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1 Introduction1

Machine learning systems trained on sensitive user data can be vulnerable to privacy attacks [46, 18].2

The issue is especially pressing for recent applications involving text [6] powered by ever larger deep3

learning models, as training data for these systems are often directly derived from private user data,4

and these models are known capable of memorizing and regurgitating sensitive training examples [8].5

As a result, there has been a large interest in developing methods that provide data privacy guarantees6

for models of text. The gold-standard for providing such a guarantee in machine learning is Differen-7

tial Privacy (DP) [14]. Unfortunately, DP training has typically struggled to produce useful models8

when applied to large language models, resulting in models with either vacuous privacy guarantees9

[13] or performance far below non-private baselines. This is widely attributed to the fact that the core10

primitive of Differentially Private Stochastic Gradient Descent (DP-SGD) [47, 1] injects noise that11

must scale with the number of parameters, resulting in large noise levels for large models [59].12

We tackle the problem of building high performing DP language models for sentence classification13

and language generation tasks with tens to hundreds of thousands of examples. We pursue this14

goal by re-examining the performance of the baseline DP optimization algorithm for fine-tuning15

large language models, and study how choices of hyperparameters, task formulation, and pretrained16

models affect the performance of models given fixed privacy budgets. In contrast to the mainstream17

perception, our empirical results demonstrate that large pretrained models with hundreds of millions18

of parameters can be effectively and efficiently fine-tuned to yield models with high performance at19

stringent privacy levels. For language generation, the performance of our models surpasses strong20

non-private baselines. For sentence classification, the performance of our fine-tuned models surpasses21

those obtained under heuristic privacy notions [21] which do not possess formal guarantees. Figure 122

illustrates these results. We summarize our contributions below.23

(1) We show that with appropriate hyperparameters and task setup, fine-tuning pretrained language24

models with DP-Adam yields strong performance for a suite of NLP tasks at stringent privacy25

levels (ε ∈ {3, 8}). Notably, some of our fine-tuned models outperform strong non-private26

learning baselines and models obtained under heuristic privacy notions.27

(2) On the computational side, DP-SGD and DP-Adam can have prohibitive memory cost due to28

clipping per example gradients. We present a memory saving trick that generalizes the trick29

by Goodfellow [17] to the case of sequential inputs. Combining this with a recent layer-by-layer30

clipping procedure [27] enables privately fitting large Transformers [52] with almost the same31

memory storage as non-private learning at the cost of one additional backward pass per clip.32

(3) We show that the dimensionality of gradient updates fails to explain private fine-tuning per-33

formance. In contrast to private learning with convex objectives (where high dimensionality34

degrades performance), we find that larger pretrained models lead to improved private fine-tuning35

results, and parameter-efficient adaptation methods designed with a reduced dimensionality don’t36

necessarily outperform fine-tuning all parameters.37

Empirical results indicate that high performing DP language models at modest privacy budgets can38

be efficiently trained by directly fine-tuning pretrained models with DP optimization. This enables39

building practical private NLP models for a range of common tasks where privacy could be at stake.40
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(a) Sentence classification (MNLI [56])

100 200 300 400 500 600 700

number of non-embedding parameters (millions)

60

62

64

66

E
2E

 te
st

 s
et

 B
LE

U

distilgpt2

gpt2

gpt2-medium

gpt2-large

= 3
= 8

non-private T-GEN (D & J, 2016)

(b) Language generation (E2E [38])
Figure 1: Fine-tuning pretrained models with DP-Adam yields strong performance when under the
right setup. Fine-tuning larger models produces better results. Fine-tuned RoBERTa-base under DP at
ε = 3 outperforms TextHide (the extension of InstaHide [22] for text classification) with BERT-base.
Non-private generation baseline numbers based on that reported by Wiseman et al. [57].

2 Problem Formulation41

We build DP models for sentence classification and language generation tasks on small private42

datasets. We leverage off-the-shelf (public) pretrained language models to simplify the learning43

problem. We fine-tune these models with DP-Adam [1, 26]. DP optimizers augment usual optimizers44

by clipping per example gradients with a norm constraint C, and adding Gaussian noise to the clipped45

gradients whose standard deviation is controlled by C and a noise multiplier σ determined from the46

privacy budget. Appendix A recaps DP-Adam. We account privacy spending with Rényi DP [34] and47

detail the procedure in Appendix B. We now describe task setups.48

Sentence classification. We fine-tune models of various sizes in the BERT [11] and RoBERTa [30]49

families, as these masked language models are known to work well for sentence classification in the50

GLUE [54] benchmark. Each example/record here consists of some input sentences and a label.51

Language Generation. We fine-tune the autoregressive GPT-2 of various sizes [45], as this model52

family is known to work well for generation. The tasks we consider have training sets that are grouped53

into records. For table-to-text generation tasks such as E2E [38] and DART [36], each record in the54

training set consists of a pair of table entry and corresponding text description to predict.55

3 Effective Differentially Private Language Model Adaptation56

By studying the impact of hyperparameters and task design, we demonstrate that the performance of57

the basic DP-Adam baseline can be substantially improved, even matching some strong non-private58

baselines. Our analyses also reveal common failure modes and explain poor results reported in past59

works that consider DP optimization as baselines.60

3.1 Good DP Language Models Require Good Hyperparameters61

DP optimization is sensitive to the choice of hyperparameters [41]. Our experiments suggest that62

performance can vary from being close to trivial with ill-chosen hyperparameters to near past state-of-63

the-arts with appropriately chosen ones. As a consequence, we present simple but widely applicable64

guidelines on setting the most important hyperparameters. Unless otherwise stated, the unmentioned65

hyperparameters are set to defaults documented in Appendix H.66

Batch Size & Learning Rate. Batch size is one of the most important hyperparameters in our67

experience. We focus on a setting where the number of training epochs is fixed. This settings roughly68

corresponds to when the total compute budget is fixed in a non-data-parallel setting.1 In this setup, the69

learning rate and batch size jointly affects performance, since using larger batches implies performing70

fewer gradient updates. To study this joint influence, we fine-tune GPT-2 on the E2E dataset for71

table-to-text generation with DP-Adam at ε = 3 with various batch sizes and learning rates. Figure 272

shows that the best performing models are obtained with both a large batch size and large learning73

rate. Using a small learning rate together with a small batch size yields considerably worse results.74

