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Abstract
To understand how genetic variants in human
genomes manifest in phenotypes – traits like
height or diseases like asthma – geneticists have
sequenced and measured hundreds of thousands
of individuals. Geneticists use this data to build
models that predict how a genetic variant impacts
phenotype given genomic features of the variant,
like DNA accessibility or the presence of nearby
DNA-bound proteins. As more data and features
become available, one might expect predictive
models to improve. Unfortunately, training these
models is bottlenecked by the need to solve ex-
pensive linear algebra problems because variants
in the genome are correlated with nearby vari-
ants, requiring inversion of large matrices. Pre-
vious methods have therefore been restricted to
fitting small models, and fitting simplified sum-
mary statistics, rather than the full likelihood of
the statistical model. In this paper, we leverage
modern fast linear algebra techniques to develop
DeepWAS (Deep genome Wide Association Stud-
ies), a method to train large and flexible neural
network predictive models to optimize likelihood.
Surprisingly, we find that larger models only im-
prove performance when using our full likelihood
approach; when trained by fitting traditional sum-
mary statistics, larger models perform no better
than small ones. We find larger models trained on
more features make better predictions, potentially
improving disease predictions and therapeutic tar-
get identification.

1. Introduction
To predict the risk of genetic disease and understand
its molecular causes, Genome Wide Association Studies

*Equal contribution 1New York University. Correspondence to:
Alan Amin <alanamin@nyu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

(GWAS) use data from up to hundreds of thousands of indi-
viduals to build models that correlate the presence of genetic
variants with phenotypes such as disease or height (Yang
et al., 2010; Visscher et al., 2017; Halldorsson et al., 2021).
However there are orders of magnitude more variants than
measurements, making GWAS underpowered to predict phe-
notype or determine the effects of all but the most impactful
variants.

To increase prediction accuracy and uncover the molecu-
lar causes of disease, geneticists have leveraged the fact
that complex phenotypes are extremely polygenic – that
is, they are affected by a huge number of variants spread
throughout the genome (Manolio et al., 2009; Boyle et al.,
2017). Geneticists look for features that distinguish variants
that do and do not effect a phenotype on a set of chromo-
somes and use these features to build “functionally informed”
priors to analyze variants on other chromosomes (Gusev
et al., 2014; Finucane et al., 2015; Kichaev et al., 2019). To
build these priors they use functional genomic features (EN-
CODE Project Consortium, 2012; Lizio et al., 2015), such
as measurements of DNA “accessibility” or binding of tran-
scription factor proteins near the variant; and comparative
genomics features (Cooper et al., 2005; Pollard et al., 2010),
such as whether the variant is in a region of the genome
that is conserved across primates. As more accurate mea-
surements of genomic features are made and more individu-
als have their genomes sequenced, in principle, geneticists
should be able to build more accurate functionally informed
priors with more flexible models that learn from more fea-
tures.

In practice, however, significant computational challenges
have prevented the development of large models. Function-
ally informed priors are typically phrased as priors on the
effect of each variant in a hierarchical Bayesian model of the
genetic and phenotypic data (Loh et al., 2015; Zheng et al.,
2024). Ideally, we could fit the prior using an empirical
Bayes approach to maximize the marginal likelihood (Ni
et al., 2018). Unfortunately this is numerically challenging
due to linkage disequilibrium (LD) – the presence of variants
in the genome can be strongly correlated, and accounting for
this correlation in the marginal likelihood involves inverting
and calculating the log determinant of a large matrix known
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as the LD matrix. To avoid inverting this matrix, state-
of-the-art methods 1) fit simple parametric models of the
relation between functional annotations and phenotype, and
2) sacrifice statistical efficiency by fitting summary statistics
or an approximation of the marginal likelihood (Finucane
et al., 2015; Li et al., 2024).

A similar challenge of having to invert a large matrix to per-
form empirical Bayesian inference was addressed in works
on Gaussian process regression with two strategies (Gardner
et al., 2018). First, using an iterative algorithm, inversion
of an M × M matrix could be reduced from O(M3) to
O(M2K) where K << M is the number of iterations.
Second, by rearranging the problem so that the large matrix
is well-conditioned the number of steps K could be reduced
by orders of magnitude.

Here we introduce a method to train large models that
predict variant effects from functional annotations – Deep
genome Wide Association Studies (DeepWAS) (Fig. 1). We
outline our contributions:

• We propose a method to train large neural networks
on phenotype association data with millions of variants
by leveraging a banded approximation to the LD matrix
and using the approximating slices as mini-batches.

• We train models that maximize likelihood rather
than fit summary statistics or approximations. To
do so, we rearrange our likelihood to make it amenable
to acceleration from iterative linear algebra algorithms,
allowing us to efficiently perform challenging linear
algebra operations at each training step.

• We curate a large set of genomic features to train our
models.

• We train large functionally informed priors on large
public phenotype association data. We see that, when
fitting summary statistics (LD score regression), larger
models fit the data worse than small models. However,
when maximizing likelihood with DeepWAS, larger
models fit the data better than small models.

• We show that larger models trained on more features
achieve better data fit, suggesting that even larger
models may yield further improvements.

Our code for training DeepWAS models is avail-
able at https://github.com/AlanNawzadAmin/
DeepWAS.

2. Background
In this section we explain how to train models that describe
phenotypic traits using variants in the genome as features.
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Figure 1. DeepWAS enables training large models to predict
the effect of variants from genomic features by leveraging fast
linear algebra. Top: We want to train a model, fθ , to predict
the effect of a variant in our genome from a large set of curated
genomic features in a window around the variant. Bottom: We
train fθ to maximize the likelihood of observed associations be-
tween variants and traits. We efficiently compute the likelihood
by applying accelerated linear algebra on the correlation matrix of
variants in a sliding window. See section 4 for full details.

In Sec. 2.1, we introduce a hierarchical Bayesian model of
heritability with a functionally informed prior on the effects
of individual variants. We describe how to fit such a model
using public data. Then, in Sec. 2.2 we describe LD score
regression, the state-of-the-art method to fit such a model in
practice.

2.1. Functionally informed priors to predict variant
effect

To learn the heritibility of a trait, suppose that we have
measured the genotypes of N (≈ 105) subjects – we have
measured the presence or absence of variants at M (≈ 106−
108) positions on both chromosomes – to get a genotype
matrix X̃ ∈ {0, 1, 2}M×N , and the presence of the trait
to get a phenotype vector y ∈ RN . We can assume y is
centered to have mean 0 and variance 1 and X is a centered
X̃ with all rows mean 0 and variance 1.

