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ABSTRACT

Hypothesis ranking is a crucial component of automated scientific discovery, par-
ticularly in natural sciences where wet-lab experiments are costly and throughput-
limited. Existing approaches focus on pre-experiment ranking, relying solely on
a language model’s internal reasoning without incorporating empirical outcomes.
We introduce the task of experiment-guided ranking, which prioritizes hypotheses
based on feedback from previously tested ones. However, developing such strate-
gies in natural science domains is challenging due to the impractical requirement of
repeatedly conducting real experiments. To address this, we revisit the core purpose
of real experiments: to provide feedback on both the ground-truth hypothesis and
the surrounding hypotheses that form the path toward it. This motivates our alter-
native: a simulator grounded in three domain-informed conceptual foundations,
modeling hypothesis performance as a function of similarity to a known ground
truth, perturbed by noise. While the ground-truth is pre-specified, it remains hidden
from the ranking agent, enabling faithful evaluation of policies that navigate toward
it. Validated against 124 hypotheses with experimentally reported outcomes, the
simulator approximates real experimental results with consistent trend alignment.
Though not perfectly accurate, its deviations resemble wet-lab noise and can fos-
ter more robust ranking strategies. We formulate experiment-guided ranking as
a sequential decision-making problem and propose an in-context reinforcement
learning (ICRL) framework. Within this framework, we introduce an LLM-based
agentic policy that decomposes hypotheses into functional elements, clusters them
by shared mechanistic roles, and prioritizes recombinations of promising elements
based on feedback. Experiments show that our method significantly outperforms
pre-experiment baselines and strong ablations. Our toolkit-comprising the simu-
lator and ICRL framework—enables systematic research on experiment-guided
ranking, with our policy serving as a strong proof of concept.

1 INTRODUCTION

Scientific discovery plays a foundational role in advancing human society (Coccia, 2019). Recent
progress in large language models (LLMs) has sparked growing interest in automating parts of this
scientific process (Luo et al., 2025). Among these, one of the most critical stages is hypothesis
ranking: given a large set of automatically generated hypotheses (e.g., by AI), which one should be
tested in a real experiment first? This question is particularly important in natural science domains,
where wet-lab experiments are costly and throughput-limited, requiring prioritization strategies that
maximize discovery efficiency under strict experimental budgets.

Existing work on hypothesis ranking (Yang et al., 2025; Si et al., 2024) primarily relies on evaluations
based solely on a language model’s internal reasoning, without incorporating any empirical feedback.
We refer to this as pre-experiment ranking. While efficient, this approach overlooks the iterative,
feedback-driven nature of real-world experimentation.

In contrast, we introduce the task of experiment-guided ranking, which prioritizes hypotheses
for the next round of experimentation based on outcomes from previously tested ones. Rather
than evaluating all candidates upfront, this approach dynamically adjusts prioritization as new
experimental results become available. However, in natural science domains such as chemistry,
materials science, and biology, conducting iterative experiments at scale—as required by experiment-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Experiment-guided Ranking with Simulated Experiment (stateful; for ranking policy development)

Real Wet-lab
Experiment

Results of the
Experiment Ranking Policy

Real Wet-lab
Experiment

Results of the
Experiment

 Ranking Policy
 (Deploy  )

Experiment-guided Ranking with Real Experiment (stateful; for ranking policy deployment)

Pre-experiment Ranking (stateless; no feedback)

One-shot Ranking

Analyze
& Summary

No Feedback Loop

Trajectory 

Simulated
Experiment

Results of the
Simulation 

 Ranking Policy
(Develop  )

Analyze
& Summary

state

stateInfeasible to Scale

Rapid and Scalable

...

...

...

Figure 1: Overview of ranking strategies. Pre-experiment ranking is stateless and ignores feedback.
Experiment-guided ranking with real experiments is stateful but infeasible to scale. Our simulator
enables efficient testing of ranking policies through simulated feedback before real deployment.

guided ranking—is often infeasible due to the high cost, long duration, and limited throughput
of real-world experimentation. This lack of scalable feedback limits progress in developing and
evaluating experiment-guided ranking strategies.

To address this challenge, we revisit the core purpose of real experiments: not only to validate a
ground-truth hypothesis, but also to provide feedback on nearby hypotheses that form the path toward
it. This motivates our alternative: a simulator that approximates experimental feedback in a local
neighborhood of hypothesis space, enabling the development and evaluation of experiment-guided
ranking strategies.

Our simulator is grounded in three conceptual foundations, reflecting the universal natural-science
principle that structural similarity implies similar behavior (Callister & Rethwisch, 1999; Hansch
et al., 1995; Wiley, 1986; Alberts et al., 2015). A1 (Local Optimum Assumption) states that a ground-
truth hypothesis represents a dominant local optimum within its sufficiently local neighborhood.
P1 (Scientific Principle) holds that greater structural or functional similarity yields more similar
outcomes. D1 (Logical Deduction) follows that, because similarity representations are imperfect, the
observed performance landscape deviates from the ideal implied by A1 and P1.

We formalize these conceptual foundations and construct a simulator that models hypothesis perfor-
mance as a function of distance to a hidden ground-truth hypothesis. Although the ground truth is
known to the simulator, it remains hidden from the ranking policy—enabling rigorous evaluation of
strategies that must infer it through limited feedback. To validate the simulator, we curate a dataset of
124 hypotheses with experimentally reported outcomes from the literature. Our simulator demon-
strates high trend alignment and predictive accuracy in approximating real experimental outcomes. It
also outperforms strong baselines adapted from prior work (Yang et al., 2025), further supporting its
utility as a research tool for developing and evaluating experiment-guided ranking strategies. Though
not perfectly accurate, its deviations resemble the noise observed in real wet-lab experiments and can
foster more robust ranking strategies.

Building on this foundation, we develop an in-context reinforcement learning (ICRL) framework
for experiment-guided hypothesis ranking. Within this framework, we instantiate a clustering-based
agentic policy that decomposes hypotheses into functional components and groups them by shared
mechanistic roles. After each experimental trial, the agent analyzes the tested hypothesis to infer
which components contributed to its performance, then prioritizes untested hypotheses that incorporate
the most promising functional elements. This enables efficient transfer of insights across structurally
related candidates and helps navigate the hypothesis space more effectively. Experiments show that
this policy significantly outperforms pre-experiment baselines and strong ablations. Combined with
the simulator, our ICRL framework forms a general-purpose toolkit for studying experiment-guided
ranking strategies, with our policy serving as a strong proof of concept. Figure 1 provides an overview
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of the three paradigms: pre-experiment ranking, experiment-guided ranking with real experiments,
and our simulator-driven approach for developing ranking policies.

Overall, the contributions of this paper are:

• We introduce and formalize the task of experiment-guided ranking and highlight a key
bottleneck in the natural sciences: the lack of scalable access to wet-lab experimental
feedback. To address this, we propose the use of simulators and release a curated dataset of
124 scientific hypotheses with annotated performance collected from the literature and real
wet-lab experiments.

• We introduce three conceptual foundations characterizing the latent performance landscape
of scientific hypotheses. We mathematically formalize this simulation process and construct
a high-fidelity simulator that approximates real wet-lab outcomes by modeling performance
as a function of hypothesis similarity and systematic distortion.

• We present a clustering-based agentic ranking policy implemented within an in-context
reinforcement learning framework. It generalizes from limited feedback and outperforms
both pre-experiment baselines and ablation variants.

• We provide a theoretical formalization of search complexity reduction via functional de-
composition: demonstrating how attributing experimental feedback to the marginal utility
of components allows for effective search space pruning. This transforms the discovery
problem from an exponential combinatorial search into a linear component optimization, a
theoretical result consistent with our empirical observations.

2 METHODOLOGY OF SIMULATOR CONSTRUCTION

2.1 CONCEPTUAL FOUNDATIONS AND FORMALIZATION

Our simulator construction is guided by three conceptual foundations—one assumption, one scientific
principle, and one logical deduction—grounded in established principles of the natural sciences.
Together, these provide a principled basis for modeling experimental outcomes of untested hypotheses,
enabling systematic investigation of experiment-guided ranking strategies.

2.1.1 CONCEPTUAL FOUNDATIONS

We posit that real experimental feedback within a hypothesis space can be simulated under the
following conceptual foundations (A1–P1–D1):

1. (A1: Local Optimum Assumption) A ground-truth hypothesis represents a dominant local
optimum within its sufficiently local neighborhood of the hypothesis space.

2. (P1: Scientific Principle) Hypotheses that are more similar in their underlying structure or
function tend to yield more similar experimental outcomes.

3. (D1: Logical Deduction) In practice, representations of hypothesis similarity are imperfect
proxies, so the resulting performance landscape deviates from the ideal implied by A1 and
P1, producing distortions such as noise, spurious local optima, or unexpected valleys.

A1, P1, and D1 are all reasonable and sufficiently grounded. P1 reflects the fundamental axiom
that “structure determines properties, and properties determine outcome,” which underpins multiple
disciplines: molecular structure and material function in Chemistry & Materials Science (Callister &
Rethwisch, 1999; Hansch et al., 1995), crystal structure and physical properties in Physics (Wiley,
1986), and protein structure and biological function in Biology (Alberts et al., 2015). D1 follows
logically from A1 and P1, since any practical representation of hypothesis similarity must introduce
distortions. A1 is mostly valid but not guaranteed: even within a sufficiently small neighborhood,
the labeled ground-truth hypothesis may not be the strict local optimum, as there could exist another
hypothesis in that region with higher performance. This limitation, however, does not affect the
simulator’s role in developing ranking policies, whose goal is to recover the labeled ground truth.
When deployed in real experiments, any superior hypotheses beyond the labeled ground truth would
be directly revealed, ensuring that policies developed under a simulator supported by A1 remain
effective in practice.
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(a) Idealized performance land-
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(b) Realistic performance land-
scape (A1 + P1 + D1).
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(c) Deviations from imperfect
closeness estimation (D1).

