
Under review as a conference paper at ICLR 2022

FEVERLESS: FAST AND SECURE VERTICAL FEDER-
ATED LEARNING BASED ON XGBOOST FOR DECEN-
TRALIZED LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vertical Federated Learning (VFL) enables multiple clients to collaboratively train
a global model over vertically partitioned data without revealing private local in-
formation. Tree-based models, like XGBoost and LightGBM, have been widely
used in VFL to enhance the interpretation and efficiency of training. However,
there is a fundamental lack of research on how to conduct VFL securely over dis-
tributed labels. This work is the first to fill this gap by designing a novel protocol,
called FEVERLESS, based on XGBoost. FEVERLESS leverages secure aggre-
gation via information masking technique and global differential privacy provided
by a fairly and randomly selected noise leader to prevent private information from
being leaked in the training process. Furthermore, it provides label and data pri-
vacy against honest-but-curious adversary even in the case of collusion of n − 2
out of n clients. We present a comprehensive security and efficiency analysis
for our design, and the empirical results from our experiments demonstrate that
FEVERLESS is fast and secure. In particular, it outperforms the solution based
on additive homomorphic encryption in runtime cost and provides better accuracy
than the local differential privacy approach1.

1 INTRODUCTION

Traditional centralized deep learning models, demanding to collect a considerable amount of clients’
data to maintain high accuracy, to some degree, may increase the risk of data breaches. Data may
not be easily shared among different entities due to privacy regulations and policies. To tackle this
“Data Island” problem (Yang et al. (2019a)), Google proposed Federated Learning (FL) (McMahan
et al. (2017)) to allow multiple clients to train a global model without sharing private data. The basic
paradigm of FL is that all clients train local models with their own data, and then the information of
local models, e.g., gradients, may be exchanged to produce a global model.

Based on different types of data partition (Yang et al. (2019a)), FL can be mainly categorized into
Horizontal Federated Learning (HFL) and Vertical Federated Learning (VFL). The former focuses
on training with horizontally partitioned data where clients share the same feature space but differing
in data index set. Several research works (Shokri & Shmatikov (2015); Orekondy et al. (2019);
Geiping et al. (2020); Li & Han (2019)) have found that training data of HFL is still at high risk of
leakage although private data is kept locally. Other studies (Phong et al. (2018); Truex et al. (2019);
Xu et al. (2019); Zhang et al. (2020); Zhu et al. (2020)) have been dedicated to enhancing the security
of HFL. On the contrary, VFL is mainly applied in the scenario of training with vertically partitioned
data (Wu et al. (2020); Cheng et al. (2021)) where clients share the same data index set but differing
in feature space. In this paper, our principal focus is to achieve privacy-preserving training on VFL.

To best of our knowledge, many existing studies (Hardy et al. (2017); Nock et al. (2018); Liu et al.
(2020); Yang et al. (2019b); Cheng et al. (2021); Chen & Guestrin (2016); Wu et al. (2020)) have pro-
posed innovative approaches to prevent private information breaches in the context of VFL. Specif-
ically, (Hardy et al. (2017)) introduced encryption-based privacy-preserving logistic regression to
safeguard the information of data indexes. (Nock et al. (2018)) gave a comprehensive discussion on

1Code is available at: https://github.com/feverless111/vfl

1

https://github.com/feverless111/vfl

Under review as a conference paper at ICLR 2022

the impact of ID resolution. (Yang et al. (2019b)) introduced a scheme without using a coordina-
tor for a limited number of clients. Recently, (Liu et al. (2020)) proposed an asymmetrically VFL
scheme for logistic regression tackling privacy concerns on ID alignment.

Unlike the training models used in the aforementioned works, XGBoost (Chen & Guestrin (2016)),
which is one of the most popular models applied in VFL, can provide better interpretation, easier
parameter tuning, and faster execution than deep learning in tabular data training (Goodfellow et al.
(2016); LeCun et al. (2015)). These practical features and advantages draw academia and indus-
try’s attention to the research on XGBoost, especially in the privacy-preserving context. (Wu et al.
(2020)) introduced an approach for tree-based model training through a hybrid method composing
homomorphic encryption and secure Multi-Party Computation (MPC) (Goldreich (1998); Bonawitz
et al. (2017)). After that, (Cheng et al. (2021)) proposed a similar system to train XGBoost (Chen
& Guestrin (2016)) securely over vertically partitioned data by using Additively Homomorphic En-
cryption (AHE). By applying Differential Privacy (DP) (Dwork (2008)), (Tian et al. (2020)) de-
signed a VFL system to train GBDT without the need of encryption/decryption.

However, most of the above solutions based on AHE and MPC do not scale well in terms of effi-
ciency on training XGBoost. Beyond that, all the existing schemes basically assume that training
labels are managed and processed by a sole client. In practice, a VFL scheme supporting distributed
labels is necessary. For instance, multiple hospitals, clinics and health centers currently may be set
to COVID-19 test spots and aim to train a model, e.g., XGBoost, to predict with good interpretation
if citizens (living in various locations) are infected based on their health records and symptoms. In
this context, the labels (i.e., the test results) are likely distributed among different health authorities -
even targeting to the same group of patients, and feature space is vertically portioned. For example,
a cardiac hospital only maintains heart data for the patients, while a psychiatric center holds the
mental records, in which both authorities may collect and manage each of its registered patient’s la-
bel locally. Another common scenario could be in the financial sector where multiple bank branches
and e-commerce companies prefer to build a global model to predict if their customers may pay
some service (e.g., car loan) on time. The banks have part of features about the customers (e.g.,
account balance, funding in-and-out records), while the companies may obtain other features (e.g.,
payment preference). Since the customers may get the same service, e.g., loan, from different insti-
tutions, it is clear that labels must be distributed rather than centralized. In addition to efficiency
and functionality aspects, one may also consider capturing stronger security for VFL. Training an
XGBoost usually should involve the computation of first and second-order derivatives of the loss
function (note gradients and hessians contain labels’ information), and the aggregation of them is
required in each round. In the context where the labels are held by different clients, if the gradients
and hessians are transmitted in the form of plaintexts and the summations of them are known to an
aggregator (whom could be one of the clients engages in training), inference and differential attacks
(Appendix C) will be easily conducted by the aggregator, resulting in information leakage.

To tackle these problems, we propose a fast and secure VFL protocol, FEVERLESS, to train XG-
Boost (Appendix B.1) on distributed labels without disclosing both feature and label information. In
our design, the privacy protection is guaranteed by secure aggregation (based on a masking scheme)
and Global Differential Privacy (GDP) (Appendix B.6). We leverage masking instead of heavy-cost
multiparty computation and we guarantee a “perfect secrecy” level for the masked data. In GDP,
we use Verifiable Random Function (VRF) (Appendix B.5) to select a noise leader per round (who
cannot be predicted and pre-compromised in advance) to aggregate noise from “selected” clients,
which significantly maintains model accuracy.

Our contributions can be summarized as follows.
(1) We define VFL in a more practical scenario where training labels are distributed over multiple
clients. Beyond that, we develop FEVERLESS to train XGBoost securely and efficiently with the
elegant combination of secure aggregation technique (based on Diffie-Hellman (DH) key exchange
(Appendix B.2) and Key Derivation Function (KDF) (Appendix B.4)) and GDP.
(2) We give a comprehensive security analysis to demonstrate that FEVERLESS is able to safeguard
labels and features privacy in the semi-honest setting, but also maintain the robustness even for the
case where n− 2 out of n clients commit collusion.
(3) We implement FEVERLESS and perform training time and accuracy evaluation on different real-
world datasets. The empirical results show that FEVERLESS can maintain efficiency and accuracy
simultaneously, and its performance is comparable to the baseline - a ”pure” XGBoost without using
any encryption and differential privacy. Specifically, training the credit card and bank marketing

2

Under review as a conference paper at ICLR 2022

datasets just takes 1% and 6.5% more runtime than the baseline and meanwhile, the accuracy is only
lower than that of the baseline by 0.9% and 3.21%, respectively2.

2 PROBLEM FORMULATION

2.1 SYSTEM MODEL

Before proceeding, we give some assumptions on our model. We suppose that a private set inter-
section (Kolesnikov et al. (2017); Pinkas et al. (2014)) has been used to align data IDs before the
training starts, so that each client shares the same data index space I. But the names of features are
not allowed to share among clients. As for the information of label distribution (indexes indicating
a label belongs to which client, e.g., the label of i-th data instance is held by client A), we will
consider the following conditions: (1) this information is revealed to the public in advance; or (2)
the information is not allowed to publish but the training can still be accomplished (with extra cost).

We also consider that the training is conducted on a dataset with m samples composing with feature
space X = {x1, · · · , xm}, each containing f features, and label set Y = {y1, · · · , ym}. Besides,
features {X(c)

j | j ∈ {1, · · · , f}} and labels {y(c)
i | i ∈ {1, · · · ,m}} are held among n clients

where each client has at least one feature and one label. X(c)
j and y(c)

i refer to j-th feature and i-th
label owned by c-th client, respectively.

Considering a practical scenario wherein training labels are distributed among clients, we propose
a new variant of VFL, named VFL over Distributed Labels (DL-VFL). The concrete definition is
given as follows.
Definition 1 (DL-VFL). Given a training set with m data samples consisting of feature space X ,
label space Y , index space I and clients set C, we have:

X c ∩ X c
′

= ∅,Yc ∩ Yc
′

= ∅, Ic = Ic
′

,∀c, c
′
∈ C, c 6= c

′
. (1)

A client c participating DL-VFL shares the same sample ID space I with the corresponding labels,
where a single label belongs to only one client. And different clients hold the subset of X sampled
from feature space. To achieve privacy-preserving XGBoost training, we further define two roles.
Definition 2 (Source client). A source client with split candidates wants to compute the correspond-
ing Lsplit based on Eq.(4). But some labels are missing so that

∑
gi and

∑
hi are unable to derive.

For the case that a source client does not hold all labels in the current split candidates, we propose
a solution based on secure aggregation and global differential privacy to help the source client to
compute Lsplit while safeguarding other clients’ privacy. We consider the two conditions regarding
if label distribution is publicly known. We find that if we keep label distribution hidden, we will take
extra communication overhead to perform training. The detailed explanation is given in Appendix
F. Note each client may have a chance to act as a source client because all the labels are distributed,
where the source client leads the Lsplit computation, and clients provide missing label values to the
source client.

To achieve GDP, we define noise leader who is selected fairly and randomly from all clients (except
for the source client) - preventing clients from being compromised beforehand.
Definition 3 (Noise leader). By using VRF, a noise leader is responsible for generating the maximum
leader score, aggregating differentially private noise from a portion of clients and adding the noise
to the gradients and hessians.

Note we summary the main notations in Table 1 (see Appendix A).

2.2 THREAT MODEL

We mainly consider potential threats incurred by participating clients and the outside adversaries.
We assume that all clients are honest-but-curious, which means they strictly follow designed algo-

2For banknote authentication dataset, FEVERLESS takes 13.96% more training time than the baseline, and
the accuracy is 30.4% lower. This is because the model is trained by a small-scale dataset, so that the robustness
is seriously affected by noise.

3

Under review as a conference paper at ICLR 2022

rithms but try to infer private information of other clients from the received messages. Besides, we
also consider up to n − 2 clients’ collusion to conduct attacks, and at least one non-colluded client
adds noise per round. Through authenticated channels, DH key exchange can be securely executed
among clients. Other messages are transmitted by public channels, and outside attackers can eaves-
drop on these channels and try to reveal information about clients during the whole DL-VFL process.
Note this paper mainly focuses on solving privacy issues in training DL-VFL based on XGBoost.
Thus, other attacks, like data poisoning and backdoor attacks deteriorating model performance, are
orthogonal to our problem.

