
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRADUAL BINARY SEARCH AND DIMENSION EXPAN-
SION : A GENERAL METHOD FOR ACTIVATION QUAN-
TIZATION IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have become pivotal in artificial intelligence,
demonstrating strong capabilities in reasoning, understanding, and generating
data. However, their deployment on edge devices is hindered by their substan-
tial size, often reaching several billion parameters. Quantization is a widely
used method to reduce memory usage and inference time, however LLMs present
unique challenges due to the prevalence of outliers in their activations. In this
work, we leverage the theoretical advantages of Hadamard matrices over random
rotation matrices to push the boundaries of quantization in LLMs. We demonstrate
that Hadamard matrices are more effective in reducing outliers, which are a signif-
icant obstacle in achieving low-bit quantization. Our method based on a gradual
binary search enables 3-bit quantization for weights, activations, and key-value
(KV) caches, resulting in a 40% increase in accuracy on common benchmarks
compared to SoTA methods. We extend the use of rotation matrices to support
non-power-of-2 embedding dimensions, similar to the Qwen architecture, by em-
ploying the Paley’s algorithm. Our experimental results on multiple models family
like Mistral, LLaMA, and Qwen demonstrate the effectiveness of our approach,
outperforming existing methods and enabling practical 3-bit quantization.

1 INTRODUCTION

Large Language Models (LLMs) have become a central component of artificial intelligence due to
their strong capabilities in reasoning, understanding, and generating data. These impressive capa-
bilities are attributed to the quality of the data used during training, the model architecture, and the
size of the model, which often reaches several billion parameters. This size limitation restricts their
deployment on edge devices. Quantization is a widely used method to reduce memory usage and
inference time (Gholami et al. (2021); Guo (2018)), but the challenges differ compared to those
faced with Convolutional Neural Networks (CNNs) (Esser et al. (2020); Xiao et al. (2023)).

Weights are relatively easy to quantize for both CNNs and LLMs and can often achieve ternary
quantization without significant loss of accuracy (Ma et al. (2024); Zhu et al. (2017)). However,
activations behave differently in transformer architectures (Nrusimha et al. (2024)). The presence
of outliers in activations makes conventional quantization (symmetric uniform) very challenging,
hindering our ability to achieve 4-bit quantization. LLMs are known to produce spikes in its layers
and for some tokens that can be handled separately or diffused in the tensor (Dettmers et al.; Xiao
et al. (2023)).

One very promising approach to overcome this limitation is to use rotation matrices to redistribute
weights and activation values, thereby minimizing the impact of outliers (Liu et al. (2024); Ashkboos
et al. (2024b)). Additionally, methods such as prefix tokens have shown very interesting results in
managing outliers in LLMs (Chen et al. (2024); Son et al. (2024)).

In this work, we leverage results on rotation matrices to push the boundaries further and enable 3-bit
Weights, Activations, KV cache (WAKV) quantization by employing a binary search. We extend
this method to a more general approach capable of handling non-power-of-2 embedding dimensions,
similar to Qwen. Our main contributions are:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• A theoretical demonstration that Hadamard matrices are more effective in reducing multiple
outliers than rotation matrices drawn on the unit sphere.

• 3-bit quantization for weights, activations, and KV cache, resulting in a 40% increase in
accuracy on common benchmarks using a gradual binary search.

• Extension of rotation matrices to support non-power-of-2 embedding dimensions using the
Paley’s algorithm.

• The introduction of dimension expansion to build a more general rotation pipeline allowing
architectures like Qwen to work with rotations.

2 RELATED WORKS

2.1 QUANTIZATION

Quantizing models involves reducing the number of bits required to store and compute model ac-
tivations. This process is crucial for deploying LLMs on resource-constrained devices. To achieve
this, we define a scaling factor that determines the distance between quantization bins and the range
of values to be compressed.

For symmetric uniform quantization, we apply a rounding function to a scaled distribution:

X̂ = round
(
X

∆

)
∆, ∆ =

max |X|
2b − 1

where ∆ is the scaling factor, b is the bitwidth, and max |X| is the maximum absolute value of the
distribution, preserving extreme values for activations.

Such quantization can be applied per-token, where each token has a different scaling factor, or per-
tensor, where a single scaling factor is used for each activation tensor (Gholami et al. (2021); Guo
(2018)). Per-token quantization is more challenging to implement efficiently in practice compared to
per-tensor quantization but results in better quantization performances. Scaling factors can be static
during inference, based on statistics computed on a subset of the dataset, or dynamic, recomputed at
each step.

Quantization can lead to a significant drop in performance when applied post-training (PTQ) (Yang
et al. (2023)). To mitigate this, some methods adapt weights to the noise introduced during a training
phase (QAT) (Lin et al. (2019); Défossez et al. (2022)). Typically, for LLMs, only linear layers are
quantized, as they account for most of the computation cost, while normalization layers, matrix
multiplications, and the softmax function within the attention block are left unquantized.

2.2 OUTLIERS

Quantizing LLM weights is relatively straightforward and does not require extensive efforts to
achieve. Techniques like GPTQ (Frantar et al. (2023)) enables 8-bit quantization without retraining,
preserving model accuracy. Some QAT methods can even push the boundaries to 1-bit quantization,
as seen in BitNet (Wang et al. (2023)) or ternary quantization (Ma et al. (2024)).

However, LLMs present unique challenges due to the prevalence of extreme high values in their
activations (Wei et al. (2023); Nrusimha et al. (2024); Huang et al. (2024); Lin et al.). The scaling
factor, which is directly tied to the maximum absolute value, often causes most of the distribution to
be rounded to zero, leading to performance degradation. To address this, techniques like LLM.int8()
(Dettmers et al.) cluster these outliers and quantize them separately from the main distribution.

Alternative methods, such as SmoothQuant (Xiao et al. (2023)), shift the quantization challenge
from activations to weights by introducing a scaling parameter between them. Other approaches
attempt to relocate these spikes into ”sink tokens” before quantization (Son et al. (2024)). Some
research focuses on understanding the upstream causes of these spikes during the learning process
to limit their impact post-training (Nrusimha et al. (2024)). Additionally, efforts are made to better
locate these outliers by visualizing the layers, dimensions, and tokens that may be their source
(Maisonnave et al. (2025)).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Architecture’s pipeline with rotation matrices R1, R2, R3, R4 and dimension expansion.
Red lines represent expanded tokens by d dimensions, green lines represents non expanded tokens
and blue lines represent expanded tokens by d′. Weights tensors are also expanded in this pipeline,
QKV and Head projections have their input expanded by d and their output remains unchanged
whereas Out and Embedding projections only have their output dimension expanded by d. For Up
and Gate the input is expanded by d and the output by d′. Finally Down proj has its input expanded
by d′ and output by d.

2.3 ROTATION MATRICES

2.3.1 RANDOM ORTHOGONAL MATRICES

Rotation matrices play a pivotal role in various applications, including signal processing, computer
vision, and machine learning. These matrices are orthogonal and invertible by their transpose, mean-
ing they preserve the length of vectors and the angles between them. In the context of quantization,
rotation matrices can be used to decorrelate and redistribute the energy of model activations (Ashk-
boos et al. (2024a;b); Chee et al.), making them more amenable to quantization. The idea is to apply
orthogonal matrices before quantization to flatten the distribution and then recover the tensor by
applying its inverse (see Figure 1). Part of this process can be pre-computed and fused with weights
and the rest needs to be done at inference (Ashkboos et al. (2024a)).