Measured traits that we are interested in, such as height,
smoking status or schizophrenia, are polygenic – they are in-
fluenced by many variants scattered throughout the genome
rather than a small number of positions (Manolio et al.,
2009; Boyle et al., 2017). This is captured by the infinitesi-
mal model in which each variant has a small effect drawn
from a prior (Barton et al., 2016; Trippe et al., 2021).
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A popular infinitesimal model is the linear model1 y =
X⊺β + ϵ with iid noise ϵ ∼ N (0, σ2I) where the effect
size at position m, βm, is independently drawn from a prior
normal distribution βm ∼ N (0, fm). Therefore we can
describe the marginal distribution of y as

y ∼ N
(
0, X⊺FX + σ2I

)
, where F = diag(f). (1)

Our first goal is estimating the effect size β. The challenge
is that there are many more variables than observations,
N << M , so it is challenging to get enough statistical
power to predict the values of many β. Our second goal
is to identify the features that characterize variants m with
large effect sizes βm.

We can make progress towards these goals with a good prior
f , which will increase our power to determine βm and pre-
dict which variants are expected to have large magnitude
since Eβ2

m = fm. To build such a prior, we can take advan-
tage of large datasets of genomic features Cm (elaborated
in Sec. 5), to predict fm with a model with parameters θ,
fθ(Cm). Naively, we may train fθ and σ2 by maximizing
the marginal likelihood of Eqn. 1.

Public Statistics However, to protect the privacy of study
participants, we are not given the precise value of y and
X; rather we are given another set of public statistics. In
particular, we are given the empirical correlation matrix
known as the “Linkage Disequilibrium (LD) matrix” R =
1
NXX⊺; and the empirical associations β̂ = 1

NXy. We can
then write Eqn 1 in terms of public statistics with σ2

N ≡
1
N σ2:

β̂ ∼ N
(
0, RFR+ σ2

NR
)
. (2)

The second term in the variance, σ2
NR, comes from spu-

rious correlations with the noise ϵ; if the presence of two
variants m and m′ are correlated (Rm,m′ is large) then the
associations β̂m and β̂m′ will have similar correlations with
the noise ϵ. The first term in the variance comes from the
effect variants have on the trait. Specifically, the m,m′

entry of RFR is
∑

k Rm,kRm′,kfk, which is large if there
are variants k correlated to both m and m′ – large Rm,k and
Rm′,k – which are expected to have large effect fk.

Now, in principle, we could build a prior by maximizing the
likelihood of Eqn. 2 using gradient descent:

−1

2
β̂⊺ (RFθR+ σ2

NR
)−1

β̂ − 1

2
log
∣∣RFθR+ σ2

NR
∣∣+ c

(3)
where c is a constant value. The challenge is the need to
1) calculate all M non-zero entries in Fθ, which becomes
challenging for large models, and 2) invert and calculate the
log determinant of the huge M ×M matrix.

1We ignore fixed effects such as age, sex, and population strati-
fication in this model, assuming they have been projected out of y
and X (Loh et al., 2018).

2.2. LD score regression (LDSR)

One way to solve problem 2 is to avoid the need to invert
a large matrix by only fitting summary statistics. From
Eqn 2 we can note that a variant m expected to have a large
association if it is correlated to other variants expected to
have large effects2:

E[Nβ̂2
m] = N

∑
m′

fm′R2
mm′ + σ2. (4)

The simplest model of heritability gives each variant the
same expected heritability, fm = f , in which case we can
write Eqn. 4 as E[Nβ̂2

m] = Nf
[∑

m′ R2
mm′

]
+ σ2. The

term in the brackets, known as the LD score, measures
how many other variants m is correlated with and can be
precomputed before fitting f .

By fitting a line to the magnitudes of the association statis-
tics Nβ̂2

m and precomputed LD scores, one can recover Nf
as the slope and σ2 as the intercept. This method, known
as LD score regression, gives accurate predictions of how
much of a trait is explained by genetics, f , and how much
is caused by noise or the environment, σ2 (Bulik-Sullivan
et al., 2015). Finucane et al. (2015) extended this approach
to fit a linear fm that depends on d genomic features – in
this case one performs a multi-dimensional linear regres-
sion with d precomputed variables. Unfortunately, LD score
regression loses statistical efficiency by not making use of
correlations between β̂ (Ni et al., 2018).

3. Previous work
Training functionally informed priors Training a large
neural network as a functionally informed prior by directly
optimizing the likelihood of the data has, up until now, been
computationally prohibitive due to the cost of linear algebra
operations on the LD matrix. Previous methods have used a
number of strategies to restrict the flexibility of their prior or
looked at other approximate or derived objectives in order
to do inference. First, most GWAS methods pick their prior
with only a handful of parameters (usually 1 or 2) and fit
it by grid search or other bespoke methods that struggle to
scale (Yang et al., 2010; Loh et al., 2015; Speed et al., 2017;
Spence et al., 2022). Second, Finucane et al. (2015) fit a
linear prior by performing LD score regression in Eqn. 4.
Third, Lu et al. (2016) and Fabiha et al. (2024) fit a small
model by teaching it to classify the small number (≈ 2000)
of available high confidence positive and negative causal
variants. Fourth, Li et al. (2024) considered fitting a simple
generalized linear model fθ by approximating Eqn. 3 using
an approximation of R−1. All of these methods run on CPU
and use parallelism to compute the gradient of the likelihood

2LD score regression can also be derived in infinitesimal mod-
els more general than Bayesian linear models with a normal
prior (Bulik-Sullivan et al., 2015).
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across the entire genome for each update.

Unfortunately these methods are unsuitable for training a
large flexible prior as they 1) require prior values for all
variants in the genome for a single gradient update, making
it challenging to train a large model or 2) lose statistical
power by fitting summary statistics or approximations to the
likelihood. In contrast, our method DeepWAS 1) updates the
model using its predictions in minibatches, and accelerates
linear algebra operations in each mini-batch with GPUs, 2)
directly optimizes the likelihood of data from millions of
variants.

In related work, Huang et al. (2024) fit a graph neural net-
work of variants to predict β̂ directly; they use their model
to increase power to find more associated variants. However
such a model does not distinguish between variants with
large effects β and variants they are associated with.

Downstream uses of functionally informed priors A
number of works have built methods to use functionally
informed priors to increase the power of downstream analy-
ses. Huang et al. (2024) and Kichaev et al. (2019) demon-
strated that models that can predict the effect of variants
can improve the power of GWAS. Weissbrod et al. (2020)
demonstrated such models can also identify causal variants
and Li et al. (2020) used such variants to identify causal
genes. The DeepWAS prior can in principle fit into these
same pipelines.

Flexible models of heritability In addition to more flexi-
ble models predicting variant effects from functional anno-
tations, we can improve fits to association data with models
that are more flexible than mixed linear models. Zhang et al.
(2021) consider different, non-normal, priors, and Loh et al.
(2015) consider mixture of normal priors on the effect sizes.
There have also been a number of nonlinear models for
predicting y from X (Conard et al., 2023). For simplicity,
DeepWAS considers the popular normal prior with a linear
model and leaves more flexible models to future work.