3 A PRACTICAL PRIVACY-PRESERVING PROTOCOL

3.1 FEVERLESS PROTOCOL DESCRIPTION

To prevent a source client from knowing gradients and hessians sent by other clients, one may
directly use MPC (Damgård et al. (2012)) based on AHE (Paillier (1999); Wu et al. (2020)). But
this method yields expensive computation cost. Getting rid of the complex mechanism like MPC,
we leverage secure aggregation protocol via masking scheme based on DH key exchange(Bonawitz
et al. (2017); Ács & Castelluccia (2011); Tian et al. (2020)). By further using KDF and Hash
Function (see Appendix B.3&B.4), our masking (for gradients and hessians) can be derived without
exchanging keys per training round. Our approach significantly reduces the communication cost
but still maintains the robustness up to n − 2 colluded clients. Meanwhile, the secure aggregation
can provide “perfect secrecy” for broadcast messages. After receiving the broadcast messages, the
masking will be canceled out at the source client side. But only using the masking is unable to defend
against differential attacks. One may consider using Local Differential Privacy (LDP) (Kairouz et al.
(2014)) to make sure that each client may add noise to per send-out message, barely consuming any
extra computation cost. The accumulated noise, from all clients, may seriously affect the model
accuracy. To tackle this problem, we use a GDP (Wei et al. (2020)) approach with noise leader
selection. A hybrid method is finally formed based on masking scheme and GDP, so that per client’s
sensitive information can be protected by the “masks” and the aggregated values are secured by the
noise which is injected by the chosen clients.

We briefly introduce our design, and the detailed algorithms and more explanations are given in Ap-
pendix D. Assume each client c ∈ [1, n] generates respective secret key skc and computes gradients
g

(c)
i and hessians h(c)

i locally, where {i | yi ∈ Yc}. FEVERLESS works as follows.

1. Broadcast missing indexes. The source client broadcasts the mIDs= {i | yi /∈ Yc}.
2. Key exchange computation. Each client c computes public key pkc = gskc using secret keys skc,
sends pkc to other clients and computes the corresponding shared keys3 {Sc,c′ = pkskc

c′
= gskcskc′ |

c, c
′ ∈ C, c 6= c

′} based on secret key skc received public keys {pkc′ | c
′ ∈ C}.

3. Data masking. Each client c runs the masking generation algorithm to compute the mask-
ings for protecting gradients and hessians. Specifically, based on KDF, clients’ indexes and the

number of queries, the masking generation algorithm is conducted by mask
(c)
g ←

∑
c 6=c′

∣∣∣c−c′ ∣∣∣
c−c′ ·(

H(Sc,c′‖0‖query)
)

, mask(c)
h ←

∑
c 6=c′

∣∣∣c−c′ ∣∣∣
c−c′ ·

(
H(Sc,c′‖1‖query)

)
4. Then the masked gra-

dients G(c) and hessians H(c) are generated by G(c) =
∑
i∈mIDs g

(c)
i + mask

(c)
g −r(c)

g , H(c) =∑
i∈mIDs h

(c)
i + mask

(c)
h −r

(c)
h .

4. Noise leader selection. Each client generates the selection score selecc using the VRF,
H(SIGNskc(count,mIDs,r)), and broadcasts it, where count is the number of times clients
conduct VRF, r is a fresh random number, and SIGN is the signature scheme (see Appendix B.5 for
more details). The client with maximum score will be the noise leader. For ease of understanding,
we assume client n with the largest selection score selectmaxn is the leader, in Figure 1.

3Shared keys are only generated once, and the KDF is used to generate the remaining maskings.
4For purpose of simplicity, we omit modular computations. The complete calculation processes are elabo-

rated on Algorithm 3-5.

4

Under review as a conference paper at ICLR 2022

5. Noise injection. a) Noise leader selects k clients adding noise. For the details of the selec-

tion, please see Algorithm 5 in Appendix D. b) The selected clients send {ñ(c)
g = N(0,∆2

gσ
2) +

r
(c)
g , ñ

(c)
h = N(0,∆2

hσ
2) + r

(c)
h |c ∈ k} to noise leader, in which the r(c)

g and r(c)
h are two ran-

dom values to mask noise. c) The leader aggregates the noise: Ñg = k · N(0,∆2
gσ

2) + Rg and
Ñh = k · N(0,∆2

hσ
2) +Rh, and further adds them to G(n) and H(n), respectively.

6. Aggregation and computation. All clients send the masked values to the source client. The source
client computes

∑n
c=1G

(c) + k·N(0,∆2
gσ

2),
∑n
c=1H

(c) + k·N(0,∆2
hσ

2) and Lsplit.

7. Final update. The source client with maximum Lsplit updates model following XGBoost (Chen
& Guestrin (2016)) and broadcasts the updated model and data indexes in child nodes as step 8.

Figure 1 gives an overview of FEVERLESS. Note this process can be conducted iteratively. For
simplicity, the core calculation processes are shown here, and more details are in Appendix D.

Figure 1: Overview of FEVERLESS. : Source client broadcasts missing IDs, aggregates
gradients and hessians securely, updates model and broadcasts nodes IDs. : DH key ex-
change and maskings generation. : Noise leader selection. ÊBroadcast missing indexes.
ËKey exchange computation. ÌData masking. ÍNoise leader selection. ÎGlobal noise injection.
ÏAggregation and computation. ÐÑ Final update and broadcast updated model. Note sensitive data
are in red. The maskings in Ì protect data from source client, and the noise in aggregated gradients
and hessians prevents source client from conducting differential attack.

3.2 THEORETICAL ANALYSIS

Computation cost: We use B and d to denote the number of buckets and the maximum depth
respectively, and f (c) here represents the number of features held by a client c. For each client c,
the computation cost can be divided into 4 parts: (1) Performing at most f (c) · B · NT · (2d − 1)
times computation of Lsplit and w, taking O(f (c) · B · NT · 2d) time; (2) Creating n − 1 shared
keys and 1 public key, which is O(n); (3) Conducting O(f (c) · B · NT · 2d) time to compute
VRF outputs, select noise leader and generate noise; (4) Generating 2f (c) · B · NT · (2d − 1)
maskings, which takes O(f (c) ·B ·NT · 2d ·n) time. Overall, each client’s computation complexity
is O(f (c) ·B ·NT · 2d · n).
Communication cost: Each client’s communication cost can be calculated as (1) Broadcasting
at most f (c) · B · NT · (2d − 1) times of missing indexes mID; (2) Broadcasting 1 public key
and receiving n − 1 public keys from other clients; (3) Broadcasting 1 leader selection score and
sending noise to noise leader at most f (c) · B · NT · (2d − 1) times; (4) Sending source client
2 masked gradients and hessians of size 2dlog2Ne. Therefore the overall communication cost is
f (c) · B · NT · (2d − 1) · (‖mID‖ · αI + αL + αN + n · αK2dlog2Ne), where αI , αL, αN and

5

Under review as a conference paper at ICLR 2022

αK refer to the number of bits of index, leader selection score, noise and public keys, respectively.
Thus, we have the communication complexity O(f (c) ·B ·NT · 2d).

3.3 SECURITY ANALYSIS

We prove that FEVERLESS provides label and data privacy against an adversary controlling at most
n − 2 clients in the semi-honest setting (Smart (2016)). Here, we provide a brief summary of our
analysis and theorems. The formal proofs, in the random oracle model, are given in Appendix E.
Label Privacy: Label privacy implies that the owner of a label among honest parties should not be
leaked to the adversary. We achieve this by using a secure aggregation mechanism where the masks
are created via DH key exchange and KDF. In brief, we show that because of the Decisional DH
problem (see Definition 4), the adversary cannot distinguish the individual values from randomly
chosen ones. That is why the adversary A cannot learn the owner of the label.
Data Privacy: FEVERLESS provides data privacy, meaning that an adversary A cannot extract the
data of any honest party. Individual data values are not separable from random values because of the
secure masking. If the source client is not part of the adversary, no data information is leaked. But
we require an additional countermeasure for the case where the source client is part of the adversary
because it can collect the summation of the data values. We use differential privacy (Dwork et al.
(2006a;b)) to achieve data privacy. Because of the noise added by differential privacy, the adversary
cannot learn the individual data of an honest client. Moreover, we select the noise clients by the
VRF which ensures that the noise leader cannot be predicted or compromised in advance.

Theorem 3.1 (A not including source client). There exists a PPT simulator Sim for all |C| := n ≥
3, |X | := f ≥ n, |Y| := m ≥ 1,

⋃
c∈C X (c),

⋃
c∈C Y(c) and A ⊂ C so that |A| ≤ n− 2, the output

of Sim is indistinguishable from the output of REAL : REALC,X ,YA (X C ,YC) ≡ SimC,X ,YA (XA,YA).

Theorem 3.2 (A including source client). There exists a PPT simulator Sim for all |C| := n ≥ 3,
|X | := f ≥ n, |Y| := m ≥ 1,

⋃
c∈C X (c),

⋃
c∈C Y(c) and A ⊂ C so that |A| ≤ n− 2, the output of

Sim is indistinguishable from the output of REAL:REALC,X ,YA (X C ,YC) ≡ SimC,X ,YA (G,H,XA,YA)

where G =
∑
i∈mIDs g

(c)
i + N(0, (∆gσ)2), H =

∑
i∈mIDs h

(c)
i + N(0, (∆hσ)2).

Theorem 3.3 (Privacy of the Inputs). No A ⊂ C such that |A| ≤ n − 2 can retrieve the individual

values of the honest clients with probability 1 −
∑k̂
i=0 C

i
hC

k̂−i
n−2−h(Pt)

k̂(1 − Pt)(n−k̂)C
k
k̂−i

Ck
k̂

, where

h and k̂ refer to the number of non-colluded clients and the number of clients who have selection
score larger than threshold, respectively; and Pt is the probability of selection score larger than the
threshold.

4 EXPERIMENT

We perform evaluations on accuracy, runtime performance and communication cost, and compare
our design with two straightforward secure approaches: one is based on LDP (for accuracy), and the
other is built on AHE with GDP (for runtime). These approaches are most-commonly-used com-
ponents for privacy-preserving FL, and they could be the building blocks for complex mechanisms,
e.g., MPC. We note the protocol should intuitively outperform those MPC-based solutions, and one
may leverage our source code to make further comparison if interested. In the experiments, the
baseline, which is the pure XGBoots algorithm, follows the training process of Figure 1 without
using any privacy-preserving tools (steps Ë - Î). And LDP does not conduct DH key exchange but
each client injects noise into the aggregation of gradients and hessians, while AHE follows Figure
1 except executing DH key exchange. In AHE, each client sends (additive) encrypted messages
to source client after step Î. We here show the performance of the best case where there is only
one (non-colluded and randomly selected) client adding noise per round (k = 1). For other results
(where k 6= 1), see Appendix H.2. Note we present the communication cost in Appendix H.5).

6

Under review as a conference paper at ICLR 2022

4.1 EXPERIMENT SETUP

To present comprehensive results on accuracy, we set ε to be: 10, 5, 2 and 1, and δ is set to 10−5.
In terms of accuracy and runtime, we evaluate different situations by varying the number of clients,
the number of trees, and the maximum depth of trees (from 2 to 10). Other parameters regarding
to training follow the suggestions in (Chen & Guestrin (2016)) and the library 5 of XGBoost. To
deliver fair results, we conduct each test for 20 independent trials and then calculate the average.

Datasets. We run the experiments on three datasets - Credit Card (Yeh & Lien (2009)), Bank
Marketing (Moro et al. (2014)) and Banknote Authentication6 - for classification tasks. To fairly
investigate the model performance in DL-VFL, we make the labels as sparse as possible, and they
are uniformally distributed on clients. We give the more details of experiment setup in Appendix G.