Note a seq2seq baseline achieves a test BLEU of ~65 without privacy on this task [57].75

1This is appropriate for large models as they tend to be fine-tuned with small micro-batches combined with
gradient accumulation; the number of backpropagation passes is roughly constant with respect to the batch size
employed for gradient updates.
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Figure 2: Large batch sizes and learn-
ing rates lead to the best performance.

Recall in the non-private world, pretrained language models76

are typically fine-tuned with small batch sizes and small learn-77

ing rates with Adam (bottom left panel in Figure 2). 2 This78

implies that naïely fine-tuning pretrained language models79

privately using the non-private setup would result in more80

performance degradation than necessary. On the other hand,81

Tramèr and Boneh [51] studied how the batch size and learn-82

ing rate jointly affect the performance of image classification83

while holding other hyperparameters fixed. They heuristi-84

cally suggested a linear scaling rule: Scaling the learning85

rate together with the batch size by the same constant should86

yield models with almost the same performance. However,87

Figure 2 indicates that this fails to hold consistently as it falsely predicts that large batch and high88

learning rate (top right most entry) would have equal performance to small batch and low learning89

rate (bottom left entry). We explain why linear scaling fails for small batches in Appendix K.90
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Figure 3: Small clipping norm with
large learning rate is performant.

Clipping Norm & Learning Rate. DP optimization is sen-91

sitive to the clipping normC. Since the scale of noise depends92

on this clipping norm (recall its standard deviation is Cσ),93

picking C much larger than the actual gradient norm implies94

more noise is being applied than necessary. In practice, we95

found that a small clipping norm which enforces almost all96

gradients to be clipped throughout training leads to the best97

performance when accompanied by a large learning rate. Fig-98

ure 3 demonstrates this on the E2E dataset. This finding also99

explains the poor performance of full fine-tuning baselines100

in recent works [60].3101

3.2 Improving the Task Alignment Helps Private Learning102

Our fine-tuned models on language generation tasks worked well since the pretraining objective and103

downstream task are aligned: Both involve predicting sequences of tokens drawn from some corpus.104

This alignment simplified the task and benefitted private learning.105

For sentence classification tasks, this alignment does not naturally occur. Recall the standard approach106

for adapting masked language models [11, 53] for classification involves stacking a freshly initialized107

net on top of the encoding of a special [CLS] token and jointly optimizing all parameters [11]. This108

workflow introduces a discrepancy between pretraining and fine-tuning: Pretraining predicts masked109

out words that belong to a large vocabulary whereas fine-tuning predicts integer labels.110

To avoid this, we instead consider learning to predict the missing word during fine-tuning. For111

example, for sentiment classification, we reframe the problem as filling in the [MASK] token in112

the sequence “<INPUT>. It is [MASK].” and compare the probabilities of words “awesome” and113

“terrible”. This text infilling task is almost exactly the procedure used for pretraining masked language114

models, and recent works have demonstrated its effectiveness for knowledge probing [43], few-shot115

learning [15] and multi-task fine-tuning [55]. We study how this affects private learning. Table 1116

shows that this text-infilling objective brings strong performance gains.117

4 Ghost Clipping: Clipping Without Instantiating per Example Gradients118

DP-SGD and DP-Adam are memory costly due to per example gradient clipping. Naïvely imple-119

mented, this step instantiates giant gradient vectors for each example in a batch during optimization.120

This is prohibitively expensive for large language models. We present a memory trick that extends121

the trick by Goodfellow [17] to handle sequential data and can be combined with a recent clipping122

procedure by Lee and Kifer [27] that does not instantiate entire gradients. This trick enables fitting123

large Transformers [52] under DP with almost the same memory cost as non-private training, at the124

expense of an extra backprop pass per clipping step. Due to space constraint, we only give an abridged125

overview and guide the reader to Appendix C for the complete exposition. What distinguishes our126

trick from past work is how we compute per example gradient norms for linear/embedding layers.127

2While the same learning rate might mean very different things for SGD with and without gradient clipping,
this issue is less relevant for Adam which self-adjusts the scale of updates with its accumulated second moments.

3For instance, Yu et al. [60] included DP full fine-tuning RoBERTa as baseline with C = 10 and report much
worse results than ours (C = 0.1); hyperparameters in their work obtained via private communication.
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Consider a linear layer (bias omitted) with input a ∈128