Fast linear algebra with large genotype matrices Large
linear algebra problems appear throughout population ge-
netics. As such, a number of other works have looked at
approximately inverting large matrices in genetics. Loh et al.
(2015) used a conjugate gradient algorithm to invert the ma-
trix of correlations of variants between study individuals –
the empirical kinship matrix XX⊺ ; Loh et al. (2018) noted
that their algorithm converges much faster after removing
the top eigenvalues of the kinship matrix, improving its con-
dition number. Berisa & Pickrell (2016) approximated R
with a block diagonal matrix, Shi et al. (2016) approximated
R with a low rank matrix, and Salehi Nowbandegani et al.
(2023) approximated the inverse of the R with an extremely
sparse matrix; these works use these approximations in

place of the true R. DeepWAS uses an iterative algorithm
to perform linear algebra operations on the exact matrix;
we rearrange our loss so it is amenable to acceleration from
iterative algorithms.

Fast linear algebra for fitting large Bayesian models
Fitting Gaussian processes similarly involves inverting a
large matrix known as the Gram matrix. While one can
avoid inverting the matrix with variational inference, state
of the art methods invert the Gram matrix with an iterative
algorithm with a Nyström preconditioner (Gardner et al.,
2018). We build a bespoke preconditioner leveraging the
structure of LD matrices to quickly invert LD matrices with
iterative algorithms; in our setting, our preconditioner per-
forms much better than a general purpose Nyström precon-
ditioner (Frangella et al., 2021).

4. Efficient training of the likelihood
Our goal of directly optimizing the likelihood in Eqn 3
comes with two challenges. First, in contrast to previous
methods, we train a neural network model for fθ with mil-
lions of parameters, so computing fθ,m for every variant m
is prohibitively expensive. Second, we must perform expen-
sive linear algebra operations like inverting and calculating
the log determinant of Aθ = RFθR+ σ2

NR, at every step3.

First in Sec. 4.1, we utilize a banded approximation of R
which allows us to amortize the training of θ by treating
each slice as a mini-batch. Then in Sec. 4.2 we reduce
expensive linear algebra operations on Aθ to operations on
a well-conditioned matrix, which can quickly be performed
using iterative algorithms.

4.1. Using submatrices for mini-batching

A key challenge in calculating Eqn 3 is computing fθ,m
for every m in the genome. To address this, we first break
the genome up into 2700 windows of size one million and
assume the associations β̂ in each window are generated
independently. This can be justified by the fact that R is
approximately block diagonal, so there is little correlation
between β further than one million positions apart (Berisa
& Pickrell, 2016; Salehi Nowbandegani et al., 2023). Eqn. 3
then becomes∑

i

β̂⊺
(i)(A

(i)
θ )−1β̂(i) + log|A(i)

θ | (5)

Next, note that A(i)
θ takes the following form

A
(i)
θ = R(i),:FθR:,(i) + σ2

NR(i),(i)

3Here we focus on fitting θ ignoring σ. Typically σ can be
estimated accurately using other simpler methods (Bulik-Sullivan
et al., 2015)
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where R(i),: represents the rectangular submatrix of R
whose rows are variants in window i and R(i),(i) is similar.
Calculating A

(i)
θ still requires calculating fθ,m for every

variant m. To reduce this calculation, we then use the well-
established fact that variants that are distant in the genome
should have little correlation, and so we can use a banded
approximation of R (Bulik-Sullivan et al., 2015); in particu-
lar, we assume that Rk,r = 0 when the positions of the k-th
and r-th variants are more than one million apart. Thus,

A
(i)
θ ≈ R(i),(i)+F

(i)
θ R(i)+,(i) + σ2

NR(i),(i)

where (i)+ is the set of all variants within 106 positions
of a variant in window (i) and F

(i)
θ is the (i)+ × (i)+ sub-

matrix of Fθ. Eqn 5 then allows us to optimize θ, through
stochastic gradient descent, by sampling windows (i) and
only calculating fθ,m for the roughly 104 variants in (i)+.

Connection to LD score regression Due to the large size
of our windows, we expect both approximations above to
be accurate. In contrast, if we focus on the extreme case of
a window size of 1 the objective, Eqn. 5 becomes∑
i

Nβ̂2
i

N
∑

m′ fm′R2
mm′ + σ2

+log(N
∑
m′

fm′R2
mm′ +σ2)

which tries to fit N
∑

m′ fm′R2
mm′ + σ2 to Nβ̂2

i . This is
exactly the idea of LD score regression (Eqn. 4). Therefore
LDSR can be thought of as our objective in the extreme case
assuming every β̂ was generated independently.

4.2. Fast linear algebra with iterative algorithms

To calculate the likelihood, we must now invert and calcu-
late the log determinant of A(i)

θ . However, this matrix is
large, and often singular, making calculations expensive and
unstable. We address these problems by rewriting the loss
in terms of a well-conditioned matrix and then efficiently
calculating its inverse using iterative algorithms.

4.2.1. REFORMULATING THE LOSS

Previous works like Salehi Nowbandegani et al. (2023) or
Hormozdiari et al. (2014), deal with the singularity issues
by adding regularization to R(i),(i) as R(i),(i)+ ϵI for some
small ϵ, which trades off numerical stability for bias. In con-
trast, we can work with the exact R by using the Woodbury
identity and the matrix determinant lemma to write the loss
in terms of the pseudo-inverse R†

(i),(i) (see Appendix C.1):

we re-write (A
(i)
θ )−1 as

(A
(i)
θ )−1 =

1

σ2
N

R†
(i),(i)−

L⊺
(i)F

(i) 1
2

θ

(
I +

1

σ2
N

F
(i) 1

2

θ W(i)F
(i) 1

2

θ

)−1

F
(i) 1

2

θ L(i)

where L(i) = R(i)+,(i)R
†
(i),(i) and W(i) =

R(i)+,(i)R
†
(i),(i)R(i),(i)+ , and |A(i)

θ | as

log |A(i)
θ | = log |σ2

NR(i),(i)|

+ log |I + 1

σ2
N

F
(i) 1

2

θ W(i)F
(i) 1

2

θ |.

Note the matrices R†
(i),(i), L(i), and W(i) do not depend on

θ and can therefore be calculated before training begins.

Given the previous simplifications, now the only challenging
linear algebra computation to perform at every step is to
invert and calculate the log determinant of the matrix

B
(i)
θ = I +

1

σ2
N

F
(i) 1

2

θ W(i)F
(i) 1

2

θ .

Although the dimensions of B(i)
θ are the size of (i)+ – pos-

sibly 3 times the size of (i) – it is strictly positive definite
and, since σ−2

N × Fθ ≈ N ×M−1 < 1, it is typically well-
conditioned. This last fact means that despite its increased
size, we can actually invert it substantially faster than A

(i)
θ

using iterative algorithms.

4.2.2. ITERATIVE ALGORITHMS

To invert and calculate the log determinant of A(i)
θ or B(i)

θ ,
we could perform a Cholesky decomposition. Unfortunately,
this is O(M3

i ) where Mi is the number of rows of the matrix;
this is too computationally expensive to perform at each step
and becomes more so if we wish to include more variants in
our study in the future.