4.2 EVALUATION ON ACCURACY

In Figure 2, we present a clear picture on the accuracy performance based on the #tree and the
maximum depth in (2, 10−5)−DP. We merge the #client in one tree structure, which means in one
bar, and the value is the mean of accuracy when conducting on different numbers. The accuracy
of the baseline in credit card (about 0.82) and bank marketing (nearly 0.9) remains unchanged as
the #tree and maximum depth increases, while the accuracy in banknote authentication rises from
0.9 to approximately 1.0. To highlight the differences and ensure all results to be displayed clearly,
we set the ranges of accuracy as [0.5, 0.9], [0.5, 1] and [0, 1] for the three datasets, respectively.
Note the performance based on the #client is given in Appendix H.1. Comparing with the baseline,
shown in the top and middle rows of the Figure 2, FEVERLESS and LDP suffer from continuously
shrinking accuracy as tree structure becomes complex. This is so because the injected noises are
accumulated into the model via the increase of query number. And the accuracy is easily affected by
the depth. In the worst case where the #tree and maximum depth are both equal to 10, FEVERLESS
decreases 10.37% (resp. 14.98%), and LDP drops 24.78% (resp.24.59%) in credit card (resp. bank
marketing). But on average, FEVERLESS’ accuracy only shrinks by around 0.9% (resp. 3.21%),
while LDP suffers from estimated 3x (resp. 2x) accuracy loss. The difference in the degree of
deterioration mainly comes from how much noise is added for each query. We note the deterioration
of FEVERLESS is independent with the #client. Thus, we can maintain great accuracy even for the
case where there exists a considerable amount of clients.

Despite the fact that less noise is added in FEVERLESS, we do not predict that the accuracy falls
to the same level (around 50%, like randomly guess in binary classification) as LDP in the bottom
row of Figure 2. This is so because the model is trained by an extremely small-size dataset, which
makes it hard to maintain the robustness but relatively sensitive to noise. If setting a larger ε, we
may see our advantage more clear. The experiments conducted on banknote authentication dataset
with larger ε are given in Appendix H.3

To distinguish the performance between FEVERLESS and LDP more clearly, Figure 3 shows the
comparison over different ε, when #depth and #tree are set to 10. The performance of the model
is decayed as the decrease of ε. In the left (resp. middle) of the Figure 3, the averaged accuracy
of FEVERLESS falls from 0.7686 to 0.5967 (resp. from 0.8517 to 0.6831), while that of LDP also
decreases to 0.5299 (resp. 0.5853). We notice that the highest values of LDP stay at the same
level as those of FEVERLESS. This is because, in the case of 2-client training, only one client
needs to add the noise in LDP (which is identical to our GDP solution). At last, the worse case
can be seen in the right of the Figure 3 due to the weak robustness of the model obtained from the
banknote authentication. The results are much far away from the baseline there. But even in this
case, FEVERLESS still holds a tiny advantage over LDP.

4.3 EVALUATION ON TRAINING TIME

To highlight the runtime complexity, we average the results varying by client number into one tree
structure as well. We further set the ranges of time as [0s, 9,500s], [0s, 3,500s] and [0s, 110s] for
the datasets to deliver visible results. Note since the banknote dataset contains the least samples, it

5https://xgboost.readthedocs.io/
6https://archive.ics.uci.edu/ml/datasets/banknote+authentication

7

Under review as a conference paper at ICLR 2022

Figure 2: Comparison among the baseline, FEVERLESS and LDP under ε = 2. Top row: Credit
card dataset, accuracy range: [0.5, 0.9]. Middle row: Bank marketing, accuracy range: [0.5, 1].
Bottom row: Banknote authentication, accuracy range: [0, 1].

Figure 3: Comparison of accuracy by varying ε in depth=10, the number of trees=10. Left: Credit
card. Middle: Bank marketing. Right: Banknote authentication. Accuracy ranges from 0.4 to 1.

8

Under review as a conference paper at ICLR 2022

does deliver the best training efficiency here. Figure 4 presents the comparison on the training time
by varying maximum depth and the number of trees among the datasets.

Figure 4: Comparison of time. Top row: Credit card dataset, range: [0s, 9,500s]. Middle row: Bank
marketing, range: [0s, 3,500s]. Bottom row: Banknote authentication, range: [0s, 110s].

The training time increases exponentially and linearly with depth and the number of tree, which
is consistent with our analysis given in Section 3.2. In Figure 4, compared with the baseline,
the runtime of FEVERLESS at most increases 110.3s (resp. 50s, 4.3s), while AHE requires
around 70x spike (resp. 48x, 21x) in credit card (resp. bank marketing, banknote authentica-
tion), where #depth and #trees are equal to 10. For the average case, FEVERLESS consumes
Approx. 1%(resp.6.5%, 13.96%) more training time than the baseline, while AHE requires the
351%(resp.155.1%, 674%) extra, w.r.t. the three datasets. Its poor performances are due to the
laborious calculations in encryption, in which each client has to conduct an encryption per query.
By contrast, the masksings in FEVERLESS avoid these excessive costs. We further investigate the
runtime performance on the #client in Appendix H.

5 CONCLUSION AND FUTURE WORK

We consider a practical scenario where labels are distributedly maintained by different clients for
VFL. By leveraging secure aggregation and GDP, we present a novel system, FEVERLESS, to train
XGBoost securely. FEVERLESS can achieve perfect secrecy for label and data, and adversaries
cannot learn any information about the data if the source client is not corrupted. With DP against
differential attack, the source client knows nothing more than summation. Our design is also robust
for the collusion of n−2 out of n clients. The experiment results show that FEVERLESS is fast and
accurate, only taking 1% extra training time, and sacrificing 0.9% accuracy, as compared to the pure
XGBoost. In Appendix F, we discuss how to reduce noise, hide distribution of labels and use other
security tools. Although our system achieves great performance in terms of security and efficiency,
its accuracy still does not work well in small-scale datasets. This remains an open problem. And we
will also consider secure solutions against malicious adversaries.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

G. Ács and C. Castelluccia. I have a dream! (differentially private smart metering). In Information
Hiding, 2011.

Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid Daubechies. Image coding using wavelet
transform. IEEE Transactions on image processing, 1(2):205–220, 1992.

Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W Phan. Sha-3 proposal blake.
Submission to NIST, 92, 2008.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, pp. 1175–1191, New York, NY, USA, 2017. Associa-
tion for Computing Machinery. ISBN 9781450349468. doi: 10.1145/3133956.3133982. URL
https://doi.org/10.1145/3133956.3133982.

Dan Boneh. The decision diffie-hellman problem. In ANTS, volume 1423 of Lecture Notes in
Computer Science, pp. 48–63. Springer, 1998.

Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On security analysis of
proof-of-elapsed-time (poet). In International Symposium on Stabilization, Safety, and Security
of Distributed Systems, pp. 282–297. Springer, 2017.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10.
1145/2939672.2939785.

Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, Dimitrios Papadopoulos, and Qiang
Yang. Secureboost: A lossless federated learning framework, 2021.

Amie Corso. Performance analysis of proof-of-elapsed-time (poet) consensus in the sawtooth
blockchain framework. PhD thesis, University of Oregon, 2019.

Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Annual Cryptology Conference, pp. 643–662. Springer,
2012.

Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on Infor-
mation Theory, 22(6):644–654, 1976.

Cynthia Dwork. Differential privacy: A survey of results. In Manindra Agrawal, Dingzhu Du,
Zhenhua Duan, and Angsheng Li (eds.), Theory and Applications of Models of Computation, pp.
1–19, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-79228-4.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 486–503. Springer, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006b.

Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-output functions. 2015.

10

https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

Under review as a conference paper at ICLR 2022

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients -
how easy is it to break privacy in federated learning? In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 16937–16947. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf.

Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 78, 1998.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume
Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity
resolution and additively homomorphic encryption. arXiv preprint arXiv:1711.10677, 2017.

Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mechanisms for local differential
privacy. Advances in neural information processing systems, 27:2879–2887, 2014.

Burt Kaliski. Pseudorandom Function, pp. 485–485. Springer US, Boston, MA, 2005. ISBN 978-
0-387-23483-0. doi: 10.1007/0-387-23483-7 329. URL https://doi.org/10.1007/
0-387-23483-7_329.

Aqeel Sahi Khader and David Lai. Preventing man-in-the-middle attack in diffie-hellman key ex-
change protocol. In 2015 22nd international conference on telecommunications (ICT), pp. 204–
208. IEEE, 2015.

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practical multi-
party private set intersection from symmetric-key techniques. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1257–1272, 2017.

Hugo Krawczyk and Pasi Eronen. Hmac-based extract-and-expand key derivation function (hkdf).
Technical report, RFC 5869, May, 2010.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Hongyu Li and Tianqi Han. An end-to-end encrypted neural network for gradient updates transmis-
sion in federated learning. arXiv preprint arXiv:1908.08340, 2019.

Yang Liu, Xiong Zhang, and Libin Wang. Asymmetrically vertical federated learning. arXiv preprint
arXiv:2004.07427, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine learning in apache
spark. The Journal of Machine Learning Research, 17(1):1235–1241, 2016.

Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.
URL http://arxiv.org/abs/1607.01341.

Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th annual
symposium on foundations of computer science (cat. No. 99CB37039), pp. 120–130. IEEE, 1999.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22–31, 2014.

Sotiris Nikoletseas and José DP Rolim. Theoretical aspects of distributed computing in sensor
networks. Springer, 2011.

11

https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://doi.org/10.1007/0-387-23483-7_329
https://doi.org/10.1007/0-387-23483-7_329
http://arxiv.org/abs/1607.01341

Under review as a conference paper at ICLR 2022

Richard Nock, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Giorgio Patrini, Guillaume
Smith, and Brian Thorne. Entity resolution and federated learning get a federated resolution.
arXiv preprint arXiv:1803.04035, 2018.

Tribhuvanesh Orekondy, Seong Joon Oh, Yang Zhang, Bernt Schiele, and Mario Fritz. Gradient-
leaks: Understanding and controlling deanonymization in federated learning. In NeurIPS Work-
shop on Federated Learning for Data Privacy and Confidentiality, 2019.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In TAMC.
Springer, 1999.

J.K. Patel and C.B. Read. Handbook of the Normal Distribution, Second Edition. Statistics: A
Series of Textbooks and Monographs. Taylor & Francis, 1996. ISBN 9780824793425. URL
https://books.google.nl/books?id=ey61Zm0f0qoC.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Transactions on Infor-
mation Forensics and Security, 13(5):1333–1345, 2018. doi: 10.1109/TIFS.2017.2787987.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on
{OT} extension. In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pp. 797–812,
2014.

NIST Sha. standard: Permutation-based hash and extendable-output functions. federal information
processing standards publication 202, 2015, 2015.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, pp. 1310–1321,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338325. doi:
10.1145/2810103.2813687. URL https://doi.org/10.1145/2810103.2813687.

Nigel P. Smart. Cryptography Made Simple. Information Security and Cryptography. Springer,
2016.

Zhihua Tian, Rui Zhang, Xiaoyang Hou, Jian Liu, and Kui Ren. Federboost: Private federated
learning for gbdt, 2020.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and
Yi Zhou. A hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, AISec’19, pp. 1–11, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450368339. doi: 10.1145/3338501.
3357370. URL https://doi.org/10.1145/3338501.3357370.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020.

Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving
vertical federated learning for tree-based models. Proc. VLDB Endow., 13(12):2090–2103, July
2020. ISSN 2150-8097. doi: 10.14778/3407790.3407811. URL https://doi.org/10.
14778/3407790.3407811.

Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. Hybridalpha: An efficient
approach for privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop
on Artificial Intelligence and Security, AISec’19, pp. 13–23, New York, NY, USA, 2019. Associ-
ation for Computing Machinery. ISBN 9781450368339. doi: 10.1145/3338501.3357371. URL
https://doi.org/10.1145/3338501.3357371.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Trans. Intell. Syst. Technol., 10(2), January 2019a. ISSN 2157-6904. doi:
10.1145/3298981. URL https://doi.org/10.1145/3298981.

