
A Benchmark on Directed Graph Representation
Learning in Hardware Designs

Haoyu Wang
Georgia Tech

Yinan Huang
Georgia Tech

Nan Wu
George Washington University

Pan Li
Georgia Tech

Abstract

To keep pace with the rapid advancements in design complexity within modern1

computing systems, directed graph representation learning (DGRL) has become2

crucial, particularly for encoding circuit netlists, computational graphs, and devel-3

oping surrogate models for hardware performance prediction. However, DGRL4

remains relatively unexplored, especially in the hardware domain, mainly due to5

the lack of comprehensive and user-friendly benchmarks. This study presents a6

novel benchmark comprising five hardware design datasets and 13 prediction tasks7

spanning various levels of circuit abstraction. We evaluate 21 DGRL models, em-8

ploying diverse graph neural networks and graph transformers (GTs) as backbones,9

enhanced by positional encodings (PEs) tailored for directed graphs. Our results10

highlight that bidirected (BI) message passing neural networks (MPNNs) and ro-11

bust PEs significantly enhance model performance. Notably, the top-performing12

models include PE-enhanced GTs interleaved with BI-MPNN layers and BI-Graph13

Isomorphism Network, both surpassing baselines across the 13 tasks. Addition-14

ally, our investigation into out-of-distribution (OOD) performance emphasizes the15

urgent need to improve OOD generalization in DGRL models. This benchmark,16

implemented with a modular codebase, streamlines the evaluation of DGRL models17

for both hardware and ML practitioners.18

1 Introduction19

Directed graphs, where edges encode directional information, are widely utilized as data models in20

various applications, including email communication [62, 66], financial transactions [22, 41, 117],21

and supply chains [61, 113, 125]. Notably, hardware designs can be represented as directed graphs,22

such as circuit netlists [47, 124], control and data flow graphs [11, 26, 137, 144], or computational23

graphs [100, 150], often exhibiting unique properties. These graph structures reflect restricted24

connection patterns among circuit components or program operation units, with directed edges25

encapsulating long-range directional and logical dependencies.26

Recently, employing machine learning (ML) to assess the properties of hardware designs via their27

directed graph representations has attracted significant attention [11, 14, 29, 45, 51, 71, 85, 100, 135].28

Traditional simulation-based methods often require considerable time (hours or days) to achieve29

the desired accuracy in assessing design quality [27, 136, 137, 154], substantially slowing down the30

hardware development cycle due to repeated optimization-evaluation iterations. In contrast, ML31

models can serve as faster and more cost-effective surrogates for simulators, offering a balanced32

alternative between simulation costs and prediction accuracy [8, 15, 16, 19, 31, 59, 77, 91, 126, 134,33

Emails: haoyu.wang@gatech.edu, panli@gatech.edu

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

136]. Such an approach is promising to expedite hardware evaluation, especially given the rapid34

growth of design complexity in modern electronics and computing systems [111].35

Despite the promising use cases, developing ML models for reliable predictions on directed graphs,36

particularly within hardware design loops, is still in its early stages, largely due to the lack of37

comprehensive and user-friendly benchmarks. Existing studies in the ML community have primarily38

focused on undirected graphs, utilizing Graph Neural Networks (GNNs) [63, 123, 140] or Graph39

Transformers (GTs) [67, 90, 101, 145]. Among the limited studies on directed graph representation40

learning (DGRL) [42, 118, 119, 152], most have only evaluated their models for node/link-level41

predictions on single graphs in domains such as web networks, or financial networks [50]. These42

domains exhibit very different connection patterns compared to those in hardware design. To the best43

of our knowledge, CODE2 in the Open Graph Benchmark (OGB) [52] is the only commonly used44

benchmark that may share some similarities with hardware data. However, the graphs in CODE2 are45

IRs of Python programs, which may not fully reflect the properties of data in hardware design loops.46

Numerous DGRL models for hardware design tasks have been developed by domain experts. While47

promising, hardware experts tend to incorporate domain-specific insights with off-the-shelf GNNs48

(e.g., developing hierarchical GNNs to mimic circuit modules [29, 137] or encoding circuit fan-in49

and fan-out in node features [10, 102, 121]), with limited common design principles investigated50

in model development. In contrast, state-of-the-art (SOTA) DGRL techniques proposed by the ML51

community lack thorough investigation in these tasks. These techniques potentially offer a more52

general and effective manner of capturing data patterns that might be overlooked by domain experts.53

Present Benchmark. This work addresses the aforementioned gaps by establishing a new benchmark54

consisting of representative hardware design tasks and extensively evaluating various DGRL tech-55

niques for these tasks. On one hand, the evaluation results facilitate the identification of commonly56

useful principles for DGRL in hardware design. On the other hand, the ML community can leverage57

this benchmark to further advance DGRL techniques.58

Specifically, our benchmark collects five hardware design datasets encompassing a total of 1359

prediction tasks. The data spans different levels of circuit abstraction, with graph sizes reaching60

up to 400+ nodes per graph across 10k+ graphs for graph-level tasks, and up to 50k+ nodes per61

graph for node-level tasks (see Fig. 1 and Table. 1). We also evaluate 21 DGRL models based on 862

GNN/GT backbones, combined with different message passing directions and various enhancements63

using positional encodings (PEs) for directed graphs [42]. PEs are vectorized representations of node64

positions in graphs and have been shown to improve the expressive power of GT/GNNs for undirected65

graphs [53, 74, 101, 127]. PEs for directed graphs are still under-explored [42], but we believe they66

could be beneficial for hardware design tasks that involve long-range and logical dependencies.67

Our extensive evaluations provide significant insights into DGRL for hardware design tasks. Firstly,68

bidirected (BI) message passing neural networks (MPNNs) can substantially improve performance69

for both pure GNN encoders and GT encoders that incorporate MPNN layers, such as GPS [101].70

Secondly, PEs, only when used stably [53, 127], can broadly enhance the performance of both GTs71

and GNNs. This observation contrasts with findings from undirected graph studies, particularly in72

molecule property prediction tasks, where even unstable uses of PEs may improve model perfor-73

mance [32, 67, 74, 101]. Thirdly, GTs with MPNN layers typically outperform pure GNNs on small74

graphs but encounter scalability issues when applied to larger graphs.75

With these insights, we identify two top-performing models: GTs with BI-MPNN layers (effective for76

small graphs in the HLS and AMP datasets) and the BI-Graph Isomorphism Network (GIN) [140],77

both enhanced by stable PEs. These models outperform all baselines originally designed by hardware78

experts for corresponding tasks, across all 13 tasks. Notably, this work is the first to consider GTs with79

BI-MPNN layers and using stable PEs in DGRL, so the above two models have novel architectures80

essentially derived from our benchmarking effort.81

Furthermore, recognizing that hardware design often encounters out-of-distribution (OOD) data in82

production (e.g., from synthetic to real-world [137], before and after technology mapping [134],83

inference on different RISC-V CPUs [51]), for each dataset we evaluate the methods data with84

2

Hardware
Design Application: CG

Operational Amplifiers: AMP

High-level Synthesis: HLS

Logic Synthesis: SR

Physical Synthesis: TIME

Workload
deployment

Hardware
synthesis

Digital

Analog

High-level circuit abstraction
(e.g., behavior description)

Low-level circuit
abstraction

Prediction Task

Latency on different platforms (CPU/GPU630/GPU640)

Resource usage (LUT/DSP) and timing (CP)

Functional unit identification (shared and root)

Hold/Setup slack

Circuit specifications (DC gain, PM, BW)

Figure 1: Coverage of Datasets/Tasks.

High-level Synthesis
(HLS) [137]

Symbolic Reasoning
(SR) [134]

Pre-routing Timing Prediction
(Time) [45]

Computational Graph
(CG) [150]

Operational Amplifiers
(AMP) [29]

Type digital digital digital digital analog

Level graph node node graph graph

Target regression classification regression regression regression

Task LUT, DSP, CP node shared by MAJ and XOR,
root node of an adder

hold slack,
setup slack CPU/GPU630/GPU640 gain, PM, BW

Evaluation Metric mse, r2 accuracy, f1
recall, precision mse, r2 rmse, acc5, acc10 mse, rmse

In-Distribution CDFG 24-bit graph structure network structure stage3

Out-of-Distribution DFG 32, 36, 48- bit graph structure network structure stage2

Training Graph 16570 - 16570 1 - 1 7 - 7 5* - 10000 7223-7223

#Train Nodes average 95 4440 29839 218 9
max 474 4440 58676 430 16

Train Edges average 123 10348 41268 240 15
max 636 10348 83225 487 36

Table 1: Statistics of selected datasets. In row ‘# Training graph’, we report ‘# Graph Structures - # Samples’. *:
in CG, there are only five unique CNN designs, yet the structure of graphs within each design may vary slightly.

distribution shift to simulate potential OOD challenges. We observe that while ML models perform85

reasonably well on tasks (8 of 13) with diverse graph structures in the training dataset, they generally86

suffer from OOD generalization issues on the remaining tasks. This finding highlights the urgent87

need for future research to focus on improving the OOD generalization capabilities of DGRL models.88

Lastly, our benchmark is implemented with a modular and user-friendly codebase, allowing hardware89

practitioners to evaluate all 21 DGRL models for their tasks with data in a PyG-compatible format [38],90

and allowing ML researchers to advance DGRL methods using the collected hardware design tasks.91