RB×T×d, weight matrix W ∈ Rp×d, and gradient with re-129

spect to outputs g ∈ RB×T×p, where B is the batch size, T130

is the sequence length, d and p are the input and output di-131

mensions. The per example norms of gradients for this layer132

can be reformulated as ‖∇WLi‖2F = vec(aia
>
i )>vec(gig

>
i ).133

Note aia>i , gig
>
i ∈ RT×T , and thus when implemented with134

usual primitives, the memory cost now isO(BT 2) as opposed135

to O(Bpd) before when {∇WLi}i are naïvely instantiated.136

When T = 1, this is the Goodfellow [17] trick. Our trick is137

especially relevant for large Transformers, since these models138

tend to have large embedding layers (d � T ) and is a ma-139

jor source of memory spending. Figure 4 confirms our trick140

yields substantial savings compared to existing approaches.141

5 Low Dimensional Updates Are Not Necessarily Better142

The typical privatization procedure for gradients injects isotropic noise that leads to large noise levels143

for large models and dense fine-tuning updates. The aim of this section is to test if the dimensionality144

is indicative of final performance. Due to space constraint, we provide an outline of our empirical145

findings here and refer the reader to Appendix D for the full exposition.146

We focus on answering two questions: (1) Do larger pretrained models lead to better or worse147

private performance? (2) Do adaptation methods designed with a reduced dimensionality of updates148

outperform full fine-tuning all parameters? Empirical results suggest that larger pretrained models149

consistently lead to better private learning results across sentence classification (see Table 1) and150

language generation tasks. Regarding the second question, experiments across various adaptation151

approaches show that there is no general relationship between the dimensionality of updates and final152

performance. Moreover, full fine-tuning generally has strong performance across different tasks.153

Table 1: With larger pretrained models, full fine-tuning consistently leads to better differentially
private models for sentence classification. RGP [60] is an approach that reduces dimensionality of
updates by projection. Numbers are dev set accuracies.

Model
ε = 3 ε = 8

MNLI-(m/mm) QQP QNLI SST-2 MNLI-(m/mm) QQP QNLI SST-2

RGP (RoBERTa-base) - - - - 80.5/79.6 85.5 87.2 91.6

Full (RoBERTa-base) 79.33/79.82 83.30 83.06 86.35 80.05/80.51 83.97 83.68 88.82
Full + infilling (RoBERTa-base) 81.28/82.06 84.06 86.41 92.78 81.84/82.62 84.61 86.85 92.78
Full + infilling (RoBERTa-large) 85.69/86.16 85.60 90.29 94.04 86.14/86.48 86.04 90.65 94.38

6 Scope and Limitation154

We have presented strategies for effectively and efficiently fine-tuning large pretrained language155

models under DP for building high performing private NLP models. Our empirical results suggest156

that DP isn’t as impractical a notion of privacy for building NLP systems as many have believed. For157

researcher and practitioners working on building private NLP models with datasets of modest sizes,158

these results suggest that DP fine-tuning with a proper setup is perhaps worth a serious try before159

prematurely shifting to less formal notions of privacy which have not stood (or may not stand) against160

the test of time. Below we list some limitations and unsolved questions.161

Dimensionality vs Performance. Empirical results on scaling the model size suggest that higher162

dimensional updates do not necessarily hurt performance. A better characterization of the learning163

dynamics is likely needed before we may have a complete understanding of these observations.164

Scaling Laws for Private Learning. While scaling laws [24] for non-private learning have become165

prevalent, we are unaware of a case study in private learning. Studies on how the dimensionality of166

models affects private learning in precise quantitative terms will likely be both useful for practitioners167

and an interesting theoretical endeavor on its own.168
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A DP-Adam321

We use DP-Adam throughout. DP-Adam works just like regular Adam [26] but performs updates and322

moment accumulation with privatized gradients. The gradient privatization part is the same as that323

performed in DP-SGD [47, 1]. To determine the noise multiplier, we account privacy through Rényi324

differential privacy (RDP) [34, 35]. For completeness, we include the pseudocode below.325

Algorithm 1 DP-Adam

1: Input: Data D = {xi}Ni=1, learning rate η, noise multiplier σ, batch size B, Euclidean norm
threshold for gradients C, epochs T , initial parameter vector θ0 ∈ Rp, initial moment estimates
m0, v0 ∈ Rp, exponential decay rates β1, β2 ∈ R, avoid division-by-zero constant γ ∈ R.

2: for t ∈ [T · N/B] do
3: Draw a batch Bt via Poisson sampling; each element has probability B/N of being selected
4: for xi ∈ Bt do
5: gt(xi)← ∇θtL(xi), g̃t(xi)← gt(xi) ·min(1,C/‖gt(xi)‖2)
6: end for
7: zt ∼ N (0, σ2C2Ip)

8: ḡt = 1
B

(∑N
i=1 g̃t(xi) + zt

)
9: θt+1,mt+1, vt+1 ← AdamUpdate(θt,mt, vt, ḡt, β1, β2, γ)

10: end for
11: return θTN/B

Algorithm 2 AdamUpdate

1: Input: θt,mt, vt, ḡt, β1, β2, γ
2: mt+1 ← β1 ·mt + (1− β1) · ḡt, vt+1 ← β2 · vt + (1− β2) · ḡt2
3: m̂t+1 ← mt+1/ (1− βt1) , v̂t+1 ← vt+1/ (1− βt2)

4: θt+1 ← θt − α · m̂t+1/
(√

v̂t+1 + γ
)

5: return θt+1,mt+1, vt+1

B Privacy Accounting326

We train all models under approximate-DP [14], and we view two datasets as being adjacent if and327

only if one can be obtained from the other by including an extra record [35]. Instead of accounting the328

privacy loss with Moments Accountant [1], we perform computation through (i) Rényi Differential329

Privacy (RDP) [34, 35], and (ii) Gaussian Differential Privacy (GDP) [12] with an associated central330

limit theorem. Both approaches are improvements over the Moments Accountant. Accounting loss331

with RDP provides strict upper bounds on the actual privacy leakage, whereas accounting with GDP332

and its central limit theorem, although asymptotically exact, only provides approximations to the333

actual loss under a finite number of compositions [12, Theorem 3.4].334

Given the noise multiplier σ, sampling rate q, number of steps T , and δ, ε can be computed via335

first computing the Rényi DP leakage and then converting it to approximate DP. When a privacy336

budget ε is prescribed, we can numerically invert the above procedure to obtain a suitable σ for noisy337

optimization. This is what we do throughout all experiments. For completeness, given σ’s chosen as338

above, we also report the εGDP estimated by going through the central limit theorem in Gaussian DP.339