12

https://books.google.nl/books?id=ey61Zm0f0qoC
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.14778/3407790.3407811
https://doi.org/10.14778/3407790.3407811
https://doi.org/10.1145/3338501.3357371
https://doi.org/10.1145/3298981

Under review as a conference paper at ICLR 2022

Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu. Parallel distributed logistic regression
for vertical federated learning without third-party coordinator. arXiv preprint arXiv:1911.09824,
2019b.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications, 36(2):
2473–2480, 2009.

Jonathan Zdziarski. Hacking and securing iOS applications: stealing data, hijacking software, and
how to prevent it. ” O’Reilly Media, Inc.”, 2012.

Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), pp. 493–506. USENIX Association, July 2020.
ISBN 978-1-939133-14-4. URL https://www.usenix.org/conference/atc20/
presentation/zhang-chengliang.

Hangyu Zhu, Rui Wang, Yaochu Jin, Kaitai Liang, and Jianting Ning. Distributed additive
encryption and quantization for privacy preserving federated deep learning. arXiv preprint
arXiv:2011.12623, 2020.

13

https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang

Under review as a conference paper at ICLR 2022

A NOTATIONS

The frequently used notations are summarized in Table 1.

Table 1: Notations summary
Notation Description
X feature space
X

(c)
j j-th feature owned by c-th client

xi i-th data point with d features
Y label space
y

(c)
i the label of i-th data point owned by c-th client
I data index space
C clients set
g

(c)
i the gradient of i-th data point owned by c-th client
h

(c)
i the hessian of i-th data point owned by c-th client
G summation of gradients
H summation of hessians
m number of data entries
n number of clients
f number of features
d the maximum depth of tree
ε, δ parameters of differential privacy
∆g sensitivity of gradients
∆h sensitivity of hessians
Lsplit impurity score
w leaf value
pkc public key generated by c-th client
skc secret key owned by c-th client
g generator of multiplicative group
Bjz z-th bucket of j-th feature

B PRELIMINARIES

B.1 XGBOOST

XGBoost (Chen & Guestrin (2016)) is a popular tree-based model in tabular data training that can
provide better interpretation, easier parameters tuning and faster execution speed than deep learning
Goodfellow et al. (2016); LeCun et al. (2015). It also outperforms other well-known boosting tree
systems in terms of accuracy and efficiency, like Spark MLLib Meng et al. (2016) and H2O Chen
& Guestrin (2016), especially for large-scale datasets. Therefore, in this paper, we consider using
XGBoost as a building block for classification tasks.

Assume that a training set with m data points composing with feature space X = {x1, · · · , xm}
and label space Y = {y1, · · · , ym}. Before training starts, every feature will be sorted based their
values, and split candidates will be set for features. XGBoost builds trees based on the determination
of defined splits candidates and some pruning conditions. Specifically, computing gradients and
hessians first according to Eq.(2) and Eq.(3) for each data entry, where y(t−1)

i denotes the prediction
of previous tree for i-th data point, and yi is the label of i-th data point:

gi =
1

1 + e−y
(t−1)
i

− yi = ŷi − yi, (2)

hi =
e−y

(t−1)
i

(1 + e−y
(t−1)
i)2

. (3)

14

Under review as a conference paper at ICLR 2022

For splitting nodes, the XGBoost algorithm determines the best split candidate from all others based
on maximum Lsplit in Eq.(4), where λ and γ are regularization parameters:

Lsplit =
1

2
[

∑
i∈IL gi∑

i∈IL hi + λ
+

∑
i∈IR gi∑

i∈IR hi + λ
−

∑
i∈I gi∑

i∈I hi + λ
]− γ. (4)

The current node will be the leaf node if the following conditions are fulfilled: reaching the maxi-
mum depth of tree, the maximum value of impurity is less than preset threshold. The calculation of
the leaf value follows Eq.(5):

w = −
∑
i∈I gi∑

i∈I hi + λ
. (5)

B.2 DIFFIE-HELLMAN KEY EXCHANGE

Based on Decision Diffie-Hellman (DDH) hard problem (Boneh (1998)) defined below, Diffie-
Hellman key exchange (DH) (Diffie & Hellman (1976)) provides a method used for exchang-
ing keys across public communication channels. Without losing generality and correctness, it
consists of a tuple of algorithms (Param.Gen, Key.Gen, Key.Exc). The algorithm (G, g, q) ←
Param.Gen (1α) generates public parameters (a group G with prime order q generated by a gen-
erator g) based on secure parameter α. (ski, pki) ← Key.Gen(G, g, q) allows client i to gener-

ate secret key (ski
$←− Zq) and compute public key (pki ← gski). Shared key is computed by

(pk
skj
i , pkskij) ← Key.Exc(ski, pki, skj , pkj). Inspired by (Bonawitz et al. (2017); Ács & Castel-

luccia (2011)), we utilize shared keys as maskings to protect information of labels against inference
attack during transmitting in public channels. The correctness requires pkskji = pkskij . The security
relies on the DDH problem (Boneh (1998)), which is defined as:

Definition 4 (Decision Diffie-Hellman). Let G be a group with prime order q and g be the fixed
generator of the group. The Probabilistic Polynomial Time (PPT) adversary A is given and ga
and gb where a and b are randomly chosen. The probability of A distinguishing (ga, gb, gab) and
(ga, gb, gc) for a randomly chosen c is negligible:∣∣∣Pr

[
a, b

$←− Zq : A(g, ga, gb, gab) = true
]
−

Pr
[
a, b, c

$←− Zq : A(g, ga, gb, gc) = true
]∣∣∣ < negl(α).

B.3 PSEUDO-RANDOM GENERATOR AND HASH FUNCTION

Pseudo-Random Generator (PRG) (Håstad et al. (1999)) is an algorithm which is able to generate
random numbers. The ”pseudo-random” here means that the generated number is not truly random
but has the similar properties with random number. Generally, the pseudo-random numbers are
determined by given initial values a.k.a seeds. In cryptographic applications, a secure PRG requires
attackers not knowing seeds can distinguish a truly random number from a output of PRG with a
negligible probability. Similar with PRG, hash function allows mapping arbitrary size of data to
a fixed bit value. For reducing communication cost of FEVERLESS, we use SHAKE-256 (Sha
(2015)), one of the hash functions in SHA-3 (Aumasson et al. (2008)) family, to generate customize
size of maskings.

B.4 KEY DERIVATION FUNCTION

Key Derivation Function (KDF) (Krawczyk & Eronen (2010)) is a kind of hash function that derives
multiple secret keys from a main key by utilizing Pesudo-Random Function (PRF) (Kaliski (2005)).
In general, KDF algorithm DK ← KDF (mainkey, salt, rounds) derives keys DK based on a
main key, a cryptographic salt and current round of processing algorithm. The security requires
a secure KDF is robust for brute-force attack or dictionary attack. Inspired by (Zdziarski (2012))
where key shares generated by DH key exchange are converted to AES keys, in this paper, we use
KDF to generate maskings for every round to reduce communication cost. The main key we use is
generated by DH key exchange.

15

Under review as a conference paper at ICLR 2022

B.5 VERIFIABLE RANDOM FUNCTION

Verifiable Random Function (VRF) (Micali et al. (1999)) is a PRF providing verifiable proofs of
correctness of outputs. It is a tool widely used in cryptocurrencies, smart contracts and leader
selection in distributed systems (Micali (2016)). Basically, given a input x, a signature scheme and
a hash function, a practical leader selection scheme with VRF (Micali (2016)) works as:

Sleader ← H(signski(x)) (6)
where ski is the secret key for i-th client, and the maximum leader score Sleader is used to determine
leader. The security and unforgeability of VRF requires that the signature scheme has the property
of uniqueness, and hash function is able to map the signature to a random string with fixed size. The
correctness of this Sleader is proved by the signature of x.

B.6 DIFFERENTIAL PRIVACY

Differential Privacy (DP) (Dwork et al. (2006a;b)) is a data protection system targeting on publishing
statistical information of datasets while keeping individual data private. The security of DP requires
that adversaries cannot distinguish statistically change from two datasets where an arbitrary data
point is different.

The most widely used DP mechanism is called (ε, δ)-DP requiring less noise injected than original
proposed ε-DP but with the same privacy level. The formal definition is given as follows.
Definition 5. ((ε, δ) - Differential Privacy) Given two real positive numbers (ε, δ) and a random-
ized algorithm A: Dn → Y , the algorithm A provides (ε, δ) - differential privacy if for all data sets
D, D

′ ∈ Dn differing in only one data sample, and all S ⊆ Y:

Pr[A(D) ∈ S] ≤ exp(ε) · Pr[A(D
′
) ∈ S] + δ. (7)

Note the noise N ∼ N(0,∆2σ2) will be put into the output of the algorithm, where ∆ is l2 - norm
sensitivity of D and σ =

√
2 ln(1.25/δ) (Abadi et al. (2016)).

C PRIVACY CONCERN

Since we assume feature names are not public information for all clients, and the values of features
never leave from clients, the privacy issues are mainly incurred by the leakage of label information.

C.1 INFERENCE ATTACK

During training process, gradients and hessians are sent to source client for Lsplit computation. For
classification task, the single gradient is in range (−1, 0)∪(0, 1) for binary classification. According
to Eq.(2), a label can be inferred as 1 and 0 if the range is (−1, 0) and (0, 1), respectively. Besides,
hessian illustrated in Eq.(3) can leak a prediction of the corresponding data sample. With training
processing, the prediction is increasingly closer to a true label. The source client and outside attack-
ers can infer the true label with high probability. Gradients and hessians cannot be transmitted in
plaintext. We thus use secure aggregation scheme to protect them from inference attack.

C.2 DIFFERENTIAL ATTACK

Differential attack can happen anytime and many times during the calculation of gradients and hes-
sians. Figure 5 describes an example of differential attack taking place in single node split. Af-
ter sorting feature1, the semi-honest source client defines 2 split candidates and further computes
G{2,5} = g2 + g5 and G{1,2,3,5} = g2 + g5 + g1 + g3 for the candidates 1 and 2, respectively. Since
the source client holds label 2, even if G{2,5} is derived by secure aggregation, the g5 still can be
revealed by G{2,5} − g2.

Another example for differential attack is shown in Figure 6. Assume split candidate 1 is the one
for splitting root node. In the current tree structure, source client may split right node by computing
Lsplit of split candidate 2. In this case, G{1,3} should be aggregated by source client. And the g5

can be revealed by G{1,2,3,5} −G{1,3} − g2, where G{1,2,3,5} is computed in the previous node.

16

Under review as a conference paper at ICLR 2022

Figure 5: A differential attack on single node split

Figure 6: A differential attack on multiply node splits

D MORE DETAILS ON FEVERLESS PROTOCOL

D.1 XGBOOST TRAINING OVER DISTRIBUTED LABELS

At the initial stage, we allow all clients to agree on a tree structure (maximum depth and the number
of trees) and the learning rate for updating prediction. To avoid overfitting problem, we should define
regularization parameters. Threshold impurity is also another vital parameter used to identify tree
and leaf nodes via the maximum impurity. After that, we should choose ε, δ for DP, hash function
for masking generation and noise leader selection. Besides, we select a multiplicative group G with
order q generated by a generator g and a large prime number p to run DH.

At initialization process, all clients set parameters and sort their own feature based on values. Then,
split candidates can be defined, and data samples between two different candidates will be grouped
as a bucket. At the end, all entries are assigned initialized values to calculate the derivatives of loss
function. The detailed algorithm is described as follows.

Algorithm 1: Initialization
1 Set parameters: all clients agree on the maximum depth of a tree d, the number of trees (NT),

learning rate (η), regularization parameters (λ, γ), the threshold of Lsplit, ε, δ, p, g, selection
portion (p) and hash function

2 for c ∈ [1, n] do
3 for each feature j owned by c do
4 sort(X(c)

j)
5 define buckets: Bjz
6 end
7 set initialized values: ŷi(c)

8 end

After initialization, all clients can invoke Algorithm 2 to train model collaboratively. The inputs
are from feature space consisting of features X(c)

j and labels y(c)
i distributed on different clients,

respectively; while the output is a trained XGBoost model that can be used for prediction. Generally,
trees are built one by one. And we see from line 4-10 in Algorithm 2 that each client can compute
gradients and hessians at beginning of a new tree construction.