Figure 2: Illustration of the three conceptual foundations (A1–P1–D1) for simulator construction.

Figure 2 visually illustrates these conceptual foundations. In the ideal scenario (Figure 2a), A1
ensures the presence of a dominant local optimum, while P1 enforces that hypotheses closer in
structure or function to this optimum yield more similar outcomes. Together, these yield a smooth,
unimodal performance landscape, where Euclidean distance in hypothesis space faithfully reflects
structural and functional similarity. However, practical scenarios differ substantially, as the measured
distance (“closeness”) between hypotheses—whether estimated by scientists or LLMs—may not
faithfully capture structural and functional similarity. For instance, a chemical hypothesis might
contain a useful functional component whose contribution is underrepresented, placing it farther
from the dominant peak than warranted and creating a spurious secondary maximum. Conversely,
a weaker hypothesis may appear deceptively close to the optimum, forming a local valley. These
distortions yield a more irregular performance landscape, as illustrated in Figure 2b, with unexpected
secondary peaks and valleys. Figure 2c further isolates these deviations, highlighting the gap between
the idealized oracle landscape and practical estimates of closeness.

We now formalize these foundations by defining a mathematical model that makes explicit the
relationship between hypothesis embeddings, similarity, and performance.

2.1.2 MATHEMATICAL FORMULATION

Let H ⊂ Rd denote the hypothesis space, where each hypothesis h ∈ H is represented as a point
in a d-dimensional latent space, conditioned on a specific research question q. Let h∗ ∈ H denote
the ground truth hypothesis for q, representing an experimentally validated optimum. We define the
idealized performance function for any hypothesis h in the vicinity of h∗ as:

f(h, h∗; q, ϕ∗(·)) = 1

(2πσ2)d/2
exp(−∥ϕ∗(h | q)− ϕ∗(h∗ | q)∥2

2σ2
), (1)

where ϕ∗(· | q) is an oracle embedding function that maps each hypothesis h to a point in the latent
hypothesis space under the context of research question q. The embedded positions capture the
oracle’s understanding of closeness, measured by the Euclidean distance ∥ϕ∗(h | q)− ϕ∗(h∗ | q)∥.

We model the idealized performance surface as a Gaussian-like function centered at ϕ∗(h∗ | q),
yielding a strictly unimodal landscape that decays smoothly with increasing distance from the
optimum h∗ (Figure 2a). While the true performance landscape in feature space may not be strictly
Gaussian, the isotropic Gaussian form serves as a tractable and interpretable approximation in the
latent space. This modeling choice directly reflects A1 and P1.

However, practical simulations rely on imperfect embeddings of hypotheses into the latent space,
stemming from limitations in domain understanding—no matter whether the embedding is performed
(internally) by human experts or LLMs. Consequently, this leads to distortions in perceived “close-
ness”, effectively warping the positions of hypotheses in latent space. Such a distorted hypothesis
embedding H̃ yields a different observed structure:

f̃(h, h∗; q, ϕ(·)) = f(h, h∗; q, ϕ∗(·)) + ϵ(h | q) (2)

where ϕ(· | q) is a practical embedding function that maps each hypothesis h into (somewhat
distorted) positions in the latent hypothesis space for a research question q, and ϵ(h | q) represents
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Figure 3: The internal structure of the simulator.

a systematic correction term that accounts for the discrepancy between oracle embedding ϕ∗(· | q)
and the practical embedding ϕ(· | q) under the context of q. As a result, the practical embedding H̃
introduces systematic distortions in the latent space, leading to spurious optima or valleys—effectively
transforming the unimodal ideal surface into a noisier, multimodal one (Figure 2b).

Crucially, Figures 2a and 2b illustrate the same underlying performance-closeness relationship
f(h, h∗), differing only by ϕ(h), which is how hypotheses are embedded in the latent space. Figure 2c
illustrates ϵ(h), the correction term that accounts for the discrepancy between the oracle embedding
ϕ∗(·) and the practical embedding ϕ(·).

2.2 A PRACTICAL IMPLEMENTATION OF ϕ(·) WITH PRIOR KNOWLEDGE

As discussed in § 2.1, the core objective of the simulator is to construct an embedding function ϕ(·)
that maps each hypothesis h into a latent space such that distances in this space reflect meaningful
functional differences. Through extensive discussions with domain experts, we observe that a
scientific hypothesis succeeds in addressing a research question primarily due to its underlying
mechanisms.

Specifically, an effective hypothesis typically comprises a set of scientifically meaningful compo-
nents—each contributing to distinct yet complementary sub-mechanisms—which together enable the
overall reaction to fulfill its intended function. The specific prompts and examples for extracting key
components and inferring mechanisms are provided in § A.

Informed by this domain knowledge, we design a simulator architecture illustrated in Figure 3. Each
module corresponds to a subroutine implemented using an LLM with task-specific prompting. The
simulator’s goal is to estimate the latent-space distance ∥ϕ(h | q)− ϕ(h∗ | q)∥ between a candidate
hypothesis h and a ground truth hypothesis h∗, conditioned on a research question q.

The simulation begins by decomposing both the candidate and ground truth hypotheses into a set
of key functional components, and identifying the underlying mechanism associated with each
component in the context of the research question. The decomposition of h∗ is performed first,
serving as a reference. These reference components and mechanisms guide the decomposition of h,
ensuring alignment in both granularity and mechanistic interpretation.

Concurrently, the Assign Component Weights module estimates the relative importance wi of each
component in the ground truth hypothesis, given the research question. A subset of these compo-
nents—denoted C—are labeled as critical, meaning they are considered necessary for the reaction to
succeed. To elaborate on the role of C, we provide illustrative examples in § B.

Next, the Compute Mechanism Similarity module compares each key component in h∗ with its
corresponding component in h, assigning a similarity score si ∈ [0, 1] to each pair. These scores
are then aggregated using a weighted sum, combined with a multiplicative penalty that enforces the
presence of all critical components:

S(h | q;h∗) = (
∏
i∈C

1si>0) · (
K∑
i=1

wi · si), where
K∑
i=1

wi = 1 (3)

This formulation guarantees that S(h∗ | q;h∗) = 1, since all components are present with maximal
similarity (si = 1 for all i), resulting in zero distance from the ground truth. Similarity score S are

5
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Figure 4: Experiment-guided ranking policy within an in-context reinforcement learning framework.

thereby bounded in [0, 1], and lower distances correspond to stronger functional alignment with the
ground truth hypothesis. The resulting value is used as the simulated performance score.

The final distance between the candidate and ground truth hypotheses is then calculated as:

|ϕ(h | q)− ϕ(h∗ | q)| = |S(h | q;h∗)− 1| (4)

3 METHODOLOGY OF EXPERIMENT-GUIDED RANKING

3.1 TASK FORMULATION

Given a research question q, a set of candidate hypotheses H is formed by selecting hypotheses
generated by existing scientific discovery systems (Yang et al., 2025) and ground-truth hypotheses
from top-tier scientific journals reporting high-quality lab experiments. The goal of experiment-guided
ranking is to identify the optimal hypothesis h∗ ∈ H with the highest experimental performance
using an experiment executor E. Formally, we define the experiment executor as a function:

E : H → [0, 1] (5)

that maps each hypothesis h ∈ H to a normalized performance score s ∈ [0, 1]. The normalization
provides a unified performance metric across heterogeneous hypotheses and varying problem settings
q, and can be defined relative to a domain-specific state-of-the-art benchmark established by experts.

The primary goal is to find h∗. However, since each evaluation of E(h) corresponds to a real or
simulated experiment—which may be costly or time-consuming—a critical requirement is to identify
h∗ using as few experimental trials as possible. Accordingly, an effective experiment-guided ranking
strategy must actively incorporate feedback from prior evaluations to guide subsequent selections,
balancing exploration and exploitation under a limited experimental budget.

Thus, the problem can be reframed as finding a selection strategy that minimizes the number of trials
required to identify the optimal hypothesis:

argmin
π

Nπ
trials subject to h∗ = argmax

h∈H
E(h), (6)

where π denotes the hypothesis selection strategy, and Nπ
trials is the number of experiments required

under strategy π to successfully discover h∗.

3.2 METHODOLOGY

Due to the high cost and data-scarce nature of wet-lab experiments in the natural sciences, conven-
tional reinforcement learning (RL), which relies on extensive interaction and parameter updates, is
often impractical. Our approach circumvents this bottleneck by formulating the learning process
within the context window of a frozen large language model. This gradient-free, non-parametric
paradigm relies solely on forward passes, enabling the agent to learn from minimal trials without
costly fine-tuning. The framework leverages the LLM’s intrinsic reasoning capabilities, ensuring
excellent generalizability to diverse scientific discovery tasks. Our agent, CSX-Rank, learns an
optimal hypothesis selection policy via a formal sequential decision-making process.

6
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We formulate experiment-guided ranking as a sequential decision-making process. At each timestep
t, the agent observes a state st representing the cumulative analysis of past experiments. It then
performs an action at by selecting a hypothesis h ∈ H to test, receiving a reward rt from the
experimental outcome. The trajectory is thus τ = [s0, a0, r0, . . .].

Unlike standard RL settings that maximize cumulative reward, our objective is to identify the
optimal hypothesis using the minimum number of experiments, reflecting the high cost of scientific
exploration. The agent’s goal is to learn an optimal policy π∗ that minimizes the expected trials:

π∗ = argmin
π

Eπ[Ntrials] (7)

Here, an effective policy π(st) leverages the accumulated knowledge in the state to make more
strategic selections, thus minimizing Ntrials. Our agent, CSX-Rank, implements this policy through
the structured, iterative process detailed below (Figure 4).

Step 1: Extraction, Classification, and Clustering of Functional Components. To generalize
from specific results, the agent decomposes each hypothesis h ∈ H into functional components,
which are classified as effective, uncertain, or ineffective; the latter are pruned for efficiency. The
remaining components are clustered by functional similarity, with each cluster representing a distinct
mechanistic contribution to solving q. This yields a structured state representation st, where each
element remains traceable to its originating hypothesis.

