑥, 𝜏) ←M𝑛 (𝑥) −
1
𝑚

𝑚∑
𝑡=1
M𝑛 (𝑥𝑡 ), M ∈ {L,H ,V} (9)

where 𝑝N is the KenLM-based N-Gram scoring model, 𝑞 is the source model for text perturbation,
and 𝑡𝑎𝑢 is the specific temperature worked on the source model 𝑞. Since M ∈ {L,H ,V}, ΔL
denotes the log-likelihood delta between the original text 𝑥 and its perturbed variants {𝑥1, ..., 𝑥𝑚}
that are sampled from a given source model 𝑞 with a specific sampling temperature 𝜏, vice versa for
ΔH and ΔV .

4.2 CLASSIFICATION

Following the extraction of delta-based features from paraphrased variants, we proceed to the final
phase that aims to discriminate machine texts from human ones. The input (i.e.,𝑥) to this stage is
formalized as a twelve-dimensional vector, comprising twelve delta scores from log-likelihoods ΔL ,
entropy ΔH , and NGram frequency variance ΔV at four n-gram levels - {2, 3, 4, 5}. These features
are carefully designed to capture statistical rigidity or flexibility under 𝜏-specified perturbation, and
then fed into an interpretable ensemble-based classifier:XGBoost (XGB) Chen & Guestrin (2016),
which is well-suited for tabular data and provides robustness to noise, built-in regularization, and fea-
ture importance attribution. It is noteworthy that XGBoost sequentially builds additive decision trees
using second-order gradient descent and regularization to improve generalization and combat over-
fitting. In addition, the hyperparameters such as tree depth, learning rate, and number of estimators
are tuned via grid search with 5-fold stratified cross-validation.

To ensure transparency and interpretability, we analyze feature importances derived from both mod-
els. These importances provide empirical insight into which delta metrics among fluency, entropy,
and burstiness most strongly differentiate human writing from synthetic outputs. Classification per-
formance is reported using ROC-AUC coupled with F1-score. This final step transforms nuanced sta-
tistical perturbation signals into reliable authorship attribution, offering a lightweight, interpretable,
and robust solution for AI-generated text detection.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets: We evaluate our framework on three established datasets spanning diverse domains Cor-
nelius et al. (2024) and generation styles to ensure comparability with prior detection benchmarks Bao
et al. (2024); Mitchell et al. (2023); Krishna et al. (2023). PubMedQA Jin et al. (2019), Writing-
Prompts Fan et al. (2018), and XSum Narayan et al. (2018) include only human-authored samples.
We use the public TOCSIN API-based release as is with its official splits.1

1https://github.com/Shixuan-Ma/TOCSIN/tree/main/exp_API-based_model/data
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Figure 3: Temperature-wise ROC–AUC result curves across all nine datasets using various N-Gram
combinations. It is noteworthy that the diagram only demonstrates the top-5 N-gram ensembles by
mean AUC across the increased sampling temperatures from 0.1 to 1.1.

Implementation details: We synthesize AI responses using GPT-4_1-mini in a black-box man-
ner. Texts are segmented at the sentence level for consistent scoring granularity. To simulate re-
alistic perturbations, each sentence is paraphrased by all models under six decoding temperatures
𝜏 ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.1}, producing 10 variants per temperature. This controlled diversity
enables robust delta-based analysis without requiring access to generation-time logits. For the scor-
ing model, we adopt KenLM-based N-Gram models trained exclusively on human-authored corpora
predating LLMs: the official LibriSpeech 3-gram and 4-gram models Panayotov et al. (2015), and
custom 2-gram and 5-gram models built using lmplz Project (2015). These serve as stylistic base-
lines anchored in classical human language.
Baselines: We benchmark our detection approach against a range of leading detectors, including su-
pervised classifiers (RoBERTa-Base, RoBERTa-Large), zero-shot scoring approaches including De-
tectGPT Mitchell et al. (2023), Fast-DetectGPT Bao et al. (2024), LogRank Krishna et al. (2023),
LRR (an amalgamation of log probability and Log-Rank, other AI‐generated‐text detectors DNA-
GPT Yang et al. (2024) and GPTZero Tian & Cui (2023), and statistical baselines using entropy
and likelihood scores. We additionally include an internally implemented baseline - NPR (Normal-
ized Perplexity Rank) for comparison completeness, which is derived from GLTR Gehrmann et al.
(2019) and ranks tokens based on their model-assigned probabilities. All detectors are tested under
the same black-box constraints using 60 paraphrased variants per input to ensure fairness.