In addition, model selection from hyperparameter tuning on private training data could incur extra340

privacy leakage. We skip the step of private selection [29] and instead perform tuning only on the341

E2E task and reuse almost the exact hyperparameters for remaining tasks.342

C Ghost Clipping: Clipping Without Instantiating per Example Gradients343

DP-SGD and DP-Adam are memory costly due to their per example gradients clipping. Naïvely344

implemented, this step instantiates a giant gradient vector for each example in a batch during345
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optimization, which is often prohibitively expensive for large language models. For example, Hoory346

et al. [19] pretrained BERT with DP optimization and reported memory issues when using large batch347

sizes that are necessary for handling noisy gradients.348

A simple yet time costly solution to the memory problem is micro-batching: Split large batches into349

multiple smaller ones and aggregate the results after processing each small batch individually [51, 19].350

This solution, however, is unlikely to be sufficient as neural language models become even larger and351

it becomes difficult to even fit a few copies of the gradient.352

We argue that per example gradients need not be instantiated at all, if the goal is only to clip the353

gradients. Leveraging this insight, Lee and Kifer [27] presented a clipping procedure that only354

instantiates the per example gradient for a single layer of the model one at a time, as opposed to the355

entire model at once. We call this approach ghost clipping, as the per example gradient is much like356

the ghost that would never be explicitly instantiated.357

Unfortunately, we find that this trick can still be insufficient for sequence models such as Transformers,358

as the memory requirement for per example gradients in embedding layers (and language modeling359

heads) can be costly. Here, we extend this approach and present a specialized version for Transformers360

such that DP-SGD and DP-Adam can be ran with almost the same peak memory consumption as361

non-private training, at the additional cost of an extra backpropagation pass. We anticipate this362

extension to be useful for both privately fine-tuning and pretraining ever larger Transformers.363

C.1 Ghost Clipping364

We briefly recap the approach by Lee and Kifer [27]. Note that per example gradient clipping is365

easy if we had access to the per example norms. In this case, we first compute the scaling factor366

ci = min(1,C/‖∇Li‖2), where C is the clipping threshold and Li is the loss associated with the ith367

example. Then, we would perform the usual backward pass with the reweighted loss
∑
i ciLi which368

is a scalar.369

With this in mind, the remaining difficulty becomes computing the gradient norm ‖∇Li‖2. We370

emphasize two core technicalities that enable computing this quantity without instantiating the full371

per example gradient∇Li.372

First, for a common neural net layer l with parameters W (l) (without parameter sharing), the per373

example gradient w.r.t. parameters can be easily computed using the input to the layer a(l) and the374

gradient of the loss w.r.t. the output g(l), both of which are well available during a typical backward375

pass in autodiff libraries. For instance, for a linear layer with non-sequential input a(l) ∈ RB×dl and376

gradient w.r.t. output g(l) ∈ RB×dl+1 (B, dl, and dl+1 are the batch size, input and output dimensions,377

respectively), the per example gradient w.r.t. weights of the layer∇W (l)L ∈ RB×dl×dl+1 is simply378

the following batched outer product:379

(∇W (l)L)i,j,k =
(
a(l)
)
i,j

(
g(l)
)
i,k
. (1)

Second, for a large vector formed by concatenating several small vectors u = [u1, . . . , uk], its380

Euclidean norm is simply the norm of the vector of norms, i.e.381

‖u‖2 = ‖[u1, . . . , uk]‖2 = ‖(‖u1‖2 , . . . , ‖uk‖2)‖
2
. (2)

The second point means that computing the per example gradient norm ‖∇Li‖2 can be382

done by computing the per example gradient norms for individual layers of the neural net383

‖∇W (1)Li‖2 , . . . , ‖∇W (L)Li‖2 one at a time. Moreover, the first point implies that the norms384

for each layer can be computed using quantities freely available to a typical backward pass. Overall,385

this means computing the per example gradient norm can be done in a layer-by-layer fashion if the386

network does not adopt parameter sharing, with only one per example gradient tensor for a single387

layer of the network being instantiated at once.388

C.2 Ghost Clipping for Transformers With Sequential Data389

Vanilla ghost clipping still requires instantiating the per example gradient of individual layers390

(although not simultaneously). This may become problematic in terms of memory for Transformers391

with embedding layers that have large vocabularies. Here, we present a specialized procedure for392
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computing the per example gradient norm for linear and embedding layers4 when they are applied393

to sequential data. This procedure reduces time and memory complexity and can be viewed as a394

generalization of the trick by Goodfellow [17] that additionally handles sequential inputs.395

Let a ∈ RB×T×d be the input to a linear layer with weight matrix W ∈ Rp×d, and s ∈ RB×T×p be396

the output with si,j = Wai,j . Let g ∈ RB×T×p be the gradient of the loss w.r.t. the output s. Simple397

calculation shows that the per example gradient is the product of two matrices:398