Luckily, for well-conditioned matrices, we can achieve
much better computational complexity by using iterative
methods like stochastic Lanczos quadrature (SLQ) (Golub
& Loan, 2018; Saad, 2011) for log |B(i)

θ | and conjugate
gradients (CG) (Nocedal & Wright, 2006; Golub & Loan,
2018; Saad, 2003) for solves (B(i)

θ )−1. Both methods rely
on performing multiplications against B(i)

θ at each iteration
and each iteration typically exponentially improves the qual-
ity of the approximation, typically until machine precision.
Thus, the computational cost of both methods is a manage-
able O(M2

i K) where K is the number of iterations and
O(M2

i ) is an upper bound on the cost of doing a matrix-
multiply with B

(i)
θ . The number of iterations required to

converge below an error threshold of these iterative methods
is directly linked to the eigenspectrum of the matrix (No-
cedal & Wright, 2006; Saad, 2011; Hogben, 2013) – since
B

(i)
θ is well conditioned, we expect it to need few iterations

K and therefore fewer computational resources.

To implement these methods, we use CoLA (Potapczynski
et al., 2023), a numerical linear algebra library that is com-
patible with diverse deep learning frameworks and that pro-
vides backpropagation capabilities for SLQ and CG. CoLA
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Figure 2. DeepWAS efficiently computes the loss and its gradi-
ent. We measure the time it takes to compute our loss Eqn. 3
as well as its gradients with respect to θ. We do this for 20
mini-batches of real UKBB data and display the mean runtime as
barplots. Chol stands for Cholesky decomposition. Iter stands
for the iterative algorithms SLQ and CG. Nys stands for the itera-
tive algorithms with Nyström preconditioning. We set a relative
tolerance of 10−6 for CG and use 100 samples of SLQ yielding an
average relative error on the gradient of 2.5%. For GPU we used
an NVIDIA A100-SXM4-80GB and for CPU Intel(R) Xeon(R)
Platinum 8268 CPU @ 2.90GHz.

computes the gradients of B−1
θ and log |B−1

θ | by using the
following identities

∇θB
−1
θ = −B−1

θ ∇θBθB
−1
θ

∇θ log
∣∣B−1

θ

∣∣ = trace(B−1
θ ∇θBθ)

= Eu∼N (0,I)(B
−1
θ u)⊺∇θBθu

where both quantities require backpropagating through Bθ

only and where we use the Hutchinson trace estimator. Ad-
ditionally, CoLA allows us to leverage GPU acceleration for
our numerical techniques which significantly reduces the
runtime.

In Fig. 2 we compare the cost of computing the likelihood
Eqn. 3 by using iterative algorithms on A

(i)
θ or B(i)

θ , or by
performing Cholesky decomposition on A

(i)
θ (performing

Cholesky on B
(i)
θ would take longer due to its increased

number of rows). We also compare with Nyström precon-
ditioning, a popular method for solving large systems in
machine learning that effectively makes A(i)

θ better condi-
tioned (Gardner et al., 2018). We see that, despite being
larger, we can invert B(i)

θ faster than A
(i)
θ by leveraging

its being well conditioned using iterative algorithms, even
when using Nyström preconditioning. We also further accel-
erate our calculations by performing them on GPUs rather
than CPUs, which had previously been used to train func-
tionally informed priors.

5. Predicting variant effects from genomic
features

Now we have a method for accurately and efficiently train-
ing a large model fθ. Here we specify how we build fθ that
include many more functional and comparative genomics
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Histone mod.
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Position on chromosome 6
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Figure 3. DeepWAS flexibly predicts the effect of a variant on a
phenotype from a variety of genomic features. We plot the pre-
dicted effect enrichment

√
fθ,m/Efθ,m for hypothetical variants

at all positions in a 5000-long non-coding window of chromosome
6, with the expectation over variants in UKBB. We compare with
selected genomic features fed into fθ . We use predictions from a
DeepWAS transformer-based model trained on height in UKBB.

features than previous works in Sec. 5.1. We describe large
flexible neural network architectures for fθ in Sec. 5.2. The
result is a flexible function that predicts the effect of a vari-
ant from a variety of genomic information (Fig. 3).

5.1. Features

Previous methods have built fθ using functional genomics
features such as DNA accessibility, proximity to functional
elements, and presence of a coding region and comparative
genomics features such as conservation scores (Finucane
et al., 2015; Li et al., 2024). Many of these features are
defined as annotations at each position in the genome; to
get a single value, annotations were averaged in a window
before being passed to fθ.

We expand this set in two ways. First we consider a signif-
icantly expanded set of functional genomics annotations –
binding and accessibility annotations from ENCODE (EN-
CODE Project Consortium, 2012), enhancer annotations
from FANTOM (Lizio et al., 2015) – and comparative
genomics annotations – conservation scores such as Phy-
loP (Pollard et al., 2010), and predictions of effects of mu-
tations in coding regions such as those from ESM2 (Liu
et al., 2020). Details of these data are in App. D.2 and D.3.
Second, instead of considering an average of the values of
annotations in a window around the variant, we pass the
model the exact values of the annotations at all positions in
the window.

Gazal et al. (2017) used LDSR to demonstrate that the recent
history of a variant in humans can also be predictive of its ef-
fect size. To account for this, we also included the frequency
of each variant m, freqm; its “minor allele” frequency,
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min{freqm, 1 − freqm}; and its LD score
∑

m′ R2
mm′ as

features.

5.2. Architecture

For all genomics annotations but coding mutation effect
predictions, we consider a window around each variant of
size w. We pass these functional annotations Cfunc,m ∈
Rdfunc×w along with predictions of the effects of muta-
tions if the mutation is in a coding region and genomic
architecture information, Cpred,m ∈ Rdpred , to a neural net-
work fθ(Cfunc,m, Cpred,m). In our case, dfunc = 165, and
dpred = 9; we also choose a window size of w = 256. We
use a transformer-CNN hybrid architecture adapted from
a network used to predict functional annotations from se-
quence, Enformer (Avsec et al., 2021)4; this architecture
uses a mix of convolutional and attention layers. We can
change the dimension of the internal representation to alter
the number of parameters of the model.

Speed et al. (2017) suggested that setting f = constant in
our model makes the implicit assumption that rare variants
have larger effects. They remove this assumption with a
more general model fm = (freqm(1 − freqm))α where α
is a fit parameter. In our case, we consider

fθ,m = (freqm(1− freqm))αNNθ(Cfunc,m, Cpred,m) (6)

where NNθ is a neural network or any other model. In
many of our experiments, α typically converged to a value
between 0.6 and 0.7 regardless of its initialization; to sim-
plify our model comparisons below, we fixed it at 0.7 for all
experiments.

6. Empirical Results
We now apply DeepWAS to train flexible neural network
models in order to better explain which variants are associ-
ated with phenotypic traits. See A for experimental details.

6.1. DeepWAS learns true f from semi-synthetic data

We first wish to check if our gradient descent procedure can
recover the true f from noisy genetic data. Unfortunately we
do not have access to real f in real data. We therefor turn to
semi-synthetic simulations, which are a staple of statistical
genetics literature (ex. Candès et al. (2016) or O’Connor
et al. (2019)), used to validate methods when true effects β
are unavailable.