5.2 EMPIRICAL STUDY ON HYPERPARAMETERS

The implementation of the proposed GramGuard involves the setting of two hyperparameters: (1)
the N-Gram ensemble, which controls the diverse combination of the Grams from 2 to 5; (2) the
temperature of the source model - 𝑞𝜏 that directs the process of data perturbation for variants pro-
duction. In other words, a higher temperature leads to a smoother distribution of tokens’ probabilities
compared with that of the lower ones. In this group of experiments, we aim to empirically confirm
the values of the two hyperparameters that can yield the best performance. Fig. 3 illustrates ROC-
AUC performance of the top-5 N-Gram combinations (i.e., 2+3+4+5 Grams, 2+3+4 Grams, 2+3+5
Grams, 3+4+5 Grams, and 2+4 Grams) across the nine datasets by sweeping decoding temperature
𝜏 ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.1}. Other possible combinations of N-Grams are not shown in the Fig. 3
because they yield worse performance than the top-5 ones.
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Table 1: The ROC-AUC comparison among SOTA baselines and GramGuard across three datasets
(PubMed, Writing, XSum) and three paraphrasing sources (Gemini, GPT-3.5-Turbo, GPT-4) under
the settings of 2+3+4+5 Grams and 0.1 sampling temperature. Bolded values indicate the best per-
formance per source-specified dataset.

Models Gemini GPT-3.5-Turbo GPT-4
PubMed Writing XSum AVG PubMed Writing XSum AVG PubMed Writing XSum AVG

RoBERTa-Base 0.446 0.8002 0.8708 0.7656 0.6188 0.7084 0.9150 0.7474 0.5309 0.5068 0.6778 0.5718
RoBERTa-Large 0.4508 0.6296 0.8101 0.6301 0.5480 0.8507 0.8507 0.7915 0.6067 0.3821 0.6879 0.5589
GPTZero 0.884 0.9837 0.9987 0.9554 0.8799 0.9292 0.9952 0.9347 0.8482 0.8262 0.9815 0.8853
Likelihood 0.7616 0.9114 0.8519 0.8416 0.8775 0.9740 0.9578 0.9364 0.7980 0.8553 0.8104 0.8212
Entropy 0.4335 0.4395 0.5399 0.4709 0.2767 0.1902 0.3305 0.2658 0.3295 0.3702 0.4360 0.3786
LogRank 0.7689 0.9076 0.8628 0.8464 0.8687 0.9656 0.9582 0.9308 0.8003 0.8286 0.7975 0.8088
LRR 0.7234 0.9179 0.7274 0.7562 0.7433 0.8958 0.9162 0.8517 0.6814 0.7028 0.7447 0.7093
NPR 0.6384 0.9487 0.8172 0.8014 0.6784 0.8924 0.7899 0.7869 0.6328 0.6122 0.5280 0.591
DNAGPT 0.5199 0.9257 0.8675 0.7710 0.7959 0.9425 0.9124 0.8836 0.7565 0.8032 0.7347 0.7648
DetectGPT 0.6854 0.9151 0.7549 0.7851 0.7444 0.8811 0.8416 0.8223 0.6805 0.6217 0.5660 0.6227
Fast-DetectGPT 0.8769 0.9465 0.8518 0.8917 0.9021 0.9916 0.9907 0.9614 0.8503 0.9612 0.9067 0.9248

GramGuard 0.8879 0.9803 0.9992 0.9558 0.9616 0.9860 0.9962 0.9812 0.9508 0.9731 0.9990 0.9743
(Absolute ↑) 0.39% -0.34% 0.05% 0.04% 5.95% -0.56% 0.1% 1.98% 10.05% 1.19% 1.75% 4.95%

