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ABSTRACT

Human action recognition is important for many applications such as surveillance monitoring, safety, and health-
care. As 3D body skeletons can accurately characterize body actions and are robust to camera views, we propose
a 3D skeleton-based human action method. Different from the existing skeleton-based methods that use only
geometric features for action recognition, we propose a physics-augmented encoder and decoder model that pro-
duces physically plausible geometric features for human action recognition. Specifically, given the input skeleton
sequence, the encoder performs a spatiotemporal graph convolution to produce spatiotemporal features for both
predicting human actions and estimating the generalized positions and forces of body joints. The decoder, im-
plemented as an ODE solver, takes the joint forces and solves the Euler-Lagrangian equation to reconstruct the
skeletons in the next frame. By training the model to simultaneously minimize the action classification and the
3D skeleton reconstruction errors, the encoder is ensured to produce features that are consistent with both body
skeletons and the underlying body dynamics as well as being discriminative. The physics-augmented spatiotem-
poral features are used for human action classification. We evaluate the proposed method on NTU-RGB+D, a
large-scale dataset for skeleton-based action recognition. Compared with existing methods, our method achieves
higher accuracy and better generalization ability.
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1. INTRODUCTION

Skeleton-based action recognition has been an important research topic for a long time. It aims at identifying
the action classes from skeletons sequences. It has many applications such as visual surveillance,! Internet of
Things (IoT),? and autonomous driving. Skeleton-based action recognition is challenging since the action may
not be well represented without the appearance information. Also, some actions have similar skeletal represen-
tations, which are ambiguous to recognize. Also, large amount of data and training are needed to achieve good
recognition accuracy.

Most existing methods rely on pure deep learning architectures such as recurrent neural network,® graph
convolution network,* and Transformer.? These methods need tremendous amount of training data and are lack
of interpretability of human actions. To alleviate these issues, we proposed a physics-augmented encoder-decoder
network for skeleton-based action recognition by leveraging the physics principles for modeling the human ac-
tions. Different from the existing methods that use only geometric features, we combine the deep learning based
features as well as physics-based features for action recognition. In this way, we can leverage both the geometric
features and the physics features to improve the performance.

Recently, Physics modeling has been introduced for many computer vision tasks and related applications.6 3

In this paper, we model the inherent physics that cause the human actions so that the inherent physics repre-
sentations of human actions can improve the performance and robustness of the action recognition.

In summary, the main contributions of this paper are:
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e We proposed a physics-augmented encoder-decoder network for skeleton-based action recognition. With a
graph-convolution-based encoder and a physics-based decoder, our encoder-decoder network learns physi-
cally plausible features.

e By incorporating physics laws into the model, which improves generalization and data-efficiency of the
model.

e We evaluated our proposed method on NTU-RGB+D 60 & 120 and NW-UCLA datasets. The competitive
recognition accuracy demonstrates the effectiveness of our proposed method.

2. RELATED WORK
2.1 Skeleton-Based Action Recognition

Skeleton-based action recognition has been a popular research topic for a long period because of the compact
and robust representation of human actions. Early works? 2 adopted hand-crafted features to model the human
actions, which had limited performance. Dynamic models such as RNN are also used for skeleton-based action
recognition. 318

Then, graph convolution networks became the mainstream for skeleton-based action recognition. Yan et
al.' introduced spatial-temporal graph convolutional networks (ST-GCN) for skeleton-based action recognition.
The spatial-temporal convolution models the dynamics of human skeleton sequences. Shi et al.?® introduced
two-stream adaptive graph convolutional networks (2s-AGCN) for skeleton-based action recognition. Both the
joint information and bone information are considered, and the topology of graph can be either uniformly or
individually learned by the BP algorithm in an end-to-end manner. The flexibility of the model for graph
construction is increased and it brings more generality to adapt to various data samples. Shi et al.?! introduced
directed graph neural networks (DGNN) for skeleton-based action recognition. The skeleton data is represented
as directed acyclic graph (DAG) based on the kinematic dependency between the joints and bones in the natural
human body. A novel network is designed to extract the information of joints, bones and their relationships and
make prediction based on the extract features. Li et al.?? introduced actional-structural graph convolutional
networks (AS-GCN) for skeleton-based action recognition, which stacks actional-structural graph convolution
and temporal convolution as a basic building block, to learn both spatial and temporal features. A future
pose prediction head is added in parallel to the recognition head to help capture more detailed action patterns
through self-supervision. Liu et al.?® introduced disentangling and Unifying Graph Convolutions (MS-G3D)
for Skeleton-Based Action Recognition. The proposed scheme disentangles the importance of nodes in different
neighborhoods for effective long-range modeling. The G3D module leverages dense cross-spacetime edges as skip
connections for direct information propagation across the spatial-temporal graph. Cheng et al.?* introduced
shift graph convolution network (Shift-GCN) for skeleton-based action recognition. The proposed Shift-GCN
is composed of novel shift graph operations and lightweight point-wise convolutions, where the shift graph
operations provide flexible receptive fields for both spatial graph and temporal graph. Chen et al.?° introduced
channel-wise topology refinement graph convolution (CTR-GCN) for skeleton-based action recognition. The
proposed network models channel-wise topologies through learning a shared topology as a generic prior for all
channels and refining it with channel-specific correlations for each channel. The proposed refinement method
introduces few extra parameters and significantly reduces the difficulty of modeling channel-wise topologies.
Recently, Transformer® is utilized for skeleton-based action recognition and achieve promising results.2627