2 Related Work92

Graph Representation Learning as Powerful Surrogate Models. ML-based surrogate models93

have been widely adopted in scientific fields [96, 157] and recently extended in hardware design.94

While graph-learning-based surrogate models for hardware design have already demonstrated effec-95

tiveness [10, 11, 14, 71, 82, 85, 102, 120, 121, 128, 136, 137, 149], several aspects warrant further96

investigation. First, existing studies often rely on task-specific heuristics to encode circuit structural97

information [10, 14, 85, 91, 102, 121], hindering the migration of model-design insights from one98

task to an even closely related task. Second, the majority of these studies conduct message passing99

of GNNs along edge directions, with few considering BI implementation [45, 51], and there is an100

absence of a comparative analysis of different DGRL approaches. Third, the designed models are101

often trained and tested within similar data distributions [10, 51, 153], lacking systematic OOD102

evaluation for new or more complicated designs. Hence, it is imperative to establish a comprehensive103

benchmark to compare different DGRL approaches for hardware design tasks.104

Methods for DGRL. NN architectures for DGRL can be classified into three types: spatial GNNs,105

spectral GNNs, and transformers. Spatial GNNs use graph topology as inductive bias, some employ106

bidirected message passing for regular directed graphs [57, 65, 104, 131], others use asynchronous107

message passing exclusively designed for directed acyclic graphs (DAGs) [30, 116, 151]. Spec-108

tral GNNs generalize the ideas of Fourier transform and corresponding spectral convolution from109

undirected to directed graphs [39, 40, 49, 64, 84, 94, 110, 119, 152]; Transformers with attention110

mechanism reply on designing direction-aware PEs to capture directed graph topology. This bench-111

mark is the first to consider combining transformers with MPNN layers for DGRL, extending the ideas112

in [101]. Regarding the choices of PEs, most studies are on undirected graphs [33, 53, 74, 127]. For113

3

directed graphs, the potential PEs are Laplacian eigenvectors of the undirected graphs by symmetriz-114

ing the original directed ones [32], singular vectors of adjacency matrices [55] and the eigenvectors115

of Magnetic Laplacians [36, 37, 42, 109]. No previous investigate benefit for DGRL from stably116

incorporating PE [53, 127], and we are the first to consider stable PEs for DGRL.117

Existing Relevant Benchmarks. Dwivedi et al. [34] benchmark long-range reasoning of GNNs on118

undirected graphs; PyGSD [50] benchmarks signed and directed graphs, while focusing on social or119

financial networks. We also compare all the methods for directed unsigned graphs in PyGSD and120

notice that the SOTA spectral method therein - MagNet [152] still works well on node-level tasks on a121

single graph (SR), which shares some similar insights. The hardware community has released graph-122

structured datasets from various development stages to assist surrogate model development, including123

but not limited to NN workload performance [100, 150], CPU throughput [20, 89, 114], resource124

and timing in HLS [11, 137], design quality in logic synthesis [24], design rule checking in physical125

synthesis [17, 21, 45, 143], and hardware security [148]. In addition to datasets, ProGraML [26]126

introduces a graph-based representation of programs derived from compiler IRs (e.g., LLVM/XLA127

IRs) for program synthesis and compiler optimization. Very recently, Google launched TPUgraph for128

predicting the runtime of ML models based on their computational graphs on TPUs [100]. Our CG129

dataset includes computational graphs of ML models, specifically on edge devices.130

3 Datasets and Tasks131

This section introduces the five datasets with thirteen tasks used in this benchmark. The datasets132

cover both digital and analog hardware, considering different circuit abstraction levels, as illustrated133

in Fig. 1. Table 1 displays the statistics of each dataset. Next, we briefly introduce the five datasets,134

with details provided in Appendix. D. Although these datasets are generated by existing studies,135

we offer modular pre-processing interfaces to make them compatible with PyTorch Geometric and136

user-friendly for integration with DGRL methods.137

High-Level Synthesis (HLS) [137]: The HLS dataset collects IR graphs of C/C++ code after front-138

end compilation [9], and provides post-implementation performance metrics on FPGA devices as139

labels for each graph, which are obtained after hours of synthesis with Vitis [5] and implementation140

with Vivado [6]. The labels to predict include resource usage, (i.e., look-up table (LUT) and digital141

signal processor (DSP)), and the critical path timing (CP). See Appendix. D.1 for graph input details.142

Significance: The HLS dataset is crucial for testing NNs’ ability to accurately predict post-143

implementation metrics to accelerate design evaluation in the stage of HLS.144

OOD Evaluation: For training and ID testing, we use control data flow graphs (CDFG) that integrate145

control conditions with data dependencies, derived from general C/C++ code; As to OOD cases, we146

use data flow graphs (DFG) derived from basic blocks, leading to distribution shifts.147

Symbolic Reasoning (SR) [134]: The SR dataset collects bit-blasted Boolean networks (BNs)148

(unstructured gate-level netlists), with node labels annotating high-level abstractions on local graph149

structures, e.g., XOR functions, majority (MAJ) functions, and adders, generated by the logic150

synthesis tool ABC [13]. Each graph supports two tasks: root nodes of adders, and nodes shared by151

XOR and MAJ functions. See Appendix. D.2 for detailed input encoding and label explanation.152

Significance: Reasoning high-level abstractions from BNs has wide applications in improving153

functional verification efficiency [25] and malicious logic identification [87]. GNN surrogate models154

are anticipated to replace the conventional structural hashing and functional propagation [70, 112]155

and boost the scalability with significant speedup. For graph ML, due to significant variation in the156

size of gate-level netlists under different bit widths, SR is an ideal real-world application to evaluate157

whether GNN designs can maintain performance amidst the shifts in graph scale.158

OOD Evaluation: We use a 24-bit graph (4440 nodes) for training, and 32, 36, 48-bit graphs (up to159

18096 nodes) for ID testing, derived from carry-save-array multipliers before technology mapping.160

OOD testing data are multipliers after ASAP 7nm technology mapping [141] with the same bits.161

Pre-routing Timing Prediction (TIME) [45]: The TIME dataset collects real-world circuits with162

OpenROAD [3] on SkyWater 130nm technology [4]. The goal is to predict slack values at timing163

4

endpoints for each circuit design by using pre-routing information. Two tasks are considered: hold164

slack and setup slack. Details are provided in Appendix. D.3.165

Significance: In physical synthesis, timing-driven placement demands accurate timing information,166

which is only available after routing. Repetitive routing and static timing analysis provide accurate167

timing but are prohibitively expensive. ML models that precisely learn routing behaviors and timing168

computation flows are highly expected to improve the efficiency of placement and routing.169

OOD Evaluation: We divide ID-OOD based on the difference in graph structures (e.g. ‘blabla’ and170

‘xtea’ are different circuit designs, allocated into ID or OOD groups). See details in Appendix. D.3.1.171

Computational Graph (CG) [150]: The CG dataset consists of computational graphs of convolu-172

tional neural networks (CNNs) with inference latency on edge devices (i.e., Cortex A76 CPU, Adreno173

630 GPU, Adreno 640 GPU) as labels. The CNNs have different operator types or configurations,174

either manually designed or found by neural architecture search (NAS). Details are in Appendix. D.4.175

Significance: Accurately measuring the inference latency of DNNs is essential for high-performance176

deployment on hardware platforms or efficient NAS [103, 106], which however is often costly.177

ML-based predictors offer the potential for design exploration and scaling up to large-scale hardware178

platforms.179

OOD Evaluation: We split ID-OOD with different graph structures. (e.g. ‘DenseNets’ and ‘ResNets’180

are CNNs with different structures, allocated into different groups). See Appendix. D.4.1 for details.181

Operational Amplifiers (AMP) [29]: AMP dataset contains 10, 000 distinct 2- or 3-stage operational182

amplifiers (Op-Amps). Circuit specifications (i.e. DC gain, phase margin (PM), and bandwidth (BW))183

as labels are extracted after simulation with Cadence Spectre [1]. Details are in Appendix. D.6.184

Significance: Analog circuit design is less automated and requires more manual effort compared to185

its digital counterpart. Mainstream approaches such as SPICE-based circuit synthesis and simula-186

tion [124], are computationally expensive and time-consuming. If ML algorithms can approximate187

the functional behavior and provide accurate estimates of circuit specifications, they may significantly188

reduce design time by minimizing reliance on circuit simulation [7].189

OOD Evaluation: For training and ID testing, we use 3-stage Op-Amps, which have three single-stage190

Op-Amps in the main feed-forward path). For OOD evaluation, we use 2-stage Op-Amps.191

Extensions Although the datasets cover different levels of circuit abstraction, there are additional192

tasks in hardware design worth exploration with DGRL surrogates, as reviewed in Section 2. Our193

modular benchmark framework allows for easy extension to accommodate new datasets.194

4 Benchmark Design195

4.1 Design Space for Directed Graph Representation Learning196

In this section, we introduce the DGRL methods evaluated in this benchmark. Our evaluation focuses197

on four design modules involving GNN backbones, message passing directions, transformer selection,198

and PE incorporation, illustrated in Fig. 2. Different GNN backbones and transformer adoptions cover199

10 methods in total with references in Tab. 2. We also consider their combinations with different200

message-passing directions and various ways to use PEs, which overall gives 21 DGRL methods.201

For GNNs, we consider 4 spectral methods, namely GCN [63], DGCN [119], DiGCN [118] and202

MagNet [152], where the latter three are SOTA spectral GNNs specifically designed for DGRL [50];203

For spatial GNNs, we take GIN [140] and Graph Attention Network (GAT) [123], which are the204

most commonly used MPNN backbones for undirected graphs. We evaluate the combination of205

GCN, GIN and GAT with three different message-passing directions: a) ‘undirected’(-) treats directed206

graphs as undirected, using the same NN parameters to perform message-passing along both forward207

and reverse edge directions; b) ‘directed’(DI) only passes messages exclusively along the forward208

edge directions; c) ‘bidirected’(BI) performs message passing in both forward and reverse directions209

with distinct parameters for either direction. The other GNNs (DGCN, DiGCN and MagNet) adopt210

5

GNN Backbone

spectral

DGCN
DiGCN
MagNet

spatial

GIN
GAT

Message Passing
Direction

BI (bidirected)

- (undirected)
DI (directed)

Transformer Selection

Transformer
Performer

Positional Encoding

node PE (NPE)
stable edge PE (EPE)GCN

Figure 2: The benchmark considers 21 combinations
of message passing direction, GNN backbone, trans-
former selection and PE incorporation, covers 10 ex-
isting SOTA methods from graph ML community and
discovers 2 novel top-performing models (see Table. 2).