We observed a relatively downward trend as the decoding temperature 𝜏 increases. This trend reflects
how temperature governs the paraphrastic entropy of generated variants. At lower temperatures,
perturbations remain closer to the original phrasing, allowing our detector to reliably capture subtle
statistical shifts introduced by machine text. In contrast, higher temperatures yield more randomized
and human-like outputs, which can obscure underlying machine patterns, thereby degrading detection
performance. Nevertheless, GramGuard consistently achieves AUCs above 0.93 even under these
high-entropy settings, which demonstrates strong resilience. It can also be observed from Fig. 3 that
the 2+3+4+5 gram ensemble at 𝜏 = 0.1 yields the relatively highest and most stable performance
across all the datasets. This setup captures both short-range and long-range n-gram fluency deviations
while leveraging the lowest-entropy paraphrases, maximizing sensitivity to stylistic distortions that
differentiate human and AI text. We therefore adopt this combination as the default configuration for
all subsequent evaluations.

5.3 PERFORMANCE COMPARISON WITH SOTA DETECTORS

To emphasize the superiority of GramGuard over other detection methods in identifying machine-
generated text, we present the following two key observations from the results demonstrated in the
Table 1.

First, GramGuard consistently outperforms all baselines across diverse datasets and generative
sources, achieving the highest average ROC-AUC scores. Crucially, GramGuard exhibits exceptional
robustness against paraphrasing attacks, which is a key weakness of prior methods. While zero-
shot curvature detectors like DetectGPT and Fast-DetectGPT degrade significantly under adversar-
ial rewriting, GramGuard maintains near-perfect separability (e.g., 0.9508 on PubMed with GPT-4).
Similarly, probability-based scorers (LogRank, LRR) and N-Gram-based DNAGPT show instability,
especially on complex datasets like XSum, whereas GramGuard sustains AUCs > 0.99. This advan-
tage stems from its core design that leverages pre-LLM n-gram models as a statistically pure baseline
and measures delta features (log-likelihood, entropy, variance shifts) across paraphrased variants to
expose the rigidity of AI text under perturbation.

Second, GramGuard’s dominance is most pronounced against other baselines under high-fluency
source models like *GPT-4*, where it surpasses all competitors by significant margins. For example,
GramGuard outperforms Fast-DetectGPT by 10.05% AUC on PubMed. This highlights its superior
generalization in black-box settings, which is a challenge for supervised classifiers and entropy-based
methods. Critically, unlike other approaches, GramGuard achieves SOTA results using three inter-
pretable delta features coupled with multi-granular n-gram signals verified on a lightweight XGBoost
classifier. It is noteworthy that the fusion of multi-granular n-grams can capture nuanced statistical
deviations impervious to paraphrasing, as evidenced by its sustained high performance even under
high-temperature perturbations (See Fig. 3). Furthermore, the impact of message length in system
performance has been evaluated and demonstrated in Appendix D.
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Figure 4: Ablation heatmap showing ROC–AUC for seven feature sets (Only L, Only H , Only V,
L + H , L + V, H + V, All Three) across the nine dataset–LLM variants. Bolder cells indicate
higher AUC scores.
5.4 FEATURE ABLATION: ENTROPY, LIKELIHOOD, FREQUENCY

To further investigate the role of the three N-Gram features (i.e., L: log-likelihood, H : Entropy,
and V: statistical variance) in impacting the performance of AI text detection, we conduct an ab-
lation study by disabling each of the features as shown in Fig 4. It can be observed that ΔL-only
exhibits the weakest performance across all dataset-LLM pairs. This occurs because ΔL primarily
measures fluency deviations after paraphrasing, which means human text shows significant probabil-
ity drops due to lexical creativity, but machine-generated text maintains rigid phrasing with minimal
likelihood shifts. However, this metric proves sensitive to sparse paraphrases, limiting its standalone
reliability. Conversely, ΔH and ΔV demonstrate superior robustness. ΔH quantifies lexical un-
predictability because of human rewrites increasing entropy through diverse word choices, whereas
AI text displays distributional brittleness with negligible entropy changes. ΔV captures repetition
rigidity via n-gram frequency dispersion that machine text resists variance shifts under perturbation,
while human writing exhibits flexible redistribution. On the other hand, the ΔH + ΔV combination
nearly matches full-triad performance, indicating these metrics are primary discriminators. They
reveal the stylistic rigidity of LLM content that synthetic text fails to mimic human lexical diversity
and dynamic phrasing, even when paraphrased. ΔL provides an auxiliary signal by contextualizing
entropy/variance shifts within probabilistic coherence. The synergy of the three features enables ro-
bustness against adversarial perturbations by collectively unmasking the statistical homogeneity of
machine-generated text. More details about the impact of the three features on system performance
across various N-Gram combinations can be found in Appendix B and temperature-wise results in
Appendix C (See the Supplementary Materials).