2.2 Physics Modeling for Computer Vision

Recently, there are increasing approaches incorporating physics knowledge into the model to improve the certain
properties of deep learning models.?3 32

Specifically, some methods utilize the Lagrangian or Hamiltonian mechanics to model the position and mo-
mentum.?*37 To estimate the physical parameters, some work®®3° uses an autoencoder to predict the physics
parameters. In this paper, we also adopt an autoencoder design to learn the physically plausible representations.
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3. METHOD

In this part, we first show the overall framework of our proposed physics-augmented encoder-decoder network.
Then we introduce the encoder and decoder separately. Finally, we discuss the recognizer for skeleton-based
action recognition.

3.1 Overall Framework

The overall framework is shown in Figure 1. The input of our model is a sequence of 3D human skeletons.
Firstly, the input skeletons are fed in the a deformable human mass module to adjust the parameters of the pre-
defined human model, which outputs human mass, shape, etc for use by the physics-based decoder. The encoder
takes the skeletons as input and output the generalized positions, forces of the corresponding input, as well as
deep learning based features. With the fitted human model, the physics-based decoder reconstructs the input
skeletons by taking the generalized positions and forces of the joints. Simultaneously, the intermediate physics
parameters and features are used to perform the classification. By training the model with the classification loss
and the reconstruction loss. The model can well capture the physical properties of the actions and thus improve
the performance and robustness.
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Figure 1. Overall framework of our proposed method. Our model takes a sequence of human skeleton as input. The
model firstly fit basic body parameters such as mass to an pre-defined human model, which will be used in the decoder. A
graph convolution based encoder predict the generalized positions and forces of human joints. Then these positions and
forces are fed to the physics-based decoder to reconstruct the input skeleton sequence. At the same time, the intermediate
representations of the encoder-decoder network are used to perform the action recognition.

3.2 Encoder

Given the input skeleton sequence, we use a spatial-temporal graph convolution network as the encoder to predict
the generalized positions and forces. Specifically, the 3D human skeleton is constructed as an undirected spatial
temporal graph G = (V, £), with N joints and T frames. The node set V = {vy|t = 1,...,T;i = 1,..., N} includes
all the joints in the sequence. Besides the graph, each node is also associated with a feature vector. The feature
vector or node i at frame ¢ is denoted as F'(vy;). And the edge set £ is composed of two types of links: intra-body
links and inter-frame links. The intra-body links for each frame are denoted as Eg = {v;, v4[(¢,j) € H}, where
H is the set of naturally connected human body joints. The inter-frame link set Ep = {vt;, v(s41);} contains
the inter-frame links between two consecutive frames. The intra-body connections of joints within a frame are
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represented by an adjacency matrix A and an identity matrix I. Denote the input feature as f;, and the feature
after the graph convolution as f,,:. We first perform the spatial convolution as below:

sut = AT (A DA fi, W (1)

where A% = j(Aij + I7) and W is the learnable weight matrix.

After the spatial graph convolution, we perform a temporal graph convolution to obtain the final output
feature f,,;. Specifically, the temporal graph convolution is achieved by a 1 x I' convolution along the temporal
dimension. The output of the final graph convolution layer is fed into a fully-connected neural network to predict
the generalized positions g and the estimated forces 7 and A, which are then fed to the physics-based decoder.