∇WLi = g>i ai ∈ Rp×d. (3)
Since the per example gradient norms are the end goal, the per example gradients {∇WLi}Bi=1399

themselves need not be instantiated explicitly. More precisely, we observe that the squared Frobenius400

norm ‖∇WLi‖2F obeys the following identity:401

‖∇WLi‖2F = vec(aia
>
i )>vec(gig

>
i ), (4)

where aia>i , gig
>
i ∈ RT×T ; see Appendix G for a derivation. Implemented with the usual primitives402

in machine learning libraries, (4) has an asymptotic memory complexity of order O(BT 2), as403

opposed to the naïve approach which goes through instantiating (3) and is of order O(Bpd) in terms404

of memory. The memory saving of this procedure is most exemplified for off-the-shelf pretrained405

language models which have large vocabularies. For GPT-2, d ≈ 50, 000 and p = 768 for the406

embedding layer, and the context window T ≤ 1024.5 Our method in theory reduces the memory407

cost due to large embeddings by a factor of 22. In practice, we observe significant savings for most408

pretrained models which generally are bottlenecked by large embedding layers.6 We compare ghost409

clipping implemented using (4) (in PyTorch) with a JAX implementation that clips by instantiates410

per-sample gradients powered by jit and vmap, Opacus, ghost clipping without using (4), and411

non-private training in PyTorch. Figure 5 (a) shows that for typical inputs, our trick is the most412

memory friendly and allows fitting batches almost as large as non-private training. Setup for this413

experiment is detailed in Appendix I.414

gpt2-small gpt2-medium gpt2-large
0

20

40

60

80

m
ax

 b
at

ch
 s

iz
e

86

34

10

24

8

0

40

22

8

80

34

10

26

6

0

(a) Memory
gpt2-small gpt2-medium gpt2-large

0

100

200

300

400

st
ep

s 
pe

r m
in

ut
e

465

243

133

355

175

0

296

146

78

291

147

80

442

186

0

non-private
chain-rule-based (Opacus)
accumulate by layer
ghost
JAX (JIT + VMAP)

(b) Time

Figure 5: Left: Training with ghost clipping is 3 times more efficient than Opacus and is almost
as efficient as non-private learning in terms of memory for typical sequences across model sizes.
For GPT2-large, we were unable to fit a single example with the typical length using Opacus or
DP-Adam implemented in JAX on a TITAN RTX GPU (24 GBs of VRAM). Right: Per-update,
training with ghost clipping is at most 20% slower than Opacus and 50% slower than non-private for
the typical batch across model sizes.

D Low Dimensional Updates Are Not Necessarily Better415

Theory on DP ERM with convex objectives suggests that the error of private learning degrades with416

the dimensionality of a parametric model (O(1/
√
n +

√
p/nε) in precise terms for a p dimensional417

4An embedding layer is essentially a linear layer: The embedding lookup operation applied to indices is
equivalent to a matrix multiplication of the embedding matrix with one-hot encoded indices.

5In practice, for fine-tuning tasks, the average sequence length is much shorter.
6While there are alternative approaches for reducing the memory footprint of the embedding layer during

training, these methods typically introduce extra hyperparameters that would require tuning and therefore privacy
spending.
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model trained on n examples [3]). The aim of this section is to test if this statement remains valid in418

the realm of DP fine-tuning, and if so, to what extent. We focus on answering two questions: (1) Do419

larger pretrained models lead to better or worse private performance, and (2) do parameter-efficient420

adaptation methods designed with a reduced dimensionality of updates outperform full fine-tuning.421

We study these questions separately below. All reported numbers in this section are the average over422

three random seeds.423

D.1 Larger Pretrained Models Result in Better Performance424

We empirically observe that larger pretrained models tend to lead to better private fine-tuning425

performance. Specifically, we perform the following experiment: We privately fine-tune pretrained426

models of various sizes at the same privacy budget. To ensure our hyperparameters aren’t favoring427

larger models, we lightly tune on the smallest model and then reuse the same hyperparameters for all428

fine-tuning workloads. Figure 1 demonstrates our findings.429

D.2 The Full Fine-Tuning Baseline Matches State-of-the-Art430

There has been a range of lightweight fine-tuning methods that reduce the dimensionality of updates,431

including some that are specifically designed for differentially private learning [60]. We study whether432

these low-dimensional methods lead to improvements in performance under DP.433

Do methods that optimize fewer parameters lead to better results under DP even if they perform434

similarly non-privately? The theory of DP ERM on convex objectives suggests that this should be the435

case. However, empirical results suggest that this is generally not the case for DP fine-tuning, and436

that full fine-tuning is a strong baseline that matches even specialized low-dimensional differentially437

private learning methods for both classification and generation. Below, we study the two sets of tasks438

separately.439

D.2.1 Sentence Classification440

We study DP fine-tuning on tasks from the GLUE benchmark that have more than 10k training441

examples (MNLI, QQP, QNLI, and SST-2), following the experimental setup of Yu et al. [60]. The442

associated datasets have modest sizes: SST-2 and QNLI have 60k+ and 100k+ training examples443

respectively. MNLI and QQP have larger training sets each containing less than 400k examples.444

Table 2 shows that both using a larger pretrained model and the text-infilling objective improve445

classification accuracy. We also compare full fine-tuning with reparameterized gradient perturbation446

(RGP) [60], as it is the state-of-the-art for DP fine-tuning on sentence classification at the time of447

writing. The method is designed to privatize gradients projected onto low dimensional subspaces448

and was motivated by the need to reduce DP noise in high-dimensional models. We note that direct449

fine-tuning with the text infilling objective outperforms well-tuned RGP on all tasks except QQP,450

despite being one of the simplest baselines. Computationally, while RGP is faster per-update, it451

requires more than 5 times as many epochs as full fine-tuning – overall, the latter is actually faster in452

terms of wall time.453

Table 2: With better and larger pretrained models, full fine-tuning consistently leads to better
differentially private models on a subset of tasks from the GLUE benchmark [54]. Reported numbers
are dev set accuracies; MNLI results take the format of matched/mismatched.