Method type layer-wise
complexity

GCN [63] spectral O(|E|)
MagNet [152] spectral O(|E|)
DGCN [119] spectral O(|E|)
DiGCN [118] spectral O(|E|)

GAT [123] spatial O(|E|)
GIN(E) [140] spatial O(|E|)
EDGNN [57] spatial O(|E|)
GPS-T [101] spatial+transformer O(|V |2 + |E|)
GPS-P [23] spatial+transformer O(|V |+ |E|)
TmD [42] transformer O(|V |2)

BI-GIN(E)+EPE(new) spatial O(|E|)
BI-GPS-T+EPE(new) spatial+transformer O(|V |2 + |E|)

Table 2: Existing methods and two top-
performing methods highlighted at bottom.

spectral convolution that inherently considers edge directions. The combination of ‘BI’ with spatial211

GNN layers gives the state-of-the-art spatial GNNs for DGRL, i.e., EDGNN [57].212

For GTs, we adopt the eigenvectors of the graph Magnetic Laplacian (MagLAP) matrix as the PEs213

of nodes [40, 109], as they are directional-aware. The MagLap matrix Lq is a complex Hermitian214

matrix with parameter q ∈ [0, 1) named potential, which is treated as a hyper-parameter in our215

experiments. Note that when q = 0, MagLap degenerates to the symmetric Laplacian matrix L0 as a216

special case. See Appendix B for a brief review of MagLap. The GT with the MagLap PEs attached217

to node features gives the SOTA GT model for DGRL, named TmD for brevity, proposed in [42].218

GPS [101] is a GT model with MPNN layers [43, 48] interleaving with transformer layers [122],219

originally proposed for undirected graphs. We extend GPS to directed graphs by using MagLap220

PEs for transformer layers and DI/BI message passing in its MPNN layers. Hence, GPS is also an221

extension of TmD by incorporating MPNN layers. As transformers may not scale well on large222

graphs, we evaluate vanilla transformer layers and their lower-rank approximation Performer [67] for223

efficient computation, named as GPS-T and GPS-P, respectively.224

4.2 Stable Direction-aware Positional Encodings225

NPE = [Re{Vq}, Im{Vq}]
EPE = ρ(Re{Vqdiag(κ1(λ))V

†
q }, ...,Re{Vqdiag(κm(λ))V †

q },
Im{Vqdiag(κ1(λ))V

†
q }, ..., Im{Vqdiag(κm(λ))V †

q })

Table 3: Functions to obtain PEs. NPE directly concatenates the
eigenvectors to node features. In contrast, before concatenating
PE to the edge features, EPE employs the permutation equivariant
functions κ : Rd → Rd w.r.t. eigenvalue permutations and per-
mutation equivariant function ρ : R|V |×|V |×2m → R|V |×|V |×d to
stably process the eigenvectors and eigenvalues, respectively.

Recent studies on undirected graphs226

have demonstrated that models by227

naively attaching PEs to node features228

may suffer from an issue of instability229

because small changes in the graph230

structure may cause big changes in231

PEs [53, 74, 127]. We name this way232

of using PEs as node-PE (NPE). The233

instability provably leads to undesired234

OOD generalization [53]. We think235

this is also true for directed graphs and indeed observe the subpar model performance with NPE.236

Therefore, besides NPE, we also consider a stable way of incorporating PEs for DGRL, namely ‘edge237

PE’ (EPE), inspired by [127]. EPE was originally proposed for the undirected graph case. Specifically,238

we use the smallest d eigenvalues λq ∈ Rd and their corresponding eigenvectors Vq ∈ C|V |×d from239

Lq . Then, we follow the equation in Table 3 to compute EPE ∈ R|V |×|V |×d. Then, in GTs, EPEu,v240

is further added to the attention weight between nodes u and v as a bias term at each attention layer.241

We note that PEs can also be used in more than GTs, to improve the expressive power of GNNs242

[53, 69, 74, 145]. We leverage this idea and enhance the GNN models for directed graphs with PEs.243

Specifically, for the GNNs NPE will use NPEv as extra node features of node v while EPE will use244

EPEu,v as extra edge features of edge uv if uv is an edge.245

6

The incorporation with EPE helps discover a novel GT model for directed graphs, i.e., GT with246

BI-MPNN layers enhanced by EPE, abbreviated as BI-GPS+EPE. We also make the first attempt to247

combine GNNs with PEs for directed graphs, which yields the model BI-GIN(E)+EPE.248

4.3 Hyer-Parameter Space and Tuning249

For each combination of DGRL method in this benchmark, we perform automatic hyper-parameter250

tuning with RAY [73] adopting Tree-structured Parzen Estimator (TPE) [130], a state-or-the-art251

bayesian optimization algorithm. The hyper-parameter space involves searching batch size, learning252

rate, number of backbone layers, dropout rate in MPNN and MLP layers, hidden dimension, and MLP253

layer configurations. The detailed hyper-parameter space of each model is shown in Appendix. E.2.254

We auto-tune the hyper-parameters with seed 123 with 100 trial budgets and select the configuration255

with the best validation performance. Then, the selected configuration is used for model training and256

testing ten times with seeds 0− 9 and the average is reported as the final performance.257

5 Modular Toolbox258

hardware (e.g. Verilog)
programming (e.g. C++)

data-preprocess interface module

PyTorch Geomeric.Data

Electronic Circuit Representation

PE Incorporation

DGRL Configuration

GNN Backbones

Message Passing
Direction Module

Auto-Tuning module

Hyper-Parameter Config

Auto-Tuning

PyTorch Geometric Lib: GCN, GIN, GAT

PyGSD Lib: MagNet, DGCN, DiGCN

(-) undirected

Unstable NPE

Transformer
Selection

New/Customized GNN Backbones

(DI) directed (BI) bidirected

Vanilla Transformer Performer New Graph
Transformers

Stable EPE Customize PE

Batch Size, Learning Rate,
Dropout Rate, Hidden Dimension, etc.

Figure 3: Illustration of the directed graph representation learning (DGRL) toolbox.

We develop a highly modular toolbox involving designing, auto hyper-parameter tuning, and evalua-259

tion for DGRL methods. The framework is shown in Fig. 3. The toolbox comes with the 21 DGRL260

methods, allowing practitioners to evaluate them on any new task with data compatible with PyTorch261

Geometric (PyG) [38]. This may be used even beyond hardware design applications. Users can262

also customize new methods. Once the method is configured, auto hyper-parameter tuning can be263

performed using RAY [73]. The toolbox also includes the above 5 datasets with 13 tasks that can be264

used to develop new DGRL models. For details please refer to the official document for this toolbox.265

6 Experiments266

In this section, we first evaluate DGRL methods combining different GNN backbones, message267

passing directions, transformer selection, and PE incorporation, across all 5 datasets and 13 tasks,268

using in-distribution (ID) and out-of-distribution (OOD) testing data.269

6.1 Main Results270

The performances of the methods under all evaluation metrics for both in-distribution and out-of-271

distribution testing across all 13 tasks are reported from Table. 11 to Table. 33 in Appendix. G.1. We272

summarize the averaged ranking with respect to all evaluation metrics given a task in Table. 4. The273

details of ranking calculation is in Appendix. F.1. The results tell the following insights:274

‘Bidirected’ (BI) message passing in the MPNN layers significantly boosts the models’ performance275

on three GNN backbones (GCN, GIN, GAT) and one GT backbone (GPS-T): BI-GCN outperforms276

GCN on 10 out of 13 tasks in both ID and OOD evaluations. Similarly, in ID/OOD evaluations,277

BI-GIN outperforms GIN in 11/12 out of 13 tasks, BI-GAT outperforms GAT in 11/9 out of 13 tasks278

and BI-GPS-T outperforms GPS-T in 5/5 out of 6 tasks, respectively.279

7

Distribution In-Distribution (ID) Out-of-Distribution (OOD)

Dataset HLS AMP SR TIME CG HLS AMP SR TIME CG

Task DSP LUT CP gain PM BW share root hold setup CPU GPU630 GPU640 DSP LUT CP gain PM BW share root hold setup CPU GPU630 GPU640