3.3 Decoder

Using the generalized positions g and estimated forces 7 and A from the encoder as input, the physics-based
decoder reconstructs the input skeleton sequence subject to the body movement dynamics satisfying the Euler-
Lagrange equation. The physics-based encoder hence plays the same role as the numerical ODE solver for the
dynamics regression decoder for 3D skeleton reconstruction. Specifically, given the generalized positions g, and
forces T and A, the physics-based decoder first solves the g, by:

@, =M "(B,=q)JiA+T—C(B.q,.q)) (2)

where M is the generalized inertia matrix and C' is the generalized bias forces.
Then the decoder predict the next position ;. by:

Qt+1 =q; + q,At (3)

where At is the time interval.
g, is then resized to the original input skeleton scale to construct a dynamic reconstruction loss as below:

T

»Cdynamics - Z(Qt - Qt)2 (4)

t=1

By using the physics-based decoder, the hidden representations (output of the encoder) is constrained to be
physically plausible. For implementation, we adopted the nimblephysics?® as the solver of the physics-based
decoder for the prediction of each timestep.

3.4 Recognizer

The intermediate physics representations sequence from the encoder-decoder network are highly discriminative
of human actions and properties. We combine these physics-based features and the graph convolution features to
perform the classification. Specifically, we concatenate the generalized positions and forces to form the physics
feature vector. Concatenated with the flattened graph convolution features, the combined features are fed into
a fully-connected network for human action classification.

To train the model, our loss function contains two parts: one for the 3D human skeleton reconstruction and
the other for the action recognition:

c
L = Laynamic — A Y P(X = c)logP(X = ¢) (5)

c=1

where the first term is the reconstruction loss and the second term is the classification loss (i.e. negative log-
likelihood), C is the total number of action classes, and A is the weight of the classification loss. With this
loss function, we can ensure the learned intermediate hidden representations are both physically plausible and
are discriminative for action recognition, which sets apart our method from that of the existing human action
recognition methods. After training, the decoder can be discarded and the outputs of the encoder can be used
for action recognition during testing.
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4. EXPERIMENTS
4.1 Datasets

NTU-RGB+D 60 & 120.*:%42 NTU-RGB+D 60 dataset is a large-scale dataset for skeleton-based action
recognition. The data is represented by 3D human joint positions. It contains 60 action classes. The 3D skeleton
data in the dataset was collected by Microsoft Kinect v2, which leads to 25 joints per person at one frame. There
are totally 40 different subjects. The common evaluation settings include Cross-Subjects (CS) and Cross-View
(CV), which means the training set and testing set are from different people and view angles respectively. NTU-
RGB+D 120 dataset?? is an extension version of NTU-RGB+D 60. It contains 120 action classes.

Northwestern-UCLA.** NW-UCLA is a dataset for 3D skeleton-based action recognition. It contains 10
action classes with 1494 data samples. The 3D joint positions are captured by Microsoft Kinect sensors. We
follow the cross-view evaluation metric.*> The data from first two cameras are used for training and the data
from the third camera are used for testing.

4.2 Implementation Details

The implementation of the framework is done in PyTorch. The training and testing was conducted on two Nvidia
RTX 3090 Ti GPUs. For NTU-RGB+D 60 & 120 datasets, the number of joints is set to 25. And the number of
joints is set to 20 for NW-UCLA dataset. We adopt nimblephysics?® differentiable physics solver in the decoder.

4.3 Experiment Results

We verified our proposed method for skeleton-based action recognition on NTU-RGB+D dataset. The experiment
results on NTU-RGB+D 60 and NTU-RGB+D 120 are shown in Table 1 and Table 2 respectively. By comparison,
our proposed physics-augmented encoder decoder network achieves competitive performance against state-of-the-
art methods. The experiment results on NW-UCLA dataset are shown in Table 3. Our proposed encoder-decoder
network also achieves competitive accuracy, which demonstrates its effectiveness.

Table 1. Experiment results on NTU-RGB+D 60. Compared with state-of-the-art methods, our proposed physics-
augmented encoder-decoder network achieves competitive performance.