Step 2: Cluster and Hypothesis Selection. To connect abstract mechanistic knowledge (clusters)
with a concrete experiment (hypothesis), the policy π(st) selects the next action at through a two-
stage process. First, guided by prior domain knowledge, the LLM identifies the most promising
cluster. Within this cluster, it then selects the most relevant hypothesis h, which defines the action at.

Step 3: Experiment Execution and Result Analysis. The selected hypothesis h (action at) is
evaluated by the executor E—either our high-fidelity simulator (CSX-Sim) or a real wet lab—which
returns a normalized performance score s ∈ [0, 1]. This score serves as the reward rt = E(at), and
its analysis quantifies the action’s success, grounding the policy in empirical results.

Step 4: Iterative Summarization and Refinement. To make learning cumulative, the agent
integrates each experimental outcome into a running summary. This updated summary forms the
new state st+1 for the next decision cycle, closing the RL loop and enabling the policy to refine
systematically from prior knowledge and new feedback.

A key strength of our multi-step, component-driven framework is its inherent interpretability. By
design, the agent must break down its decision process into an explicit, auditable trail—from
extracting and clustering components to selecting the final hypothesis. Such structured and transparent
reasoning is essential in scientific applications, allowing domain experts to examine the agent’s logic,
build trust in its recommendations, and derive new insights.

4 EXPERIMENT

We name our simulator as CSX-Sim, and the experiment-guided ranking method as CSX-Rank. All
experiments are implemented with GPT-4o-mini (OpenAI, 2024).

4.1 SIMULATOR: EVALUATING THE SIMULATOR WITH REAL EXPERIMENT RESULTS

Simulator Spearman Correlation (↑) Perfect Consistency Indicator (↑) RMSE (↓)

Matched Score 0.843 12/30 0.232

CSX-Sim 0.960 26/30 0.213
w/o CriticalPoints 0.950 23/30 0.229
w/o ComponentExtraction 0.864 12/30 0.272

Table 1: Simulator validation against real-world wet-lab results.
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We curated a benchmark of 30 research questions and 124 hypotheses from published literature, each
with experimentally validated outcomes spanning multiple domains (§ C.1). For each hypothesis,
simulated results from CSX-Sim were compared against the annotated outcomes (§ C.2). Evaluation
considered two criteria: (1) Trend alignment, measured by Spearman correlation, assessing whether
predicted performances preserve the relative ordering of ground-truth outcomes. Because ranking
depends on relative differences, we also report the Perfect Consistency Indicator (PCI), the number
of questions with perfect alignment. (2) Predictive accuracy, measured by RMSE, capturing absolute
deviations between predicted and experimental values (see § D for details and additional indicators).
Comparative results are shown in Table 1.

Baseline and Ablation We adopt the “Matched Score” (Yang et al., 2025) as our primary baseline,
which evaluates hypotheses by measuring their similarity to ground-truth references through a
reference-based comparison. Additionally, we conduct two ablation studies on CSX-Sim to assess the
contribution of its key components: (1) The first ablation (w/o CriticalPoints) disables the labeling of
critical components C, as defined in Equation 3, allowing hypotheses that lack essential components to
still receive positive feedback from the simulator; (2) The second ablation (w/o ComponentExtraction)
skips the extraction and weighting of critical components, directly computing mechanism similarity
using prompts analogous to the final module in Figure 3.

Results Interpretation As shown in Table 1, CSX-Sim outperforms baselines across all metrics,
demonstrating stronger trend alignment, greater robustness, and lower predictive error. Compared to
the Matched Score baseline, it achieves notable gains in correlation and consistency while reducing
error. Ablation studies confirm the importance of component analysis: removing CriticalPoints
causes modest degradation, whereas omitting component extraction leads to substantial drops in
alignment and accuracy. These results highlight the necessity of fine-grained component analysis for
high-fidelity simulation feedback.

4.2 EXPERIMENT-GUIDED RANKING: BASELINES AND ABLATION STUDY

Data and Evaluation Metrics We evaluate experiment-guided ranking on the TOMATO-chem
dataset (Yang et al., 2025), which contains 51 scientific problems, each annotated with a ground-
truth hypothesis. For each problem, the MOOSE-Chem framework (Yang et al., 2025) generates
63 additional candidates distinct from the ground truth, yielding 64 hypotheses per question (1
ground truth and 63 negatives). The disciplinary distribution is provided in § C.3. The dataset’s
interdisciplinary nature, evident in its inclusion of topics from fields such as applied physics and
biology, stems from its origin in scientific literature where "chemistry" papers are frequently co-
labeled with other scientific fields. Performance is measured by Ntrials, the number of simulation-based
evaluations needed to identify the ground-truth hypothesis for each problem. Lower Ntrials indicates
more efficient prioritization. Results appear in Table 2.

Method Ntrials (↓)

Uninformed Search 32.500
Pre-Experiment Ranking 28.608

CSX-Rank 15.196
w/o Clustering 27.980
w/o Clustering & Analysis 35.627
w/o Clustering & Analysis & Full Feedback 37.667

Table 2: Number of experiments required to identify the ground truth hypothesis across methods.

Baselines We compare against two strategies: Uninformed Search and Pre-Experiment Ranking.
Uninformed search selects hypotheses uniformly at random; Pre-experiment ranking scores hypothe-
ses using only prior model knowledge, without feedback (Yang et al., 2025). As shown in Table 2,
Uninformed Search require over 32 trials on average, while Pre-Experiment Ranking reduces this to
under 30—outperforming both naive baselines but still far behind CSX-Rank. This indicates that rely-
ing solely on prior knowledge yields only modest gains without feedback, whereas experiment-guided
ranking substantially improves sample efficiency. Detailed scalability analysis is in § I.

8
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Ablation Study To assess the contribution of key components in CSX-Rank, we conducted ablation
studies under three conditions: (1) removing functional clustering (CSX-Rank w/o Clustering); (2)
further disabling feedback analysis (CSX-Rank w/o Clustering & Feedback Analysis); and (3) addition-
ally limiting feedback to the 10 most recent simulation results (CSX-Rank w/o Clustering & Feedback
Analysis & Full Feedback). As shown in Table 2, progressively removing these components leads to
marked performance degradation, confirming the importance of clustering, analytical summarization,
and sufficient feedback quantity for efficient hypothesis ranking.

4.3 THEORETICAL COMPLEXITY REDUCTION.

We provide a theoretical formalization of search complexity reduction via functional decomposition.
Formally, let K denote the universal discrete set of functional component clusters, and define the
hypothesis space as H = {h | h = {k1, . . . , kn} ⊆ K, |h| ≤ m}, where m bounds the maximum
structural complexity of a hypothesis. Traditional strategies rely on holistic evaluation to optimize
the joint probability P (h), thus suffering from the curse of dimensionality with a search complexity
scaling as O(|K|m). In contrast, CSX-Rank factorizes the optimization domain by attributing
experimental feedback y to the marginal utility of individual modules k ∈ K. By updating the
module-level posterior P (k|y), our framework simultaneously adjusts the likelihood for the entire
subset of candidates {h′ ∈ H | k ∈ h′}. This effectively acts as a massive pruning operator:
a negative feedback on a single module allows the agent to discard a significant fraction of the
total combinatorial space without individual testing. Consequently, the asymptotic complexity is
theoretically reduced from exponential (in the combinatorial space) to linear (relative to the functional
clusters, O(|K|)), decoupling the discovery cost from the hypothesis length m. We provide the
rigorous mathematical derivation and formal proof in § M.

4.4 SIMULATOR: ABLATION ON DIFFERENT ϕ(·) WITH DIFFERENT LEVELS OF DISTORTION

To study how simulator fidelity affects ranking, we note that experiment-guided ranking is essentially
an optimization process over hypothesis space. A high-fidelity simulator provides informative
feedback to guide this search, while distortions mislead it. We therefore introduce controlled
distortions into ϕ(·) to simulate increasingly challenging feedback conditions.

In collaboration with domain experts, we designed three distortion types commonly observed in
practice—local maxima/minima, plateaus, and cliffs—reflecting typical challenges in hypothesis
evaluation. We further defined three distortion levels (Simple, Moderate, Complex), incorporating
progressively more noise into ϕ(·); full details appear in § E.

We evaluated CSX-Rank, CSX-Rank w/o Clustering, and CSX-Rank w/o Clustering & Analysis
across these noise conditions. As shown in Table 3, higher noise complexity consistently degraded
performance, increasing Ntrials. Still, CSX-Rank outperformed its ablated variants, preserving a
clear efficiency margin even under Complex Noise (32.7 vs. 36.5 and 40.5 trials). These results
demonstrate the robustness of clustering and feedback analysis in mitigating misleading signals and
maintaining search efficiency, aligning with Section 4.2.

Method Ntrials (Simple Noise) Ntrials (Medium Noise) Ntrials (Complex Noise)

CSX-Rank 21.804 26.608 32.706
w/o Clustering 32.706 35.843 36.471
w/o Clustering & Analysis 37.235 38.373 40.451

Table 3: Simulator with different noise conditions

5 CONCLUSION

We introduced the task of experiment-guided ranking and addressed its central bottleneck—the lack of
scalable experimental feedback—by proposing a simulator grounded in three domain-informed con-
ceptual foundations. Validated against 124 hypotheses, the simulator enables systematic evaluation of
ranking policies. Building on this, we developed an in-context reinforcement learning framework with
a clustering-based agentic policy that significantly outperforms pre-experiment baselines. Together,
the simulator and policy provide a toolkit for advancing feedback-driven hypothesis discovery, with
potential impact across the natural sciences.
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A EXTRACTING KEY FUNCTIONAL COMPONENTS IN THE SIMULATOR

A.1 A FRAMEWORK FOR EXTRACTING CRITICAL FUNCTIONAL COMPONENTS IN THE
SIMULATOR

The specific framework of CSX-Sim for extracting key functional components is illustrated in Figure 5.
To demonstrate this process, we categorize the critical components and conclusions embedded within
scientific hypotheses using a representative example from the field of chemistry. We then analyze the
specific role and underlying mechanism of each component in the context of the research problem
and the derived conclusions. Finally, the system synthesizes and extracts the key components, their
corresponding mechanisms, and the validated conclusions from the hypothesis.