6 CONCLUSION

This study initially proposes to leverage pre-AI N-Gram models exclusively trained on human corpora
as the “gold standard” for AI text detection. Building on this foundation, we introduce GramGuard, a
lightweight, interpretable framework that identifies machine-generated text through delta-based sta-
tistical analysis of paraphrastic variants. Our core innovation lies in measuring systematic shifts in
three key metrics: log-likelihood, entropy, and token frequency variance across perturbations gen-
erated by LLMs under controlled temperatures. We found that AI-generated texts exhibit smaller
and inconsistent deviations compared to human-authored content. Extensive experiments across
PubMed, WritingPrompts, and XSum datasets demonstrate that GramGuard achieves significant
ROC-AUC and exceptional robustness against paraphrasing attacks compared with various SOTA
baselines. Ablation studies confirm that entropy and frequency variance deltas are primary discrim-
inators, revealing AI text’s inherent lexical inflexibility. Future work will explore hybrid approaches
combining token-level robustness with corpus-level interpretability.
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A APPENDIX

A.1 APPENDIX A: PROMPT TEMPLATES FOR PARAPHRASING

To generate paraphrased variants for robustness evaluation, we employed ChatGPT APIs with a con-
sistent function-calling interface. Each input sentence was rewritten into 10 distinct variants per
temperature, across six decoding temperatures (𝑇 ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.1}). This setup yielded
60 paraphrases per model per sentence, supporting extensive evaluation of detection performance
under stylistic variation.

FUNCTION DEFINITION: rewrite_sentence()

The same structured function definition was used across all APIs:

{
"name": "rewrite_sentence",
"description": "Rewrites a given sentence while preserving the original

meaning. The output should be fluent and natural.",
"parameters": {

"type": "object",
"properties": {

"sentence": {
"type": "string",
"description": "The input sentence to paraphrase"

}
},
"required": ["sentence"]

}
}

CHATGPT (GPT-4.1-MINI) INVOCATION

Each paraphrase was generated using OpenAI’s function-calling API as follows:

response = client.chat.completions.create(
model="gpt-4.1-mini",
temperature=T,
messages=[

{"role": "system",
"content": "You rewrite text fluently and clearly."},

{"role": "user",
"content": "Rewrite the following sentence while preserving its "

"meaning:\n\n\"{sentence}\""}
],
functions=[rewrite_sentence],
function_call={"name": "rewrite_sentence"}

)

VARIANT GENERATION NOTES

• A total of 60 variants per sentence were created (6 temperatures × 10 samples).
• Each variant was stored in structured CSVs under columns variant_1 to variant_10.
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APPENDIX B: FEATURE ABLATION AND OVERFIT GAP ANALYSIS

To detail the impact of each delta feature, we performed a feature‐ablation study over all combinations
of 2-, 3-, 4-, and 5-gram statistics (log-score, entropy, variance) across datasets, each under varied
decoding temperatures.

For every feature set, we recorded:

• Test accuracy and ROC-AUC

• 5-fold CV AUC (mean ± std)

• Overfit gap (Test AUC − CV AUC mean)

Observed trends:

• The full 2+3+4+5-gram combination attained the best balance of AUC and stability.

• Employing only 4-gram and 5-gram features markedly reduced performance and widened
the overfit gap.

• Adding higher-order n-grams to a 2+3-gram backbone yields modest AUC gains at the cost
of slight instability.

