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Abstract

We investigate feature universality in001
Gemma-2 language models (Gemma-2-2B002
& Gemma-2-9B), asking whether models003
with a fourfold difference in scale still con-004
verge on comparable internal concepts. Us-005
ing the sparse autoencoder (SAE) dictio-006
nary learning pipeline, we used pretrained007
SAEs on each model’s residual-stream acti-008
vations, aligned the resulting monosemantic009
features via activation correlation, and com-010
pared the matched feature spaces with met-011
rics such as SVCCA and RSA. Middle layers012
yield the strongest overlap, indicating that013
this is where both models most similarly014
represent concepts, while early and late lay-015
ers show much less similarity. Preliminary016
experiments extending the analysis from017
single tokens to multi-token subspaces show018
that semantically similar subspaces tend to019
interact similarly with LLMs. These results020
offer further evidence that large language021
models carve the world into broadly simi-022
lar, interpretable features despite size dif-023
ferences, reinforcing universality as a foun-024
dation for cross-model interpretability.025

1 Introduction026

Large Language Models (LLMs) (Achiam027

et al., 2023; Touvron et al., 2023; Guo et al.,028

2025) have demonstrated increasing reasoning029

abilities across many tasks (Bubeck et al.,030

2023). However, our understanding of the031

internal representations and computations032

that support this behavior remains limited033

(Bereska and Gavves, 2024).034

035

Previous work (Lan et al., 2024) has036

shown that models with the same tokenizer037

rely on similar internal representations and038

structures, indicating that universal feature039

spaces might exist. We define a feature as040

being universal if its activation corresponds041

to the same semantic concept regardless of 042

model size or architecture. Universal feature 043

spaces may be encoded across different layers 044

or neurons in different models, but there 045

would exist a sparse direction in each model’s 046

activation space that consistently “lights up” 047

on these concepts. Understanding universal 048

feature spaces is a crucial step in learning 049

if general rules govern how LLMs internally 050

structure and use their nodes. This key would 051

increase the generalizability of interpreting 052

different LLMs and may accelerate LLM 053

training efficiency as well as LLM safety 054

(Chughtai et al., 2023; Gurnee et al., 2024; 055

Bricken et al., 2023). 056

057

Comparing features between LLMs is 058

challenging because nodes in the model usually 059

represent multiple features, rather than one 060

specific feature. This is called polysemanticity 061

(Elhage et al., 2022). In this paper, we build 062

on the methods shown in Lan et al. (2024) 063

that leverage Sparse Autoencoders (SAEs) to 064

transform LLM node activations into lower 065

dimensional spaces that are easier to interpret. 066

The main advantage of using SAEs is that they 067

have the ability to decompose the complex, 068

polysemantic representations in an LLM into 069

distinct features that can be interpreted more 070

easily (Cunningham et al., 2023; Bricken et al., 071

2023). Then, representational space similarity 072

metrics are used on these SAE features to 073

check for similarities in the internal structure 074

of the LLM. 075

076

Although results for feature universality 077

in Lan et al. (2024) were promising, only 078

single token words, in a limited number 079

of semantic subspaces, were tested for the 080

semantic experiments. Furthermore, the 081

experiments were only carried out against 082
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similar sized models, namely Pythia-70m with083