1. Identify Key Chemical Components and Conclusions

2. Explain Mechanism of Key Chemical Components

3. Verify and Output Key Points, Mechanisms, and Conclusions

Framework for Analyzing Scientific Hypotheses in
Chemical Problems

Figure 5: A Framework for Extracting Chemical Components in the Simulator.

A.2 PROMPT FOR EXTRACTING KEY CHEMICAL COMPONENTS IN THE SIMULATOR

The prompt for extracting key chemical components in the simulator, along with examples, is as
follows:

You are an experienced expert. I will provide you with a scientific question and a scientific hypothesis.
Your task is to identify the chemical key points within the hypothesis that are essential for addressing
the scientific question. Chemical key points are the core elements—such as basic chemical components,
reactions, or mechanistic methods—critical to solving the problem effectively. Analyze these key
points by linking them to the scientific question, determining how they contribute to resolving it.

When identifying chemical key points, consider the following:

Each substance may be a key point. If it includes specific parameters like concentration or mass
fraction (e.g., 0.3M NaCl, 10wt% PVA), ensure these details are retained in the division process
without losing specificity. If multiple substances are related and function together (e.g., potassium
ferricyanide and potassium ferrocyanide as an oxidizing-reducing pair), group them as a single
chemical key point based on their shared role or interdependence. Exclude elements from the scientific
question that reappear in the hypothesis as prerequisites (e.g., if the question involves improving
MXene nanosheets and the hypothesis enhances them with liquid metal, MXene nanosheets are a
prerequisite, not a key point; liquid metal is the key point). Prerequisites should not be output or
analyzed as key points. Distinguish key points from validation methods (e.g., elemental analysis to
verify properties). Validation methods support the hypothesis but are not chemical key points. For
each identified chemical key point, conduct a detailed and rigorous analysis of its role and function in
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relation to the scientific question. Use your chemical knowledge to explain the specific mechanism by
which it addresses the problem, focusing on how it enhances the relevant properties or performance
outlined in the question. Provide a clear, mechanistic explanation of its contribution and, if multiple
key points exist, describe their interconnections.

Additionally, identify the results—effects or phenomena caused by these key points—representing
the experiment’s outcomes. In your output, focus on listing and explaining the chemical key points,
followed by the results, ensuring no prerequisites from the scientific question are included.

Output format:

Chemical Key Points Chemical substance/component/method 1
Role and Function: Describe the role and function of the substance or method, including a detailed
mechanistic explanation of how it addresses the scientific question and enhances relevant properties.
Chemical substance/component/method 2
Role and Function: Describe the role and function of the substance or method, including a detailed
mechanistic explanation of how it addresses the scientific question and enhances relevant properties.
End Chemical Key Points Results Result 1:
Describe the effects caused by the aforementioned reasons (e.g., performance improvement, efficiency
changes).
Result 2:
Further describe other effects related to the experimental objectives.
End Results

Example: Chemical Key Points 1. 10wt% PVA (Polyvinyl Alcohol)
Role and Function: Polyvinyl alcohol (PVA) hydrogel acts as the base material, providing structural
support and mechanical performance for thermoelectric gels. PVA with a mass fraction of 10% can
provide mechanical support through hydrogen bonds in its structure and interact with potassium
ferricyanide and potassium ferrocyanide to offer electrical changes.
2. Gdm2SO4 (Guanidine Sulfate)
Role and Function: Guanidine sulfate (Gdm2SO4) is integrated into the K3[Fe(CN)6] / K4[Fe(CN)6]
to improve thermoelectric performance. The introduction of guanidine salt increases solvent entropy
and effectively enhances thermopower.
3. Directional Freezing Method
Role and Function: By employing directional freezing technology, aligned channels are created,
enhancing the electrical conductivity and mechanical strength of the material.
4. Potassium Ferricyanide and Potassium Ferrocyanide (K3[Fe(CN)6] / K4[Fe(CN)6])
Role and Function: These compounds are crucial electrolytes that facilitate redox reactions within
the polymer gel. The presence of these ions enhances ion mobility and conductivity due to their ability
to undergo reversible redox processes, thereby boosting the thermoelectric properties of the gel
End Chemical Key Points Results Carnot-relative Efficiency
The Carnot-relative efficiency of the FTGA exceeds 8%.
Thermopower and Mechanical Robustness
Thermopower and mechanical robustness are enhanced, outperforming traditional quasi-solid-state
thermoelectric cells.
End Results

To better illustrate the effectiveness of extracting key components, we provide a detailed example in
materials science where we compare the performance of our simulator against human experts on a
real-world problem.

• Scientific Question: How can a cost-effective N-type quasi-solid-state thermocell be devel-
oped to boost electricity production from low-grade heat by improving both ion transport
efficiency and electrode performance?

• Scientific Hypothesis:Develop a flexible N-type quasi-solid-state thermocell by integrating
anisotropic polymer networks and hierarchical 3D copper electrodes to enhance ion
transport, mechanical robustness, and thermoelectric performance. Utilizing Polyvinyl
Alcohol (PVA) as the hydrogel matrix, the anisotropic structure is achieved through a
directional freeze-thawing (DFT) process, which involves applying a temperature gradient
during freezing to guide ice crystal growth for polymer chain alignment. Repeated cycles
further enhance the alignment and crosslinking, creating anisotropic pores that reduce
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ion transport resistance. Ionic crosslinking with a 0.7 M CuSO4 electrolyte and 0.1 M
H2SO4 strengthens the hydrogel while retaining flexibility. Meanwhile, hierarchical 3D
copper electrodes, fabricated via oxidation, etching, and thermal reduction, provide a high
surface area, enhancing redox kinetics of the Cu2+/Cu0 couple and obviating platinum
electrode reliance. This synergistic design achieves a remarkable 1500% increase in power
density, reaching 0.51 mW m−2 at a ∆T of 5◦C, with a thermopower of 0.7 mV K−1 and
ionic conductivity improved by 20%. Mechanical tests reveal significant strength with a
tensile strain at break of 350% and the system maintains stability under various mechanical
deformations. This approach offers a cost-effective, adaptable solution for low-grade heat
harvesting.

Here’s Expert Extracting Key Component:

• Key Points:
1. Anisotropic Polymer Networks

Role and Function: The layered polymer network structure enhances ion transport
rates, thereby improving thermoelectric conversion efficiency.

2. Hierarchical 3D Copper Electrodes
Role and Function: The use of 3D copper electrodes effectively increases the reaction
contact area, enhancing the thermoelectric potential.

3. Polyvinyl Alcohol (PVA) as the Hydrogel Matrix
Role and Function: PVA hydrogel is used as the matrix to provide good mechanical
properties and structural support.

4. Directional Freeze-Thawing (DFT) Process
Role and Function: The DFT process forms ion channels along the freezing direction,
thereby increasing ion transport rates.

5. 0.7 M CuSO4 Electrolyte
Role and Function: This electrolyte is used for ionic crosslinking to enhance the
mechanical properties of the thermoelectric material.

6. 0.1 M H2SO4

Role and Function: This acid is used together with a 0.7 M CuSO4 electrolyte for ionic
crosslinking to enhance the mechanical properties of the thermoelectric material.

• Results:
– Enhanced Electrical Properties of the Thermoelectric Material

- Increased power density
- Improved thermopower
- Enhanced ionic conductivity

– Improved Mechanical Properties of the Thermoelectric Material
- Increased strength with a tensile strain
- Enhanced stability under various mechanical deformations

Here’s CSX-Sim Extracting Key Component:

• Key Points:
1. Anisotropic Polymer Networks

Role and Function: These networks are engineered to enhance ion transport efficiency
while providing mechanical robustness through alignment of polymer chains, reducing
ion transport resistance in thermocells.

2. Hierarchical 3D Copper Electrodes
Role and Function: The use of hierarchical 3D copper electrodes increases the surface
area, enhancing redox kinetics of the Cu2+/Cu0 couple, thus improving the thermo-
electric performance without relying on expensive platinum electrodes.

3. Copper Sulfate (CuSO4) Electrolyte
Role and Function: A 0.7 M CuSO4 solution serves as an ionic crosslinker in the
hydrogel, enhancing mechanical strength while facilitating efficient ion transport in the
system.

14
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4. Sulfuric Acid (H2SO4)
Role and Function: The addition of 0.1 M H2SO4 in the hydrogel contributes to ionic
crosslinking and enhancing the overall conductivity of the electrochemical system.

5. Directional Freeze-Thawing (DFT) Process
Role and Function: This method is used to create an ordered structure in the polymer
hydrogel, promoting alignment of polymer chains and ensuring anisotropic pores that
further reduce ion transport resistance.

• Results:

– Power Density Increase
– Enhanced Thermopower
– Improved Ionic Conductivity
– Mechanical Strength under Deformation

Here’s a comparison of the analysis results between our simulator and human experts:

By comparing the approaches of an expert and CSX-Sim in extracting key scientific components
for the specific scientific issues of ion transport efficiency and electrode performance, CSX-Sim
successfully identifies solutions in its scientific hypotheses, including anisotropic polymer networks
and hierarchical 3D copper electrodes. Compared to the human expert, CSX-Sim captures five out of
six key points, missing only one: “Polyvinyl Alcohol (PVA) as the Hydrogel Matrix.” The points
it does identify align accurately with those proposed by the human expert based on the hypothesis,
demonstrating the high accuracy of CSX-Sim in extracting key scientific components.

B THE ROLE OF CRITICALPOINTS IN CSX-Sim

To better illustrate the role of labeling critical components C in CSX-Sim, as defined in Equation 3,
we provide an example for clarity. For simplicity, we define the term

(∏
i∈C 1si>0

)
from Equation 3,

related to CriticalPoints, as the Correction Factor. This factor takes values of either 0 or 1.