However, the effectiveness of rotation matrices depends on the specific matrix used. Randomly
drawn orthogonal rotation matrices can introduce noise and reduce the overall performance of the
model. To mitigate this, some methods adapt the rotation matrices during a training phase to better
align with the model’s weights and activations (Liu et al. (2024)).

In practice, rotation matrices are often used in conjunction with other quantization techniques, such
as GPTQ. This combination allows for more robust and efficient quantization of large language
models, enabling their deployment on resource-constrained devices.

2.3.2 HADAMARD MATRICES

Hadamard matrices are another powerful tool in the quantization arsenal. These matrices are or-
thogonal matrices and all their entries are either +1 or -1 making them very efficient to compute (eq
1). Hadamard matrices have been extensively used in signal processing, error-correcting codes
(Horadam (2012)), and more recently, in the quantization of neural networks (Ashkboos et al.
(2024a;b)).

One of the key advantages of Hadamard matrices is their ability to decorrelate the activations of
a model. By applying a Hadamard matrix, the activations are transformed into a new basis where
the correlations between different dimensions are minimized. This decorrelation property is partic-
ularly useful in reducing the impact of outliers, as the extreme values are spread out across multiple
dimensions.

Hadamard matrices of order 2n can be constructed recursively using the Fast Hadamard Transform
(FHT) method: For n ≥ 1, construct the 2n+1 × 2n+1 Hadamard matrix H2n+1 using the 2n × 2n

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Hadamard matrix H2n as follows:

H2 =

(
1 1
1 −1

)
, H4 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , H2n+1 =

(
H2n H2n

H2n −H2n

)
(1)

This method is highly efficient for generating Hadamard matrices and can be applied in real-time. In
summary, both rotation matrices and Hadamard matrices are essential for the quantization of large
language models. However, Hadamard matrices offer several advantages: they can be generated
more efficiently, their structure of containing only 1 and -1 makes them highly efficient for matrix
multiplication, and they are known to handle outliers in activations more effectively (Liu et al.
(2024)). In the following sections, we will theoretically demonstrate that Hadamard matrices are
more effective than random rotation matrices drawn from the unit sphere in reducing the amplitude
of outliers.

2.3.3 PALEY ALGORITHM

To generate other dimensions n for Hadamard matrix we can use known small matrices and apply
power of 2 algorithm as used in QuaRot (Ashkboos et al. (2024b)) but it can be limiting and doesn’t
cover a lot of values. To overcome this issue we can use the Paley’s Algorithm that generate a
Hadamard matrix n × n if n − 1 is a prime number and n − 1 ≡ 3 (mod 4). This algorithm is
described below (Algorithm 2) and needs to generate Legendre symbols

(
a
p

)
which take any integer

number a and prime number p to produce a value in {−1, 0, 1} as below :

• If a is a quadratic residue modulo p, then there exists an integer x such that x2 ≡ a

(mod p). In this case,
(

a
p

)
= 1.

• If a is a quadratic non-residue modulo p, then there is no integer x such that x2 ≡ a

(mod p). In this case,
(

a
p

)
= −1.

• If a ≡ 0 (mod p), then
(

a
p

)
= 0.

Generating Legendre symbols can be time-consuming, especially for high-dimensional matrices.
However, in the following sections, we will use this algorithm to generate non-power-of-2 Hadamard
matrices and fuse them with the weights, so we only need to compute the Legendre symbols once.

3 ANALYSIS AND THEORETICAL DEMONSTRATIONS

3.1 CLIPPING RATIO

To perform quantization we can play on several parameters to improve the effectiveness of the
process, for example in LSQ (Esser et al. (2020)) they optimise the scaling factor trough training,
or FracBits (Yang and Jin (2021)) which tries to find the best precision for every layer. Other
works highlighted the importance of the clipping ratio like PACT (Choi et al. (2018)) where the
optimization is done during training. Some others apply a Grid Search (Chen et al. (2024)) to find
the best configuration particularly useful for LLMs where training or fine tuning can be very time
consuming.

Clipping ratios are essential for managing outliers, as they establish the balance between maintaining
high precision for small values and preserving a maximum value close to its original. However,
the model exhibits significant variability in how quantization responds to changes in the clipping
ratio. While some projections can tolerate very low clipping ratios, others experience a substantial
accuracy drop with even slight adjustments (see Appendix C). Therefore, to effectively manage this
variability, a tailored clipping ratio must be determined for each projection.

Previous studies have shown that quantization error is not always the best metric to guide the opti-
mization process for quantization parameters (Maisonnave et al.). Specifically, at very low precision

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

levels, such as 4 or 3 bits, the set of quantized weights deviates significantly from the optimized
configuration obtained during training. Attempting to recover this configuration using quantization
error often results in an ineffective set of weights. To address this issue, we can use perplexity as an
objective function. Perplexity provides a more accurate representation of model performance and
is computationally efficient, as it is based on Cross Entropy Loss, which is frequently used during
training for its smoothness.

3.2 HADAMARD MATRICES REDUCE OUTLIERS MORE

Experimentally, it is observed that Hadamard matrices tend to reduce better the amplitude of outliers
present in the layers of LLMs, which directly impacts the performance of these models. However,
the question of why such a phenomenon occurs has remained open from a theoretical perspective.
We now provide an answer to this question.
Definition 3.1. We define µ a the function that compute the maximum absolute value of a matrix
product:

µ(Mx) = max
1≤i≤n

|(Mx)i|

Theorem 3.1 (Hadamard reduction). ∀x ∈ Rn containing k outliers of equal amplitude, i.e., x =

ϵ+
∑k

j=1 cepj
with c >> ||ϵ||, ei denotes the canonical basis vector at position i and p1, ..., pk are

distinct, we have
µ(Hx)

µ(Qx)
∼

√
k

2 logn

with H a Hadamard matrix belonging to Rn×n and Q a rotation matrix drawn randomly on the unit
sphere Sn−1 = {x ∈ Rn : ||x||2 = 1}.

To demonstrate Theorem 3.1, we can calculate the two terms of the fraction and thus show its
behavior asymptotically.
Lemma 3.1 (Hadamard incoherence). For H a Hadamard matrix belonging to Rn×n and x =

ϵ+
∑k

j=1 cepj
with c >> ||ϵ|| a vector containing k outliers of equal amplitude, we have :

µ(Hx) ∼ kc√
n

Lemma 3.2 (Rotation incoherence). For Q a rotation matrix drawn randomly on the unit sphere
Sn−1 = {x ∈ Rn : ||x||2 = 1} and x = ϵ +

∑k
j=1 cepj

with c >> ||ϵ|| a vector containing k
outliers of equal amplitude, we have

µ(Qx) ∼ c

√
2k log n

n

We can prove in Lemma 3.1 and Lemma 3.2 that the reduction of outliers with a Hadamard matrix

is of order O(
√

k
n) and O(

√
2k logn

n) for a random orthogonal matrix (demonstrations are done in
Appendix A). These results prove Theorem 3.1 and also show the close link between reduction and
the dimension of embeddings in LLMs. The higher the dimension is the stronger the reduction will
be.