DGCN 15.0 15.0 15.0 14.0 8.0 15.0 10.0 9.0 15.0 5.5 13.0 15.0 14.0 15.0 14.0 15.0 14.0 3.0 15.0 7.5 5.0 15.0 7.0 13.3 11.7 11.2
DiGCN 12.0 14.0 13.0 12.0 9.0 14.0 8.5 7.8 13.5 15.0 14.0 14.0 15.0 12.5 15.0 14.0 9.0 4.0 14.0 9.0 5.0 13.5 14.0 13.2 13.2 13.3
MagNet 7.0 7.0 10.5 8.0 11.0 8.0 1.8 2.0 11.0 11.5 1.3 1.3 4.7 7.0 7.0 10.5 3.0 12.0 8.0 3.5 8.8 9.0 7.0 4.2 8.2 7.3

GCN 14.0 12.0 14.0 15.0 13.0 12.0 13.3 13.5 9.5 14.0 15.0 12.3 11.7 12.5 10.0 12.0 14.5 14.0 11.0 14.8 14.5 7.5 10.5 12.7 12.7 11.5
DI-GCN 13.5 13.0 12.0 11.0 3.0 13.0 15.0 15.0 11.0 13.0 11.0 11.3 12.0 14.0 11.0 13.0 12.0 7.0 13.0 13.5 11.8 10.0 8.0 11.2 11.5 12.2

Spectral

BI-GCN 11.0 10.5 9.0 5.0 14.0 6.0 5.5 5.3 5.0 9.0 12.3 12.3 12.3 11.0 12.5 8.0 2.0 13.0 5.0 2.3 4.8 3.0 6.5 13.2 11.3 12.5

GIN 6.0 5.5 8.0 7.0 6.0 10.0 10.0 11.0 1.0 3.0 5.0 3.3 8.3 6.0 3.5 5.0 8.0 10.0 7.0 9.0 7.3 3.0 8.5 5.2 4.2 4.8
DI-GIN 2.5 4.0 6.5 9.0 10.0 7.0 6.5 4.8 3.0 2.0 5.7 8.0 3.3 2.0 2.5 7.0 10.0 5.0 12.0 6.3 9.0 6.5 7.0 3.5 5.7 4.2
BI-GIN 1.0 1.0 5.0 3.0 4.0 3.0 2.8 4.8 2.0 1.0 2.3 4.7 1.0 4.5 1.0 3.0 4.0 9.0 3.0 1.5 2.0 1.0 7.5 2.3 4.5 4.0

GAT 8.5 9.0 6.5 6.0 15.0 5.0 13.8 13.5 10.5 11.5 9.0 9.0 8.7 9.0 9.0 5.5 7.0 15.0 6.0 12.3 10.5 10.5 5.5 7.7 5.7 6.2
DI-GAT 10.0 10.5 10.5 10.0 12.0 9.0 11.8 10.0 13.5 10.0 10.0 10.0 10.0 10.0 12.5 11.0 11.0 6.0 10.0 11.3 10.0 13.5 8.5 6.2 5.7 7.3

Spatial

BI-GAT 9.0 8.0 1.0 4.0 2.0 11.0 4.0 6.3 6.5 7.5 8.0 5.3 7.0 8.0 8.0 1.5 1.0 2.0 9.0 9.8 8.5 4.5 6.5 6.2 10.7 10.5

GPS-T 4.0 3.0 2.5 13.0 7.0 2.0 - - - - - - - - - - - - - - 5.0 6.0 9.5 13.0 8.0 1.0 - - - - - - - - - - - - - -
DI-GPS-T 5.0 5.5 4.0 1.0 5.0 1.0 - - - - - - - - - - - - - - 3.0 5.0 1.5 5.0 11.0 2.0 - - - - - - - - - - - - - -
BI-GPS-T 3.0 2.0 2.0 1.0 1.0 4.0 - - - - - - - - - - - - - - 2.5 3.5 4.5 6.0 1.0 4.0 - - - - - - - - - - - - - -

GPS-P - - - - - - - - - - - - 5.5 12.0 6.5 4.0 6.3 2.0 5.3 - - - - - - - - - - - - 7.8 11.3 8.0 7.5 6.2 4.2 6.2
DI-GPS-P - - - - - - - - - - - - 6.5 4.8 4.0 7.5 2.7 5.7 3.0 - - - - - - - - - - - - 5.8 7.5 7.5 8.0 7.5 7.0 5.8

Transformer

BI-GPS-P - - - - - - - - - - - - 7.8 7.5 8.0 5.5 4.7 6.0 4.3 - - - - - - - - - - - - 6.8 4.3 7.5 8.0 8.5 5.2 4.2

Table 4: Average ranking (↓) of methods across datasets/tasks/metrics on ID and OOD data.
Distribution In-Distribution (ID) Out-of-Distribution (OOD)

Dataset HLS AMP SR TIME CG HLS AMP SR TIME CG

Task DSP LUT CP gain PM BW share root hold setup CPU GPU630 GPU640 DSP LUT CP gain PM BW share root hold setup CPU GPU630 GPU640

MagNet 14.5 11.0 14.5 12.0 15.0 12.0 2.3 2.5 13.0 13.0 2.3 1.7 6.7 11.0 11.0 14.5 3.0 16.0 12.0 5.5 10.8 11.0 16.0 5.2 9.5 8.3

BI-GIN(E) 9.0 2.0 9.0 6.0 6.0 6.0 4.8 6.8 2.5 2.0 6.0 3.3 6.0 7.5 3.5 6.0 4.0 13.0 5.0 3.0 3.0 2.5 7.5 4.7 5.8 4.8
BI-GIN(E)+NPE 5.0 4.0 5.0 5.0 13.0 5.0 3.0 6.8 5.5 5.0 8.3 5.0 5.3 9.0 4.0 1.5 7.0 8.0 7.0 2.8 3.5 5.5 12.5 6.0 4.5 6.0
BI-GIN(E)+EPE 5.0 1.0 5.0 9.0 10.0 3.0 4.0 6.8 2.0 1.0 1.0 6.7 1.7 7.0 1.0 2.5 6.0 6.0 4.0 1.5 3.0 1.0 7.5 3.8 5.5 4.7

BI-GPS-T (NPE) 4.5 5.5 4.5 2.0 2.0 7.0 - - - - - - - - - - - - - - 4.0 7.0 8.0 9.0 2.0 6.5 - - - - - - - - - - - - - -
BI-GPS-T+EPE 2.5 3.0 2.0 1.0 1.0 4.0 - - - - - - - - - - - - - - 1.5 1.5 3.5 5.5 1.0 1.0 - - - - - - - - - - - - - -

Table 5: Comparison of competitive methods involving NPE and EPE. The ranking (↓) is based on
all the 18 methods in Table 4 plus BI-GIN(E)+NPE, BI-GIN(E)+EPE and BI-GPS-T+EPE.

As to the models, on datasets with small graphs (HLS and AMP), BI-GPS-T consistently delivers280

excellent results, achieving top-3 performance in 5 out of 6 tasks on both ID and OOD testing281

data. BI-GIN also demonstrates competitive performance on these datasets. However, for datasets282

with larger graphs (SR, CG, and TIME), BI-GPS-T encounters a scalability issue. BI-GIN secures283

top-three performance in 6 out of 7 tasks in both ID and OOD testing data. For the ‘shared’ and ‘root’284

tasks from the SR dataset and the ‘CPU’ and ‘GPU630’ tasks from the CG dataset, MagNet [152]285

performs best in the ID setting. This is likely because training and testing are conducted on the same286

graph structures for these specific datasets, reducing the need for significant generalization across287

different graph structures. This scenario aligns well with the spectral filtering approach used by288

MagNet. These observations match findings from previous studies on directed networks [50, 152].289

However, MagNet’s performance falters in OOD evaluations which ask for the ability to generalize290

across different graph structures. GPS-P, despite its capability to handle large graphs, delivers only291

mediocre performance overall. In conclusion, BI-GPS is well-suited for small (around one hundred292

nodes) directed graphs. For larger graphs, BI-GIN is efficient and performs well. For tasks where the293

training and testing data share the same graph structures, one may also attempt to adopt MagNet.294

Comparing PE-enhanced methods: We further investigate the impact of different ways of using295

PEs. We combine NPE or EPE with the top-performing models from the previous section and evaluate296

BI-GIN+NPE, BI-GIN+EPE, and BI-GPS+EPE. Note that BI-GPS already utilizes NPE. We have297

chosen not to consider adding PE to MagNet because MagNet only accepts 1-dimensional edge298

weights, limiting its ability to leverage EPE. We provide a summary of the performance data from299

Table 34 to Table 43 in Appendix G.2 and report the average rankings of the methods for each task.300

All 18 methods in Table 4, along with the 3 new combinations, are included in the ranking. We detail301

the results of the most competitive methods in Table 5. For BI-GIN, EPE enhances its performance302

on 10 out of 13 tasks in the in-distribution (ID) testing data and 11 tasks in the out-of-distribution303

(OOD) testing data. Conversely, NPE only improves the performance of BI-GIN on 7 tasks in304

the ID testing and 4 tasks in the OOD testing and performs unstable for the rest tasks. Notably,305

EPE-enhanced BI-GIN surpasses MagNet on the CPU task in the CG dataset. For BI-GPS-T, EPE306

improves its performance on all 6 tasks in both ID and OOD testing, while NPE does not yield307

substantial improvements. This observation contrasts with previous work [101] on undirected graphs308

for molecular property prediction. In conclusion, we find that incorporating PEs in a stable way as309

EPE significantly boosts the performance of different models across the selected tasks and datasets.310

8

dataset
(baseline’s name)

AMP [29]
(CKTGNN)

HLS [137]
(Hierarchical GNN)

SR [134]
(GAMORA)

CG [150]
(nn-meter)

TIME [45]
(Timer-GNN)

task gain PM BW dsp lut cp shared cpu (average) hold

metric rmse↓ rmse↓ rmse↓ mse↓ mse↓ mse↓ accuracy↑ rmse↓ acc5↑ acc10↑ r2↑
Baseline 0.52 1.15 4.47 3.94 2.45 0.88 0.99 3.20 0.80 0.99 0.97

BI-GINE+EPE 0.51±0.07 1.14±0.00 4.20±0.13 2.13±0.08 1.73±0.10 0.61±0.02 0.99±0.00 2.79±0.14 0.86±0.02 0.99±0.01 0.99±0.00
BI-GPS-T+EPE 0.34±0.08 1.15±0.00 3.79±0.11 2.13±0.15 1.96±0.13 0.60±0.01 - - - - - - - - - -

Table 6: Comparison of BI-GIN+EPE and BI-GPS-T+EPE with baselines specific for each dataset.