The scientific problem under study is: How can a polymer gel material be designed to enhance the
Seebeck coefficient (Se) by optimizing the matrix material and redox pair, thereby improving the
energy conversion efficiency of a thermoelectric device utilizing the temperature difference between
body heat and the environment?

This scientific problem corresponds to four real experimental hypotheses, outlined as follows:

1. Hypothesis 1: By combining gelatin with KCl, prepare a gel with high ionic conductivity
to investigate its Seebeck coefficient (Se) performance with the [Fe(CN)6]3−/[Fe(CN)6]4−
redox pair. KCl, as an electrolyte, significantly enhances the gel’s ionic conductivity,
while the [Fe(CN)6]3−/[Fe(CN)6]4− redox pair boosts the Seebeck coefficient through
temperature-gradient-driven ion diffusion. Gelatin provides biocompatibility and mechanical
strength, making it suitable for efficient thermoelectric energy conversion.

2. Hypothesis 2: By combining a PVA matrix with HCl, prepare a gel with high ionic
conductivity and investigate its Seebeck coefficient (Se) performance under the influence
of the Fe3+/Fe2+ redox pair. HCl, as a strong electrolyte, significantly enhances the gel’s
ionic conductivity, while the Fe3+/Fe2+ redox pair boosts the Seebeck coefficient through
temperature-difference-driven ion diffusion. PVA provides flexibility and transparency, and
by optimizing the HCl concentration and PVA crosslinking degree, ion migration efficiency
can be further improved, enhancing the Seebeck coefficient and making it suitable for
efficient energy conversion in body-heat thermoelectric devices.

3. Hypothesis 3: By preparing a pure PVA gel, investigate its Seebeck coefficient (Se) per-
formance under the influence of the Fe3+/Fe2+ redox pair. PVA, as a hydrophilic polymer,
possesses a certain level of ionic conductivity, and the Fe3+/Fe2+ redox pair generates a
Seebeck coefficient through temperature-difference-driven ion diffusion.

4. Hypothesis 4: By polymerizing acrylamide (PAM) to prepare a hydrogel and investigate its
thermoelectric performance. The porous network structure of the polyacrylamide hydrogel
enhances the gel’s ionic conductivity.
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The results of the actual wet-lab experiments are summarized in Table 4. For the first three hypotheses,
the CriticalPoints are included in the assumptions, resulting in a Correction Factor of 1 and non-
zero final results. In contrast, for the fourth hypothesis, the CriticalPoints are not included in the
assumption, leading to a Correction Factor of 0 and a final result of 0.

Table 4: The Seebeck coefficient (Se) of polymer thermoelectric materials

Matrix The Seebeck coefficient Se / mV K−1

[Fe(CN)6]3−/[Fe(CN)6]4− KCl/Gelatin 17
Fe3+/ Fe2+ HCl/PVA 1.02

Fe3+/ Fe3+ PVA 0.85
Polymerizing Acrylamide (PAM) 0

Our simulator analyzes Hypothesis 4, where the Correction Factor is 0, as follows:

Analysis: The Ground Truth Scientific Hypothesis identifies three core key points: Gelatin, KCl
(Potassium Chloride), and the [Fe(CN)6]3−/[Fe(CN)6]4− Redox Pair, each playing significant roles
in enhancing the Seebeck coefficient for thermoelectric efficiency. The Generated Hypothesis uses
Polyacrylamide (PAM) in place of Gelatin, which can provide a similar structural function but
lacks some specific characteristics of Gelatin important for thermoelectric stability. It discusses
ionic conductivity, paralleling that of KCl without directly employing the salt. Notably, it does not
mention the redox pair, which is critical to the thermoelectric function as outlined in the Ground
Truth Hypothesis.

However, while the Generated Hypothesis incorporates functional aspects related to ionic conductivity
and chemical structure, it omits the crucial redox couple and does not fully replicate the essential
components necessary for observable thermoelectric phenomena defined by the Ground Truth. The
presence of PAM and evolving ionic conductivity offers a partial basis for plausible thermoelectric
behavior under hypothetical conditions, but the complete omission of the redox pair is significant. The
lack of adherence to all core key points and reliance on acceptable substitutions leads to a conclusion
that while observable phenomena might still occur, they are limited. Given these evaluations, I assign
R = 0 as there is a substantial gap in essential components for the reaction proposed in the Ground
Truth Hypothesis.

Final Correction Factor 0 Endo

Our simulator analyzes Hypothesis 4, noting that enhancing the Seebeck coefficient of a poly-
mer gel material requires a redox pair. The first three hypotheses incorporate redox pairs, either
[Fe(CN)6]3−/[Fe(CN)6]4− or Fe3+/Fe2+, which facilitate efficient conversion of thermal energy
to electrical energy. In contrast, Hypothesis 4 only involves polymerizing acrylamide (PAM) and
lacks a redox pair, rendering it unable to effectively convert thermal energy into electrical energy.
Consequently, the thermoelectric potential (Seebeck coefficient, Se) is zero.

C EVALUATING THE SIMULATOR WITH REAL EXPERIMENT RESULTS

In this section, we present the validation of our simulator’s accuracy using a dataset of 124 experi-
mental hypotheses, detailing their classification and composition. We further compare the trends of
the simulated results with the corresponding real experimental outcomes to assess the simulator’s
predictive performance and reliability in capturing real-world experimental behaviors.

C.1 DATASET COMPOSITION AND ANALYSIS

To evaluate the performance of the simulator, we conducted a thorough analysis using real-world
experimental data. We curated a set of 30 cutting-edge research questions, each designed to probe
significant aspects of scientific research. These questions were carefully selected to encompass multi-
ple areas within the scientific domain, ensuring a diverse and representative evaluation framework.
Each question was associated with 3 to 6 hypotheses, resulting in a total of 124 authentic wet lab
experiment results. This extensive dataset forms a robust foundation for assessing the simulator’s
predictive accuracy and reliability.
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The 124 experiment results were sourced from key subfields of natural science to provide broad
coverage of the discipline. The distribution of these results across subfields is presented in Table 5.

A statistical analysis of the 124 authentic wet lab results was conducted to rigorously evaluate the
simulator’s performance. By including a substantial number of experiments from various subfields,
we ensured that the dataset captures a wide range of challenges encountered in experimental re-
search. This approach minimizes potential biases from over-representing any single subfield, thereby
strengthening the reliability of our evaluation. The dataset’s diversity and scale provide a solid basis
for assessing the simulator’s ability to predict experimental outcomes accurately, offering valuable
insights for future research and applications.

Table 5: Classification of the 124 real-world experiments used to validate the simulator.

Category Count

Energy Materials 12
Polymeric Materials 8

Applied Physics 18
Systems Biology 10

Organic Chemistry 26
Inorganic Chemistry 24
Analytical Chemistry 26

Total 124

The use of authentic wet lab results bolsters the credibility of our findings. By grounding the
evaluation in real experimental data, we ensured that the simulator’s predictions were tested against
the intricacies and variability of actual laboratory conditions. This approach not only validates the
simulator’s performance but also underscores its potential to guide subsequent research by delivering
reliable and actionable predictions. The diverse dataset and representation of multiple subfields
collectively contribute to a comprehensive and effective evaluation, paving the way for advancements
in scientific simulation and experimentation.

C.2 TREND COMPARISON WITH REAL EXPERIMENT RESULTS

To further assess the capabilities of our CSX-Sim, we utilized it to simulate 124 wet lab experiments.
These experiments corresponded to 30 cutting-edge science questions, and their simulated outcomes
were subsequently aggregated for a comprehensive analysis. For each of the 124 experiments, the
simulated result was derived from the average of three trials conducted by CSX-Sim. These results,
each corresponding to one of the curated questions, were systematically arranged in ascending order
along the "Order of Experimental Results" axis, as depicted in Figure 6. This organization enabled a
unified comparison between the simulated and actual experimental outcomes, with the vertical axis
representing normalized experimental results to standardize the evaluation across the dataset.

Figure 6 compares the trends observed in CSX-Sim predictions (green line) with those from real
experimental data (blue line). Error bars, representing the population standard deviation, illustrate
the variability of the data points. Statistical significance was further established using the Bootstrap
method, with results indicating (p < 0.01) (Berg-Kirkpatrick et al., 2012). The aggregated analysis
reveals that the simulator effectively predicts the mean trends for all 30 sets of results, demonstrating
a strong consistency with the mean of the actual experimental outcomes. This alignment of mean
trends across the diverse questions underscores the simulator’s ability to model scientific processes
accurately, capturing the overall behavior of the experimental data, regardless of the specific subfield.

The use of normalized results ensures that differences in scale do not affect the comparison, allowing
a fair assessment of the simulator’s trend-matching capability. The close correspondence between the
simulated and real mean data, as visualized in the figure, highlights the CSX-Sim broad applicability
across the scientific domain. By successfully replicating the mean trends of the 124 results, the
simulator proves to be a versatile tool, offering reliable predictions that can support a wide range of
scientific research and applications.
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Figure 6: Comparison of simulated real experimental results with CSX-Simulator.

C.3 DISCIPLINES OF THE TOMATO-CHEM BENCHMARK DATASET

The TOMATO-chem benchmark dataset, spanning 12 distinct categories and totaling 3264 data
records (Table 6), is a powerful resource due to its **inherent interdisciplinary nature** and wide
scientific coverage[cite: 1627]. Far exceeding a focus on traditional chemical branches such as
Organic, Inorganic, and Analytical Chemistry, the dataset features a strong emphasis on **advanced
materials science** by including significant contributions from Energy Materials (363), Polymeric
Materials (359), Metallic Materials (268), and Nanomaterials (316)[cite: 1640]. Furthermore, it
effectively bridges fundamental research with practical applications through the inclusion of data
from both **Chemical Engineering** (196) and **Environmental Engineering** (298)[cite: 1641].
Critically, the dataset extends its reach into the **chemical-biological interface**, incorporating
samples from Molecular Biology (84) and Systems Biology (62)[cite: 1642]. This comprehensive
disciplinary matrix underscores the dataset’s utility as a robust benchmark for evaluating AI models
across complex, intersecting scientific challenges, rather than isolated domain-specific problems.