Model
ε = 3 ε = 8

MNLI-(m/mm) QQP QNLI SST-2 MNLI-(m/mm) QQP QNLI SST-2

RGP (RoBERTa-base) [60] - - - - 80.5/79.6 85.5 87.2 91.6

Full (RoBERTa-base) 79.33/79.82 83.30 83.06 86.35 80.05/80.51 83.97 83.68 88.82
Full + infilling (RoBERTa-base) 81.28/82.06 84.06 86.41 92.78 81.84/82.62 84.61 86.85 92.78
Full + infilling (RoBERTa-large) 85.69/86.16 85.60 90.29 94.04 86.14/86.48 86.04 90.65 94.38

ε (Gaussian DP + CLT) 1.01 1.04 1.41 1.53 3.03 3.07 3.77 4.01
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D.2.2 Table-to-Text Generation454

We study different adaptation methods for table-to-text generation tasks where the goal is to generate455

natural language descriptions of table entries. We consider the datasets E2E [38] and DART [36].456

E2E is a simple dataset of restaurant reviews, whereas DART consists of open-domain table entries457

from Wikipedia and is more complex. For evaluation, we run its official pipeline7 for E2E and458

the pipeline reused in the GEM benchmark [16]8 for DART. Both datasets are small from a DP459

perspective: E2E has 40k+ training examples, whereas DART has roughly 60k.460

The methods of comparison are LoRA [20], prefix-tuning [28], RGP, and fine-tuning the top 2 layers461

(top2), all of which optimize substantially fewer parameters. In particular, on GPT-2 (125 million462

parameters), prefix-tuning instantiated with its default hyperparameters optimizes roughly 10 million463

parameters; LoRA with rank 4 optimizes roughly 0.15 million parameters. For completeness, we464

also report results obtained by training with randomly initialized weights (retrain). Hyperparameters465

of each method were tuned only the E2E dataset; the complete search ranges are in Appendix F.466

Tables 3 and 4 show that both LoRA and full fine-tuning are strong performers.467

Table 3: Results on E2E by adapting GPT-2. Full fine-tuning is a strong baseline that often outper-
forms alternative methods which optimize fewer parameters or designed with DP in mind.

Method DP Guarantee Metrics
BLEU NIST METEOR ROUGE-L CIDEr

full
ε = 3 61.519 6.697 0.384 0.657 1.761
ε = 8 63.189 7.444 0.400 0.664 1.919

non-private 69.463 8.780 0.461 0.714 2.422

LoRA
ε = 3 58.153 5.463 0.370 0.658 1.581
ε = 8 63.389 7.449 0.407 0.675 1.948

non-private 69.682 8.822 0.463 0.717 2.491

prefix-tuning
ε = 3 47.772 5.775 0.331 0.590 1.300
ε = 8 49.263 6.276 0.349 0.607 1.496

non-private 68.845 8.722 0.456 0.708 2.418

RGP
ε = 3 58.482 5.249 0.363 0.656 1.507
ε = 8 58.455 5.525 0.364 0.650 1.569

non-private 68.328 8.722 0.445 0.688 2.345

top2
ε = 3 25.920 1.510 0.197 0.445 0.452
ε = 8 26.885 1.547 0.207 0.464 0.499

non-private 65.752 8.418 0.443 0.687 2.180

retrain
ε = 3 15.457 0.376 0.113 0.352 0.116
ε = 8 24.247 1.010 0.145 0.400 0.281

non-private 65.731 8.286 0.429 0.688 2.004

E Related Work468

DP Deep Learning. DP-SGD has been viewed as ineffective for large models due to the addition469

of large Gaussian noise to gradient updates. Improvements to the learning procedure mostly fall470

under two distinct camps: (i) Simplifying the private learning problem, and (ii) reducing the scale of471

noise. For instance, Papernot et al. [41], Tramèr and Boneh [51], Abadi et al. [1] consider transferring472

features learned on public datasets to simplify the subsequent private learning task. On the other473

hand, Zhou et al. [62], Kairouz et al. [23] remove the ambient dimension dependence of DP noise by474

identifying subspaces in which private gradients lie and would be privatized. Yu et al. [59, 60] execute475

such ideas with tricks and demonstrate improved results on standard private learning benchmarks.476

Zhang et al. [61] applied the sparse vector technique to learning wide neural layers to reduce the477

amount of injected noise.478

Our work largely falls under the first camp – we study how DP fine-tuning can be made practically479

effective. Our work is also distinct from prior works in that we focus on privately fine-tuning large480

pretrained models. Lastly, there are alternative solutions in the literature that enforces DP which are481

7https://github.com/tuetschek/e2e-metrics
8https://github.com/GEM-benchmark/GEM-metrics
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Table 4: Results on DART by adapting GPT-2. Trend is consistent with results on E2E.

Method DP Guarantee Metrics
METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT

full
ε = 3 0.294 0.628 0.408 0.521 31.025 0.887 -0.058
ε = 8 0.319 0.664 0.436 0.546 35.057 0.901 0.043

non-private 0.369 0.716 0.472 0.567 42.783 0.915 0.178

LoRA
ε = 3 0.304 0.636 0.408 0.520 32.329 0.885 -0.029
ε = 8 0.318 0.663 0.431 0.541 34.163 0.899 0.036

non-private 0.366 0.712 0.473 0.574 42.254 0.915 0.182

prefix-tuning
ε = 3 0.269 0.595 0.382 0.494 25.726 0.860 -0.144
ε = 8 0.297 0.640 0.416 0.526 30.463 0.892 -0.021

non-private 0.353 0.703 0.466 0.569 40.163 0.912 0.148

RGP
ε = 3 0.265 0.587 0.372 0.490 25.748 0.873 -0.175
ε = 8 0.279 0.600 0.383 0.498 28.304 0.874 -0.141