6.2 Summary: The Recipe for DGRL311

Through benchmarking various combinations within the design space, we have formulated a design312

recipe for DGRL methods tailored for encoding hardware data: The use of ’bidirected’ (BI) message313

passing and stable positional encodings (PE) can significantly enhance model performance. Therefore,314

we recommend BI-GPS-T+EPE for encoding small graphs and BI-GIN+EPE for large graphs.315

We further compare the two models’ performance with the baseline methods proposed by hardware316

design practitioners specifically for the corresponding tasks in the original papers. Results are shown317

in Table. 6. The comparison focuses on ID evaluation as for most of the tasks, the original studies318

did not even report OOD evaluations. We follow the same data split as baseline methods for fair319

comparison (see the details in Appendix C). BI-GIN+EPE achieves results comparable to, or better320

than, the baseline methods. BI-GPS+EPE achieves even better performance than BI-GIN+EPE for321

small graphs. Note that the baseline methods for certain tasks may incorporate domain-specific322

expert knowledge and additional data processing. For example, CKTGNN [29] for the AMP dataset323

modifies the graph structures into DAGs and employs an asynchronized message passing to mimic324

the signal flow in these amplifiers; ‘timer-GNN’ [45] is tailored for the TIME dataset to mimic the325

transmission rules of clock signals and designs a non-linear delay model (NLDM) along with a novel326

module ‘cell library’. Such domain knowledge may further enhance BI-GPS+EPE and BI-GIN+EPE327

for these specific tasks, which is left for future research.328

Discussion on OOD Evaluation: Despite BI-GPS-T+EPE and BI-GIN+EPE outperforming other329

methods in OOD testing across all tasks, we cannot yet conclude that these methods are sufficiently330

effective for practical OOD usage. In fact, making accurate predictions with OOD data in hardware331

design remains a significant challenge. When the graph structures in training sets are sufficiently332

diverse, such as in datasets with a large number of small graphs (e.g., AMP, HLS) or those with333

abundant local structures (e.g., SR), BI-GIN+EPE and BI-GPS-T+EPE tend to maintain reasonably334

good performance on OOD data. However, OOD generalization becomes challenging when the335

diversity of graph structures in the training set is limited. For instance, in the TIME dataset, which336

has a limited variety of graph structures for training and OOD testing data with entirely different337

graph structures, both BI-GIN+EPE and BI-GPS-T+EPE perform worse than timer-GNN [45], which338

integrates the knowledge of the physical structure of circuits (as shown in Table 21). We identify339

ensuring OOD performance, especially when training sets lack sufficiently diversified graph structures,340

as a key direction for future DGRL research.341

7 Conclusions and Limitations342

Through benchmarking 21 methods on in-distribution and out-of-distribution test sets across 13 tasks343

and 5 datasets within the hardware design loop, we find bidirected (BI) message passing neural344

networks can substantially improve the performance of both Graph Transformer (GT) encoders that345

incorporate MPNN layers and pure GNN encoders. Positional Encodings (PEs), particularly when346

used stably, can broadly enhance the performance of both GTs and GNNs. With these insights, we347

identify two top-performing models: BI-GPS-T+EPE and BI-GIN+EPE, both of which outperform348

the baseline models originally proposed for the corresponding tasks.349

Limitations: Although the benchmark covers multiple stages in hardware design loop, there are other350

tasks [10, 17, 20, 89, 114, 143, 149] that could be included in this benchmark as DGRL tasks. Given351

technological advancements and the diversity of design tools, ensuring OOD performance remains an352

urgent open problem in hardware design. Future research may involve high-quality data collection353

[46, 56, 132, 138, 139] or the development of OOD-aware DGRL methods [78–80, 105].354

9

References355

[1] Cadence spectre simulation platform. https://www.cadence.com/en_US/home/tools/356

custom-ic-analog-rf-design/circuit-simulation.html.357

[2] Opencores. https://opencores.org/.358

[3] Openroad. https://github.com/The-OpenROAD-Project/OpenROAD.359

[4] Skywater. https://github.com/google/skywater-pdk.360

[5] Vitis hls tool. https://www.xilinx.com/products/design-tools/vitis/361

vitis-hls.html.362

[6] Vivado. https://www.xilinx.com/products/design-tools/vivado.html.363

[7] Engin Afacan, Nuno Lourenço, Ricardo Martins, and Günhan Dündar. Machine learning364

techniques in analog/rf integrated circuit design, synthesis, layout, and test. Integration,365

77:113–130, 2021.366

[8] Abeer Al-Hyari, Hannah Szentimrey, Ahmed Shamli, Timothy Martin, Gary Grewal, and367

Shawki Areibi. A deep learning framework to predict routability for fpga circuit placement.368

ACM Transactions on Reconfigurable Technology and Systems (TRETS), 14(3):1–28, 2021.369

[9] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers Principles, Techniques &370

Tools. pearson Education, 2007.371

[10] Lilas Alrahis, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh, Baker Mo-372

hammad, Mahmoud Al-Qutayri, and Ozgur Sinanoglu. GNN-RE: Graph neural networks for373

reverse engineering of gate-level netlists. IEEE Transactions on Computer-Aided Design of374

Integrated Circuits and Systems, pages 1–1, 2021.375

[11] Yunsheng Bai, Atefeh Sohrabizadeh, Zongyue Qin, Ziniu Hu, Yizhou Sun, and Jason Cong.376

Towards a comprehensive benchmark for high-level synthesis targeted to fpgas. Advances in377

Neural Information Processing Systems, 36:45288–45299, 2023.378

[12] Ioana Baldini, Stephen J Fink, and Erik Altman. Predicting gpu performance from cpu379

runs using machine learning. In 2014 IEEE 26th International Symposium on Computer380

Architecture and High Performance Computing, pages 254–261. IEEE, 2014.381

[13] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool.382

In Proc. CAV. Springer, 2010.383

[14] Tim Bücher, Lilas Alrahis, Guilherme Paim, Sergio Bampi, Ozgur Sinanoglu, and Hussam384

Amrouch. Appgnn: Approximation-aware functional reverse engineering using graph neural385

networks. In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided386

Design, pages 1–9, 2022.387

[15] Burcin Cakir and Sharad Malik. Reverse engineering digital ics through geometric embedding388

of circuit graphs. ACM Transactions on Design Automation of Electronic Systems (TODAES),389

23(4):1–19, 2018.390

[16] Weidong Cao, Mouhacine Benosman, Xuan Zhang, and Rui Ma. Domain knowledge-391

based automated analog circuit design with deep reinforcement learning. arXiv preprint392

arXiv:2202.13185, 2022.393

[17] Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet:394

An open-source dataset for machine learning in vlsi cad applications with improved domain-395

specific evaluation metric and learning strategies. IEEE Transactions on Computer-Aided396

Design of Integrated Circuits and Systems, 2023.397

10

https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://opencores.org/
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/google/skywater-pdk
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vivado.html

[18] Jingsong Chen, Jian Kuang, Guowei Zhao, Dennis J-H Huang, and Evangeline FY Young.398

Pros: A plug-in for routability optimization applied in the state-of-the-art commercial eda399

tool using deep learning. In 2020 IEEE/ACM International Conference On Computer Aided400

Design (ICCAD), pages 1–8. IEEE, 2020.401

[19] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos402

Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in403

Neural Information Processing Systems, 31, 2018.404

[20] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda, Eric Atkinson, Ondrej405

Sykora, Saman Amarasinghe, and Michael Carbin. Bhive: A benchmark suite and measurement406

framework for validating x86-64 basic block performance models. In 2019 IEEE international407

symposium on workload characterization (IISWC). IEEE, 2019.408

[21] Vidya A Chhabria, Wenjing Jiang, Andrew B Kahng, Rongjian Liang, Haoxing Ren, Sachin S409

Sapatnekar, and Bing-Yue Wu. Openroad and circuitops: Infrastructure for ml eda research410

and education. In 2024 IEEE 42nd VLSI Test Symposium (VTS), pages 1–4. IEEE, 2024.411

[22] Matteo Chinazzi and Giorgio Fagiolo. Systemic risk, contagion, and financial networks: A412

survey. SSRN, 2015.413

[23] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea414

Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,415

et al. Rethinking attention with performers. 2020.416

[24] Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d:417

A large-scale dataset for machine learning guided integrated circuit synthesis. arXiv preprint418

arXiv:2110.11292, 2021.419

[25] Maciej Ciesielski, Tiankai Su, Atif Yasin, and Cunxi Yu. Understanding algebraic rewriting420

for arithmetic circuit verification: a bit-flow model. IEEE Transactions on Computer-Aided421