D EVALUATION OF TREND ALIGNMENT AND ACCURACY

D.1 EVALUATION OF TREND ALIGNMENT

To quantitatively assess trend alignment between simulated and experimental results, we employed
the Spearman Rank Correlation Coefficient (denoted as ρ). This non-parametric measure evaluates
the monotonic relationship between the rankings of simulated and experimental outcomes, making it
suitable for capturing trend consistency across diverse scientific problems.

The Spearman Correlation Coefficient is calculated as follows:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(8)

Where: di: The difference between the ranks of the i-th simulated and experimental result. n: The
number of hypotheses in a given group (ranging from 3 to 6 per scientific question). ρ: The correlation
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Table 6: Disciplinary classification of the TOMATO-chem benchmark dataset

Category Count

Energy Materials 363
Polymeric Materials 359
Metallic Materials 268

Nanomaterials 316
Applied Physics 127

Analytical Chemistry 317
Inorganic Chemistry 392
Organic Chemistry 482

Chemical Engineering 196
Environmental Engineering 298

Molecular Biology 84
Systems Biology 62

Total 3264

coefficient, ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation), with
0 indicating no monotonic relationship. A Spearman Correlation Coefficient (ρ) near 1 indicates
strong trend alignment, meaning the simulated results closely mirror the relative ordering of experi-
mental outcomes. Our CSX-Sim achieved a mean Spearman Correlation Coefficient of ρ = 0.960,
significantly outperforming the baseline, as shown in Table 1, and demonstrating superior trend
alignment.

To further assess the robustness of the simulator across diverse problems, we introduced the Perfect
Consistency Indicator (PCI), a stringent metric that counts the number of question groups (out of
the 30 scientific questions) where the simulated results achieved perfect trend alignment with the
experimental results (ρ = 1). Perfect trend alignment requires an exact match in the ranking of
simulated and experimental outcomes, making PCI a robust measure of the simulator’s ability to
consistently replicate experimental trends across all problems. Notably, our CSX-Sim achieved
perfect trend alignment (ρ = 1) in 26 out of 30 question groups, significantly surpassing the baseline
methods and highlighting its exceptional robustness and predictive fidelity.

D.2 EVALUATION OF SIMULATOR ACCURACY

For evaluating prediction accuracy, we used the Root Mean Square Error (RMSE) to quantify the
deviation between simulated and experimental values. The RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (9)

Where: yi: The experimental result for the i-th hypothesis. ŷi: The simulated result for the i-th
hypothesis. The CSX-Sim exhibited a lower RMSE than the "Matched Score" baseline (Yang et al.,
2025), signifying improved predictive accuracy, as substantiated by the results in Table 1.

To thoroughly evaluate the predictive accuracy of our simulator compared to real-world experimental
outcomes, we tested its performance on a dataset of 124 authentic scientific hypotheses. For a
comprehensive comparison, we calculated several performance indicators, as presented in Table 7.
Building on the previously discussed metrics, we introduced three additional measures: Mean Squared
Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Logarithmic Error (RMSLE).
These metrics, defined below, enhance the robustness of our analysis by capturing different aspects of
prediction error.
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Table 7: Simulator validation against real-world wet-lab results.

Simulator MSE (↓) MAE (↓) RMSLE (↓)

Matched Score 0.068 0.179 0.166

CSX-Sim 0.058 0.161 0.147
w/o CriticalPoints 0.064 0.174 0.159
w/o ComponentExtraction 0.087 0.215 0.192

Below, we define each metric used in the evaluation, along with their respective formulas, to ensure
scientific rigor:

Mean Squared Error (MSE): MSE measures the average squared difference between predicted values
ŷi and actual values yi across n samples. It is defined as:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (10)

A lower MSE indicates higher predictive accuracy, with larger errors penalized more heavily due to
squaring.

Mean Absolute Error (MAE): MAE quantifies the average absolute difference between predicted and
actual values, calculated as:

MAE =
1

n

n∑
i=1

|ŷi − yi| (11)

This metric is less sensitive to outliers than MSE, providing a more balanced measure of error.

Root Mean Squared Logarithmic Error (RMSLE): RMSLE focuses on relative errors by evaluating
the logarithmic difference between predicted and actual values:

RMSLE =

√√√√ 1

n

n∑
i=1

(log(ŷi + 1)− log(yi + 1))
2 (12)

This metric is particularly useful for datasets with exponential trends or varying error scales.

As shown in Table 7, CSX-Sim consistently outperforms the "Matched Score" baseline (Yang et al.,
2025) across all metrics, achieving an MSE of 0.058, an MAE of 0.161, and an RMSLE of 0.147.
Ablation studies further reveal the contributions of individual components: the removal of Critical-
Points results in a slight performance decline (MSE of 0.064, MAE of 0.174, RMSLE of 0.159),
while the exclusion of ComponentExtraction leads to more significant degradation (MSE of 0.087,
MAE of 0.215, RMSLE of 0.192). These results underscore the importance of both critical point
identification and component extraction in achieving high predictive accuracy and robustness in
simulation outcomes.

E DIFFERENT LEVELS OF DISTORTION

We collaborated with Scientific PhD students to identify and design three common types of distortions
encountered in scientific research: local maxima/minima, plateaus, and cliffs. These distortion pat-
terns reflect typical challenges in hypothesis evaluation, drawing on domain expertise and established
heuristics to ensure relevance. We defined three distinct distortion levels—Simple Noise, Moderate
Noise, and Complex Noise—and incorporated them into the hypothesis embedding function ϕ(·) to
simulate increasingly challenging feedback conditions.

In scientific scientific hypotheses, biases in understanding key factors can result in specific distor-
tion patterns. For instance, when adding guanidine sulfate to polymer thermoelectric materials,
recognizing it solely as a salt providing hydrogen bonds for the reaction—while overlooking its
influence on the entropy of redox pairs—can lead to a local maximum, as this oversight may enhance
thermoelectric performance unexpectedly. Similarly, misjudging irrelevant factors, such as additives
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in organic reactions with no actual impact, can create a plateau effect. Conversely, misjudging critical
factors, like the temperature’s role in enzyme activity during enzyme studies, can produce a cliff
if the temperature is incorrectly assumed to inhibit the reaction entirely. These elements—local
maxima/minima, plateaus, and cliffs—present significant challenges in optimization problems within
scientific research.

Through extensive discussions with scientific experts, we conducted a statistical analysis to evaluate
the discrepancies between wet lab results and empirical expected outcomes across diverse experi-
mental scenarios. This process enabled us to statistically analyze the frequency of the three types of
distortions—local maxima/minima, plateaus, and cliffs—across various scientific scenarios. We then
quantified the occurrence of these distortions in different scenarios and sorted them by frequency,
from low to high. Based on this distribution, we categorized the discrepancies: the top 35% of ob-
served gaps were classified as Simple Noise, the middle 40% as Moderate Noise, and the bottom 25%
as Complex Noise. Furthermore, we integrated the three distortion levels—Simple Noise, Moderate
Noise, and Complex Noise—into the hypothesis embedding function ϕ(·) to simulate increasingly
challenging feedback conditions. This structured stratification provided a clear framework to evaluate
the varying impacts of different scenarios on our simulator, facilitating a deeper understanding of the
simulator’s performance under diverse conditions.

Table 8: The composition of different types of noise.

Noise Conditions Local Maxima/Minima Plateaus Cliffs

Simple 0-10 0-2 0-2
Medium 0-30 0-6 0-6
Complex ≥ 30 ≥ 3 ≥ 3

These distortions, along with their detailed quantities, are outlined in the accompanying Table 8,
which illustrates the composition of different types of noise across various conditions. For instance,
simple noise conditions are associated with 0-10 local maxima/minima, 0-2 plateaus, and 0-2 cliffs.
Medium noise conditions escalate these figures to 0-30 local maxima/minima, 0-6 plateaus, and
0-6 cliffs. In complex noise scenarios, the challenges intensify, with ≥ 30 local maxima/minima,
≥ 3 plateaus, and ≥ 3 cliffs, reflecting the increased difficulty in achieving optimal solutions. We
constructed three distinct noise levels to evaluate the robustness of our CSX-Rank under complex
scientific feedback conditions.

By comparing Table 3, we observed that with the introduction of noise, the experiment-guided
ranking method requires a significantly higher number of simulation feedback iterations to identify
the ground truth scientific hypothesis as the complexity of the noise increases. This is primarily due
to the growing discrepancy between highly complex noise and real experimental feedback, where
simulation feedback contains substantial erroneous information, thereby degrading the performance
of screening the ground truth scientific hypothesis from the generated scientific hypotheses.

F PERFORMANCE COMPARISON OF DIFFERENT FUNCTIONS IN THE
SIMULATOR

Table 9: Performance comparison of different functions in the simulator.

Function Spearman Corr. (↑) RMSE (↓) Perfect Consistency (↑)
Linear Function 0.9708 0.1959 24/30
Gaussian Function 0.9600 0.2147 26/30
Absolute Value Function 0.9626 0.2595 23/30
Quadratic Function 0.9682 0.3996 22/30

This supplementary study was conducted to validate the robustness of our core mathematical modeling.
While the Gaussian function was selected for its well-behaved mathematical properties and intuitive
alignment with our core assumptions, the framework’s success is not tied to any single function form.
The choice of function can be viewed as a tunable hyperparameter.
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Table 9 presents the results of a comparative study of various monotonic functions serving as the
core of the simulator. Performance was assessed on Spearman Correlation (↑), RMSE (↓), and
Perfect Consistency (↑). The results show that all tested functions provide effective ranking guidance,
which underscores the framework’s overall robustness. This analysis confirms that our framework
is adaptable and can accommodate different function forms, enhancing its generalizability across
domains.