4 METHOD

4.1 GRADUAL BINARY SEARCH

In Section 3.1, we emphasize the importance of the clipping ratio parameter and its significant im-
pact on model performance. We stress the need to optimize each projection with its own clipping
ratio for best results. Our primary contribution is an algorithm that determines the optimal clipping
ratio for each quantizer using a binary search (Algorithm 1). To drive the binary search, we mini-
mize perplexity across various clipping ratios, assuming a single minimum and a convex landscape.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Gradual Binary Search
Require: A model M , a dataset D, a threshold ϵ
Ensure: A list L of clipping ratios ▷ + operand on L means concatenation
1: n← number of projections in M
2: L← []
3: for i← 1 to n− 1 do
4: a← 0
5: b← 1
6: m← (a+ b)/2 ▷ We keep track of the middle element
7: M ← quantize proj(M, i) ▷ Quantize projection i of model M
8: fm = evaluate(M,D,L+m) ▷ Evaluate model M on dataset D with clipping ratios L
9: iteration← 0

10: while b− a > ϵ do ▷ We iterate until we converge
11: if iteration is even then ▷ Allows to use only one loop for binary search
12: x← (a+m)/2
13: else
14: x← (b+m)/2
15: end if
16: fx ← evaluate(M,D,L+ x) ▷ Evaluate model on a new clipping ratio
17: if fx < fm then ▷ If we improve PPL (the lower the better) we keep it
18: if x < m then ▷ If the target is less than the middle, search the left half
19: b← m
20: else ▷ If not , search the right half
21: a← m
22: end if
23: m, fm ← x, fx
24: else
25: if x < m then
26: a← x
27: else
28: b← x
29: end if
30: end if
31: iteration← iteration + 1
32: end while
33: L = L+m ▷ Add new element to the list
34: end for
35: return L

Additionally, we quantize our model gradually: first, we quantize and optimize the initial linear pro-
jection while keeping the rest in FP16, then use the obtained parameters to quantize and optimize
the next projection, and so on. This process is discussed in Appendix C where we experimentally
show the necessity to optimize gradually the clipping ratio.

4.2 INCREASING DIMENSIONS

Lemma 4.1 (Expanding limit). For a matrix product AB with A ∈ Rm×n and B ∈ Rn×p in b bits
and A′B′ with A′ ∈ Rm×(n+d) and B′ ∈ R(n+d)×p in b′ bits we must have d ≤ n(b−b′)

b′ so that
BitOps(A′B′) ≤ BitOps(AB), with m, n, p, b, b′ ∈ N and b′ ≤ b

One important limitation of QuaRot’s implementation of rotation matrices in LLMs is the necessity
to have embeddings in a power of 2 dimension which can be very limiting in some architectures like
Qwen2.5-7B. In the MLP the dimension is 18944 which can be decomposed as 18944 = 128× 148
but 148 is not a known dimension for an Hadamard matrix even for the Paley algorithm introduced in
the paper. To overcome this problem we increase manually the dimension of embedding by adding
zeros in the weights (independently developed in Franco et al. (2025)) to reach a dimension suitable
to generate a Hadamard matrix with the Paley’s algorithm 2. Then we save the matrix product of
weights padded with 0s and the Hadamard matrix as our new weights (see figure 1 and Eq 2 for an
example in dimension 4). The primary goal is to create a more versatile pipeline compatible with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

any architecture but it also enhance performance through increased dimensionality.

W ←

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

×
a b
c d
0 0
0 0

 (2)

Indeed theorem 3.1 ensures that increasing the dimension helps reduce the impact of outliers in any
tensor. Consequently, by adding zeros to the weight tensors, we also improve the effectiveness of
quantization. The intuition behind it is that by adding more dimensions in our tensors we create more
space to store information and especially outliers which will be sliced in more parts and recovered
better after quantization. This process increases the model size and computational cost, necessitating
a trade-off to achieve better accuracy without a significant increase in computational requirements.

Lemma 4.1 shows the threshold after which the increase in dimensionality is worse than just quantiz-
ing with one more bit. For example with a LLaMA3-8B which has embeddings in 4096 dimensions
we are only allowed to increase to d = 1366 dimensions in 3 bits before reaching the computational
cost in 4 bits.

5 EXPERIMENTS

5.1 SETUP

We conduct our experiment based on the the code of QuaRot which performs per-token quantization
for activations and GPTQ for weights. We also quantize KV caches using asymmetric quantization
with a group size of 128. We compare our results on several metrics : perplexity (PPL) on WikiText2,
and 6 benchmarks : PIQA, hellaswag (HS), arc-easy (ARC-E), arc-challenge (ARC-C), winogrande
(WINO) and lambada, we also compute the average value (AVG) of these 6 benchmarks. We per-
forms ours experiments in 4 and 3 bits quantization on 6 different models from the Mistral library,
LLaMA architecture and Qwen. We used only one GPU A100 to perform quantization and Gradual
Binary Search (GBS) with 10% of the train set of WikiText2 for 3 days for the biggest models. We
were able to adjust some optimisations parameters to reduce this computation time to 12h without
significant loss of accuracy (see Appendix E).

5.2 RESULTS

5.2.1 GRADUAL BINARY SEARCH PERFORMANCES

Table 1 and Table 2 shows the results in 4 and 3 bits quantization on the perplexity and 6 benchmarks.
In 4 bits our method GBS clearly outperforms previous methods for all models improving up to
almost 6% for LLaMA3-8B, 5% on Qwen2.5 1.5B Instruct, 4% on Mistral 7B and 3% on Mistral
7B Instruct.

In 3 bits GBS made activation quantization possible with an increase of accuracy reaching 40% for
Mistral 7B (Table 2). All other models have been greatly affected by GBS reducing the gap with 4
bits quantization. PPL is also significantly impacted by GBS reducing by a factor of 100 in the case
of LLaMA3-8B. We now have a method reaching decent performances in 3 bits like with Mistral
7B Instruct which is only 10% less than FP16 and reach 61.32% accuracy on our benchmarks.

GBS appears to be highly effective in enhancing quantization performance, supporting our hypoth-
esis that optimizing Perplexity via binary search is preferable to minimizing quantization error. We
assumed a single minimum and a convex function, allowing us to leverage binary search while
relying on the smoothness of CrossEntropy—an assumption that appears to hold true. Perplex-
ity emerges as a strong objective for guiding our optimization, as it correlates well with improved
benchmark performance (see Appendix D for more details).

We also evaluated GBS using two additional methods: SpinQuant (Liu et al. (2024)) and DFRot
(Xiang and Zhang (2024)), both relying on rotation matrices (see Appendix F). Our binary search
approach, particularly when restricted to 3 bits, significantly enhances their performance, thus vali-
dating the broad effectiveness of our method

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results in 4-bit WAKV quantization on seven benchmarks (perplexity, PIQA, HellaSwag,
ARC-Easy, ARC-Challenge, Winogrande, and LAMBADA) and report average success rates. Our
GBS method outperforms QuaRot across all metrics, while QuaRot+ (with dimension expansion)
enables compatibility with Qwen models.