Design of Integrated Circuits and Systems, 39(6):1346–1357, 2019.422

[26] Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler, Michael O’Boyle, and423

Hugh Leather. ProGraML: A Graph-based Program Representation for Data Flow Analysis424

and Compiler Optimizations. In Thirty-eighth International Conference on Machine Learning425

(ICML), 2021.426

[27] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and Zhiru Zhang.427

Fast and accurate estimation of quality of results in high-level synthesis with machine learn-428

ing. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom429

Computing Machines (FCCM), pages 129–132. IEEE, 2018.430

[28] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural431

architecture search. In International Conference on Learning Representations, 2019.432

[29] Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. Ckt-433

gnn: Circuit graph neural network for electronic design automation. International Conference434

on Learning Representations, 2023.435

[30] Zehao Dong, Muhan Zhang, Fuhai Li, and Yixin Chen. Pace: A parallelizable computation436

encoder for directed acyclic graphs. In International Conference on Machine Learning, pages437

5360–5377. PMLR, 2022.438

[31] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas439

Lane. Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing440

Systems, 33:10480–10490, 2020.441

11

[32] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,442

and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning443

Research, 24(43):1–48, 2023.444

[33] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.445

Graph neural networks with learnable structural and positional representations. In International446

Conference on Learning Representations, 2022.447

[34] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan448

Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on449

Neural Information Processing Systems Datasets and Benchmarks Track, 2022.450

[35] Hadi Esmaeilzadeh, Soroush Ghodrati, Andrew Kahng, Joon Kyung Kim, Sean Kinzer, Sayak451

Kundu, Rohan Mahapatra, Susmita Dey Manasi, Sachin Sapatnekar, Zhiang Wang, et al. An452

open-source ml-based full-stack optimization framework for machine learning accelerators.453

ACM Transactions on Design Automation of Electronic Systems, 2023.454

[36] Michaël Fanuel, Carlos M Alaíz, Ángela Fernández, and Johan AK Suykens. Magnetic455

eigenmaps for the visualization of directed networks. Applied and Computational Harmonic456

Analysis, 44(1):189–199, 2018.457

[37] Michaël Fanuel, Carlos M Alaiz, and Johan AK Suykens. Magnetic eigenmaps for community458

detection in directed networks. Physical Review E, 95(2):022302, 2017.459

[38] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.460

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.461

[39] Stefano Fiorini, Stefano Coniglio, Michele Ciavotta, and Enza Messina. Sigmanet: One462

laplacian to rule them all. In Proceedings of the AAAI Conference on Artificial Intelligence,463

volume 37, pages 7568–7576, 2023.464

[40] Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and Masaki Aida. Graph465

signal processing for directed graphs based on the hermitian laplacian. In Machine Learning466

and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Würzburg,467

Germany, September 16–20, 2019, Proceedings, Part I, pages 447–463. Springer, 2020.468

[41] Douglas M Gale and Shachar Kariv. Financial networks. American Economic Review,469

97(2):99–103, 2007.470

[42] Simon Geisler, Yujia Li, Daniel J Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and471

Cosmin Paduraru. Transformers meet directed graphs. In International Conference on Machine472

Learning, pages 11144–11172. PMLR, 2023.473

[43] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.474

Neural message passing for quantum chemistry. In International conference on machine475

learning, pages 1263–1272. PMLR, 2017.476

[44] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan477

Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representa-478

tions with data flow. International Conference on Learning Representations, 2020.479

[45] Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, David Z Pan, and Yibo Lin. A timing480

engine inspired graph neural network model for pre-routing slack prediction. In Proceedings481

of the 59th ACM/IEEE Design Automation Conference, pages 1207–1212, 2022.482

[46] Nitin Gupta, Shashank Mujumdar, Hima Patel, Satoshi Masuda, Naveen Panwar, Sambaran483

Bandyopadhyay, Sameep Mehta, Shanmukha Guttula, Shazia Afzal, Ruhi Sharma Mittal, et al.484

Data quality for machine learning tasks. In Proceedings of the 27th ACM SIGKDD conference485

on knowledge discovery & data mining, pages 4040–4041, 2021.486

12

[47] Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms. Springer487

Science & Business Media, 2005.488

[48] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large489

graphs. Advances in neural information processing systems, 30, 2017.490

[49] Yixuan He, Michael Perlmutter, Gesine Reinert, and Mihai Cucuringu. Msgnn: A spectral491

graph neural network based on a novel magnetic signed laplacian. In Learning on Graphs492

Conference, pages 40–1. PMLR, 2022.493

[50] Yixuan He, Xitong Zhang, Junjie Huang, Benedek Rozemberczki, Mihai Cucuringu, and494

Gesine Reinert. Pytorch geometric signed directed: A software package on graph neural495

networks for signed and directed graphs. In Learning on Graphs Conference, pages 12–1.496

PMLR, 2024.497

[51] Zhuolun He, Ziyi Wang, Chen Bai, Haoyu Yang, and Bei Yu. Graph learning-based arithmetic498

block identification. In 2021 IEEE/ACM International Conference On Computer Aided Design499

(ICCAD), pages 1–8. IEEE, 2021.500

[52] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele501

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.502

Advances in neural information processing systems, 33:22118–22133, 2020.503

[53] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka,504

and Pan Li. On the stability of expressive positional encodings for graph neural networks.505

International Conference on Learning Representations, 2024.506

[54] William Hughes, Sandeep Srinivasan, Rohit Suvarna, and Maithilee Kulkarni. Optimiz-507

ing design verification using machine learning: Doing better than random. arXiv preprint508

arXiv:1909.13168, 2019.509

[55] Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-510

attention as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD511

Conference on Knowledge Discovery and Data Mining, pages 655–665, 2022.512

[56] Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha513

Guttula, Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal, and Vitobha Munigala.514

Overview and importance of data quality for machine learning tasks. In Proceedings of the515

26th ACM SIGKDD international conference on knowledge discovery & data mining, pages516

3561–3562, 2020.517

[57] Guillaume Jaume, An-phi Nguyen, María Rodríguez Martínez, Jean-Philippe Thiran, and518

Maria Gabrani. edgnn: a simple and powerful gnn for directed labeled graphs. arXiv preprint519

arXiv:1904.08745, 2019.520

[58] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Stargazer: Automated regression-based521

gpu design space exploration. In 2012 IEEE International Symposium on Performance Analysis522

of Systems & Software, pages 2–13. IEEE, 2012.523

[59] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy,524

scalability, and performance of graph neural networks with roc. Proceedings of Machine525

Learning and Systems, 2:187–198, 2020.526

[60] Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit527

Sabne, and Mike Burrows. A learned performance model for tensor processing units. Proceed-528

ings of Machine Learning and Systems, 3:387–400, 2021.529

[61] Arshinder Kaur, Arun Kanda, and SG Deshmukh. A graph theoretic approach for supply chain530

coordination. international journal of logistics Systems and Management, 2(4):321–341, 2006.531

13

[62] Alexy Khrabrov and George Cybenko. Discovering influence in communication networks532

using dynamic graph analysis. In 2010 IEEE Second International Conference on Social533

Computing, pages 288–294. IEEE, 2010.534

[63] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional535

networks. arXiv preprint arXiv:1609.02907, 2016.536

[64] Christian Koke and Daniel Cremers. Holonets: Spectral convolutions do extend to directed537

graphs. In The Twelfth International Conference on Learning Representations, 2023.538

[65] Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie Lozano, and Naoki Abe. Di-539

rected graph auto-encoders. In Proceedings of the AAAI conference on artificial intelligence,540

volume 36, pages 7211–7219, 2022.541

[66] Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The structure of information pathways542

in a social communication network. In Proceedings of the 14th ACM SIGKDD international543

conference on Knowledge discovery and data mining, pages 435–443, 2008.544

[67] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.545

Rethinking graph transformers with spectral attention. Advances in Neural Information546

Processing Systems, 34:21618–21629, 2021.547

[68] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor program548

compilation made efficient. Advances in Neural Information Processing Systems, 33:14807–549

14819, 2020.550

[69] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design551

provably more powerful neural networks for graph representation learning. Advances in552

Neural Information Processing Systems, 33:4465–4478, 2020.553

[70] Wenchao Li, Adria Gascon, Pramod Subramanyan, Wei Yang Tan, Ashish Tiwari, Sharad554

Malik, Natarajan Shankar, and Sanjit A Seshia. Wordrev: Finding word-level structures in a555

sea of bit-level gates. In 2013 IEEE international symposium on hardware-oriented security556

and trust (HOST), pages 67–74. IEEE, 2013.557

[71] Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin S558

Sapatnekar, Ramesh Harjani, and Jiang Hu. A customized graph neural network model for559

guiding analog ic placement. In 2020 IEEE/ACM International Conference On Computer560

Aided Design (ICCAD), pages 1–9. IEEE, 2020.561

[72] Rongjian Liang, Hua Xiang, Diwesh Pandey, Lakshmi Reddy, Shyam Ramji, Gi-Joon Nam, and562

Jiang Hu. Drc hotspot prediction at sub-10nm process nodes using customized convolutional563

network. In Proceedings of the 2020 International Symposium on Physical Design, pages564