G RELATED WORK

Most prior work on hypothesis ranking has focused on pre-experiment ranking. Some approaches
assign a score to each hypothesis and rank them accordingly, providing a simple and efficient
solution (Yang et al., 2024; 2025; Zhou et al., 2024). Others adopt a pairwise ranking strategy,
evaluating hypothesis pairs one at a time (Si et al., 2024; Liu et al., 2025). However, these methods rely
solely on the internal reasoning of LLMs and do not incorporate feedback from experimental outcomes.
To our knowledge, few existing works leverage experimental feedback in hypothesis-driven tasks, and
those that do are confined to domains with highly efficient verifiers, enabling rapid hypothesis testing
and direct refinement rather than explicit ranking. Notably, recent methods in mathematics (Romera-
Paredes et al., 2024; Shojaee et al., 2024; Ma et al., 2024) and programming (Novikov et al., 2025;
Qiu et al., 2024) incorporate feedback loops by refining hypotheses based on verification outcomes.
In contrast, our work targets natural science domains, where real experiments are far more costly,
rendering such exhaustive trial-and-error strategies impractical. This motivates the need for a
more deliberate experiment-guided ranking process, designed to maximize the information gained
from each costly experiment when prioritizing future hypotheses. Roohani et al. (2024) explore
hypothesis generation in a genetic perturbation setting, where task-specific feedback can be computed
directly (e.g., via gene overlap). This remains a niche domain where efficient verifiers are available.
By contrast, our work focuses on constructing general-purpose simulators, enabling the study of
experiment-guided ranking in settings where real experiments are costly and feedback is scarce.

H EVALUATION OF EXPERIMENT-GUIDED RANKING AND ITS SOCIETAL
BENEFITS

The intricate web of scientific knowledge, combined with the multitude of factors influencing
hypothesis analysis, often leads to the gradual accumulation of small cognitive biases. These biases
can significantly distort the final experimental outcomes, creating substantial disparities between
expected and observed results. To address this challenge, we conducted a comparative analysis
between two distinct approaches: the experiment-guided ranking method, which leverages simulation
feedback or real experimental results to refine hypothesis selection, and the pre-experiment method,
which relies solely on the model’s prior knowledge for screening the ground truth hypothesis. Our
findings reveal that the experiment-guided ranking method demonstrates a marked improvement over
its counterpart. By integrating simulation feedback, this method allows for a reflective process that
considers previous simulation (and experimental) results. This iterative reflection provides more
contextually relevant information, enabling the selection of the next hypothesis with greater precision.
Consequently, this approach effectively mitigates the accumulation of biases, thereby enhancing the
efficiency and accuracy of experimental screening processes.

The ranking of hypotheses emerges as a pivotal element in automated scientific discovery, particularly
in natural sciences, where wet-lab experiments are costly and are constrained by low throughput.
Traditional approaches, such as pre-experiment ranking, depend exclusively on the internal reasoning
of large language models, lacking integration with empirical experimental outcomes. In contrast, we
introduce the novel task of experiment-guided ranking, designed to prioritize candidate hypotheses
by leveraging insights from previously tested results. However, the development of such strategies is
hindered by the impracticality of repeatedly conducting real experiments in natural science domains
due to time, cost, and resource limitations. To overcome this obstacle, we propose a simulator
grounded in three domain-informed assumptions, modeling hypothesis performance as a function
of its similarity to a known ground truth hypothesis, with performance perturbed by noise to reflect
real-world variability. To validate this simulator, we curated a dataset comprising 124 scientific
hypotheses, each accompanied by experimentally reported outcomes, providing a robust foundation
for evaluation.
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Building on this simulator, we developed a pseudo experiment-guided ranking method that clusters
hypotheses based on shared functional characteristics and prioritizes candidates using insights de-
rived from simulated experimental feedback. Our experimental results demonstrate that this method
outperforms both pre-experiment baselines and strong ablations, highlighting its potential to revolu-
tionize hypothesis selection in scientific research. Beyond academic and scientific advancements, this
approach holds promising societal impacts. By reducing the need for extensive wet-lab experiments,
it can lower research costs and accelerate the development of new materials and drugs, potentially im-
proving healthcare access and environmental sustainability. Additionally, the enhanced efficiency in
hypothesis testing could foster innovation in industrial applications, such as cleaner energy solutions,
contributing to global efforts to address climate change and promote sustainable development.

I SCALABILITY ANALYSIS

Table 10: Number of experiments required to identify the ground truth hypothesis across methods.

Method Trials (N = 64) Trials (N = 128)
Uninformed Search 32.5 64.5
Pre-experiment ranking 28.6 51.3
CSX-Rank (ours) 15.2 30.7

To evaluate the scalability of our proposed method, we expanded the pool of candidate hypotheses
from N=64 to N=128. The results, presented in Table 10, show that our method, CSX-Sim, required
15.2 trials for 64 candidates and 30.7 trials for 128 candidates. In contrast, Uninformed Search and
Pre-experiment ranking required 64.5 and 51.3 trials, respectively, for the larger candidate pool. The
experimental results align with our theoretical analysis. The performance of CSX-Rank demonstrates
a near-linear growth, which is consistent with its average-case time complexity of O(N). The
observed slope of approximately 0.24×N confirms this scalability and shows that CSX-Rank retains
a substantial cost advantage even as the candidate pool expands. Theoretically, in a best-case scenario
where the clustering of hypotheses is highly effective, the cost could be reduced to O(logN), as
evidence from one experiment can be generalized to every hypothesis within its cluster.

J DISCUSSION ON THE RELATIONSHIP WITH ACTIVE LEARNING AND
SIM2REAL

J.1 OPERATIONAL PARADIGM: TRAINING-FREE REASONING VS. MODEL RETRAINING

Standard Active Learning strategies, widely applied in domains such as nanocatalysis Perumal et al.
(2025) and drug discovery Borkowski et al. (2020); van Tilborg & Grisoni (2024), typically rely on a
retraining-based workflow. In these settings, the model must be periodically updated or fine-tuned
using newly acquired experimental labels to improve its predictive boundaries. Similarly, traditional
Sim2Real methods often necessitate the collection of real-world data to fine-tune policies and bridge
the domain gap via gradient updates Wagenmaker et al. (2024).

In contrast, our approach operates under a Training-Free Paradigm powered by In-Context Rein-
forcement Learning (ICRL). By keeping the underlying Large Language Model (LLM) frozen, our
agent performs reasoning and hypothesis prioritization from the very first trial without the computa-
tional overhead or data requirements of gradient-based updates. This is particularly critical in wet-lab
settings where data is extremely scarce (often N < 100) and high-fidelity fine-tuning is impractical.

J.2 OBJECTIVE: OPTIMIZATION-CENTRIC VS. GENERALIZATION-CENTRIC

The primary objective of classical AL in physics Ding et al. (2023) and chemical space explo-
ration Smith et al. (2018); Khalak et al. (2022) is often rooted in Generalization. These methods
typically employ acquisition functions designed to reduce global uncertainty across the entire search
space, aiming to learn a model that performs well on the underlying distribution.
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Conversely, our framework is strictly Optimization-Centric. As defined in our objective function
(Equation 6), we are not concerned with reducing uncertainty in irrelevant regions of the chemical
space. Instead, our agent focuses solely on identifying the optimal hypothesis h∗ with the minimum
number of trials. This distinct focus allows our method to be more aggressive in exploitation,
prioritizing candidates that are likely to yield high performance rather than those that merely improve
model robustness.

J.3 INTERPRETABILITY: STRUCTURE-AWARE REASONING VS. SCALAR ACQUISITION

A significant limitation of traditional AL is the opacity of its decision-making process. Candidates
are typically selected based on scalar acquisition functions (e.g., Upper Confidence Bound (UCB)
or Expected Improvement) Settles (2009); Smith et al. (2018), which offer little insight into why a
specific candidate is promising.

Our framework addresses this by employing Structure-Aware Reasoning. As detailed in Section
§3.2, our agent prioritizes candidates through explicit component clustering and reasoning steps.
This allows domain experts to audit the decision logic, understanding not just the numerical rank
of a hypothesis, but the chemical rationale behind its selection. This "White-Box" approach fosters
greater trust and collaboration between AI agents and human scientists.

Table 11: Comparison between Standard Active Learning (AL) / Sim2Real and Our Proposed
Framework.

Feature Standard AL / Sim2Real Ours (Experiment-Guided Ranking)
Paradigm Training-Dependent: Requires iterative re-

training or fine-tuning (Gradient-based).
Training-Free: Uses In-Context RL with a
frozen model (Gradient-free).

Data Req. High data demand to update model weights
effectively.

Effective in extreme data scarcity (Few-
shot/Zero-shot).

Objective Generalization: Reduces global uncer-
tainty; learns the landscape Ding et al.
(2023); Khalak et al. (2022).

Optimization: Directly targets the optimal
hypothesis h∗ (Equation 6).

Interpretability Opaque: Based on scalar values (e.g., UCB
scores) Settles (2009).

Transparent: Based on component reason-
ing and clustering.

K SENSITIVITY ANALYSIS ON MODEL ARCHITECTURES AND
ENVIRONMENTAL NOISE

To demonstrate the robustness of our framework, we conducted a comprehensive sensitivity analysis
focusing on two critical dimensions: the choice of Large Language Model (LLM) backbones and the
impact of simulator noise levels.

K.1 ROBUSTNESS ACROSS LLM ARCHITECTURES

We evaluated the generalizability of our component-based reasoning framework by varying the
underlying models for both the simulator environment and the agent’s policy. This ablation ensures
that our performance gains are not derived from overfitting to a specific model family.

Table 12 presents the average number of trials required to identify the optimal hypothesis under
different configurations. The results indicate that:

• Model Agnosticism: Our method consistently outperforms the Baseline (Pre-Experiment
Ranking) regardless of the model combination used (e.g., using Gemini 2.5 Flash-Lite as
the simulator).