non-private 0.324 0.657 0.426 0.535 35.551 0.895 0.022

top2
ε = 3 0.022 0.036 0.022 0.032 0.388 0.098 -1.952
ε = 8 0.054 0.115 0.071 0.100 2.453 0.240 -1.660

non-private 0.318 0.628 0.384 0.494 36.099 0.883 -0.082

retrain
ε = 3 0.064 0.191 0.089 0.171 2.997 0.493 -1.513
ε = 8 0.093 0.250 0.119 0.217 7.765 0.573 -1.302

non-private 0.232 0.478 0.264 0.379 26.794 0.806 -0.593

not based on gradient perturbation [40, 39]. These methods typically require extra public data and482

are not the present focus.483

Private NLP. Works studying privacy-preserving NLP are largely divided by whether or not they484

consider a formal notion of privacy based on DP. Under global DP, McMahan et al. [31] successfully485

train small private word-level RNNs with 1.35 million parameters in a federated learning setting with486

more than 700k users with a DP guarantee of (4.6, 10−9). On the other hand, Qu et al. [44] study487

fine-tuning BERT for language understand under local DP. Kerrigan et al. [25] demonstrate that public488

pretraining is helpful for subsequent downstream autoregressive training with DP-SGD, though they489

did not report results for fine-tuning large pretrained models with DP-SGD. Anil et al. [2] pretrain490

BERT under global DP on datasets with hundreds of millions of examples. Dupuy et al. [13] study491

private BERT fine-tuning on datasets of utterances, but report results with ε on the order of 100 to492

10,000. Orthogonally, many works consider training language models that satisfy empirical notions of493

privacy [58, 10, 33, 32], either based on relaxed notions of DP or explicitly defending against specific494

privacy attacks. Our work is distinct from these mentioned works in that we study fine-tuning large495

language models (hundreds of millions of parameters) under global DP with stringent guarantees496

(ε < 10) on small datasets (much less than a million examples).497

DP Synthetic Data Generation. Fine-tuning generative language models on private data under DP498

can also be viewed as a means of accomplishing DP synthetic data generation – learning generative499

models from private data so that synthetic examples with similar characteristics similar could be500

sampled and used downstream. Previous work employed generative adversarial networks and focused501

mostly on image or tabular datasets [50, 37, 9, 49]. Bommasani et al. [5] briefly commented on the502

possibility of achieving cheaper private learning by fine-tuning large pretrained language models but503

did not execute the idea. Perhaps most directly related to our work is that by Bommasani et al. [4]504

who attempted fine-tuning GPT-2 on medical datasets but did not report quantitative results.505

F Hyperparameter Search Ranges for Experiments in Section D506

We compare different adaptation methods by reporting task specific metrics on the test split using507

hyperparameters that maximize validation BLEU on E2E. For sentence classification tasks, we508

reused the same hyperparameters, except for the number of epochs which we set to be the same as509

that used in non-private fine-tuning. We list the range of hyperparameters that we searched over510

for each individual adaptation method considered in the paper. Prefix-tuning has two additional511

hyperparameters: the length of the prefix and the dimensionality of the hidden layer. We set these to512
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the default used by Li and Liang [28] (5 for the former and 512 for the latter). For Adam, we use the513

default hyperparamaters set by PyTorch [42].514

Table 5: Hyperparameters search range for different methods. Dtrain is the training set.
Method Full Prefix Linear FT2

DP guarantee (ε, δ) (3, 1/2|Dtrain|) (3, 1/2|Dtrain|) (3, 1/2|Dtrain|) (3, 1/2|Dtrain|)

Clipping norm C 0.1 0.1 0.1 0.1
Batch size B {512, 1024} {512, 1024} {512, 1024} {512, 1024}
Learning rate η {102, 30, 10, 3} · 10−5 {102, 30, 10, 3} · 10−5 {102, 30, 10, 3} · 10−5 {102, 30, 10, 3} · 10−5

Learning rate decay {yes, no} {yes, no} {yes, no} {yes, no}
Epochs T {10, 30, 50} {10, 30, 50} {10, 30, 50} {10, 30, 50}
Weight decay λ 0 0 0 0
Noise scale σ calculated numerically so that a DP budget of (ε, δ) is spent after T epochs9

Table 6: Hyperparameters search range for methods with low-rank updates.
Method LoRA RGP

DP guarantee (ε, δ) (3, 1/2|Dtrain|) (3, 1/2|Dtrain|)

Clipping norm C 0.1 {0.1, 1, 10}
Batch size B {512, 1024} {512, 1024}
Learning rate η {300, 100, 30, 10, 3} · 10−5 {300, 100, 30, 10, 3} · 10−5

Learning rate decay {yes, no} {yes, no}
Epochs T {5, 10, 30, 50} {5, 10, 30, 50}
Weight decay λ 0 0
Rank k {1, 2, 4, 8} {1, 2, 4, 8}
Noise scale σ calculated numerically so that a DP budget of (ε, δ) is spent after T epochs

G Derivation of the Frobenius Norm Identity515

Recall a ∈ RB×T×d is the input to a linear layer with weight matrix W ∈ Rp×d, and g ∈ RB×T×p516

is the gradient of the loss w.r.t. the output. The identity follows from trivial algebra:517

‖∇WLi‖2F =
∥∥g>i ai∥∥2F =

∥∥∥∥∥
T∑
k=1

gi,ka
>
i,k

∥∥∥∥∥
2

F

=

d∑
r=1

p∑
s=1

(
T∑
k=1

ai,k,rgi,k,s

)2

=

d∑
r=1

p∑
s=1

T∑
k1=1

T∑
k2=1

ai,k1,rgi,k1,sai,k2,rgi,k2,s

=

T∑
k1=1

T∑
k2=1

(
d∑
r=1

ai,k1,rai,k2,r

)(
p∑
s=1

gi,k1,sgi,k2,s

)
= vec(aia

>
i )>vec(gig

>
i ).