We use real LD patterns R from public data from the UK
Biobank (UKBB) study of over 300,000 individuals of Eu-

4We do not use pretrained weights as the original Enformer
architecture regressed from sequence to predict functional annota-
tions, rather than our task which is to take in functional annotations
to predict effect on phenotype.

Constant Linear Transformer0

0.5

1
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rro

r (
)

LDSR DeepWAS

Figure 4. DeepWAS using a transformer model best recovers
the true f . The bars represent the RMSE difference between the
learnt fθ and the ground truth f in the log space evaluated over a
set of validation functional annotations.

ropean ancestry (Weissbrod et al., 2020) (see App. D.1). We
generate synthetic β̂ as follows:

βm ∼ N (0, fm (Cfunc,m, Cpred,m)) ; β̂ ∼ N (Rβ, σNR)

where f represents that function that we are trying to
learn. We consider fθ as a randomly initialized transformer-
based neural network model (52 million parameters). See
App. A.5 for details.

We tried fitting this data with models based on Eqn. 6. We
used simple models – NNθ = constant and NNθ = gen-
eralized linear model (see App. A.2) – and a more flexible
NNθ with the transformer architecture with LD score regres-
sion (LDSR) and DeepWAS. In Figure 4 we show DeepWAS
with a large model can closely recover the true variant effect
distribution fθ – it achieves a low error in predictions fθ.
Furthermore, this model better predictions than restricted
constant and linear fθ. We also see that our method makes
more accurate predictions than models trained with LD
score regression. In Sec. B.1 we also consider inferring a
more challenging ground truth f .

6.2. Predicting phenotype on UK Biobank

Now we attempt to better explain phenotypes y of three
traits from UK Biobank calculated in Loh et al. (2015) (see
App. D.1) – body mass index, height, and asthma. Unfor-
tunately, we only have access to the public β̂ rather than
the private y. Using just public data we can however hold
out some chromosomes and evaluate our models on the
following task:

• train a model θ on phenotypes y and genotypes X of
held-in chromosomes,

• then predict phenotypes y using only genotypes X of
held-out chromosomes.

• We report how much the marginal likelihood (Eqn. 1)
increases using the model on held-out chromosomes
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Figure 5. More flexible models trained with DeepWAS better explain phenotype using held-out chromosomes. We try to predict the
phenotype y of individuals in UK Biobank using only variants in held out chromosomes 6, 7, 8 as in Eqn. 1. We report how much the
marginal likelihoods increases when we use different priors F , compared to a model which assumes there is no genetic effect on the
phenotype (F = 0). When training with DeepWAS, larger models better fit the data. While larger models perform worse when training
with LDSR. Legend is identical to Fig. 4.

compared to a “null” model that assumes there is no ge-
netic effect on y (f = 0). We then divide the marginal
log likelihood by N and exponentiate to get a quantity
“per person”.

We show in App. C.2 that this is equivalent to training our
model using public association data β̂ on held-in chromo-
somes and reporting the marginal likelihood (Eqn. 3) of
association data β̂ on held-out chromosomes. In our experi-
ments, we hold out chromosomes 6, 7, and 8 and train on
all other autosomal chromosomes.

Using flexible models with DeepWAS results in better
explanations of phenotype data. We evaluate the ability
of various architectures trained with LDSR and DeepWAS to
predict phentotype using held-out chromosomes. LDSR and
DeepWAS used similar computational resources in training.

Fig. 5 shows that a model with constant f better explains
the data than a null model, f = 0 – this represents how
much better our prediction of phenotype is simply from
including information about genotype X in our model. We
next see that including functional annotations in a linear
prior increases prediction quality – this represents how
much better our prediction is from including any informa-
tion about genomic features. The varying improvements
across the phenotypes correlate with their reported “SNP-
heritabilities” (Hou et al., 2019) – more than 50% of the
variation of height seen in the population can be explained
by variants in our study, while that number is roughly 30%
for BMI and 10-16% for asthma.

We next increase the model size to a transformer. Surpris-
ingly, when training using LDSR, the quality of prediction
does not significantly increase, and in the case of BMI, even
decreases. The more flexible architecture potentially over-
fits the data due to the loss of statistical efficiency when
performing LDSR. When accounting for correlations in the
β̂ with DeepWAS however, the larger transformer substan-
tially outperform all other models.
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Figure 6. Ablations show that larger models with more features
better explain genetic associations. We ablate the number of vari-
ants in an LD window ((i)+), the feature set (w and the presence of
conservation features) and the model size of our transformer-based
model. We report statistics as in Fig. 5, with the same y-axes. We
compare them to the full model (dark blue) reporting the same
value as in Fig. 5. For exact numbers see App. B.2.

Larger features and larger models improve prediction.
We finally set out to determine the importance of the number
of variants we trained on, the feature set, and model size
for performance. We trained models with fewer variants
per window – we reduced the size of (i)+ relative to (i)
from windows of 1’000’000 to 100’000 (see Sec. 4.1) – a
reduced feature set – we looked at a window of w = 16
rather than w = 256 around each variant, and removed
the conservation features from phastCons and PhyloP (see
Sec. 5.1) – and with a reduced size – we reduce the number
of parameters from 52 million to 3.9 million. We chose
to ablate the conservation features as these have been seen
to be particularly important for effect size prediction in
previous work (Finucane et al., 2015).

Fig. 6 shows that ablating the number of variants in each
window, the model size, or feature set often harms model
performance. This shows that saving compute by consid-
ering smaller (i)+ severely harms performance. This also
suggests that our model benefits from its flexibility and
features to better predict the effects of variants.
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7. Discussion
By efficiently inverting LD matrices, DeepWAS allows us to
train large models that better predict the effects of variants
on phenotype and to learn their functional causes. Our re-
sults demonstrate that larger models make better predictions
than the simple models used in practice, and that increasing
the model size and using more features improves predictive
power. Our work suggests that even larger models trained
on more data may result in further improvements in the
future.

Confounding and other priors Future work may address
some of the limitations of DeepWAS. First, LD score re-
gression can deal with some confounding from population
stratification (Bulik-Sullivan et al., 2015), while such effects
were only accounted for in DeepWAS by using population-
covariate-adjusted BOLT-LMM public statistics (Loh et al.,
2015). Future work may investigate the effectiveness of this
method. Next, DeepWAS considers a simple linear model
with a single component normal prior. More flexible models
with multi-component priors or accounting for non-linearity
would be a natural next step (Loh et al., 2015; Zhang et al.,
2021).

Larger models on more data DeepWAS could be ex-
panded to include other sources of information, such as em-
beddings of genes that are near variants (Weeks et al., 2020;
Theodoris et al., 2023) and use pre-trained models (Avsec
et al., 2021; Dalla-Torre et al., 2023). In this work, we only
looked at a single European population; for more robust
estimates DeepWAS could be trained to learn across popu-
lations (Spence et al., 2022). Finally, rather than training on
a single phenotype at a time, DeepWAS could learn from
multiple phenotypes (Morgante et al., 2023) boosting power
to learn common patterns.