• Scaling with Capability: Replacing the policy model with a stronger reasoning engine
(Claude 3 Sonnet) further reduces the average trials to 14.12. Notably, Claude 3 Sonnet has a
knowledge cutoff of August 2023, ensuring zero data contamination against our 2024-2025
validation dataset.
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These findings confirm that the core advantage of our approach lies in the structural reasoning
framework rather than the parametric knowledge of a specific LLM.

Table 12: Performance Comparison Across Different LLM Backbones. Our framework exhibits
consistent robustness and scales effectively with stronger reasoning models.

Configuration (Simulator / Policy) Avg. Trials Improvement
Baseline (Pre-Experiment Ranking) 28.60 -

Ours (Gemini 2.5 Flash-Lite / GPT-4o-mini) 19.56 +31.6%
Ours (GPT-4o-mini / GPT-4o-mini) 15.20 +46.8%
Ours (GPT-4o-mini / Claude 3 Sonnet*) 14.12 +50.6%
*Claude 3 Sonnet knowledge cutoff: Aug 2023 (ensuring zero contamination).

K.2 RESILIENCE TO SIMULATOR NOISE ASSUMPTIONS

Beyond model architecture, we stress-tested the policy’s resilience to environmental stochasticity. As
detailed in the main text (Section 4.4), we introduced varying levels of signal distortion—Simple,
Medium, and Complex—to simulate experimental error and simulator inaccuracies.

While the absolute efficiency naturally correlates with signal fidelity, our method (CSX-Rank)
demonstrates effective mitigation of misleading signals. Even under the “Complex” noise regime,
our approach significantly outperforms ablated variants (e.g., achieving 32.7 trials vs. 40.5 trials for
the baseline), proving that the structural analysis module effectively filters noise and prevents the
agent from being misled by individual erroneous data points.

L ANALYSIS OF FAILURE MODES AND HANDLING OF EMERGENT
PROPERTIES

In this section, we provide a critical analysis of the specific scenarios where our framework may
diverge from ground truth, followed by a theoretical discussion on how the component-based approach
addresses emergent scientific phenomena.

L.1 CASE STUDY ON FAILURE MODES: COMPLEX PHYSICOCHEMICAL MECHANISMS

While CSX-Rank demonstrates high accuracy in general retrieval, failures can occur when the
underlying scientific mechanism relies on subtle, high-order physical interactions rather than direct
compositional effects.

A concrete instance of divergence was observed in the domain of Thermoelectric Materials . The
ground truth hypothesis introduced (Gdm)2SO4 to interact with the K3Fe(CN)6/K4Fe(CN)6 redox
pair. Theoretically, this addition boosts the Seebeck coefficient (Se) by significantly increasing the
reaction entropy difference (∆Src), governed by the thermodynamic relation:

Se =
∆E

∆T
=

∆Src

nF
(13)

Furthermore, the system involves complex transport dynamics governed by the Eastman entropy of
transfer (Ŝi), which drives the thermal diffusion potential (Std):

Std =

∑
i qin

0
i ŜiDi∑

i q
2
i n

0
iDi

(14)

Failure Analysis: In this specific case, the ranking policy correctly identified the key component but
misinterpreted its functional role. The model overlooked these intricate entropic contributions (∆Src

and Ŝi) and instead classified the sulfate solely as a salting-out agent for mechanical reinforcement.
This misinterpretation led to an underestimation of the hypothesis’s rank. This suggests that while the
framework excels at structural and functional matching, it may struggle with mechanisms involving
implicit higher-order thermodynamic derivatives.
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L.2 HANDLING EMERGENT AND NON-DECOMPOSABLE PROPERTIES

A common challenge in scientific AI is the assumption that properties are the sum of their parts. We
address non-compositional and emergent properties through a combination of mathematical gating
and functional abstraction.

L.2.1 MATHEMATICAL HANDLING VIA MULTIPLICATIVE GATING

Our scoring model (Equation 3) is designed to move beyond simple additive similarity. Crucially, it
incorporates a multiplicative gating term:

Score(h) ∝
∏
i∈C

1(si > 0) (15)

This term ensures that if a “Critical Point” (a necessary condition for the phenomenon to emerge) is
missing, the total score drops to zero. This effectively models “all-or-nothing” emergent behaviors
often seen in physics and biology, preventing the system from highly ranking a hypothesis that has
many good peripheral features but lacks the core mechanism.

L.2.2 FUNCTIONAL ABSTRACTION VS. ATOMIC DECOMPOSITION

Our decomposition strategy (Figure 3) operates at the functional mechanism level rather than the
atomic level. This mirrors how human scientists conceptualize emergent phenomena. For example,
in high-temperature superconductors, a hypothesis is not decomposed into raw atoms (Cu, O, La),
but into functional units:

• Cuprate Planes: Responsible for the superconducting mechanism.
• Charge Reservoirs: Responsible for doping levels.
• Interlayer Spacing: Responsible for strain and critical temperature (Tc) modulation.

By abstracting these emergent behaviors into distinct functional units, the “emergence” is effec-
tively encapsulated within the component, allowing the linear ranking framework to remain valid.
However, we acknowledge limitations in purely abstract theoretical physics where such functional
decomposition is less applicable.

L.2.3 ROBUSTNESS TO NON-LINEAR LANDSCAPES

To empirically validate this, we introduced “Landscape Cliffs” in our distortion experiments (Sec-
tion 4.4). These cliffs simulate scenarios where a small change in similarity results in a drastic
drop in performance (a hallmark of non-linear systems). Our results demonstrate that CSX-Rank
maintains high ranking efficiency even in these non-smooth regimes, confirming that the combination
of functional abstraction and critical gating provides robustness against non-linear complexities.

M THEORETICAL ANALYSIS OF SEARCH COMPLEXITY REDUCTION VIA
FUNCTIONAL DECOMPOSITION

In this section, we provide a formal analysis of how the Experiment-Guided Ranking framework,
driven by Functional Decomposition, fundamentally reduces the search complexity compared to
traditional Pre-experiment Ranking baselines. We model the hypothesis discovery process as an
optimization problem.

M.1 PROBLEM FORMULATION

Definition 1 (Hypothesis Space and Component Space). Let K = {k1, k2, . . . , km} be the universal
discrete set of functional component clusters, where K = |K| is the total number of unique functional
modules available in the domain. We define a Hypothesis h as a composition of functional modules
selected from K. The Hypothesis Space H is the set of all valid combinations bounded by a maximum
structural complexity m:

H = {h = {k1, . . . , kn} ⊆ K | n ≤ m} (16)
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Assuming a standard combinatorial setting, the cardinality of the hypothesis space scales exponentially
with the complexity m:

N = |H| ≈
m∑

n=1

(
K

n

)
≈ O(Km) (17)

where N represents the total number of candidate hypotheses.

M.2 BASELINE COMPLEXITY: BLACK-BOX SEARCH

In traditional Pre-experiment Ranking or Naive Search, hypotheses are treated as Atomic Black
Boxes. The internal structure is opaque to the selection policy π, relying on holistic evaluation.

Proposition 1 (Information Isolation). Without decomposition, the feedback from an experi-
ment on hypothesis hi, denoted as yi = f(hi), provides information strictly limited to the joint
probability P (hi). The search policy approximates Random Sampling without Replacement in
the high-dimensional space. To identify the optimal hypothesis h∗, the expected number of trials
E[Tatomic] scales linearly with the size of the hypothesis space:

E[Tatomic] ∝ N ≈ O(Km) (18)

Conclusion: The baseline suffers from the Curse of Dimensionality, yielding Exponential Complexity
with respect to the hypothesis structural complexity m.

M.3 CSX-RANK COMPLEXITY: MODULAR OPTIMIZATION

Our approach leverages Functional Decomposition, transforming the problem from identifying the
optimal combination h∗ to identifying the set of optimal functional modules K∗ ⊂ K.

Proposition 2 (Feedback Propagation and Pruning). Crucially, CSX-Rank attributes the experi-
mental outcome y to the marginal utility of individual modules k ∈ K. A negative feedback on a
module kbad allows the agent to update the module-level posterior P (kbad|y) and effectively prune
not just the tested hypothesis, but the entire subset of hypotheses Hsub ⊂ H containing kbad:

Hsub = {h ∈ H | kbad ∈ h} (19)

Complexity Analysis. The efficiency of this reduction relies on the degree to which the target
property can be decomposed. We analyze the asymptotic complexity across three regimes:

• Best-case (O(K)): In ideal scenarios where hypotheses are perfectly functionally modular
(i.e., the validity of a hypothesis is the sum/conjunction of independent valid components),
the agent essentially performs a parallel screening of the component space K. The complexity
scales linearly with the number of unique modules K, as K ≪ N .

• Average-case: In practical settings, while component interactions introduce noise, the search
complexity is fundamentally governed by the effective number of functional modules (m) per
hypothesis, not the raw count of candidates (N ). While baselines must exhaustively search
the combinatorial space (N ≈ Km), our method’s cost grows proportionally to the diversity
of mechanisms needed to cover the space. The observed slope in Table 10 (0.24 × N )
reflects this advantage: even as N doubles (implying a vast increase in combinations), our
trials grow slowly, bounded by the component-wise learning rate rather than combinatorial
enumeration.

• Worst-case (O(Km)): In scenarios with strong entanglement or pure emergence, feedback
on individual components provides zero information gain (P (k|y) ≈ P (k)). In this limit,
the strategy degenerates to the baseline Black-box Search, recovering the exponential
combinatorial complexity.

Applicability and Limitations. This theoretical boundary highlights that our decomposition-based
framework is particularly well-suited for Experimental Sciences (e.g., Chemistry, Biology, Materials
Science). In these domains, the scientific principle "Structure determines Property" often implies that
specific functional motifs (e.g., a benzene ring, a specific protein domain) carry intrinsic, transferable
utility. Conversely, we acknowledge limitations in domains like Theoretical Physics or highly abstract

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

mathematical derivation tasks. In such fields, properties are often strictly emergent or governed by
high-order non-linear equations where decomposing a hypothesis into "functional atoms" destroys
the semantic meaning, making the Best-case complexity unattainable.
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