Model Method PPL↓ PIQA HS ARC-E ARC-C Wino Lambada AVG↑

Mistral 7B Inst v0.3
FP16 5.49 71.27 74.6 67.94 74.27 58.96 82.66 71.62

QuaRot 5.98 67.7 71.45 63.94 69.53 55.2 79.46 67.88
QuaRot + GBS 5.75 70.55 74.44 66.66 71.82 56.66 80.77 70.15

Mistral 7B v0.1
FP16 5.25 72.49 75.59 69.4 73.95 54.86 80.18 71.08

QuaRot 5.82 67.62 71.88 63.36 70.01 48.98 76.6 66.41
QuaRot + GBS 5.57 71.47 74.95 68 72.22 51.54 79.21 69.56

Llama2 7B
FP16 5.47 71.08 73.9 68.25 68.98 46.33 74.58 67.19

QuaRot 6.21 64.65 69.09 60.22 64.64 43.17 69.78 61.92
QuaRot + GBS 6.04 65.64 69.88 61.4 66.46 42.32 70.75 62.74

Llama3 8B
FP16 6.13 72.62 76.01 69.22 72.93 53.41 77.69 70.3

QuaRot 8.33 61.66 66.27 57.05 64.72 42.06 68.06 59.97
QuaRot + GBS 7.4 67.87 72.02 63.73 71.03 45.9 73.7 65.71

Qwen2.5 7B Inst
FP16 7.45 66.23 69.73 62.74 70.56 55.12 81.02 67.57

QuaRot - - - - - - - -
QuaRot+ 9.21 56.66 59.31 54.01 63.54 48.89 69.78 58.7

QuaRot+ + GBS 8.23 62.58 64.91 60.24 66.61 49.4 72.39 62.69

Qwen2.5 1.5B Inst
FP16 9.64 58.09 61.21 54.98 63.3 46.59 75.8 60.0

QuaRot 14.44 39.05 40.23 37.86 54.85 35.75 58.71 44.41
QuaRot + GBS 12.05 43.94 45.24 42.64 58.64 39.33 65.61 49.23

Table 2: Results in 3-bit WAKV quantization on seven benchmarks (perplexity, PIQA, HellaSwag,
ARC-Easy, ARC-Challenge, Winogrande, and LAMBADA) and report average success rates. Our
GBS method outperforms QuaRot across all metrics, while QuaRot+ (with dimension expansion)
enables compatibility with Qwen models.

Model Method PPL↓ PIQA HS ARC-E ARC-C Wino Lambada AVG↑

Mistral 7B Inst v0.3
FP16 5.49 71.27 74.6 67.94 74.27 58.96 82.66 71.62

QuaRot 38.28 7.66 9.49 5.82 51.46 23.55 34.39 22.06
QuaRot + GBS 7.04 62.17 66.93 57.4 61.56 46.42 73.44 61.32

Mistral 7B v0.1
FP16 5.25 72.49 75.59 69.4 73.95 54.86 80.18 71.08

QuaRot 100.85 3.07 4.13 2.0 48.62 22.18 30.6 18.43
QuaRot + GBS 7.31 59.22 64.41 54.03 63.3 40.53 68.39 58.31

Llama2 7B
FP16 5.47 71.08 73.9 68.25 68.98 46.33 74.58 67.19

QuaRot 332.56 0.25 0.47 0.04 51.14 26.11 30.39 18.07
QuaRot + GBS 9.18 39.03 49.91 28.14 56.12 31.91 54.92 43.34

Llama3 8B
FP16 6.13 72.62 76.01 69.22 72.93 53.41 77.69 70.3

QuaRot 1315 0.05 0.08 0.02 49.41 23.72 27.78 16.84
QuaRot + GBS 12.62 44.92 50.32 39.51 60.22 32.85 53.7 46.92

Qwen2.5 7B Inst
FP16 7.45 66.23 69.73 62.74 70.56 55.12 81.02 67.57

QuaRot - - - - - - - -
QuaRot+ 251 1.14 1.14 1.14 49.33 25.0 32.15 18.32

QuaRot+ + GBS 12.33 41.9 42.62 41.18 56.59 40.53 61.83 47.44

Qwen2.5 1.5B Inst
FP16 9.64 58.09 61.21 54.98 63.3 46.59 75.8 60.0

QuaRot 3411 0.06 0.12 0.0 49.72 23.98 27.99 16.98
QuaRot + GBS 34.97 13.84 14.81 12.87 52.17 23.72 38.89 26.05

5.2.2 MATRIX EXPANSION EFFECT

We now study the impact of expanding dimensions on performance. Figure 2 show the evolution
of AVG with the number of dimensions added to our tokens and we clearly see the positive impact
on performances. We can reach 68.95% of accuracy for Mistral-7B Instruct but at a very high
computational cost.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000 3500
Dimensions added

45

50

55

60

65

AV
G

Mistral-7B-Instruct-v0.3
Llama-2-7b-hf
Meta-Llama-3-8B
Mistral-7B-v0.1
Computational limit

Figure 2: Effect of expanding dimensions on 6 benchmarks average (AVG) for different models in
3 bits WAKV quantization and the computational limit of Lemma 4.1. Due to memory constraints
on GPU A100 we could not increase more than 2036 dimensions for LLaMA3-8B.

Another beneficial aspect of dimension expansion is seen in Group Local Rotation, introduced in
QuaRot and explored in LightRot (Kim et al. (2025)). This technique involves decomposing a
tensor into smaller sub-tensors and applying the same small power-of-2 Hadamard matrix to each of
these sub-tensors. This approach leverages efficient Hadamard transforms (as introduced in Section
2.3.2) and significantly speeds up inference. Particularly for MLP layers that often operate in high-
dimensional spaces, expanding dimensions can help identify a more suitable divisor, resulting in
efficient power-of-2 sub-tensors.

6 CONCLUSION

In this work, we introduced an approach to optimize the quantization of LLMs using Gradual Binary
Search and Hadamard matrices. Our method achieves efficient 3-bit quantization for weights, ac-
tivations, and key-value caches, significantly improving model performance. We also theoretically
demonstrated that Hadamard matrices are more effective than random rotation matrices in reducing
extreme values in activations.

We also extended the use of rotation matrices to support non-power-of-2 embedding dimensions
using the Paley algorithm and dimension expansion. This generalization allows our method to be
applied to various architectures, including those with unique embedding dimensions. Experimental
results on models from the Mistral library, LLaMA architecture, and Qwen show the effectiveness
of our approach, outperforming existing methods.

Overall, our findings suggest that GBS and Hadamard matrices have great potential for advancing
LLM quantization, making them more suitable for resource-constrained devices. Future work will
explore mix computation and combining GBS with other methods.

7 LIMITATIONS

As explained in the previous part expanding dimensions has a big computational cost and it worsen
with context length that is why we need to be aware of the expanding limit. One potential solution is
to implement a Mixed Computation pipeline, where dimensions are only expanded in specific layers
based on the presence of outliers, thereby substantially reducing computational overhead.