Following that, clients are to split current node. Note that XGBoost training in DL-VFL requires
each client to calculate G and H . If the labels in some buckets are incomplete, the corresponding

17

Under review as a conference paper at ICLR 2022

gradients and hessians cannot be computed. Thus, each client should first broadcast missing data
index setmID (see line 15-17 in Algorithm 2). Based on the predefined bucketBjz ,mID can be de-
fined if labels in Bjz are not held by clients. In each broadcast, a client sending messages is regarded

as a source client. Then others send the corresponding g(c
′
)

i and h(c
′
)

i back to the source client to
computeLsplit through Algorithm 3-5 depicted in Appendix D.2. After finding a maximum impurity
Lcsplit max, the current node will be split to “left” and “right” nodes if Lcsplit max>threshold Lsplit,
in which the value of the split candidate is own by c. In node splitting, clients should set a given

Algorithm 2: Protocol overview

1 Input: {X(c)
j | j ∈ f, c ∈ |C|}: features, {y(c)

i | i ∈ m, c ∈ |C|}: labels
2 Output: XGBoost model
3 Building trees:
4 for nt ∈ [1, NT] do
5 for c ∈ [1, n] do
6 for each data entry i owned by c do
7 g

(c)
i ← ∂ŷi(c)Loss(ŷi

(c), y
(c)
i)

8 h
(c)
i ← ∂2

ŷi(c)
Loss(ŷi

(c), y
(c)
i)

9 end
10 end
11 for each node in the current tree do
12 while current depth <d do
13 for c ∈ [1, n] do
14 for each feature j owned by c do
15 for each Bjz owned by c do
16 BroadcastmID = {i | yi /∈ Yc}
17 end
18 aggregate G, H by Algorithm 3-5
19 compute Lsplit according to Eq.(4)
20 end
21 find the maximum L

(c)
split and broadcast

22 end
23 L

(c)
split max ← max({L(c)

split | c ∈ [1, n]})
24 if L(c)

split max ≤ threshold Lsplit then
25 set current node as leaf node
26 c computes w and broadcast
27 Break
28 else
29 c splits current node to left node and right node, and broadcasts data index of

them.
30 end
31 end
32 set remaining nodes as leaf nodes
33 c computes w and broadcast
34 clients participating in calculation of w: update ŷi(c)

35 end
36 end

node as ”leaf” if current depth reaches the predefined maximum depth or the maximum Lsplit is less
than the predefined threshold of Lsplit (see line 12, 24-32 in Algorithm 2). The derivation of leaf
value is followed by Eq. 5 where G and H are intaken. Since a leaf node is either “left” or “right”
split by one of the clients in C from its parent node, this client knows G and H and leaf value can be
derived. Finally, this leaf value will be broadcast, and clients who own the corresponding g(c)

i and
h

(c)
i can use it to update predictions. The details for the above process are shown in Algorithm 2.

18

Under review as a conference paper at ICLR 2022

D.2 SECURE AGGREGATION WITH GLOBAL DIFFERENTIAL PRIVACY

In line 15-19 of Algorithm 2, source client is able to compute Lsplit from the requested missing data
indexes and the aggregation of received messages. To avoid that inference and differential attacks
are conducted on labels by source client and outside adversaries, we propose a privacy-preserving
approach, shown in Algorithm 3-5, to “twist” the DH key exchange, noise leader selection and
secure aggregation together. This method represents a viable alternative to train XGBoost securely
in DL-VFL without demanding excessive computational resources and affecting model accuracy.

To generate the secure-but-can-be-cancelled-out maskings, we adopt DH here. In Algorithm 3, all
clients randomly select numbers as their secret keys and generate the corresponding public keys. For
any two clients in the set C, they will exchange public key and compute the corresponding shared
keys. For simplicity, we do not describe the signature scheme for DH. We assume DH is conducted
on authenticated channels, which means the man-in-the-middle attack (Khader & Lai (2015)) should
be invalid here.

Algorithm 3: Diffie-Hellman key exchange
1 for c ∈ [1, n] do
2 skc ← Z∗p
3 end
4 for c ∈ [1, n] do
5 pkc = gskc mod p
6 for c

′ ∈ [1, n] ∧ c′ 6= c do
7 Sc,c′ = pk

sk
c
′

c mod p
8 end
9 end

If the shared keys are used as maskings directly, our system is not robust for clients collusion unless
the amount of communication has been sacrificed as a cost to update maskings per round. But
the communication complexity is exponentially increased with the number of clients for a single
node splitting. Considering the structure of trees, the overall communication complexity will be
O(2d ·NT · n2), which may not scale well in practical applications.

To tackle this issue, we use KDF to update maskings per round automatically. Specifically, in line
24-25 of Algorithm 5, shared keys are taken as main keys. 0 and 1 are salt values for gradients and
hessians, respectively. Since query in each round varies, the generated maskings should be dynamic
accordingly. Besides, the sign of maskings is determined by the indexes of clients. In this way, we
only need to use DH once, and the communication complexity is independent with tree structure.

To enable FEVERLESS to hold against differential attack, we use GDP approach allowing the cho-
sen one to inject a global noise to aggregated values per round. The approach is quite subtle. If the
noise leader is selected by source client, the system will be vulnerable to the collusion. Moreover, a
client could be easily identified as a target if we choose it in advance, e.g., selecting a list of leaders
before the training. To avoid these issues and limit the probability of collusion to the greatest extent,
we use VRF to iteratively select the leader (see Algorithm 4) to securely inject a global noise. The
input of VRF includes mIDs and a fresh random number r (line 4 in Algorithm 4), so that this
client will not be predicted and set beforehand - reducing its chance to be corrupted in advance by
outsiders and the source client.

All clients can broadcast their scores and then the one who holds the “max value” will become
the leader. Then the leader re-generates a selection score as score threshold (selecthreshold) and
sends it to the rest of the clients. (line 2-6 in Algorithm 5). The clients send the masked noise
back to the leader if the re-generated score is larger than the threshold (line 7-13 in Algorithm
5). Subsequently, the leader will select k̂ clients, notify them and aggregate these masked noise
to generate a global noise with a random number. In this context, even these selected clients are
colluded (note at least one is not) with noise leader and source client, there is still a noise that cannot
be recovered, safeguarding the training differentially private. Note since the noise is masked by the
random number, the source client (even colluding with the leader) cannot recover the “pure” global

19

Under review as a conference paper at ICLR 2022

Algorithm 4: Noise leader selection
1 count = 1
2 for each time run this algorithm do
3 for c ∈ [1, n] ∧ c 6= source client do
4 selecc ← H(SIGNskc(count,mIDs,r))
5 Broadcast
6 end
7 selecmaxc ← max({selecc | c ∈ [1, n]})
8 set c as noise leader
9 count+=1

10 end

noise to conduct differential attack. And each client adds a noise with a probability p. If k out of
k̂ are non-colluded, the probability of collusion is (1 − k

n)h. To cancel out the randomness, the
selected clients will subtract the same randomness from masked messages (line 28-31 in Algorithm
5).

Considering that the source client may procrastinate the leader selection and noise injection pro-
cedure so as to buy some time for its colluded clients to prepare sufficient large VRF values to
participate into the competition of selection and adding noise. One may apply a heartbeat proto-
col (Nikoletseas & Rolim (2011)) to prevent that a new selected leader intentionally halts the noise
adding stage for a long period, say 1 min. If there is no response from the leader after for a short
while, a new leader will be randomly selected. Furthermore, the heartbeat may help to solve the
problem that the leader accidentally drops from the network. We note that the heartbeat protocol is
not our main focus in this paper.

Before replying to source client, we have that the clients with labels put maskings to gradients and
hessians, and for those without labels, they just generate and later send out maskings, in which
the noise leader (i.e. one of the maskings generators) injects the noise. In this way, the maskings,
guaranteeing perfect secrecy of the messages, will be cancelled out after the values aggregation, and
the differentially private noise will solidate indistinguishability of individual data entry.

Note that in line 24-34 of Algorithm 5, the maskings and masked values are in the range [0, N − 1].
And N should be sufficiently large to avoid overflow, and the summation of gradients and hessians
should not exceed N .

20

Under review as a conference paper at ICLR 2022

Algorithm 5: Secure aggregation with global differential privacy
1 Noise injection:
2 if c = leader then
3 selecthresholdc ← H(SIGNskc(count,mIDs,r))
4 Broadcast
5 count+=1
6 end
7 for c ∈ [1, n] ∧ c 6= source client ∧ c 6= noise leader do
8 selecc ← H(SIGNskc(count,mIDs,r))
9 if selecc > selecthresholdc then

10 send ñ(c)
g = N(0,∆2

gσ
2) + r

(c)
g and ñ(c)

h = N(0,∆2
hσ

2) + r
(c)
h to noise leader

11 count+=1
12 end
13 end
14 if c = leader then

15 c selects k clients from clients of sending noise, k = d|{ñ(c)
g }| · pe

16 if k < 1 then
17 redo noise injection
18 end
19 notify k clients
20 noise aggregation: Ñg = k · N(0,∆2

gσ
2) +Rg , Ñh = k · N(0,∆2

hσ
2) +Rh

21 end
22 Secure aggregation:
23 for c ∈ [1, n] do

24 mask
(c)
g ←

(∑
c 6=c′

∣∣∣c−c′ ∣∣∣
c−c′ ·

(
H(Sc,c′‖0‖query) mod N

))
mod N

25 mask
(c)
h ←

(∑
c 6=c′

∣∣∣c−c′ ∣∣∣
c−c′ ·

(
H(Sc,c′‖1‖query) mod N

))
mod N

26 G(c) =
∑
i∈mIDs g

(c)
i + mask

(c)
g mod N

27 H(c) =
∑
i∈mIDs h

(c)
i + mask

(c)
h mod N

28 if selecc > selecthresholdc ∧ received notification then
29 G(c) = G(c) − r(c)

g mod N

30 H(c) = H(c) − r(c)
h mod N

31 end
32 if c = leader then
33 G(c) = G(c) + Ñg mod N

34 H(c) = H(c) + Ñh mod N
35 end
36 send {G(c), H(c)} to source client
37 end

21

Under review as a conference paper at ICLR 2022

E SECURITY ANALYSIS

We investigate the security and privacy properties of our protocol. First, we define the security
model of our setting and the properties. Then, we prove that our protocol satisfies these properties.

Security Model. Our security is based on the random oracle model (ROM) (Smart (2016)) where
the hash function outputs uniformly random value for a new query and the same value for a previ-
ously answered query.

Adversarial Model. Our protocol is designed for semi-honest security model (Smart (2016))
where all parties follow the protocol while trying to obtain information regarding other parties’
inputs. We assume that the source client can collude with other clients, but the size of colluding
clients is no more than n− 2.

E.1 PRIVACY GOALS

Our privacy goals can be summarized as:
• Label privacy: No adversary controlling at most n−2 clients can learn who is the owner of a label
among the honest parties.
• Data privacy: No adversary controlling at most n − 2 clients can extract the data of an honest
party.

We first investigate the case where the source client is not part of the adversary. In the following
theorem, we show that there exists a simulator Sim that simulates the joint view of clients in A by
only using the inputs belonging to them. This implies that A does not learn more than what they
have.
Theorem E.1 (A not including source client). There exists a PPT simulator Sim for all |C| := n ≥
3, |X | := f ≥ n, |Y| := m ≥ 1,

⋃
c∈C X (c),

⋃
c∈C Y(c) and A ⊂ C such that |A| ≤ n − 2, the

output of Sim is indistinguishable from the output of REAL:

REAL
C,X ,Y
A (X C ,YC) ≡ SimC,X ,YA (XA,YA) (8)

Proof. In order to prove that simulator Sim can simulate the outputs of the honest parties in H :=
C − A, we show that the distribution of the inputs belonging to the rest of the network cannot be
distinguished from a randomly generated data. In this way, the simulator can use any dummy values
as inputs of the honest parties to simulate their outputs.