9Given a noise multiplier σ, ε can be computed via first computing the Rényi DP leakage and then converting
it to approximate DP. When a privacy budget ε is prescribed, we can numerically invert the above procedure
to obtain a suitable σ for noisy optimization. Given σ, we also report the εGDP estimated by going through the
central limit theorem in Gaussian DP.
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Note that when T = 1, the identity takes the form of518

‖∇WLi‖2F = vec(aia
>
i )>vec(gig

>
i ) = ‖ai‖22 ‖gi‖

2
2 .

This is exactly the backbone of the trick proposed by Goodfellow [17].519

H Default Hyperparameters for Studies in Section 3.1520

Table 7: Default hyperparameters for ablation studies.
Method Full

DP guarantee (ε, δ) (3, 1/2|Dtrain|)

Clipping norm C 0.1
Batch size B 1024
Learning rate η 10−1

Learning rate decay no
Epochs T 10 for E2E; 3 for any of MNLI, QQP, QNLI, SST-2
Weight decay λ 0
Noise scale σ calculated numerically so that a DP budget of (ε, δ) is spent after T epochs

I Setup for Memory Profile Experiments in Section C.2521

For this experiment, our JAX implementation is adapted from a codebase used for the work by Subra-522

mani et al. [48], the chain-rule-based baseline is based on Opacus==0.14.0. For a fair comparison,523

we also optimized the implementation of privacy engine in Opacus, since we found certain einsum524

operations to be more memory intensive as needed. All runs were based on full precision (fp32).525

We used mock data with the format of the E2E dataset as a testbed for this experiment. We created526

mock inputs of length 100, as this length is almost the maximum length of examples in the actual527

E2E dataset.528

J Does DP Fine-Tuning Prevent Unintended Memorization?529

One of the ultimate goals of fitting models under DP is to ensure that training data extraction is530

unlikely given the trained model. To empirically evaluate whether DP fine-tuning helps prevent531

against unintended memorization and such attacks, we follow the secret sharer framework [7] and532

estimate the exposure of artificial canaries inserted into the training set used for fine-tuning. We use533

the E2E dataset as a testbed.534

To create canaries, we first form a subvocabulary by randomly sampling V = 10 words in the original
vocabulary of GPT2. Our canaries have prefixes of the form

" name : <word> | Type : <word> | area : <word> ",

where <word> is randomly sampled from the subvocabulary. The suffix which our model should535

learn to predict consists of randomly sampled words with an average length of l = 5. By definition,536

canaries with an estimated exposure close to log2(V l) ≈ 17 can likely be extracted. We experiment537

with canary-corrupted datasets for repetition values r ∈ {1, 10, 100}. A canary has a higher chance538

in being extracted when it’s repeated for more than once in the training data.539

K When and Why Does Linear Scaling Fail?540

Recall Tramèr and Boneh [51] suggested that the following simple rule approximately holds in private541

learning: Scaling the learning rate together with the batch size by the same constant yields models542

with almost the same performance. Note that their experiments on MNIST, Fashion-MNIST, and543

CIFAR-10 used only batch sizes in the range of {512, 1024, 2048, 4096}. These values are fairly544
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Table 8: Fine-tuning under DP prevents unintended memorization of downstream data. Numbers
reported are exposure values estimated with the approximation by distribution model approach.

```````````Guarantee
Repetitions

r = 1 r = 10 r = 100

ε = 3 1.09± 0.86 1.32± 1.32 5.26± 4.20
non-private 13.82± 3.86 17.22± 0.00. 17.78± 5.49

large from a non-private learning perspective. Indeed, our experiments on E2E suggest that this rule545

does not generalize to batch sizes that are too small (sampling rates q = B/N < 2−8).546

We provide an explanation by noting that a core assumption which the linear scaling rule depends on547

fails to hold for small batch sizes. This assumption is that given a privacy budget, a “square-root”548

relationship holds between the noise multiplier and the sampling rate (see also [51, Claim D.1]).549

For instance, Tramèr and Boneh [51] showed that σ ≈ c
√
q when q ∈ [2−7, 1] for some constant550

c. Our numerical estimates show that this relationship fails to hold for small q – it under estimates551

the true noise multiplier σ that would be obtained with numerical computation. Figure 6 provides552

an illustration for (ε, δ) = (3, 10−5) when the sample size N = 50k and number of training epochs553

E = 50.
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Figure 6: “Square-root” relationship underestimates the noise multiplier for small batch sizes.

554

L Templates and Label Words for the Text Infilling Formulation in555

Section 3.2556

Recall that fine-tuning for classification can be reformulated as filling in the [MASK] token in a557

template sequence. Here, we list the templates used for each classification task considered in the558

paper. These templates are almost generic and are not obtained from expensive manual or automated559

search. We anticipate better templates obtained from automated search based on data [15] to improve560

the performance even further. However, we also expect that such a procedure would lead to some561

amount of increased privacy spending if it were based on private data.562
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Task Template Label words
SST-2 <S1> It was [MASK] . positive: great, negative: terrible
MNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
QNLI <S1> ? [MASK] , <S2> entailment: Yes, not_entailment: No
QQP <S1> [MASK] , <S2> equivalent: Yes, not_equivalent: No

Table 9: Templates and label words borrowed from the work by Gao et al. [15].
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