Another challenge arises with GBS, which involves computing perplexity at each step—a process
that can be time-consuming for our method, sometimes taking several days. To mitigate this, we
tried different dataset sizes and maximum binary search iterations to reduce the computation time
which is necessary to scale GBS to bigger models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. SliceGPT: Compress Large Language Models by Deleting Rows and Columns, Febru-
ary 2024a. URL http://arxiv.org/abs/2401.15024. arXiv:2401.15024.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Mar-
tin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. QuaRot: Outlier-Free 4-Bit In-
ference in Rotated LLMs, October 2024b. URL http://arxiv.org/abs/2404.00456.
arXiv:2404.00456 [cs].

Jerry Chee, Volodymyr Kuleshov, and Yaohui Cai. QuIP: 2-Bit Quantization of Large Language
Models With Guarantees.

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. PrefixQuant: Static
Quantization Beats Dynamic through Prefixed Outliers in LLMs, October 2024. URL http:
//arxiv.org/abs/2410.05265. arXiv:2410.05265.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I.-Jen Chuang, Vijayalakshmi
Srinivasan, and Kailash Gopalakrishnan. PACT: Parameterized Clipping Activation for
Quantized Neural Networks, July 2018. URL http://arxiv.org/abs/1805.06085.
arXiv:1805.06085 [cs].

Laurens De Haan and Ana Ferreira. Extreme Value Theory. Springer Series in Operations Research
and Financial Engineering. Springer, New York, NY, 2006. ISBN 978-0-387-23946-0 978-0-387-
34471-3. doi: 10.1007/0-387-34471-3. URL http://link.springer.com/10.1007/
0-387-34471-3.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8(): 8-bit Matrix
Multiplication for Transformers at Scale.

Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve. Differentiable Model Compression via
Pseudo Quantization Noise, October 2022. URL http://arxiv.org/abs/2104.09987.
arXiv:2104.09987 [cs, stat].

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S. Modha. Learned Step Size Quantization, May 2020. URL http://arxiv.org/abs/
1902.08153. arXiv:1902.08153 [cs, stat].

Giuseppe Franco, Pablo Monteagudo-Lago, Ian Colbert, Nicholas Fraser, and Michaela Blott.
Improving Quantization with Post-Training Model Expansion, March 2025. URL http:
//arxiv.org/abs/2503.17513. arXiv:2503.17513 [cs].

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transformers, March 2023. URL http://arxiv.
org/abs/2210.17323. arXiv:2210.17323 [cs].

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
A Survey of Quantization Methods for Efficient Neural Network Inference, June 2021. URL
http://arxiv.org/abs/2103.13630. arXiv:2103.13630 [cs].

Yunhui Guo. A Survey on Methods and Theories of Quantized Neural Networks, December 2018.
URL http://arxiv.org/abs/1808.04752. arXiv:1808.04752 [cs, stat].

K. J. Horadam. Hadamard Matrices and Their Applications. Princeton University Press, January
2012. ISBN 978-1-4008-4290-2. Google-Books-ID: oR HDgAAQBAJ.

Xijie Huang, Zechun Liu, Shih-Yang Liu, and Kwang-Ting Cheng. RoLoRA: Fine-tuning Rotated
Outlier-free LLMs for Effective Weight-Activation Quantization, July 2024. URL http://
arxiv.org/abs/2407.08044. arXiv:2407.08044 [cs].

10

http://arxiv.org/abs/2401.15024
http://arxiv.org/abs/2404.00456
http://arxiv.org/abs/2410.05265
http://arxiv.org/abs/2410.05265
http://arxiv.org/abs/1805.06085
http://link.springer.com/10.1007/0-387-34471-3
http://link.springer.com/10.1007/0-387-34471-3
http://arxiv.org/abs/2104.09987
http://arxiv.org/abs/1902.08153
http://arxiv.org/abs/1902.08153
http://arxiv.org/abs/2503.17513
http://arxiv.org/abs/2503.17513
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2103.13630
http://arxiv.org/abs/1808.04752
http://arxiv.org/abs/2407.08044
http://arxiv.org/abs/2407.08044

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sangjin Kim, Yuseon Choi, Jungjun Oh, Byeongcheol Kim, and Hoi-Jun Yoo. LightRot: A Light-
weighted Rotation Scheme and Architecture for Accurate Low-bit Large Language Model In-
ference. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, pages 1–1,
2025. ISSN 2156-3365. doi: 10.1109/JETCAS.2025.3558300. URL https://ieeexplore.
ieee.org/document/10950449/.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. DuQuant: Distributing Outliers via Dual Transformation Makes Stronger
Quantized LLMs.

Ji Lin, Chuang Gan, and Song Han. Defensive Quantization: When Efficiency Meets Robustness,
April 2019. URL http://arxiv.org/abs/1904.08444. arXiv:1904.08444 [cs, stat].

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. SpinQuant: LLM quan-
tization with learned rotations, May 2024. URL http://arxiv.org/abs/2405.16406.
arXiv:2405.16406 [cs].

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The Era of 1-bit LLMs: All Large Language
Models are in 1.58 Bits, February 2024. URL http://arxiv.org/abs/2402.17764.
arXiv:2402.17764 [cs].

Lucas Maisonnave, Cyril Moineau, Olivier Bichler, and Fabrice Rastello. Applying maximum en-
tropy principle on quantized neural networks correlates with high accuracy.

Lucas Maisonnave, Cyril Moineau, Olivier Bichler, and Fabrice Rastello. Precision Where It Mat-
ters: A Novel Spike Aware Mixed-Precision Quantization Strategy for LLaMA-based Language
Models, April 2025. URL http://arxiv.org/abs/2504.21553. arXiv:2504.21553 [cs].

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, and
Yoon Kim. Mitigating the Impact of Outlier Channels for Language Model Quantization
with Activation Regularization, April 2024. URL http://arxiv.org/abs/2404.03605.
arXiv:2404.03605 [cs] version: 1.

Seungwoo Son, Wonpyo Park, Woohyun Han, Kyuyeun Kim, and Jaeho Lee. Pre-
fixing Attention Sinks can Mitigate Activation Outliers for Large Language Model
Quantization. June 2024. URL https://www.semanticscholar.org/paper/
1601ad7616681ed9d7e1b9a04b64c1ad9c7196c7.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applica-
tions in Data Science. Cambridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, Cambridge, 2018. ISBN 978-1-108-41519-4. doi:
10.1017/9781108231596. URL https://www.cambridge.org/core/books/
highdimensional-probability/797C466DA29743D2C8213493BD2D2102.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. BitNet: Scaling 1-bit Transformers for Large Language
Models, October 2023. URL http://arxiv.org/abs/2310.11453. arXiv:2310.11453
[cs].

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xian-
glong Liu. Outlier Suppression+: Accurate quantization of large language models by equivalent
and optimal shifting and scaling, October 2023. URL http://arxiv.org/abs/2304.
09145. arXiv:2304.09145 [cs].

Jingyang Xiang and Sai Qian Zhang. DFRot: Achieving Outlier-Free and Massive Activation-Free
for Rotated LLMs with Refined Rotation, December 2024. URL http://arxiv.org/abs/
2412.00648. arXiv:2412.00648 [cs].

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and Efficient Post-Training Quantization for Large Language Models. In Proceedings of
the 40th International Conference on Machine Learning, pages 38087–38099. PMLR, July 2023.
URL https://proceedings.mlr.press/v202/xiao23c.html. ISSN: 2640-3498.