Boosting signal in rare or low-heritability disease We
saw in Fig. 5 that the flexibility of a larger model made the
largest impact in asthma, where the “SNP-heritibility” was
low – since signal-to-noise was lower, an improved prior
made a larger impact. DeepWAS could potentially impact
other settings with low signal-to-noise, such as the interpre-
tation of rare variants (Lee et al., 2014), or, using pre-trained
DeepWAS models, the analysis of small cohorts (Huang
et al., 2024) or rare disease (Samocha et al., 2014).

As well, inference in low signal-to-noise settings in genetics
typically require bespoke tools and analyses. Using an em-
pirical Bayesian framework to account for uncertainty, Deep-
WAS can both leverage functional insights from common
variants and extract signal from rare variants themselves,
providing a unified framework across the allele frequency
spectrum.
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A. Experimental details
A.1. Models

We obtained code for enformer from https://github.com/lucidrains/enformer-pytorch under the MIT
license. We set the internal dimension to 1536 and the number of transformer layers to 2. Our “smaller model” in the
ablations reduced the internal dimension to 384.

We normalize features to have mean 0 and variance 1 across the genome before passing them to any model.

A.2. Generalized linear model

As a baseline we consider a generalized linear model as suggested in Li et al. (2024) using averages of each functional
annotation in the window as in Finucane et al. (2015) (although we only consider a single window size):

fθ,m = (freqm(1− freqm))α exp

(∑
d

wd

∑
w

Cfunc,m,d,w +
∑
d′

w′
d′Cpred,m,d′ + c

)

where (wd)d, (w′
d′)d′ , and c are learnable parameters.

A.3. Training

We trained our models with an AdamW optimizer with default hyperparameters, 100 warmup steps with a linear schedule.
We use a learning rate of 0.0001 for transformer models and 0.001 for linear and constant models. We train all models for
10 epochs. We train models on single A100 GPUS on an academic cluster; transformer-based models were trained for 15 to
20 hours.

For all models we use σ calculated using BOLT-LMM from Loh et al. (2015).

For all models, we use 12 data loader workers in a PyTorch (Paszke et al., 2019) Dataloader object. To most efficiently
use IO capacity, each loader loads 100 batches linearly from the same chromosome before switching to a different location.
To average across this bias, we accumulate gradient steps across 12 steps.

For the reduced LD window ablation, for each original (i)+ window of size 3’000’000, we set (i)+ as a random window of
up to 6’000 contiguous variants – we chose 6’000 as it is near the average size of (i) in our standard approach. Then we set
(i) as all the variants further than 100’000 from the ends of (i)+.

A.4. LD score regression (LDSR)

Finucane et al. (2015) suggested performing the linear LD score regression with a square loss 1) dividing by the (rough)
standard deviation of a chi-squared variable and 2) downweighting variants in LD with many other variants: calling
l = 1

TR◦2 and h2
g = Eifθ,i (ballpark estimate made before training), we minimize (we also multiply numerator and

denominator by N ) ∑ 1

li

1

(Nh2
gli/M + 1)2

(
N

M
R◦2

i fθ + σ2 −Nβ̂2
i

)2

.

A.5. Simulation

Here we describe how we chose a realistic f for semi-synthetic simulation. Recall,

y ∼ N(0,
1

N
XTFX + σ2I).

Therefore
1 = Var(yi,i) = σ2 +

1

N

∑
m

X2
m,iFm.

Assuming presence of a variant Xm,i is independent of Fm, we have

1 = Var(yi,i) ≈ σ2 +
M

N
Em[X2

m,i]Em[Fm] = σ2 +
M

N
Em[Fm].
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Thus, in our simulated data, ideally we would ensure that

EmFm =
N

M
(1− σ2).

In our case, we choose a highly heritable disease with σ2 = 1/2 so half of the variance of y is from the noise ϵ and the other
half is genetic. Using real values N = 407527 and M = 11904924 for our data, we set Emfm = N

2M by initializing a f̃ ,
calculating Emf̃m, and defining fm = N

2MEmf̃m
f̃m.

We defined f̃m = exp(10×NNθ(Cfunc,m, Cpred,m)) where NNθ is a randomly initialized Enformer model.

B. Additional results
B.1. Biologically realistic ground truth for semi-synthetic experiment

In Sec. 6 we considered a semi-synthetic setting where the ground truth f was a transformer-based model. In this case, when
our model class is well-specified, we recovered the true f . Here, we consider a biologically-motivated ground truth f which
is designed to be challenging – we are interested in measuring if there is still a benefit to using a more flexible model if our
model class is misspecified.

We consider a function which adds an effect enrichment whenever the sum of functional annotations in a window is above a
threshold. Let C = [Cfunc, Cpred] be the concatenation for Cfunc and Cpred in the same order they’re presented in App. D,
with Cpred broadcasted to the same window size as Cfunc. Thus, the ground truth f takes the shape

log f(C) =
∑

d∈{0,2,7,12}

vd1

 ∑
w∈{113,...,143}

Cd,w > ed

− logM

where v0 = 0.7, v2 = 0.5, v7 = 1.37, v12 = 0.5 and e0 = 0, e2 = 0, e7 = −20 and e12 = −10. This is a challenging f for
our transformer-based model because the signal is sparse (depending only on 4 features), discontinuous, multi-modal and it
only depends on 32 positions at the center of the window of size 256. We chose the values of ed so that feature d = 0 is
active about ≈ 50% of the time across the genome, d = 2 about ≈ 25%, d = 7 always active and d = 12 about ≈ 50%.
Then, we set the values of vd so that f is multi-modal with values ranging from 0.072 up to 0.40.

In Fig. 7 we see, even when misspecified, using a more flexible model class leads to a better fit of the true function.

Constant Linear Transformer0
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Figure 7. DeepWAS using a transformer model best recovers the true f even in a challenging setting. The bars represent the RMSE
difference between the learnt fθ and the ground truth f in the log space evaluated over a set of validation functional annotations.

B.2. Ablation results in a table

We present the numerical results of Fig. 6 in Tab. 1.
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Table 1. Model Ablation Results: Percentage Likelihood Increase per Person

Model Configuration BMI Height Asthma

Reduced LD window (i)+ 2.38 10.32 0.358
Reduced Feature window w 2.68 10.43 0.465
Reduced Parameters (reduce hidden dimension) 2.64 10.69 0.492
Reduced Features (remove 15 conservation features) 3.01 10.42 0.633

Full Model 3.02 11.70 0.694

C. Derivations
C.1. Loss derivation

In its more general form, the Woodbury matrix identity (also known as the Sherman-Morrison-Woodbury formula) states
that (A + UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 and the matrix determinant lemma (also known as the
Weinstein-Aronszajn identity) states that |A+ UCV | = |C| |A|

∣∣C−1 + V A−1U
∣∣.