We will simulate the view of the A regarding the messages broadcast by the honest clients. A client
c, first makes a key exchange with others, then after some internal operations, outputs G(c) and
H(c) values. Let us investigate G(c) value, which is in the form of

∑
i∈mIDs g

(c)
i + mask

(c)
g , except

for the noise leader who has additional noise of N(0, (∆gσ)2). The mask values are computed as∑
c 6=c′
|c−c′|
c−c′ · H(Sc,c′‖0‖query) mod N .

Here, we will use a hybrid model where we modify the protocol in several steps, and for each
step, we will show that modifications are indistinguishable for the adversary A. In the end, we will
achieve a hybrid that can be simulated by Sim.

Hybrid1: The first hybrid directly follows the protocol. The distribution of the variables and the
view of A is the same as REAL.

Hybrid2: In the second hybrid, we replace the agreed keys between honest clients Sc,c′ for all
c, c′ ∈ H with random values rc,c′ ∈ G where G is the group of key exchange protocol G. In the
original protocol, Diffie-Hellman key exchange is used. The replacement is indistinguishable for the
adversary because of the decision Diffie-Hellman assumption given in Definition 4.

Also, note that these random values are only available to parties involved in the key exchange unless
they are corrupted by the adversary.

Hybrid3: In this hybrid, we replace the mask values of honest clients mask
(c)
g for all c ∈ H

with random values R(c). Note that with the replacement in the previous step, the mask values are

22

Under review as a conference paper at ICLR 2022

computed via
∑
c6=c′
|c−c′|
c−c′ · H(rc,c′‖0‖query) mod N where rc,c′ ∈ ZN is a random value that

is unknown to the adversary (if both c and c′ are honest). Because of the random oracle model, the
output of the hash function will be a uniformly random value that is also unknown to the adversary.
Since there are at most n − 2 clients in A , we have at least two honest clients c and c′ for which
the adversary cannot know the uniformly chosen output of H(rc,c′‖0‖query). Then, the modular
summation of these outputs includes at least one value that the adversary does not know and is
uniformly random. Thus, it cannot be distinguishable from a random value R(c).

Hybrid4: In this hybrid, we replace gradients of honest clients g(c)
i for all c ∈ H with ’0’s. This is

done by replacing mask values with R(c) := R(c) −
∑
i∈mIDs g

(c)
i mod N to keep the G(c) value

the same. From the adversary’s perspective, sinceR(c) values are unknown and uniformly randomly
chosen, the replacement is not distinguishable.

In Hybrid4, we replace the gradients of honest parties with ’0’s, and the mask values are replaced
by R(c) which is unknown to the adversary and chosen from a uniform distribution. Thus, a simula-
tor Sim can simulate the outputs of honest parties G(c) without necessarily knowing their inputs.

The same can be analyzed for hessian value, H(c). Since the masking values of G(c) and H(c) are
different and the hash function is modeled as a random oracle, the randomness in both parts of them
are independent of each other and indistinguishable by the adversary A. Overall, the simulator Sim
can simulate our protocol.

Thus, the view of the A can be simulated by replacing the inputs of the honest parties with zeros.
Thus, the adversary does not learn any information on the inputs of the honest parties.

Now, we analyze the case where the source client is part of the A. We show that there exists a
simulator Sim that simulates the joint view of clients in A by only using the inputs belonging to
them and the summations G and H . This implies that A does not learn more than what they have
and the summation.
Theorem E.2 (A including source client). There exists a PPT simulator Sim for all |C| := n ≥ 3,
|X | := f ≥ n, |Y| := m ≥ 1,

⋃
c∈C X (c),

⋃
c∈C Y(c) and A ⊂ C such that |A| ≤ n− 2, the output

of Sim is indistinguishable from the output of REAL:

REAL
C,X ,Y
A (X C ,YC) ≡ SimC,X ,YA (G,H,XA,YA) (9)

where
G =

∑
i∈mIDs

g
(c)
i + N(0, (∆gσ)2), H =

∑
i∈mIDs

h
(c)
i + N(0, (∆hσ)2).

Proof. Here, we again show that Sim can simulate the outputs of the honest parties in H without
knowing their inputs. Unlike Theorem E.1, Sim is also given the summations G and H because the
adversary includes the source client.

We can use the same hybrids with Theorem E.1 until Hybrid4, this is because that the inputs of
the honest clients are not required yet. We need to update Hybrid4 such that it takes into account
the summation. Here are the hybrids for the A with source client:

Hybrid1,Hybrid2,Hybrid3: The same with Theorem E.1.

Hybrid4: In this hybrid, we replace gradients of honest clients g(c)
i for all c ∈ H with ’0’s, except

one c′ which will be equal to
∑
i∈mIDs g

(H)
i mod N = G −

∑
i∈mIDs g

(A)
i mod N . The honest

client c′ is randomly chosen among H. From the adversary’s perspective, since R(c) are unknown
uniformly random chosen values, the replacement is not distinguishable.

Overall, the view of theA can be simulated by replacing the inputs of the honest parties with zeros,
except one with

∑
i∈mIDs g

(H)
i mod N . Thus, A does not learn any information from the honest

clients, except the summation
∑
i∈mIDs g

(H)
i mod N .

With Theorem E.2, we show that even the adversaryAwith source client cannot know more than the
summation of gradient and hessian values, G and H . The proof is done via Sim without requiring

23

Under review as a conference paper at ICLR 2022

individual data of the honest clients except for the summation. This implies that the adversary cannot
distinguish which party provided which gradient or hessian values. Moreover, the parties who do
not have any of the requested g or h values will send ’0’ together with the mask (and noise for the
leader). This implies that we provide label privacy. Meaning that the adversary cannot distinguish
which label’s g or h values are coming from which honest client.

In the case when the adversary includes the source client, the summation of gradient and hessian
values can be known to the adversary. In the following theorem, we show that these summations do
not leak any individual data due to differential privacy.

Theorem E.3 (Privacy of the Inputs). No A ⊂ C such that |A| ≤ n− 2 can retrieve the individual
values of the honest clients with probability

1−
k̂∑
i=0

CihC
k̂−i
n−2−h(Pt)

k̂(1− Pt)(n−k̂)
Ck
k̂−i
Ck
k̂

,

where h and k̂ refer to the number of non-colluded clients and the number of clients who have se-
lection score larger than threshold. Pt is the probability of selection score larger than the threshold.

Proof. If the adversary does not include the source client, then following the previous theorems, the
adversary cannot know any of the inputs belonging to the honest parties. Otherwise, it knows the
summations G and H . Since we apply differential privacy (Dwork et al. (2006a;b)), the summation
cannot leak information regarding the inputs. According to Definition 5, we add differentially private
noise guaranteeing the security of individual data points while summation can be calculated.

Proof of probability. Note noise leader selects k clients from n clients (rather than itself and the
source client) to add noise. Suppose that there are h non-colluded clients out of n − 2 clients, the
number of clients whose selection scores are larger than the threshold is k̂. The number of events is

C k̂n−2−h + C1
hC

k̂−1
n−2−h + · · ·+ C k̂hC

0
n−2−h,

in which the events are that {“there are k̂ colluded clients out of k̂ clients and 0 non-colluded
client”,· · · ,“there are 0 colluded client out of k̂ clients and k̂ non-colluded clients”}. Therefore,

P (Ei) = Cih(Pt)
i(1− Pt)h−i · C k̂−in−2−h(Pt)

k̂−i(1− Pt)(n−h−k̂+i)

= CihC
k̂−i
n−2−h(Pt)

k̂(1− Pt)(n−k̂),

where Pt is the probability that the selection score is larger than the threshold, and Ei is i-th event.

Then, the probability that noise leader selects k colluded clients from k̂ clients is P0 =
Ck

k̂−i

Ck
k̂

. At the

end, the probability of all aggregated noise coming from colluded clients is

k̂∑
i=0

P (Ei) · P0 =

k̂∑
i=0

Cih(Pt)
i(1− Pt)h−i · C k̂−in−2−h(Pt)

k̂−i(1− Pt)(n−h−k̂+i)

=

k̂∑
i=0

CihC
k̂−i
n−2−h(Pt)

k̂(1− Pt)(n−k̂)
Ck
k̂−i
Ck
k̂

.

Conversely, the probability of at least one non-colluded client participating in noise injection is

1−
k̂∑
i=0

CihC
k̂−i
n−2−h(Pt)

k̂(1− Pt)(n−k̂)
Ck
k̂−i
Ck
k̂

.

Note that because of the secure aggregation, the adversary cannot learn anything but the summation.
Thus, our protocol does not require the addition of noise to each data. Instead, we only require the
noise leader to add the noise, which prevents the retrieval of the individual data from the summation.

24

Under review as a conference paper at ICLR 2022

In Theorems E.1 and E.2, we show that A cannot distinguish the individual values from randomly
chosen values and can only know the summation if the source is part of the adversary. In Theo-
rem E.3, we show that A cannot extract the individual values of the users from the summation due
to the added noise and differential privacy. Thus, our protocol satisfies data privacy. In other words,
the adversary cannot learn the data point of an honest client.

It is important to note that since the noise leader is selected via VRF, no adversary can guess if any
honest party will be the leader in the upcoming round beforehand. This provides additional security
regarding the manipulation of the noise leader.

F DISCUSSION

To reduce the negative impact brought by noise, according to infinity divisibility of Gaussian distri-
bution (Patel & Read (1996)), one may split global noise (N(0, (∆σ)2)) into n parts (N(0, (∆σ)2

n)).
But a drawback is that the privacy budget will increase linearly as an increasing number of colluded
clients appear. For example, if GDP achieves ε-DP , in the worst case where there are n−1 colluded
clients, the privacy budget will raise to n× ε.
Hiding labels distribution. In the semi-honest setting, if the source client sends the missing in-
dexes consistently, adversaries may figure out which labels are distributed (on the source clients) by
statistical analysis. We show that this issue can be tackled. In the proposed protocol, source client
broadcasts the missing data indexes mID (line 16 of Algorithm 2). Under the semi-honest setting,
if source client sends missing indexes consistently, the adversaries will figure out which labels are
distributed on source clients by statistic analysis. We note that FEVERLESS can be expanded to
avoid this type of leakage by yielding extra communication overheads. Specifically, during broad-
casting period, source client should send indexes of one bucket instead of mID, and the rest of
protocol remains constant. In this way, others cannot distinguish the distribution of labels because
all clients share the same index set I. If we assume labels are uniformly distributed on each client,
the extra overheads are restricted to |I|/|C|. This cost is clearly noticeable in those datasets with a
large number of data points.

Other security tools. The masking scheme realizing secure aggregation may be replaced with an
MPC (Damgård et al. (2012); Wu et al. (2020)) or additively homomorphic encryption (Paillier
(1999)). However, the major defect of these tools is that they entail labor-intensive calculation with
regard to encryption, which may not scale well in large-scale datasets. Due to this concern, we
only put light-weight computation in FEVERLESE and further, we enhance the security to “perfect
secrecy”.

In our design, the selection of noise leader is captured by VRF. We note that there may be other
options to fulfil the goal. For example, Proof of Elapsed Time (PoET) (Chen et al. (2017); Corso
(2019)) is an interesting and effective mechanism which is used to maintain the consensus of dis-
tributed peers in Hyperledger Sawtooth. It provides a fair and trusted lottery strategy to select a block
winner (per consensus round). Sharing the same philosophy with the VRF, it may be deployed in
our protocol to yield leader. And building a more efficient noise leader selection algorithm could be
an interesting open problem.