11

https://ieeexplore.ieee.org/document/10950449/
https://ieeexplore.ieee.org/document/10950449/
http://arxiv.org/abs/1904.08444
http://arxiv.org/abs/2405.16406
http://arxiv.org/abs/2402.17764
http://arxiv.org/abs/2504.21553
http://arxiv.org/abs/2404.03605
https://www.semanticscholar.org/paper/1601ad7616681ed9d7e1b9a04b64c1ad9c7196c7
https://www.semanticscholar.org/paper/1601ad7616681ed9d7e1b9a04b64c1ad9c7196c7
https://www.cambridge.org/core/books/highdimensional-probability/797C466DA29743D2C8213493BD2D2102
https://www.cambridge.org/core/books/highdimensional-probability/797C466DA29743D2C8213493BD2D2102
http://arxiv.org/abs/2310.11453
http://arxiv.org/abs/2304.09145
http://arxiv.org/abs/2304.09145
http://arxiv.org/abs/2412.00648
http://arxiv.org/abs/2412.00648
https://proceedings.mlr.press/v202/xiao23c.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dawei Yang, Ning He, Xing Hu, Zhihang Yuan, Jiangyong Yu, Chen Xu, and Zhe Jiang. Post-
Training Quantization for Re-parameterization via Coarse & Fine Weight Splitting, December
2023. URL http://arxiv.org/abs/2312.10588. arXiv:2312.10588 [cs].

Linjie Yang and Qing Jin. FracBits: Mixed Precision Quantization via Fractional Bit-Widths. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(12):10612–10620, May 2021.
ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v35i12.17269. URL https://ojs.aaai.
org/index.php/AAAI/article/view/17269.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained Ternary Quantization, February
2017. URL http://arxiv.org/abs/1612.01064. arXiv:1612.01064 [cs].

A THEORETICAL PROOFS

A.1 HADAMARD MATRICES

A.1.1 PROOF

Proof of Lemma 3.1. We define a Hadamard matrix as a rotation matrix with values equal to 1 or -1
only. By definition, the equality HHT = In must be respected, but without normalization, we have
HHT = nIn. If we decide to normalize this Hadamard matrix by a factor of 1√

n
, we obtain the

identity by multiplying it by its transpose. In the case of a vector x = ϵ+
∑k

j=1 cepj with c >> ||ϵ||,
we have

Hx = Hϵ+H

k∑
j=1

cepj
= Hϵ+

k∑
j=1

cH:,pj

We consider Hϵ negligible in high dimension compare to the rest and for a normalized Hadamard
matrix, each element is ± 1√

n
. applying a Hadamard matrix to it amounts to multiplying the maxi-

mum absolute value by 1√
n

since all the values of H are either 1√
n

or− 1√
n

. The worst-case scenario
(maximum amplitude) occurs when all signs of the elements Hi,pj

are identical for some row i. The
first row of a Hadamard matrix is always composed of positive values, therefore:

µ(Hx) ∼
k∑

j=1

c√
n
∼ kc√

n

Proof of Lemma 3.2. Let Q be a rotation matrix drawn on the unit sphere Sn−1. We assume that the
problem is in high dimension, which allows us to approximate the distribution of the elements of the
matrix Q:

Qij ∼ N
(
0,

1

n

)
This theorem is a classic result of high-dimensional probability theory (Vershynin (2018)). We can
use the same decomposition of x to have

Qx = Qϵ+

k∑
j=1

cQ:,pj

This time- for each row i, Qi,pj is a random variable so we can’t just add the contribution of each
maximum. We define Si =

∑
i,j Qij By the variance addition property for independent random

variables, we have Var
(∑k

j=1 Xj

)
=
∑k

j=1 Var(Xj), leading to

Si ∼ N
(
0,

k

n

)

12

http://arxiv.org/abs/2312.10588
https://ojs.aaai.org/index.php/AAAI/article/view/17269
https://ojs.aaai.org/index.php/AAAI/article/view/17269
http://arxiv.org/abs/1612.01064

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

From this approximation we can use the fundamental properties of the extreme values of a normal

law. Indeed, for all i ≤ n, Zi ∼ N (0, 1), then Si = Zi

√
k
n . We can show (De Haan and Ferreira

(2006)) that

E
[
max
1≤i≤n

|Zi|
]
=
√
2 logn (3)

Therefore,

E
[
max
1≤i≤n

|Si|
]
=

√
2k log n

n
(4)

Using Talagrand’s inequality for a Lipschitz function (Qx is indeed a Lipschitz function) we have:

P

(∣∣∣∣∣ max
1≤i≤n

|Si| −
√

2k log n

n

∣∣∣∣∣ > ϵ

)
≤ 2e−Cnϵ2 (5)

With C > 0. Thus, for sufficiently large n, we have a very high probability of having:

max
1≤i≤n

|Si| =
√

2k log n

n
(6)

We now use this result when applying Q to a vector x with k outliers

µ(Qx) = max
1≤i≤n

|(Qx)i| ∼ c max
1≤i≤n

|
k∑

j=1

Qi,pj
| ∼ c

√
2k log n

n

Finally, using Lemmas 3.1 and 3.2, we show that for sufficiently large n

µ(Hx)

µ(Qx)
∼

√
k

2 logn

A.1.2 EXPERIMENTAL VERIFICATIONS

128 256 512 1024 2048
Dimension n

10 1

Re
du

ct
io

n
Fa

ct
or

k = 1

128 256 512 1024 2048
Dimension n

10 1

k = 2

128 256 512 1024 2048
Dimension n

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Re
du

ct
io

n
Fa

ct
or

k = 4

128 256 512 1024 2048
Dimension n

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

k = 8

Hadamard theory: k
n

Rotation theory (corrected): 0.9 2klog n
n

Hadamard experimental
Rotation experimental

Figure 3: Outlier reduction factor comparison between Hadamard and rotation matrices. Results
for k ∈ {1, 2, 4, 8} outliers across dimensions n ∈ {128, 256, 512, 1024, 2048}. Solid lines show
theoretical predictions: blue for Hadamard (k/

√
n), red for rotation matrices (0.9

√
2k log n/n).

Circles represent experimental data (50 trials, error bars = ±1σ). Hadamard matrices demonstrate
superior outlier reduction.

We conduct a comprehensive empirical study (Figure 3) to compare the outlier reduction capa-
bilities of Hadamard matrices versus random orthogonal rotation matrices across varying dimen-
sions and sparsity levels. Our experimental framework generates synthetic signals of dimension

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

n ∈ {128, 256, 512, 1024, 2048} containing k ∈ {1, 2, 4, 8} randomly positioned outliers with am-
plitude 1000.0, embedded within Gaussian noise (σ = 0.1). For each configuration, we perform
50 independent trials to ensure statistical reliability. The Hadamard matrices are constructed using
the standard recursive definition for power-of-two dimensions, normalized by 1√

n
, while random or-

thogonal matrices are drawn from the Haar measure using Scipy’s ortho group distribution. For each
trial, we compute the reduction factor as the ratio between the maximum absolute value of the trans-
formed signal and the original signal, providing a direct measure of outlier suppression effective-
ness. We compare experimental results against theoretical predictions: k√

n
for Hadamard matrices

and α
√

2k logn
n for rotation matrices (with empirically determined correction factor α = 0.9).