• The complete 12-dimensional delta vector (log-score, entropy, variance × each of the four
n-gram orders) outperformed any single-metric subset.

Table 2: Feature ablation results on PubMed | GPT-4. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-gram 0.9734 0.9739 0.0004
3+4-gram 0.9610 0.9587 0.0023
4+5-gram 0.9448 0.9433 0.0015
2-gram only 0.9444 0.9345 0.0099
5-gram only 0.9175 0.9170 0.0005

(PubMed | GPT-4). The 2+3+4+5-gram feature set achieves the highest Test AUC (0.9734) with
a negligible overfit gap (0.0004), demonstrating both accuracy and stability. Medium-order com-
binations (3+4-gram) and single-order subsets (e.g., 2-gram only) show lower AUC and/or larger
gaps.

Table 3: Feature ablation results on PubMed | Gemini. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-gram 0.9496 0.9422 0.0074
2-gram only 0.9247 0.9080 0.0168
3+4-gram 0.9082 0.9026 0.0056
4+5-gram 0.8906 0.8826 0.0079
5-gram only 0.8618 0.8503 0.0115

(PubMed | Gemini). The full vector again tops performance (Test AUC 0.9496, gap 0.0074).
Mid/single-order subsets fall in both AUC and stability, underscoring the importance of multi-scale
n-gram deltas.
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Table 4: Feature ablation results on PubMed | GPT-3.5-Turbo. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-gram 0.9779 0.9772 0.0007
3+4-gram 0.9633 0.9626 0.0007
2-gram only 0.9512 0.9449 0.0063
4+5-gram 0.9441 0.9438 0.0003
5-gram only 0.9156 0.9102 0.0054

(PubMed | Turbo 3.5). PubMed | Turbo 3.5 variant’s yield the highest overall AUC (0.9779) and the
smallest gap (0.0007) for the full feature set, indicating exceptional robustness to paraphrasing. Even
here, reduced feature combinations lead to noticeable drops in performance or increased overfitting,
reaffirming that the 12-dimensional delta representation is essential for reliable detection on PubMed.

Table 5: Feature ablation results on Writing | GPT-4. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-Gram 0.9549 0.9491 0.0058
3+4-Gram 0.9292 0.9228 0.0064
2-Gram only 0.9122 0.9019 0.0103
4+5-Gram 0.9109 0.9048 0.0061
5-Gram only 0.8996 0.8890 0.0106

(Writing | GPT-4). Full 2+3+4+5-gram feature set achieves the highest Test AUC (0.9549) with a
modest overfit gap (0.0058). Mid-order combinations (3+4-gram) and single-order subsets (2-gram
only, 5-gram only) show noticeably lower AUCs and larger gaps, indicating reduced stability and
generalization.

Table 6: Feature ablation results on Writing | Gemini. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-Gram 0.9784 0.9762 0.0022
3+4-Gram 0.9752 0.9728 0.0024
4+5-Gram 0.9663 0.9652 0.0011
5-Gram only 0.9643 0.9637 0.0006
2-Gram only 0.9564 0.9493 0.0071

(Writing | Gemini). The combined 2+3+4+5-gram delta vector yields a Test AUC of 0.9784 and a
minimal gap of 0.0022, outperforming all reduced subsets. The substantially larger gaps for 2-gram
only (0.0071) and 4+5-gram (0.0011) confirm that multi-order integration is critical to maintain both
high accuracy and low generalization error on creative text.

Table 7: Feature ablation results on Writing | GPT-3.5-Turbo. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-Gram 0.9798 0.9749 0.0049
3+4-Gram 0.9689 0.9638 0.0051
4+5-Gram 0.9616 0.9519 0.0097
2-Gram only 0.9578 0.9491 0.0087
5-Gram only 0.9553 0.9457 0.0097

(Writing | Turbo 3.5). The full 2+3+4+5-gram set again tops performance with 0.9798 AUC and
a gap of 0.0049. Reduced feature sets exhibit lower AUCs and increased overfitting (e.g., 4+5-gram
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gap of 0.0097), underscoring that the complete delta representation is essential for robust detection
on writing-style data.