25

Under review as a conference paper at ICLR 2022

G MORE DETAILS ON EXPERIMENT SETUP

All the experiments are implemented in Python, and conducted on a cluster of machines with In-
tel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, with 15GB RAM in a local area network.

Intuitively, the smaller ε we set, more secure FEVERLESS will be; but larger noise will be added.
We note the above statement can be seen from the experimental results. As for the cryptographic
tools, we set the key size of DH and Paillier as 160 bits and 1024 bits respectively(to save some
time in running the experiments). This size can reach a symmetric security level with 80 bits key
length. Note one may indeed increase the key size to obtain stronger security 7, but this will bring
a longer experiment time as a side effect. We use 1024-bit MODP Group with 160-bit Prime Order
Subgroup from RFC 5114 8 for DH Key exchange. SHAKE-256 (Dworkin (2015)), a member of
SHA3 (Dworkin (2015)) family, is used as a hash function in leader selection and secure aggregation.

•Credit Card: It is a commercial dataset used for predicting whether costumers will make payment
on time. It provides 30,000 samples, and each sample composes of 23 features.
• Bank marketing: Consisting with 45,211 data points and 17 features, the goal of bank marketing
is to predict if a client will subscribe a term deposit.
• Banknote authentication: Offering 1,372 data points and 4 features, this dataset is used to clas-
sify authenticated and unauthenticated banknotes. Note that different from traditional tabular data,
features in the dataset are extracted from images that are taken from genuine and forged banknote-
like specimens through Wavelet Transform (Antonini et al. (1992)). Using the small-scale dataset,
the trained model may not be robust for noise, which brings negative impact on accuracy.

H ADDITIONAL EXPERIMENTS AND FIGURES

We present additional experiments, and all the experimental settings follow those defined in Section
4.1. In each presented figure, we show the results executed on the datesets Credit card (left), Bank
Marketing (middle) and Banknote Authentication (right). Note that the comparison among FEVER-
LESS, LDP, and AHE requires a condition that #client=2; when #client=1, we can only show the
results of the baseline. And the average performance of FEVERLESS in these figures is highlighted
as the red dotted line.

Via the experiments, we elaborate that how the accuracy varies with the increasing number of client
among the baseline, FEVERLESS and LDP, w.r.t. different tree structures and ε. Figure 7-18 are
presented for the best case where only a non-colluded client adds the noise. And other cases are
demonstrated in Figure 19-26 with the selection scores: 1/2 and 1/3. Beyond those, we also add the
comparison results for AHE in Table 2-4 with ε = 2.

In general, without any added noise, the baseline can reach the highest accuracy and meanwhile, the
accuracy remains stable as the client number increases. The performance of FEVERLESS is right
behind that of baseline but still keeps stable. Note there are slight fluctuations in some figures (e.g.
Figure 10, 12 and 14), especially for the case where complex tree structure and small ε are used.
The LDP approach does harm accuracy, which can be seen from the continuously and significantly
falling bars in the figures. Naturally, when more clients engage into the training, more noise should
be added into the model. This makes LDP’s performance far lower than the red line.

Note that banknote dataset is composed of 4 features. In the VFL setting, every client should have at
least one feature. Therefore, we can only allow up to 4 clients to participate in the training. Beside,
FEVERLESS does not perform well in banknote dataset. This is so because the model is trained by
a small number of samples, so that the robustness is seriously affected by noise.

H.1 BEST CASE: ACCURACY ON CLIENT NUMBER

7Note a stronger security level will not affect the training accuracy.
8https://tools.ietf.org/html/rfc5114

26

Under review as a conference paper at ICLR 2022

Figure 7: Comparison of accuracy in depth:10, the number of trees:10, epsilon:10.

Figure 8: Comparison of accuracy in depth:10, the number of trees:10, epsilon:5.

Figure 9: Comparison of accuracy in depth:10, the number of trees:10, epsilon:2.

Figure 10: Comparison of accuracy in depth:10, the number of trees:10, epsilon:1.

Figure 11: Comparison of accuracy in depth:8, the number of trees:8, epsilon:10.

27

Under review as a conference paper at ICLR 2022

Figure 12: Comparison of accuracy in depth:8, the number of trees:8, epsilon:5.

Figure 13: Comparison of accuracy in depth:8, the number of trees:8, epsilon:2.

Figure 14: Comparison of accuracy in depth:8, the number of trees:8, epsilon:1.

Figure 15: Comparison of accuracy in depth:6, the number of trees:6, epsilon:10.

Figure 16: Comparison of accuracy in depth:6, the number of trees:6, epsilon:5.

28

Under review as a conference paper at ICLR 2022

Figure 17: Comparison of accuracy in depth:6, the number of trees:6, epsilon:2.

Figure 18: Comparison of accuracy in depth:6, the number of trees:6, epsilon:1.

Baseline
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8186 0.82 0.8175 0.8173 0.8111
Depth:4 0.8219 0.8197 0.8203 0.8226 0.8215
Depth:6 0.8213 0.8204 0.8195 0.8192 0.8206
Depth:8 0.8181 0.8203 0.821 0.8163 0.816
Depth:10 0.8126 0.8155 0.816 0.8171 0.8191

FEVERLESS
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8228 0.8185 0.8138 0.8146 0.8119
Depth:4 0.8209 0.8183 0.8201 0.8213 0.817
Depth:6 0.8167 0.8155 0.8126 0.8022 0.8009
Depth:8 0.8044 0.7929 0.7795 0.7625 0.752
Depth:10 0.7726 0.7547 0.7194 0.6734 0.6821

AHE
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8185 0.8185 0.8225 0.8208 0.817
Depth:4 0.8295 0.8195 0.8145 0.8187 0.8178
Depth:6 0.8195 0.8185 0.814 0.816 0.8053
Depth:8 0.807 0.7958 0.7983 0.7748 0.7668
Depth:10 0.7457 0.7168 0.719 0.7302 0.6825

LDP
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8195 0.8167 0.8187 0.8146 0.8143
Depth:4 0.819 0.8176 0.8173 0.8154 0.8107
Depth:6 0.8119 0.8067 0.7942 0.7842 0.7745
Depth:8 0.7752 0.744 0.7259 0.7058 0.6814
Depth:10 0.6843 0.6333 0.6022 0.5772 0.5713

Table 2: Comparison of accuracy among Baseline, LDP, FEVERLESS and AHE with Credit Card.

29

Under review as a conference paper at ICLR 2022

Baseline
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8887 0.893 0.8926 0.8944 0.8962
Depth:4 0.9125 0.9101 0.9136 0.9111 0.9111
Depth:6 0.9168 0.9143 0.9132 0.915 0 0.9154
Depth:8 0.9118 0.9182 0.9175 0.9145 0.9172
Depth:10 0.9117 0.9115 0.9108 0.9125 0.9152

FEVERLESS
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8878 0.8908 0.8927 0.8938 0.8972
Depth:4 0.9051 0.9042 0.905 0.9079 0.90588
Depth:6 0.9029 0.8985 0.9032 0.8974 0.8914
Depth:8 0.893 0.8869 0.8666 0.8699 0.8509
Depth:10 0.8424 0.852 0.81 0.8122 0.7654

AHE
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.887 0.8908 0.8929 0.8962 0.8931
Depth:4 0.911 0.9071 0.9026 0.9126 0.9125
Depth:6 0.9025 0.8994 0.8979 0.8995 0.9012
Depth:8 0.8864 0.8885 0.8723 0.8687 0.8541
Depth:10 0.8503 0.8479 0.8229 0.8148 0.761

LDP
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.889 0.8923 0.892 0.8939 0.8924
Depth:4 0.9048 0.9054 0.9047 0.904 0.9027
Depth:6 0.8983 0.8916 0.8865 0.8816 0.8769
Depth:8 0.8697 0.8523 0.8346 0.823 0.8042
Depth:10 0.7951 0.7561 0.7251 0.6891 0.6693

Table 3: Comparison of accuracy among Baseline, LDP, FEVERLESS and AHE with Bank Mar-
keting.

30

Under review as a conference paper at ICLR 2022

Baseline
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.84364 0.8444 0.8785 0.8858 0.9229
Depth:4 0.9455 0.9513 0.9607 0.9651 0.9738
Depth:6 0.9629 0.9783 0.9869 0.9935 0.992
Depth:8 0.9818 0.9855 0.9847 0.9913 0.9884
Depth:10 0.9818 0.9876 0.9833 0.992 0.9884

FEVERLESS
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8465 0.8604 0.8655 0.864 0.8553
Depth:4 0.8487 0.8378 0.7847 0.8022 0.8058
Depth:6 0.7033 0.6676 0.6378 0.5964 0.5905
Depth:8 0.632 0.5738 0.5804 0.5425 0.5084
Depth:10 0.5193 0.5396 0.5084 0.4676 0.4865

AHE
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8473 0.8625 0.8662 0.8716 0.859
Depth:4 0.9033 0.8273 0.8058 0.7971 0.7455
Depth:6 0.7251 0.6545 0.6629 0.6436 0.5778
Depth:8 0.6022 0.5611 0.5258 0.4924 0.5255
Depth:10 0.4945 0.4953 0.5015 0.4931 0.5022

LDP
Accuracy #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.8415 0.8419 0.841 0.8476 0.8439
Depth:4 0.8536 0.8204 0.7634 0.7336 0.729
Depth:6 0.7442 0.6606 0.5743 0.5404 0.5343
Depth:8 0.5387 0.5406 0.5549 0.5375 0.5127
Depth:10 0.4848 0.4924 0.4926 0.479 0.5072

Table 4: Comparison of accuracy among Baseline, LDP, FEVERLESS and AHE with Banknote
Authentication.

31

Under review as a conference paper at ICLR 2022

H.2 OTHER CASES: ACCURACY ON CLIENT NUMBER

Figure 19: Comparison of accuracy in depth:8, the number of trees:8, epsilon:5, selection score:1/2.

Figure 20: Comparison of accuracy in depth:8, the number of trees:8, epsilon:2, selection score:1/2.

Figure 21: Comparison of accuracy in depth:8, the number of trees:8, epsilon:5, selection score:1/3.

Figure 22: Comparison of accuracy in depth:8, the number of trees:8, epsilon:2, selection score:1/3.

32

Under review as a conference paper at ICLR 2022

Figure 23: Comparison of accuracy in depth:6, the number of trees:6, epsilon:5, selection score:1/2.

Figure 24: Comparison of accuracy in depth:6, the number of trees:6, epsilon:2, selection score:1/2.

Figure 25: Comparison of accuracy in depth:6, the number of trees:6, epsilon:5, selection score:1/3.

Figure 26: Comparison of accuracy in depth:6, the number of trees:6, epsilon:2, selection score:1/3.

33

Under review as a conference paper at ICLR 2022

H.3 ADDITIONAL RESULTS ON ACCURACY FOR BANKNOTE AUTHENTICATION

Figure 27: Comparison of accuracy in epsilon:30. Left:depth:6, the number of trees:6. Mid-
dle:depth:8, the number of trees:8. Right:depth:10, the number of trees:10

Figure 28: Comparison of accuracy in epsilon:50. Left:depth:6, the number of trees:6. Mid-
dle:depth:8, the number of trees:8. Right:depth:10, the number of trees:10

34

Under review as a conference paper at ICLR 2022

H.4 ADDITIONAL RESULTS ON TIME

In Figure 29-33, we show the time performance based on various numbers of client, tree and depth.
Besides, we present the concrete results in Table 5-7. Table 8 also shows more specific runtime of
tree construction in #tree=4 and depth=4 among baseline, FEVERLESS, LDP and AHE. In gen-
eral, the runtime of FEVERLESS is slightly higher that that of the baseline. Compared to AHE,
FEVERLESS significantly reduces training time while preserving privacy. This advantage is clearly
seen from the cases using complex tree structures. Note that AHE can be replaced by other more
complex cartographic solutions, such as secure MPC, which can also maintain data/label privacy.
But the MPC-based solutions will consume more runtime.