It clearly shows that the theoretical and experimental curves follow each other perfectly, which
seems to confirm the previously demonstrated theorems. Hadamard matrices are therefore theoret-
ically and experimentally the most suitable matrices for reducing the impact of many outliers in a
vector. But we can see for k = 8 the gap between Rotations and Hadamard is already smaller which
suggests in the case of many outliers like 100 or more Hadamard matrices could be less efficient.

A.2 INCREASING DIMENSIONS

Proof of Lemma 4.1. We define BitOps as the function that compute the number of operations for a
matrix multiplication: BitOps(AB) = mn2pb2. And we want to find a condition that ensure

BitOps(A′B′) ≤ BitOps(AB) (7)

⇒ m(n+ d)2pb′2 ≤ mn2pb2 (8)

⇒ (n+ d)2b′2 ≤ n2b2 (9)

⇒ (n+ d)b′ ≤ nb (10)

⇒ nb′ + db′ ≤ nb (11)

⇒ d ≤ n(b− b′)

b′
(12)

B PALEY ALGORITHM

Algorithm 2 Hadamard Matrix Construction using the Paley Method
Require: A prime number p
Ensure: A Hadamard matrix H of order p+ 1

1: n← p+ 1 ▷ Determine the order of the matrix
2: Initialize H as a n× n matrix with all entries set to 1 ▷ Start with a matrix of all ones
3: for i← 1 to n− 1 do ▷ Loop over rows (except the first row)
4: H[i, 0]← −1 ▷ Set the first column entry to -1 for current row
5: H[0, i]← −1 ▷ Set the first row entry to -1 for current column
6: for j ← 1 to n− 1 do ▷ Loop over columns (except the first column)
7: if i = j then
8: H[i, j]← −1 ▷ Set diagonal entries to -1
9: else

10: H[i, j]← legendre symbol((i− 1)− (j − 1), p)
11: end if
12: end for
13: end for
14: return H ▷ Return the constructed Hadamard matrix

C GRADUAL BINARY SEARCH PROCESS

In this analysis, we examine the evolution of clipping ratios through GBS to better understand the
dynamics of these parameters in LLMs. Figure 4 illustrates the perplexity (PPL) evolution during

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the optimization of a LLaMA3-8B model quantized to 4 bits. The graph displays the various tested
values for each projection, optimized under two different configurations: starting the model in FP16
(blue line) and initiating the process in 4 bits. It is clear that starting in FP16 yields a better PPL
on the training set of WikiText2, achieving 7.62, compared to starting in 4 bits, which results in a
PPL of 7.94. On the test set we have the same dynamic with a PPL of 7.4 starting in FP16 and 7.69
starting in 4 bits.

0 5 10 15 20 25 30
Layer

8.0

8.2

8.4

8.6

8.8

9.0

PP
L

(a) GBS starting in 4 bits

0 5 10 15 20 25 30
Layer

6.8

7.0

7.2

7.4

7.6

7.8

PP
L

Projections

q_proj
k_proj
v_proj
qk_rotation
o_proj
gate_proj
up_proj
down_proj

(b) GBS starting in FP16

Figure 4: PPL vs Layer during Gradual Binary Search on 10% of Train WikiText2 for a LLaMA3-
8B in 4-bit quantization and rotated with QuaRot. For better visualization we set a maximum PPL
to 9. Points opacity represents the clipping ratio, the value is closer to 0 as transparency increases

Figure 5 illustrates the final configuration achieved by GBS for the same architecture, starting the
process in both FP16 and 4-bit precision. It is clear that initiating in 4 bits results in a significantly
more unstable configuration compared to starting in FP16. Many values remain at 1, and there is a
high variance, indicating that the algorithm struggles to find a stable configuration when the entire
model is in 4 bits. It also appears to have difficulty understanding the impact of small changes in the
clipping ratio.

In contrast, starting in FP16 results in a stable configuration for every projection, with distinct dy-
namics. For instance, the qk rotation projection exhibits minimal changes in the clipping ratio,
with most layers close to 1. Conversely, the o proj projection has values below 0.3, suggesting that
clipping to 30% of the maximum value can enhance performance. This figure underscores the im-
portance of GBS in improving the model’s quality by identifying the optimal clipping configuration,
which is clearly not only ones.

0 5 10 15 20 25 30
Layer

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
ip

pi
ng

 ra
tio

Projections

q_proj
k_proj
v_proj
qk_rotation
o_proj
gate_proj
up_proj
down_proj

(a) GBS starting in FP16

0 5 10 15 20 25 30
Layer

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
ip

pi
ng

 ra
tio

Projections

q_proj
k_proj
v_proj
qk_rotation
o_proj
gate_proj
up_proj
down_proj

(b) GBS starting in 4 bits

Figure 5: Final configurations obtained with GBS started in 4 bits and in FP16 for a LLaMA3-8B

D PERPLEXITY AS OBJECTIVE

Perplexity is the central part of our optimization, it drives our search and it is supposed to reach a
configuration which will performs better than all others with a bigger PPL. In figure 6 we can see
how the average value on 6 benchmarks evolves with the perplexity. It clearly appears that a smaller
PPL usually represents a better AVG.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

101 102 103

Perplexity [log]

20

30

40

50

60

70

AV
G

Figure 6: AVG over Perplexity for all results obtained in Tab 2 and 1

E COMPUTATION TIME

Table 3: Ablation study on α (% of the train set of WikiText2) and max iter the maximum number
of iteration for the binary search.

Model Bit α (%) max iter time(h) PPL

Llama2 7B

4
10

10 50 6.04
8 31.9 6.07
7 28.6 6.08
6 24.7 6.08
5 21.02 6.08
4 17.42 6.09
3 14.07 6.37

5 5 10.89 6.11

3
10 10 50 9.18

5 19.5 10.39
5 5 10 10.58

Llama3 8B

4
10 10 80 7.4

5 21 7.53
5 5 10 7.56

3
10 10 80 12.62

5 19.44 15.65
5 5 10 15.72

In table 3 we can clearly see we can improve the computation by changing 2 parameters : the size
of the dataset and max iter the maximum number iterations allowed for the bianry search. On a
Llama2-7B we can reduce to 10h without a significant drop of perplexity. In 3 bits the model is
more sensitive and we can see a drop but still remaining well better than previous state of the art
methods. We can also drastically reduce the computation time for Llama3-8B with a small PPL
increase (+0.13 in best case in 4 bits). While the results aren’t yet optimal, they clearly demonstrate
that more effective clipping ratio optimization is crucial for substantial performance gains.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F MORE RESULTS

F.1 SPINQUANT

Table 4: Results in 4 bits WAKV quantization on perplexity (PPL), PIQA, hellaswag (HS), arc-easy
(ARC-E), arc-challenge (ARC-C), winogrande (WINO) and lambada, we also compute the average
value (AVG) which represents a % of success. We compare our method, GBS, with SpinQuant and
clearly observe that GBS outperforms SpinQuant across almost all computed metrics.