Recall that A(i)
θ = R(i),(i)+F

(i)
θ R(i)+,(i) + σ2

NR(i),(i). Applying Woodbury to (A
(i)
θ )−1 and defining L(i) = R(i)+,(i)R

†

and W (i) = R(i)+,(i)R
†
(i),(i)R(i),(i)+ , we get

(A
(i)
θ )−1 =

1

σ2
N

R†
(i),(i) −

1

σ2
N

R†
(i),(i)R(i),(i)+((F

(i)
θ )−1 +

1

σ2
N

R(i)+,(i)R
†
(i),(i)R(i),(i)+)

−1 1

σ2
N

R(i)+,(i)R
†
(i),(i)

=
1

σ2
N

R†
(i),(i) −

1

σ2
N

L(i)⊺F
(i) 1

2

θ (I +
1

σ2
N

F
(i) 1

2

θ W (i)F
(i) 1

2

θ )−1 1

σ2
N

F
(i) 1

2

θ L(i)

=
1

σ2
N

R†
(i),(i) −

1

σ2
N

L(i)⊺F
(i) 1

2

θ (B
(i)
θ )−1 1

σ2
N

F
(i) 1

2

θ L(i).

Moreover, for |A(i)
θ | we have

|A(i)
θ | = |σ2

NR(i),(i)|+|F
(i)
θ ||(F (i)

θ )−1 +
1

σ2
N

W (i)|

= |σ2
NR(i),(i)|+|F

(i)
θ ||F (i) 1

2

θ |−1|I + 1

σ2
N

F
(i) 1

2

θ W (i)F
(i) 1

2

θ ||F (i) 1
2

θ |−1

= |σ2
NR(i),(i)|+|B

(i)
θ |,

where | · |+ stands for the pseudo-determinants. As we discussed before, R(i),(i) should be strictly positive-definite but, due
to numerical precision, R(i),(i) could contain eigenvalues close to zero, or negative. This is why we use R†

(i),(i) and why we
would only consider de positive eigenvalues for the computation of |σ2

NR(i),(i)|+.

C.2. Held-out chromosome prediction using public data

We essentially show that, since Eqn. 2 is derived from Eqn. 1, their likelihoods can only differ by a constant.

The negative log likelihood of y using only held-in chromosomes Xin (Eqn. 1) minus the log likelihood of the null (F = 0)
is

1

2

[
y⊺(X⊺

inFinXin + σ2I)−1y − y⊺(σ2I)−1y + log |X⊺
inFinXin + σ2I| − log |σ2I|

]
(7)

while the same equation for β̂ (Eqn. 2) is, defining pseudo-determinants | · |+,

1

2

[
β̂⊺(RinFinRin + σ2

NRin)
†β̂ − β̂⊺(σ2

NRin)
†β̂ + log |RinFinRin + σ2

NRin|+ − log |σ2
NRin|+

]
. (8)
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By Woodbury, the first two terms Eqn. 7 are equal to

1

2

[
− 1

σ4
y⊺X⊺

in(F
−1
in + σ−2X⊺

inXin)
−1Xiny

]
=− 1

2σ2
N

β̂⊺(σ2
NF−1

in +Rin)
−1β̂

=− 1

2σ2
N

β̂⊺(σ2
NF−1

in +RinR
†
inRin)

−1β̂

=
1

2σ2
N

β̂⊺(Rinσ
−2
N FinRin +Rin)

†β̂ − 1

2σ2
N

β̂⊺R†
inβ̂

which is equal to the first two terms of Eqn. 8. Meanwhile by a similar application of the matrix determinant lemma, the last
two terms Eqn. 7 are equal to the last two terms of Eqn. 8. The same is true replacing Xin with only held out chromosomes
Xout.

D. Data Collection
D.1. UKBB public statistics

We downloaded UK biobank LD matrices computed in Weissbrod et al. (2020) from the Amazon web services S3 container
s3://broad-alkesgroup-ukbb-ld/UKBB_LD/. These matrices can have small negative eigenvalues, which we
removed prior to training. We also, as is standard, do not include regions with long-range LD in chromosomes 6, 8, and 11.

We downloaded UK biobank association statistics computed using BOLT-LMM (Loh et al., 2015)
from the UKBB 409K folder in https://console.cloud.google.com/storage/browser/
broad-alkesgroup-public-requester-pays. These association statistics also contained frequencies
of each variant. Any variants that have LD information but that are missing associations are discarded; all variants with
association information also had LD information.

UKBB coordinates are in GrCh37 but many of our features below are in the GrCh38 build. We used rsid’s and pyliftOver
(https://github.com/konstantint/pyliftover) to map to GrCh38. For the handful of variants we could not
map we gave them the location of a nearby variant.

D.2. Coding variant annotations

We downloaded the predictions of the effects of variants in coding regions from various models from https://www.
dbnsfp.org/. We used six predictions labeled ESM1b score, GERP++ RS, SIFT score, PROVEAN score,
FATHMM score, EVE score. For non-coding variants or variants missing a prediction, we set C = 0.

D.3. Functional and conservation annotation data

Conservation We downloaded bigWig files of our phylogenetic correlation annotations from http:
//hgdownload.soe.ucsc.edu/goldenPath/hg38/ (Pollard et al., 2010; Hubisz et al., 2011). We used 15
PhyloP and phastCons scores made from various alignments: phyloP470way, phyloP447way, phyloP100way,
phyloP30way, phyloP20way, phyloP17way, phyloP7way, phyloP4way, phastCons470way,
phastCons100way, phastCons30way, phastCons20way, phastCons17way, phastCons7way,
phastCons4way.

FANTOM We downloaded hCAGE FANTOM annotations of human tissues from https://fantom.gsc.
riken.jp/5/datahub/hg38/tpm/human.tissue.hCAGE/ (Lizio et al., 2015). This gave us roughly
400 annotations; we picked a random 20 tissues from this set and collected forward and backward CAGE
annotations for each tissue, giving us a total of 40 features. The tissues were lymph node, adult,
donor1; heart, adult, diseased post-infarction, donor1; skeletal muscle, adult,
pool1; occipital lobe, adult, donor1; parietal cortex, adult, donor10258; thymus,
adult, pool1; thyroid, adult, pool1; pons, adult, pool1; parotid gland, adult;
Fingernail (including nail plate, eponychium and hyponychium), donor2; thalamus,
adult, donor10258; caudate nucleus, adult, donor10252; parietal lobe, adult,
donor10252; cerebrospinal fluid, donor2; kidney, fetal, pool1; eye - muscle
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inferior rectus, donor1; nucleus accumbens, adult, pool1; parietal lobe - adult,
donor10196; cerebral meninges, adult; throat, adult.