Table 8: Feature ablation results on XSum | GPT-4. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-Gram 0.9900 0.9877 0.0023
3+4-Gram 0.9802 0.9772 0.0030
2-Gram only 0.9770 0.9738 0.0032
4+5-Gram 0.9734 0.9689 0.0045
5-Gram only 0.9707 0.9666 0.0041

(XSum | GPT-4). Full 2+3+4+5-gram set achieves an outstanding Test AUC of 0.9900 with a mini-
mal overfit gap of 0.0023. Reduced combinations—such as 3+4-gram (AUC 0.9802, gap 0.0030) or
2-gram only (AUC 0.9770, gap 0.0032)—display slightly lower accuracy and marginally larger gaps,
demonstrating that integrating all four n-gram orders is key for both performance and stability.

Table 9: Feature ablation results on XSum | Gemini. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-Gram 0.9989 0.9990 0.0001
3+4-Gram 0.9986 0.9986 0.0000
4+5-Gram 0.9970 0.9968 0.0002
5-Gram only 0.9965 0.9960 0.0005
2-Gram only 0.9919 0.9908 0.0011

(XSum | Gemini). Combined 2+3+4+5-gram vector reaches near-perfect cross-validation gener-
alization (CV AUC 0.9990) and a negligible gap (0.0001), yielding a Test AUC of 0.9989. Even
mid-order subsets (e.g., 3+4-gram with gap 0.0000) remain strong, but none match the consistency
and peak accuracy of the full delta representation.

Table 10: Feature ablation results on XSum | GPT-3.5-Turbo. Top five model combinations.
Feature Set Test AUC CV AUCMean Gap
2+3+4+5-Gram 0.9954 0.9955 0.0001
3+4-Gram 0.9923 0.9927 0.0004
2-Gram only 0.9911 0.9912 0.0001
4+5-Gram 0.9880 0.9878 0.0002
5-Gram only 0.9848 0.9848 0.0001

(XSum | Turbo 3.5) Full feature set again dominates, posting a Test AUC of 0.9954 and an almost
zero gap (0.0001). The tiny performance drop in reduced sets (e.g., 4+5-gram gap 0.0002) highlights
how the 12-dimensional delta features reliably generalize even on highly abstractive summarization
data.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

APPENDIX C: FULL TEMPERATURE‐WISE DETECTION RESULTS

This appendix details the ROC‐AUC performance of our delta‐feature detector (using an XGBoost
classifier) across decoding temperatures 𝜏 = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1] for three ChatGPT variants
(GPT-4, GPT-3.5-Turbo, Gemini) on PubMed abstracts, WritingPrompts passages, and XSum sum-
maries.

Overall, all variants maintain high discriminative power (AUC > 0.94) at every 𝜏, yet each shows
characteristic strengths and sensitivities:

• GPT-4: Reaches its highest PubMed AUC (0.9577) at 𝜏 = 0.7 and peaks on XSum (0.9992)
already at 𝜏 = 0.1. WritingPrompts performance is strongest at 𝜏 = 0.1 (0.9712), dipping
slightly between 𝜏 = 0.5 and 𝜏 = 0.9, indicating that mid-range sampling smoothness
introduces modest variability in both formal and creative prose.

• GPT-3.5-Turbo: Exhibits robust stability across all 𝜏, with PubMed and XSum AUCs peak-
ing at higher settings (PubMed: 0.9674 at 𝜏 = 1.1; XSum: 0.9981 at 𝜏 = 0.5). Writing-
Prompts detection is best at 𝜏 = 0.1 (0.9864). Fluctuations remain within 0.03 AUC,
showing low sensitivity to decoding randomness.

• Gemini: Delivers near‐ceiling XSum AUCs (≥ 0.9951), but underperforms on PubMed
(≈ 0.87–0.90), with a trough at 𝜏 = 0.7 (0.8799). WritingPrompts stays strong (0.95–0.98),
peaking at 𝜏 = 0.5 (0.9757). This pattern highlights Gemini’s relative difficulty detecting
biomedical paraphrases under moderate randomness.

GPT-4 and GPT-3.5-Turbo achieve marginally higher and more consistent AUCs on formal texts
(PubMed, XSum), whereas Gemini’s only notable weakness is on PubMed at mid-range 𝜏.