135–142, 2020.565

[73] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion566

Stoica. Tune: A research platform for distributed model selection and training. arXiv preprint567

arXiv:1807.05118, 2018.568

[74] Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and569

Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.570

International Conference on Learning Representations, 2022.571

[75] Ting-Ru Lin, Yunfan Li, Massoud Pedram, and Lizhong Chen. Design space exploration of572

memory controller placement in throughput processors with deep learning. IEEE Computer573

Architecture Letters, 18(1):51–54, 2019.574

[76] Zhe Lin, Jieru Zhao, Sharad Sinha, and Wei Zhang. Hl-pow: A learning-based power modeling575

framework for high-level synthesis. In 2020 25th Asia and South Pacific Design Automation576

Conference (ASP-DAC), pages 574–580. IEEE, 2020.577

14

[77] Mingjie Liu, Walker J Turner, George F Kokai, Brucek Khailany, David Z Pan, and Haoxing578

Ren. Parasitic-aware analog circuit sizing with graph neural networks and bayesian optimiza-579

tion. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages580

1372–1377. IEEE, 2021.581

[78] Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li.582

Structural re-weighting improves graph domain adaptation. In International Conference on583

Machine Learning, pages 21778–21793. PMLR, 2023.584

[79] Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain585

adaptation. International Conference on Machine Learning, 2024.586

[80] Shuhan Liu and Kaize Ding. Beyond generalization: A survey of out-of-distribution adaptation587

on graphs. arXiv preprint arXiv:2402.11153, 2024.588

[81] Daniel Lo, Taejoon Song, and G Edward Suh. Prediction-guided performance-energy trade-589

off for interactive applications. In Proceedings of the 48th International Symposium on590

Microarchitecture, pages 508–520. ACM, 2015.591

[82] Yi-Chen Lu, Siddhartha Nath, Sai Pentapati, and Sung Kyu Lim. Eco-gnn: Signoff power592

prediction using graph neural networks with subgraph approximation. ACM Transactions on593

Design Automation of Electronic Systems, 28(4):1–22, 2023.594

[83] Yi-Chen Lu, Haoxing Ren, Hao-Hsiang Hsiao, and Sung Kyu Lim. Gan-place: Advancing595

open source placers to commercial-quality using generative adversarial networks and transfer596

learning. ACM Transactions on Design Automation of Electronic Systems, 29(2):1–17, 2024.597

[84] Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based598

graph convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019.599

[85] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo, Karthikeyan Natara-600

jan, and Bei Yu. High performance graph convolutional networks with applications in testability601

analysis. In Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6,602

2019.603

[86] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. Proactive error prediction to604

improve storage system reliability. In 2017 USENIX Annual Technical Conference (USENIX605

ATC 17), pages 391–402, 2017.606

[87] Alireza Mahzoon, Daniel Große, and Rolf Drechsler. Revsca: Using reverse engineering to607

bring light into backward rewriting for big and dirty multipliers. In Proceedings of the 56th608

Annual Design Automation Conference 2019, pages 1–6, 2019.609

[88] Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi, Sai610

Manoj Pudukotai Dinakarrao, Houman Homayoun, and Setareh Rafatirad. Pyramid: Machine611

learning framework to estimate the optimal timing and resource usage of a high-level synthesis612

design. In 2019 29th International Conference on Field Programmable Logic and Applications613

(FPL), pages 397–403. IEEE, 2019.614

[89] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accu-615

rate, portable and fast basic block throughput estimation using deep neural networks. In616

International Conference on machine learning, pages 4505–4515. PMLR, 2019.617

[90] Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin618

Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview619

from architecture perspective. arXiv preprint arXiv:2202.08455, 2022.620

[91] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen621

Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement622

methodology for fast chip design. Nature, 594(7862):207–212, 2021.623

15

[92] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting a fresh624

look at combinational logic synthesis. In Proceedings of the 43rd annual Design Automation625

Conference, pages 532–535, 2006.626

[93] Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann. Caloree: Learning control627

for predictable latency and low energy. In Proceedings of the Twenty-Third International628

Conference on Architectural Support for Programming Languages and Operating Systems,629

pages 184–198, 2018.630

[94] Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph631

convolutional network for directed graphs. In 2018 IEEE data science workshop (DSW), pages632

225–228. IEEE, 2018.633

[95] Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-Delgado. Machine learning methods634

for predicting failures in hard drives: A multiple-instance application. Journal of Machine635

Learning Research, 6(May):783–816, 2005.636

[96] Audrey Olivier, Michael D Shields, and Lori Graham-Brady. Bayesian neural networks for637

uncertainty quantification in data-driven materials modeling. Computer methods in applied638

mechanics and engineering, 386:114079, 2021.639

[97] Kenneth O’Neal, Philip Brisk, Emily Shriver, and Michael Kishinevsky. Halwpe: Hardware-640

assisted light weight performance estimation for gpus. In 2017 54th ACM/EDAC/IEEE Design641

Automation Conference (DAC), pages 1–6. IEEE, 2017.642

[98] The pandas development team. pandas-dev/pandas: Pandas, February 2020.643

[99] Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K Mishra, Mahmut T644

Kandemir, Onur Mutlu, and Chita R Das. Scheduling techniques for gpu architectures with645

processing-in-memory capabilities. In Proceedings of the 2016 International Conference on646

Parallel Architectures and Compilation, pages 31–44, 2016.647

[100] Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Michael Burrows,648

Charith Mendis, and Bryan Perozzi. Tpugraphs: A performance prediction dataset on large649

tensor computational graphs. Advances in Neural Information Processing Systems, 36, 2023.650

[101] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and651

Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in652

Neural Information Processing Systems, 35:14501–14515, 2022.653

[102] Haoxing Ren, George F Kokai, Walker J Turner, and Ting-Sheng Ku. Paragraph: Layout para-654

sitics and device parameter prediction using graph neural networks. In 2020 57th ACM/IEEE655

Design Automation Conference (DAC), pages 1–6. IEEE, 2020.656

[103] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin657

Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM658

Computing Surveys (CSUR), 54(4):1–34, 2021.659

[104] Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan660

Günnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic661

graphs. In Learning on Graphs Conference, pages 25–1. PMLR, 2024.662

[105] Boshen Shi, Yongqing Wang, Fangda Guo, Bingbing Xu, Huawei Shen, and Xueqi663

Cheng. Graph domain adaptation: Challenges, progress and prospects. arXiv preprint664

arXiv:2402.00904, 2024.665

[106] Huihong Shi, Haoran You, Yang Zhao, Zhongfeng Wang, and Yingyan Lin. Nasa: Neural666

architecture search and acceleration for hardware inspired hybrid networks. In Proceedings of667

the 41st IEEE/ACM International Conference on Computer-Aided Design, pages 1–9, 2022.668

16

[107] Aebel Joe Shibu, Shilpa N, and Pratyush Kumar. Verlpy: Python library for verification669

of digital designs with reinforcement learning. In Proceedings of the First International670

Conference on AI-ML Systems, pages 1–7, 2021.671

[108] Brett Shook, Prateek Bhansali, Chandramouli Kashyap, Chirayu Amin, and Siddhartha Joshi.672

Mlparest: Machine learning based parasitic estimation for custom circuit design. In 2020 57th673

ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.674

[109] MA Shubin. Discrete magnetic laplacian. Communications in mathematical physics,675

164(2):259–275, 1994.676

[110] Rahul Singh, Abhishek Chakraborty, and BS Manoj. Graph fourier transform based on directed677

laplacian. In 2016 International Conference on Signal Processing and Communications678

(SPCOM), pages 1–5. IEEE, 2016.679

[111] IEEE Electronics Packaging Society. Heterogeneous integration roadmap. https://eps.680

ieee.org/technology/heterogeneous-integration-roadmap.html.681

[112] Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adria Gascón, Wei Yang Tan, Ashish682

Tiwari, Natarajan Shankar, Sanjit A Seshia, and Sharad Malik. Reverse engineering digital683

circuits using structural and functional analyses. IEEE Transactions on Emerging Topics in684

Computing, 2(1):63–80, 2013.685

[113] Amit Surana, Soundar Kumara*, Mark Greaves, and Usha Nandini Raghavan. Supply-chain686

networks: a complex adaptive systems perspective. International Journal of Production687

Research, 43(20):4235–4265, 2005.688

[114] Ondřej Sỳkora, Phitchaya Mangpo Phothilimthana, Charith Mendis, and Amir Yazdanbakhsh.689

Granite: A graph neural network model for basic block throughput estimation. In 2022 IEEE690

International Symposium on Workload Characterization (IISWC), pages 14–26. IEEE, 2022.691

[115] Aysa Fakheri Tabrizi, Logan Rakai, Nima Karimpour Darav, Ismail Bustany, Laleh Behjat,692

Shuchang Xu, and Andrew Kennings. A machine learning framework to identify detailed rout-693

ing short violations from a placed netlist. In 2018 55th ACM/ESDA/IEEE Design Automation694

Conference (DAC), pages 1–6. IEEE, 2018.695

[116] Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In International696

Conference on Learning Representations, 2020.697

[117] Aviral Kumar Tiwari, Micheal Kofi Boachie, and Rangan Gupta. Network analysis of economic698

and financial uncertainties in advanced economies: Evidence from graph-theory. 2021.699

[118] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.700

Digraph inception convolutional networks. Advances in neural information processing systems,701