Method Cross-Subject (%) Cross-View (%)
Ind-RNN'7 81.8 88.8
HCN# 86.5 91.1
ST-GCN*' 81.5 88.3
25-AGCN?Y 88.5 95.1
SGN*? 89.0 94.5
AGC-LSTM*6 89.2 95.0
DGNN?Z! 89.9 96.1
Shift-GCN?24 90.7 96.5
DC-GCN+ADG*? 90.8 96.6
PA-ResGCN-B19%® 90.9 96.0
DDGCN*? 91.1 97.1
Dynamic GCN®Y 91.5 96.0
MS-G3D* 91.5 96.2
CTR-GCN? 92.4 96.8
ST-TR5! 89.9 96.1
STST?" 91.9 96.8
Encoder-Decoder (ours) 90.8 96.3
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Table 2. Experiment results on NTU-RGB+D 120. Compared with state-of-the-art methods, our proposed physics-
augmented encoder-decoder network achieves competitive performance.

Method Cross-Subject (%) Cross-View (%)
ST-LSTM!4 55.7 57.9
GCA-LSTM?>? 61.2 63.3
RotClips+ MTCNN?®3 62.2 61.8
SGN*? 79.2 81.5
2s-AGCN?Y 82.9 84.9
Shift-GCN2* 85.9 87.6
DC-GCN+ADG* 86.5 88.1
MS-G3D% 86.9 88.4
PA-ResGCN-B19#® 87.3 88.3
Dynamic GCN®Y 87.3 88.6
CTR-GCN? 88.9 90.6
Encoder-Decoder (ours) 86.9 88.2

Table 3. Experiment results on NW-UCLA dataset. Compared with state-of-the-art methods, our proposed physics-
augmented encoder-decoder network achieves competitive performance.

Method Accuracy (%)
Lie Group® 74.2
Action Ensemble®® 76.0
HBRNN-L!3 78.5
Ensemble TS-LSTM®6 89.2
AGC-LSTM*6 93.3
Shift-GCN?24 94.6
DC-GCN-+ADG*" 95.3
CTR-GCN# 96.5
Encoder-Decoder (ours) 93.6

4.4 Qualitative Results
4.5 Ablation Studies

Encoder types. To further study the physics-augmented encoder-decoder network, we replace the graph-
convolution-based encoder with other types of encoders. The experiments results are shown in Table 4.
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Table 4. Encoder types. We replace the graph-convolution-based encoder with other types of encoders. The experiment
results show that the graph-convolution-based encoder gives the best performance.

Encoder Type NTU-60-CS (%) NTU-60-CV (%) NTU-120-CS (%) NTU-120-CV (%)

FFN 86.3 92.0 81.4 82.1
RNN 88.9 94.5 85.1 86.6
GCN 90.8 96.3 86.9 88.2

Decoder types. To demonstrate the effectiveness of physical modeling of physics-augmented encoder-decoder
network, we replace the physics-based decoder with other types of networks. The experiment results are shown
in Table 5. The results shown that the physics-based decoder outperforms other types of decoders.

Table 5. Decoder types. We replace the physics-based decoder with other types of encoders. The physics-based decoder
gives the best performance, which demonstrates the effectiveness of our proposed method.

Decoder Type NTU-60-CS (%) NTU-60-CV (%) NTU-120-CS (%) NTU-120-CV (%)

FFN 75.6 77.2 70.5 70.8
RNN 80.6 84.3 75.9 76.4
GCN 83.4 89.0 78.9 80.8
Physics-based 90.8 96.3 86.9 88.2

Training with small-scale data. To further demonstrate the effectiveness of our proposed, method, we reduce
the amount of training data for 100% to 10% and compare with other approaches. The experiment results are
shown in Figure 2. The results show that our proposed method is more data-efficient.

90+ e PAED (ours)
25-AGCN
= ST-GCN

88 e PAED (ours)
MS-G3D
= 2s-AGCN

Accuracy (%)
Accuracy (%)
3

50

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Portion of training data Portion of training data

(a) NTU-RGB+D 60 (b) NTU-RGB+D 120
Figure 2. Experiment results on NTU-RGB+D 60 & 120 with small-scale training data.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a physics-augmented encoder-decoder network for skeleton-based action recognition.
The intermediate hidden states representing the generalized forces as well as features are used to performed
the action recognition. Our proposed method achieves competitive performance on benchmark datasets. We

conducted ablation studies to demonstrate the effectiveness of physical modeling. The ablation study also shows
that our method is more data-efficient with small-scale training data.
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Our proposed method is based on the 3D human skeletons, which need to be collected from depth sensors or
estimated by 3D pose estimation algorithms. Future work may include how to apply our method on 2D human
skeletons and improve the computation efliciency.
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