Table 11: ROC-AUC at decoding temperatures 𝜏 for paraphrasers (XGB classifier) on PubMed,
WritingPrompts, and XSum.
𝜏 GPT-4.1-mini GPT-3.5-Turbo Gemini

PubMed Writing XSum PubMed Writing XSum PubMed Writing XSum

0.1 0.9460 0.9712 0.9992 0.9627 0.9864 0.9952 0.8727 0.9725 0.9981
0.3 0.9494 0.9405 0.9915 0.9567 0.9859 0.9950 0.8909 0.9628 0.9984
0.5 0.9409 0.9471 0.9924 0.9508 0.9824 0.9981 0.9033 0.9757 0.9994
0.7 0.9577 0.9308 0.9878 0.9476 0.9731 0.9971 0.8799 0.9767 0.9951
0.9 0.9466 0.9348 0.9844 0.9526 0.9734 0.9949 0.8900 0.9733 0.9984
1.1 0.9458 0.9532 0.9843 0.9674 0.9717 0.9931 0.8905 0.9508 0.9977
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APPENDIX D: LENGTH‐ROBUSTNESS ANALYSIS

To understand how detection scales with input length, we truncated each dataset to 45, 90, 135, and
180 words and re-evaluated our XGBoost models (using the full 12-dimensional delta vector) for
GPT-4.1-mini, Gemini, and GPT-3.5-Turbo. For each truncated set, we binned examples by word
count, computed mean length and ROC-AUC per bin, and plotted the results in Figure 5.

• XSum (Fig. 5a): Even at 45 words, AUC ≈ 0.97 across all variants, rising above 0.99 by
90 words and then leveling off.

• WritingPrompts (Fig. 5b): AUC climbs from ∼0.80 at 45 words to ∼0.96 at 120 words for
GPT-4.1-mini and GPT-3.5-Turbo; Gemini dips by ∼0.02 at 180 words.

• PubMed (Fig. 5c): AUC exceeds 0.85 at 45 words and reaches > 0.95 by 60 words, then
flattens.

These findings confirm that longer passages generally improve discriminability, yet our delta-feature
detector remains robust even on very short inputs, with each dataset exhibiting its own length-
sensitivity profile.

Figure 5: Length‐robustness of delta‐feature detector across temperatures and datasets.
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APPENDIX E: PRE-TRAINED MODEL DOWNLOAD AND SETUP

To replicate our detection pipeline, we provide four pre-trained 𝑛-gram language models (2-gram to
5-gram) on Hugging Face2. These KenLM binaries were trained on a large, clean corpus of human-
written English text. They serve as stable, interpretable statistical baselines for detecting linguistic
perturbations introduced by large language models. By comparing n-gram statistics before and after
paraphrasing, our approach quantifies how AI-generated text diverges from human norms. These
models are integral to computing delta log-likelihoods, entropy, and frequency variance features
used throughout our detection pipeline.

Please download and place the following files into a directory named models/ at the root of the
project:

• 2-gram.arpa.bin
• 3-gram.arpa.bin
• 4-gram.arpa.bin
• 5-gram.arpa.bin

After downloading, the directory structure should look like this:

Ngram_DetectGPT/
|- models/
|- 2-gram.arpa.bin
|- 3-gram.arpa.bin
|- 4-gram.arpa.bin
|- 5-gram.arpa.bin

Our detection scripts will automatically load these models to compute n-gram log-likelihood, en-
tropy, and frequency-based delta features.The full implementation and instructions are available on
GitHub3.

2https://huggingface.co/NGramDev/ngram-detect-models
3https://github.com/N-Gram-dev/GramGuard
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APPENDIX F: USE OF LLMS

In accordance with the ICLR 2026 submission policy, we disclose the use of large language models
(LLMs). LLMs were used for:

• Generating paraphrased text variants for robustness experiments;
• Drafting and refining some sentences for the introduction and related work, which were

subsequently revised by the authors;
• Proofreading and minor formatting adjustments.

All methodological designs, theoretical derivations, experiments, and analyses are the original work
of the authors.
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