33:17907–17918, 2020.702

[119] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed703

graph convolutional network. arXiv preprint arXiv:2004.13970, 2020.704

[120] Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, and Zhiru Zhang. Accurate opera-705

tion delay prediction for fpga hls using graph neural networks. In Proceedings of the 39th706

International Conference on Computer-Aided Design, pages 1–9, 2020.707

[121] Shobha Vasudevan, Wenjie Joe Jiang, David Bieber, Rishabh Singh, C Richard Ho, Charles708

Sutton, et al. Learning semantic representations to verify hardware designs. Advances in709

Neural Information Processing Systems, 34, 2021.710

[122] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,711

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information712

processing systems, 30, 2017.713

17

https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html

[123] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and714

Yoshua Bengio. Graph attention networks. International Conference on Learning Representa-715

tions, 2018.716

[124] Andre Vladimirescu. The SPICE book. John Wiley & Sons, Inc., 1994.717

[125] Stephan M Wagner and Nikrouz Neshat. Assessing the vulnerability of supply chains using718

graph theory. International journal of production economics, 126(1):121–129, 2010.719

[126] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song720

Han. Gcn-rl circuit designer: Transferable transistor sizing with graph neural networks and721

reinforcement learning. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages722

1–6. IEEE, 2020.723

[127] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional724

encoding for more powerful graph neural networks. International Conference on Learning725

Representations, 2022.726

[128] Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning727

for combinatorial optimization with principled objective relaxation. Advances in Neural728

Information Processing Systems, 35:31444–31458, 2022.729

[129] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified730

pre-trained encoder-decoder models for code understanding and generation. EMNLP, 2021.731

[130] Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components732

and their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.733

[131] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans.734

Neural predictor for neural architecture search. In European conference on computer vision,735

pages 660–676. Springer, 2020.736

[132] Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and quality737

challenges in deep learning: A data-centric ai perspective. The VLDB Journal, 32(4):791–813,738

2023.739

[133] Nan Wu, Jiwon Lee, Yuan Xie, and Cong Hao. Lostin: Logic optimization via spatio-temporal740

information with hybrid graph models. In 2022 IEEE 33rd International Conference on741

Application-specific Systems, Architectures and Processors (ASAP), pages 11–18. IEEE, 2022.742

[134] Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning743

based symbolic reasoning for large-scale boolean networks. In 2023 60th ACM/IEEE Design744

Automation Conference (DAC), pages 1–6. IEEE, 2023.745

[135] Nan Wu and Yuan Xie. A survey of machine learning for computer architecture and systems.746

ACM Computing Surveys (CSUR), 55(3):1–39, 2022.747

[136] Nan Wu, Yuan Xie, and Cong Hao. Ironman: Gnn-assisted design space exploration in748

high-level synthesis via reinforcement learning. In Proceedings of the 2021 on Great Lakes749

Symposium on VLSI, pages 39–44, 2021.750

[137] Nan Wu, Hang Yang, Yuan Xie, Pan Li, and Cong Hao. High-level synthesis performance751

prediction using gnns: Benchmarking, modeling, and advancing. In Proceedings of the 59th752

ACM/IEEE Design Automation Conference, pages 49–54, 2022.753

[138] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumuruganathan.754

Zeroer: Entity resolution using zero labeled examples. In Proceedings of the 2020 ACM755

SIGMOD International Conference on Management of Data, pages 1149–1164, 2020.756

18

[139] Renzhi Wu, Prem Sakala, Peng Li, Xu Chu, and Yeye He. Demonstration of panda: a weakly757

supervised entity matching system. Proceedings of the VLDB Endowment, 2021.758

[140] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural759

networks? International Conference on Learning Representations, 2019.760

[141] Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg Yeric.761

Standard cell library design and optimization methodology for asap7 pdk. In 2017 IEEE/ACM762

International Conference on Computer-Aided Design (ICCAD), pages 999–1004. IEEE, 2017.763

[142] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang, Peng Li,764

Keceng Jiang, Wenchi Zhang, Jian-Guang Lou, et al. Improving service availability of cloud765

systems by predicting disk error. In 2018 USENIX Annual Technical Conference (USENIX766

ATC 18), pages 481–494, 2018.767

[143] Jiang Xun, Zhuomin Chai, Yuxiang Zhao, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet768

2.0: An advanced dataset for promoting machine learning innovations in realistic chip design769

environment. In The Twelfth International Conference on Learning Representations, 2024.770

[144] Hanchen Ye, Hyegang Jun, and Deming Chen. Hida: A hierarchical dataflow compiler for high-771

level synthesis. In Proceedings of the 29th ACM International Conference on Architectural772

Support for Programming Languages and Operating Systems, Volume 1, pages 215–230, 2024.773

[145] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,774

and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in775

neural information processing systems, 34:28877–28888, 2021.776

[146] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without777

human knowledge. In Proceedings of the 55th Annual Design Automation Conference, pages778

1–6, 2018.779

[147] Cunxi Yu and Wang Zhou. Decision making in synthesis cross technologies using lstms and780

transfer learning. In Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for781

CAD, pages 55–60, 2020.782

[148] Shih-Yuan Yu, Rozhin Yasaei, Qingrong Zhou, Tommy Nguyen, and Mohammad Abdullah783

Al Faruque. Hw2vec: A graph learning tool for automating hardware security. In 2021 IEEE784

International Symposium on Hardware Oriented Security and Trust (HOST), pages 13–23.785

IEEE, 2021.786

[149] Guo Zhang, Hao He, and Dina Katabi. Circuit-gnn: Graph neural networks for distributed787

circuit design. In International conference on machine learning, pages 7364–7373. PMLR,788

2019.789

[150] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang, and Yunxin790

Liu. Nn-meter: Towards accurate latency prediction of deep-learning model inference on791

diverse edge devices. In Proceedings of the 19th Annual International Conference on Mobile792

Systems, Applications, and Services, pages 81–93, 2021.793

[151] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A794

variational autoencoder for directed acyclic graphs. Advances in neural information processing795

systems, 32, 2019.796

[152] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:797

A neural network for directed graphs. Advances in neural information processing systems,798

34:27003–27015, 2021.799

[153] Guangwei Zhao and Kaveh Shamsi. Graph neural network based netlist operator detection800

under circuit rewriting. In Proceedings of the Great Lakes Symposium on VLSI 2022, pages801

53–58, 2022.802

19

[154] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. Comba: A803

comprehensive model-based analysis framework for high level synthesis of real applications.804

In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages805

430–437. IEEE, 2017.806

[155] Jieru Zhao, Tingyuan Liang, Sharad Sinha, and Wei Zhang. Machine learning based routing807

congestion prediction in fpga high-level synthesis. In 2019 Design, Automation & Test in808

Europe Conference & Exhibition (DATE), pages 1130–1135. IEEE, 2019.809

[156] Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. Accurate phase-level cross-platform810

power and performance estimation. In 2016 53nd ACM/EDAC/IEEE Design Automation811

Conference (DAC), pages 1–6. IEEE, 2016.812

[157] Yunxing Zuo, Mingde Qin, Chi Chen, Weike Ye, Xiangguo Li, Jian Luo, and Shyue Ping813

Ong. Accelerating materials discovery with bayesian optimization and graph deep learning.814

Materials Today, 51:126–135, 2021.815

Checklist816

The checklist follows the references. Please read the checklist guidelines carefully for information on817

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or818

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing819

the appropriate section of your paper or providing a brief inline description. For example:820

• Did you include the license to the code and datasets? [Yes] See Section ??.821

• Did you include the license to the code and datasets? [No] The code and the data are822

proprietary.823

• Did you include the license to the code and datasets? [N/A]824

Please do not modify the questions and only use the provided macros for your answers. Note that the825

Checklist section does not count towards the page limit. In your paper, please delete this instructions826

block and only keep the Checklist section heading above along with the questions/answers below.827

1. For all authors...828

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s829

contributions and scope? [Yes]830

(b) Did you describe the limitations of your work? [Yes]831

(c) Did you discuss any potential negative societal impacts of your work? [N/A]832

(d) Have you read the ethics review guidelines and ensured that your paper conforms to833

them? [Yes]834

2. If you are including theoretical results...835

(a) Did you state the full set of assumptions of all theoretical results? [N/A]836

(b) Did you include complete proofs of all theoretical results? [N/A]837

3. If you ran experiments (e.g. for benchmarks)...838

(a) Did you include the code, data, and instructions needed to reproduce the main experi-839

mental results (either in the supplemental material or as a URL)? [Yes]840

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they841

were chosen)? [Yes]842

(c) Did you report error bars (e.g., with respect to the random seed after running experi-843

ments multiple times)? [Yes]844

(d) Did you include the total amount of compute and the type of resources used (e.g., type845

of GPUs, internal cluster, or cloud provider)? [Yes]846

20

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...847

(a) If your work uses existing assets, did you cite the creators? [Yes]848

(b) Did you mention the license of the assets? [Yes] See Section D849

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]850

(d) Did you discuss whether and how consent was obtained from people whose data you’re851

using/curating? [N/A]852

(e) Did you discuss whether the data you are using/curating contains personally identifiable853

information or offensive content? [Yes] See Section D854

5. If you used crowdsourcing or conducted research with human subjects...855

(a) Did you include the full text of instructions given to participants and screenshots, if856

applicable? [N/A]857

(b) Did you describe any potential participant risks, with links to Institutional Review858

Board (IRB) approvals, if applicable? [N/A]859

(c) Did you include the estimated hourly wage paid to participants and the total amount860

spent on participant compensation? [N/A]861

21