Model Method PPL↓ PIQA HS ARC-E ARC-C Wino Lambada AVG↑

Mistral 7B Inst v0.3
FP16 5.49 71.27 74.6 67.94 74.27 58.96 82.66 71.62

SpinQuant 5.88 69 72.66 65.34 69.93 55.12 78.41 68.41
SpinQuant + GBS 5.83 69.01 72.66 65.36 72.14 56.91 79.5 69.26

Mistral 7B v0.1
FP16 5.25 72.49 75.59 69.4 73.95 54.86 80.18 71.08

SpinQuant 5.71 69.55 73.45 65.65 69.38 48.98 76.98 67.33
SpinQuant + GBS 5.62 70.02 73.37 66.66 71.19 48.29 76.47 67.67

Llama2 7B
FP16 5.47 71.08 73.9 68.25 68.98 46.33 74.58 67.19

SpinQuant 6.57 61.73 68.46 55.0 63.46 40.61 67.63 59.48
SpinQuant + GBS 6.15 63.24 69.01 57.46 65.04 41.04 68.43 60.7

Llama3 8B
FP16 6.13 72.62 76.01 69.22 72.93 53.41 77.69 70.3

SpinQuant 7.97 65.11 69.01 61.21 66.61 45.22 72.52 63.28
SpinQuant + GBS 7.69 63.84 67.84 59.83 70.4 47.35 73.36 63.77

Table 5: Results in 3 bits WAKV quantization on perplexity (PPL), PIQA, hellaswag (HS), arc-easy
(ARC-E), arc-challenge (ARC-C), winogrande (WINO) and lambada, we also compute the average
value (AVG) which represents a % of success. We compare our method, GBS, with SpinQuant and
clearly observe that GBS outperforms SpinQuant across almost all computed metrics.

Model Method PPL↓ PIQA HS ARC-E ARC-C Wino Lambada AVG↑

Mistral 7B Inst v0.3
FP16 5.49 71.27 74.6 67.94 74.27 58.96 82.66 71.62

SpinQuant 14.31 20.39 28.39 12.38 49.72 24.57 40.57 29.34
SpinQuant + GBS 8.11 52.93 58.99 46.87 60.06 40.78 66.67 54.38

Mistral 7B v0.1
FP16 5.25 72.49 75.59 69.4 73.95 54.86 80.18 71.08

SpinQuant 18.88 16.58 21.97 11.2 51.3 24.23 37.67 27.16
SpinQuant + GBS 7.98 52.81 60.59 45.04 59.27 35.67 63.68 52.84

Llama2 7B
FP16 5.47 71.08 73.9 68.25 68.98 46.33 74.58 67.19

SpinQuant 425.2 0.24 0.45 0.04 51.46 28.33 27.57 18.02
SpinQuant + GBS 15.65 20.77 26.51 15.04 50.67 26.19 42.93 30.35

Llama3 8B
FP16 6.13 72.62 76.01 69.22 72.93 53.41 77.69 70.3

SpinQuant 316.6 2.71 3.1 2.31 50.51 22.35 29.0 18.33
SpinQuant + GBS 20.26 21.42 23.95 18.9 54.38 26.96 43.1 31.45

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.2 DFROT

Table 6: Results in 4 bits WAKV quantization on perplexity (PPL), PIQA, hellaswag (HS), arc-easy
(ARC-E), arc-challenge (ARC-C), winogrande (WINO) and lambada, we also compute the average
value (AVG) which represents a % of success. We compare our method, GBS, with DFRot and
clearly observe that GBS outperforms DFRot across all computed metrics.

Model Method PPL↓ PIQA HS ARC-E ARC-C Wino Lambada AVG↑

Mistral 7B Inst v0.3
FP16 5.49 71.27 74.6 67.94 74.27 58.96 82.66 71.62

DFRot 5.94 68.11 79.43 68.5 72.42 64.58 80.3 72.22
DFRot + GBS 5.81 71.35 81.23 69.3 73.18 65.42 80.13 73.43

Mistral 7B v0.1
FP16 5.25 72.49 75.59 69.4 73.95 54.86 80.18 71.08

DFRot 5.75 71.03 78.94 69.83 74.03 65.63 78.28 72.96
DFRot + GBS 5.62 70.88 80.9 70.93 75.0 66.85 78.85 73.9

Llama2 7B
FP16 5.47 71.08 73.9 68.25 68.98 46.33 74.58 67.19

DFRot 6.23 65.04 76.66 65.75 69.47 62.02 72.61 68.59
DFRot + GBS 6.05 65.67 77.75 66.41 69.63 63.19 72.74 69.23

Llama3 8B
FP16 6.13 72.62 76.01 69.22 72.93 53.41 77.69 70.3

DFRot 7.95 68.11 76.01 64.92 68.5 61.34 74.17 68.84
DFRot + GBS 7.56 72.53 76.82 66.35 69.53 63.17 75.0 70.57

Table 7: Results in 3 bits WAKV quantization on perplexity (PPL), PIQA, hellaswag (HS), arc-easy
(ARC-E), arc-challenge (ARC-C), winogrande (WINO) and lambada, we also compute the average
value (AVG) which represents a % of success. We compare our method, GBS, with DFRot and
clearly observe that GBS outperforms DFRot across all computed metrics.

Model Method PPL↓ PIQA HS ARC-E ARC-C Wino Lambada AVG↑

Mistral 7B Inst v0.3
FP16 5.49 71.27 74.6 67.94 74.27 58.96 82.66 71.62

DFRot 11.26 53.28 67.57 35.6 40.33 30.88 57.57 47.54
DFRot + GBS 7.58 63.22 75.35 59.32 65.19 53.46 71.73 64.71

Mistral 7B v0.1
FP16 5.25 72.49 75.59 69.4 73.95 54.86 80.18 71.08

DFRot 13.63 55.01 65.45 27.89 32.52 23.25 50.63 42.46
DFRot + GBS 7.64 62.83 73.72 56.99 64.33 49.64 68.12 62.6

Llama2 7B
FP16 5.47 71.08 73.9 68.25 68.98 46.33 74.58 67.19

DFRot 26.64 49.96 58.81 13.19 14.81 11.57 39.14 31.25
DFRot + GBS 10.96 56.12 66.81 34.43 40.4 28.45 55.01 46.87

Llama3 8B
FP16 6.13 72.62 76.01 69.22 72.93 53.41 77.69 70.3

DFRot 140.78 52.41 54.62 2.82 3.38 2.27 31.85 24.56
DFRot + GBS 22.14 54.85 61.92 25.53 29.58 21.48 48.67 40.34

18

	Introduction
	Related Works
	Quantization
	Outliers
	Rotation Matrices
	Random orthogonal matrices
	Hadamard matrices
	Paley algorithm

	Analysis and theoretical demonstrations
	Clipping Ratio
	Hadamard Matrices reduce outliers more

	Method
	Gradual Binary Search
	Increasing dimensions

	Experiments
	Setup
	Results
	Gradual Binary Search performances
	Matrix expansion effect

	Conclusion
	Limitations
	Theoretical proofs
	Hadamard matrices
	Proof
	Experimental Verifications

	Increasing dimensions

	Paley Algorithm
	Gradual Binary Search process
	Perplexity as objective
	Computation time
	More results
	SpinQuant
	DFRot