Figure 29: Comparison of runtime in depth:10, the number of trees:10.

Figure 30: Comparison of runtime in depth:8, the number of trees:8.

Figure 31: Comparison of runtime in depth:6, the number of trees:6.

35

Under review as a conference paper at ICLR 2022

Figure 32: Comparison of runtime in depth:4, the number of trees:4.

Figure 33: Comparison of runtime in depth:2, the number of trees:2.

Baseline
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 13 28 41 56 66
Depth:4 51 109 164 211 259
Depth:6 126 239 332 404 527
Depth:8 197 378 574 710 868
Depth:10 312 591 830 1144 1484

FEVERLESS
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 16 33 49 65 81
Depth:4 63 124 189 244 303
Depth:6 123 239 350 454 564
Depth:8 258 463 519 687 798
Depth:10 308 518 813 1129 1584

AHE
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 19 38 58 77 96
Depth:4 84 168 252 335 459
Depth:6 303 636 954 1143 1360
Depth:8 775 1547 2366 3158 3873
Depth:10 1685 3420 5320 7360 9268

Table 5: Comparison of runtime among Baseline, LDP, FEVERLESS and AHE with Credit Card.

36

Under review as a conference paper at ICLR 2022

Baseline
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 9 17 27 37 47
Depth:4 36 76 131 168 222
Depth:6 77 148 247 335 421
Depth:8 164 285 402 575 748
Depth:10 299 576 844 1007 1093

FEVERLESS
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 9 18 27 37 46
Depth:4 33 66 98 151 161
Depth:6 75 150 215 251 316
Depth:8 160 320 453 593 723
Depth:10 294 548 785 872 1043

AHE
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 11 22 33 44 56
Depth:4 43 87 130 174 216
Depth:6 147 293 437 600 674
Depth:8 413 840 1240 1628 1773
Depth:10 808 1613 2379 2955 3481

Table 6: Comparison of runtime among Baseline, LDP, FEVERLESS and AHE with Bank Market-
ing.

Baseline
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.36 0.7 0.88 1.33 1.48
Depth:4 1.13 2.33 3.84 3.94 4.99
Depth:6 1.92 3.88 5.81 7.42 9.17
Depth:8 2.89 5.82 6.4 10.06 11.07
Depth:10 3.54 6.14 7.03 8.36 10.69

FEVERLESS
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 0.28 0.57 0.84 1.11 1.4
Depth:4 1.08 2.19 3.22 4.32 5.22
Depth:6 2.38 4.25 6.39 8.54 10.48
Depth:8 3.66 6.78 8.42 8.71 13.11
Depth:10 4.34 7.72 8.71 10.25 14.97

AHE
Time(s) #tree:2 #tree:4 #tree:6 #tree:8 #tree:10
Depth:2 1.23 2.45 3.72 4.9 6.18
Depth:4 5.75 11.76 17.8 23.85 29.55
Depth:6 14.15 29.11 44.11 59.44 76.75
Depth:8 22.29 41.68 65.28 82.45 101.17
Depth:10 21.12 46.45 64.58 82.85 102.3

Table 7: Comparison of runtime among Baseline, LDP, FEVERLESS and AHE with Banknote
Authentication.

37

Under review as a conference paper at ICLR 2022

Baseline
Time(s) Credit Card Bank Marketing Banknote Authentication
Tree 1 Construction 29.98 17.96 0.483
Tree 2 Construction 28.32 17.94 0.477
Tree 3 Construction 26.34 17.96 0.473
Tree 4 Construction 25.09 17.09 0.449
Total 109.73 70.95 1.883

LDP
Time(s) Credit Card Bank Marketing Banknote Authentication
Tree 1 Construction 28.44 19.42 0.563
Tree 2 Construction 26.62 18.77 0.559
Tree 3 Construction 27.22 18.68 0.516
Tree 4 Construction 28.04 19.53 0.577
Total 110.32 75.53 2.216

FEVERLESS
Time(s) Credit Card Bank Marketing Banknote Authentication
Key exchange 0.006 0.006 0.006
Tree 1 Construction 31.77 18.43 0.763
Tree 2 Construction 28.95 18.54 0.623
Tree 3 Construction 27.38 19.51 0.651
Tree 4 Construction 27.29 19.05 0.67
Total 115.39 75.53 2.713

AHE
Time(s) Credit Card Bank Marketing Banknote Authentication
Encryption 9.03 6 2.37
Tree 1 Construction 51.62 25.65 3.91
Tree 2 Construction 51.03 26.2 3.84
Tree 3 Construction 52.17 25.78 3.93
Tree 4 Construction 53.55 25.01 3.92
Total 217.4 108.64 17.964

Table 8: Comparison of runtime among Baseline, LDP, FEVERLESS and AHE with Credit Card,
Bank Marketing and Banknote Authentication. #clients=4, #tree=4, depth=4.

38

Under review as a conference paper at ICLR 2022

H.5 RESULTS ON COMMUNICATION COST

In Figure 34-36, we demonstrate the communication cost based on the numbers of clients, tree and
depth. For the convenience of comparison, we set #clients=4, #tree=4 and depth=4 as default.
We use Table 9-11 to elaborate the concrete costs. To sum up, we see that the communication cost
of FEVERLESS is almost the same as those of the baseline and LDP. But as compared to AHE,
FEVERLESS significantly reduces costs while maintaining privacy.

Figure 34: Comparison of communication cost on the number of clients.

Figure 35: Comparison of communication cost on depth.

Figure 36: Comparison of communication cost on the number of trees.

39

Under review as a conference paper at ICLR 2022

Baseline
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 46318623.75 75988029.38 80983170 79199803.13 282489626.3
Key exchange 0 0 0 0 0
Noise leader selection 0 0 0 0 0
Sending noise 0 0 0 0 0
Sending messages 148824 131760 127480 130352 538416
XGBoost update 460444.375 227560.75 50247.25 209665.75 947918.125
Total 46927892.13 76347350.13 81160897.25 79539820.88 283975960.4

LDP
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 64407678.75 82033042.5 80595855 57890778.75 284927355
Key exchange 0 0 0 0 0
Noise leader selection 0 0 0 0 0
Sending noise 0 0 0 0 0
Sending noised messages 140792 127432 129544 142280 540048
XGBoost update 235180 15745.375 412955.5 284301.625 948182.5
Total 64783650.75 82176219.88 81138354.5 58317360.38 286415585.5

FEVERLESS
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 63060322.5 78762268.13 62603476.88 78498995.63 282925063.1
Key exchange 60 60 60 60 240
Noise leader selection 29092 26552 29272 26732 111648
Sending noise 9556 8788 9728 8920 36992
Sending masked messages 116400 106224 117112 106952 446688
XGBoost update 441000.875 53475.5 402234.625 50431.25 947142.25
Total 63656431.38 78957367.63 63161883.5 78692090.88 284467773.4

AHE
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 63476111.25 80963026.88 63239242.5 80651070 288329450.6
Key exchange 0 0 0 0 0
Noise leader selection 27040 25084 27408 25228 104760
Sending noise 8876 8420 9028 8512 34836
Sending encrypted messages 3462144 3211264 3508992 3229952 13412352
XGBoost update 40627.375 229334.75 563730.625 113990 947682.75
Total 67014798.63 84437129.63 67348401.13 84028752 302829081.4

Table 9: Comparison of communication cost among Baseline, LDP, FEVERLESS and AHE with
Credit Card.

40

Under review as a conference paper at ICLR 2022

Baseline
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 92296068 64006710 15700788 15439038 187442604
Key exchange 0 0 0 0 0
Noise leader selection 0 0 0 0 0
Sending noise 0 0 0 0 0
Sending messages 29880 44480 61456 61560 197376
XGBoost update 409814 479272 299368 335316 1523770
Total 92735762 64530462 16061612 15835914 189163750

LDP
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 41687712 47518512 53953062 44605836 187765122
Key exchange 0 0 0 0 0
Noise leader selection 0 0 0 0 0
Sending noise 0 0 0 0 0
Sending noised messages 53248 47688 46816 48760 196512
XGBoost update 826220 396448 245826 53278 1521772
Total 42567180 47962648 54245704 44707874 189483406

FEVERLESS
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 48943962 42453876 26117958 71374524 188890320
Key exchange 60 60 60 60 240
Noise leader selection 11720 11772 14136 9856 47484
Sending noise 3840 3968 4620 3080 15508
Sending masked messages 46904 47120 56560 39448 190032
XGBoost update 68820 334874 456742 661876 1522312
Total 49075306 42851670 26650076 72088844 190665896

AHE
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 41995818 40671666 61365564 42890796 186923844
Key exchange 0 0 0 0 0
Noise leader selection 12752 12008 10656 11732 47148
Sending noise 4148 3900 3580 4112 15740
Sending encrypted messages 1632768 1537792 1364992 1502464 6038016
XGBoost update 581494 301552 264726 374816 1522588
Total 44226980 42526918 63009518 44783920 194547336

Table 10: Comparison of communication cost among Baseline, LDP, FEVERLESS and AHE with
Bank Marketing.

41

Under review as a conference paper at ICLR 2022

Baseline
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 596475 626793.75 407826.375 606742.125 2237837.25
Key exchange 0 0 0 0 0
Noise leader selection 0 0 0 0 0
Sending noise 0 0 0 0 0
Sending messages 30400 29944 34504 31008 125856
XGBoost update 7496.75 128 22279.5 4403.75 34308
Total 634371.75 656865.75 464609.875 642153.875 2398001.25

LDP
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 441115.125 610937.25 601907.625 619855.5 2273815.5
Key exchange 0 0 0 0 0
Noise leader selection 0 0 0 0 0
Sending noise 0 0 0 0 0
Sending noised messages 33920 29984 30792 29912 124608
XGBoost update 16694.5 92 10253 7273.125 34312.625
Total 491729.625 641013.25 642952.625 657040.625 2432736.125

FEVERLESS
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 540828.75 608693.25 630403.125 573725.625 2353650.75
Key exchange 60 60 60 60 240
Noise leader selection 7384 6848 6852 7308 28392
Sending noise 2572 2212 2220 2388 9392
Sending masked messages 29552 27424 27424 29264 113664
XGBoost update 7528.125 7366.5 8258.5 11079.5 34232.625
Total 587924.875 652603.75 675217.625 623825.125 2539571.375

AHE
Communication cost (byte) Client 1 Client 2 Client 3 Client 4 Total
Missing IDs 543852.375 601610.625 602340.75 592997.625 2340801.375
Key exchange 0 0 0 0 0
Noise leader selection 7512 7200 7324 7148 29184
Sending noise 2596 2360 2396 2352 9704
Sending encrypted messages 962304 922112 938240 915968 3738624
XGBoost update 14504.625 3886.625 9163.5 6616.5 34171.25
Total 1530769 1537169.25 1559464.25 1525082.125 6152484.625

Table 11: Comparison of communication cost among Baseline, LDP, FEVERLESS and AHE with
Banknote Authentication.

42

	Introduction
	PROBLEM FORMULATION
	System Model
	Threat Model

	A practical privacy-preserving protocol
	FEVERLESS protocol description
	Theoretical Analysis
	Security Analysis

	Experiment
	Experiment Setup
	Evaluation on Accuracy
	Evaluation on Training Time

	Conclusion and future work
	Notations
	Preliminaries
	XGBoost
	Diffie-Hellman key exchange
	Pseudo-random generator and hash function
	Key derivation function
	Verifiable random function
	Differential Privacy

	Privacy Concern
	Inference attack
	Differential attack

	More details on FEVERLESS protocol
	XGBoost Training over Distributed Labels
	Secure Aggregation with Global Differential Privacy

	Security analysis
	Privacy Goals

	Discussion
	More details on experiment setup
	additional experiments and figures
	best case: accuracy on client number
	other cases: accuracy on client number
	additional results on accuracy for banknote authentication
	additional results on time
	results on communication cost