ENCODE We downloaded bigWig files of functional genomics annotations from https://www.encodeproject.
org/search/ (ENCODE Project Consortium, 2012). We did not use annotations with warnings, errors, or that
were non-compliant. We used assays with titles TF ChIP-seq, Histone ChIP-seq, eCLIP, total
RNA-seq, polyA plus RNA-seq, polyA minus RNA-seq, small RNA-seq, microRNA-seq,
ChIA-PET, WGBS, DNase-seq, ATAC-seq, PRO-cap, PRO-seq, Bru-seq, BruChase-seq,
RAMPAGE, PAS-seq and those that had available bigWig files for GrCh38. We got over 100 eCLIP annotations of RNA
binding; since each of these annotations are sparse, we summed them together to create a single all eCLIP annotation.
For TF ChIP-seq experiments that targeted a transcription factor, we only used assays from the 24 targets that had
measurements from two or more labs.

Each of these experiments had multiple data annotations. We used the fold change over control for a random
replicate if it was available, otherwise we used a randomly chosen annotation. In total we had 91 annotations from
ENCODE; the full list with bioproject ids is as follows: all eCLIP, polyA minus RNA-seq (ENCSR000CQE),
TF ChIP-seq of MTA3 (ENCSR391KQC), Histone ChIP-seq of H3K4me3 (ENCSR393ZOI),
TF ChIP-seq of CREB1 (ENCSR897JAS), TF ChIP-seq of MCM3 (ENCSR990AZC), TF ChIP-seq
of POLR2AphosphoS5 (ENCSR000BTW), TF ChIP-seq of NFIB (ENCSR702BYX), TF ChIP-seq
of SUZ12 (ENCSR757EMK), TF ChIP-seq of CAMTA2 (ENCSR336GFK), TF ChIP-seq of
NFRKB (ENCSR145BHD), Histone ChIP-seq of H3K36me3 (ENCSR524VDR), TF ChIP-seq
of SIN3A (ENCSR468LUO), TF ChIP-seq of PKNOX1 (ENCSR233FAG), TF ChIP-seq of
NR3C1 (ENCSR516IVY), TF ChIP-seq of HLTF (ENCSR090JNM), Histone ChIP-seq of
H3K27me3 (ENCSR660TLD), TF ChIP-seq of NONO (ENCSR476BQA), TF ChIP-seq of
CBX8 (ENCSR616MOB), TF ChIP-seq of MCM7 (ENCSR068VRA), TF ChIP-seq of JUN
(ENCSR048CVK), Histone ChIP-seq of H3K23ac (ENCSR592JNN), TF ChIP-seq of Cebpa
(ENCSR827TOM), small RNA-seq (ENCSR000CRR), TF ChIP-seq of ZFX (ENCSR027UFT),
TF ChIP-seq of JUND (ENCSR000BSA), TF ChIP-seq of MLX (ENCSR873LYH), TF ChIP-seq
of HDGF (ENCSR200CUA), TF ChIP-seq of GATAD2A (ENCSR160QYK), PAS-seq
(ENCSR233JPT), WGBS (ENCSR999CXD), RAMPAGE (ENCSR413FKS), TF ChIP-seq of
HDAC1 (ENCSR711VWL), TF ChIP-seq of DPF2 (ENCSR715CCR), Histone ChIP-seq
of H2AFZ (ENCSR859FGW), TF ChIP-seq of CTBP1 (ENCSR636EYA), TF ChIP-seq of
SMARCA5 (ENCSR895HSJ), TF ChIP-seq of MNT (ENCSR460XGV), TF ChIP-seq of BCOR
(ENCSR808AKZ), TF ChIP-seq of GTF2F1 (ENCSR557JTZ), Histone ChIP-seq of H3K56ac
(ENCSR036NSK), Histone ChIP-seq of H3K9ac (ENCSR192IRQ), TF ChIP-seq of JUNB
(ENCSR431LRW), Histone ChIP-seq of H4K20me1 (ENCSR258TUP), TF ChIP-seq of
TRIM24 (ENCSR957LDM), TF ChIP-seq of PLRG1 (ENCSR019KPC), TF ChIP-seq of FOXK2
(ENCSR171FUX), Histone ChIP-seq of H3K9me3 (ENCSR444YIP), TF ChIP-seq of GATAD2B
(ENCSR389BLX), Histone ChIP-seq of H2BK15ac (ENCSR739BZR), TF ChIP-seq of
KHSRP (ENCSR686EYO), TF ChIP-seq of LARP7 (ENCSR288MOZ), PRO-cap (ENCSR100LIJ),
TF ChIP-seq of SMARCA4 (ENCSR587OQL), TF ChIP-seq of PHB (ENCSR650AWW), ChIA-PET
of POLR2A (ENCSR217TFN), Histone ChIP-seq of H4K5ac (ENCSR035BZI), TF ChIP-seq of
CSDE1 (ENCSR626QJQ), Bru-seq (ENCSR849FAX), TF ChIP-seq of DMAP1 (ENCSR670YPQ),
microRNA-seq (ENCSR934NMC), ATAC-seq (ENCSR265ZXX), TF ChIP-seq of ARNT
(ENCSR029IBC), ChIA-PET of CTCF (ENCSR030KAB), TF ChIP-seq of CEBPB (ENCSR000BUB),
TF ChIP-seq of RFXANK (ENCSR823ADL), TF ChIP-seq of NBN (ENCSR210ZYL), TF ChIP-seq
of MLLT1 (ENCSR675LRO), TF ChIP-seq of HDAC2 (ENCSR330OEO), TF ChIP-seq
of SP1 (ENCSR906PEI), TF ChIP-seq of RBBP5 (ENCSR330EXS), TF ChIP-seq of
MTA2 (ENCSR551ZDZ), TF ChIP-seq of PBX3 (ENCSR000BTN), Histone ChIP-seq of
H3K4me2 (ENCSR251DKX), TF ChIP-seq of POLR2A (ENCSR388QZF), TF ChIP-seq of
CBFA2T3 (ENCSR697YLJ), TF ChIP-seq of MAX (ENCSR000BSH), TF ChIP-seq of YBX3
(ENCSR567JEU), TF ChIP-seq of RAD21 (ENCSR000BUC), Histone ChIP-seq of H3K79me1
(ENCSR213JMO), DNase-seq (ENCSR366NBE), TF ChIP-seq of CTCF (ENCSR817HTJ),
Histone ChIP-seq of H3K4me1 (ENCSR874NDX), TF ChIP-seq of TARDBP (ENCSR801SWX),

17

https://www.encodeproject.org/search/
https://www.encodeproject.org/search/


Predicting variant effects from functional annotations

TF ChIP-seq of FOXP1 (ENCSR369YUK), TF ChIP-seq of IKZF1 (ENCSR278JQG), PRO-seq
(ENCSR988BZM), TF ChIP-seq of ZBTB1 (ENCSR309ELI), TF ChIP-seq of NCOA3
(ENCSR573OJP), Histone ChIP-seq of H2BK20ac (ENCSR462XRE), TF ChIP-seq of
SUPT5H (ENCSR894CGX), Histone ChIP-seq of H3K27ac (ENCSR010OVI), BruChase-seq
(ENCSR672HUM), TF ChIP-seq of EP300 (ENCSR686BQM).
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