Pythia-160m (Biderman et al., 2023) and084

Gemma-1-2B with Gemma-2-2B (Team et al.,085

2024b,a). Therefore, in this paper, we will086

further investigate the universality of feature087

spaces through the following key experiments:088

089

1. Probe universality in multi-token semantic090

subspaces, including overlaps of related091

concepts, to see whether phrase-level and092

higher-order features align across models.093

2. Quantify universality across a 4× model-094

size gap and compare similarity measures095

(e.g., SVCCA, RSA) to test how metric096

choice affects the result.097

For our experiments, we use models with a098

four fold size difference. Our results demon-099

strate that the similarity in internal feature100

representations remains across these models101

despite difference in complexity. Furthermore,102

in our semantic subspaces studies, we show103

that there are certain groups of overlapping104

concepts that the models internally represent105

similarly. This is another indication of feature106

universality.107

This work opens up several branches of fu-108

ture research that we believe are worth study-109

ing. Training SAEs on multiple model layers110

can reveal internal representations that are not111

captured in a single layer. In addition, compar-112

ing the internal representations of SAEs trained113

on MLP layers may provide deeper insights114

about the universality of MLP features. These115

findings can accelerate AI reasoning and safety116

training (Hendrycks et al., 2023). Through117

understanding the similarities between models,118

and their differences, a more complete picture119

of how LLMs process, reason and understand120

natural language would be formed (Lan et al.,121

2024).122

2 Background123

Sparse Autoencoders. Sparse Autoencoders124

(SAEs) are a type of neural network used to125

learn efficient, sparse representations of input126

data (Makhzani and Frey, 2013). Unlike other127

autoencoders, SAEs incorporate a sparsity128

constraint, typically an L1 penalty on the129

hidden layer activations or a KL divergence130

term, which pushes most hidden units to be131

inactive (i.e. any output values close to zero) 132

for any input given. This leads to features 133

that are more interpretable and disentangled. 134

The aim is to discover a basis of features, 135

similar to dictionary learning (Olshausen and 136

Field, 1997), where each feature activates for 137

semantically meaningful concepts. 138

Mathematically, an input x ∈ Rn is given to 139

the neural network which is reconstructed into 140

x̂ using x̂ = W ′σ(Wx + b), where W ∈ Rhxn 141

is the encoder weight matrix, b is the bias 142

term, σ is a nonlinear activation function, and 143

W ′ is the decoder matrix, which often uses 144

the transpose of the encoder weights. SAE 145

training seeks to both encourage sparsity in 146

the activations h = σ(Wx+b) and to minimize 147

the reconstruction loss Lrec(x, x̂) = ∥x− x̂∥2. 148

149

3 Methods 150

3.1 Feature Pairings 151

To determine whether different models of 152

varying sizes converge on similar internal 153

representations, generalizations of feature 154

spaces, spaces formed by feature groups, 155

and feature relations must be explored. To 156

quantitatively measure these similarities, 157

we follow the methods of Lan et al. (2024). 158

Overall, we compare an SAE trained on layer 159

Ai from LLM A with another SAE trained 160

on layer Bj from LLM B for every layer pairing. 161

162

However, accurate comparisons between 163

spaces hinges on solving two issues: 164

Permutation issue. To solve the permu- 165

tation issue, we find neuron pairings that 166

are the most similar in SAEA and SAEB. 167

Since the mapping of features is unknown 168

due to arbitrary neuron indexing and some 169

features may not have a “similar” feature in 170

the other SAE, we pairwise match them using 171

a correlation metric. 172

Rotational Alignment issue. Even after 173

permutation alignment, each SAE may use 174

its own orthonormal basis for latent space. 175

To ensure that the true relational similarity 176

is captured, we apply rotation-invariant 177

similarity measures, namely SVCCA and RSA. 178

179

To score the results against a baseline, 180

randomly paired features are obtained. Then, 181
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Figure 1: Workflow of pairing rows with the highest correlated features between two models (Gemma-2-2B
and Gemma-2-9B) and performing similarity tests to assess feature alignment.

the score of the features paired by correlation182

(referred to as “paired features”) is compared183

with the average score of N runs of randomly184

paired features to obtain a p-value score.185

3.1.1 1-to-1 vs. Many-to-1 Feature186

Matching187

Following Lan et al. (2024), we consider two188

ways of pairing SAE features from layer Ai of189

the first model with layer Bj of the second.190

1-to-1 (bijective) matching. We itera-191

tively build a one–to–one assignment: at each192

step we pick the still–unmatched pair of fea-193

tures with the highest Pearson correlation.194

Each feature is used at most once, yielding195

a bijection of size K = min
(
|Ai|, |Bj |

)
.196

Many-to-1 (injective) matching. To197

probe whether the entire dictionary of the198

smaller layer can be embedded inside the larger199

one, we relax the uniqueness constraint on200

layer Bj . Every feature in Ai is matched to its201

most-correlated partner in Bj , even if that tar-202

get has already been claimed by other sources.203

Thus one feature in Bj may receive multiple204

links, while each feature in Ai is still matched205

exactly once.206

Unless stated otherwise, all correlations are207

computed with Pearson correlation; the aligned208

pairs returned by the chosen strategy are then209

fed into the subsequent SVCCA and RSA cal-210

culations.211

3.2 Representational Similarity 212

Metrics 213

3.2.1 Singular Value Canonical 214

Correlation Analysis (SVCCA) 215

Singular Value Canonical Correlation Analysis 216

(Raghu et al., 2017) is a variation of the Canoni- 217

cal Correlation Analysis CCA (Hotelling, 1936) 218

which finds a pair of the most correlated vari- 219

ables, ui and vi from two sets of variables 220

X ∈ Rnxd1 and Y ∈ Rnxd2 . Before applying 221

CCA, SVCCA reduces noise by applying Singu- 222

lar Value Decomposition (SVD) to X and Y us- 223

ing X = UXSXV T
X and Y = UY SY V

T
Y , where 224

UX and UY are the matrices containing the 225

left singular vectors (informative directions), 226

and SX and SY are diagonal matrices contain- 227

ing the singular values. After CCA is applied 228

on the new data, correlation scores between 229

the most informative components are obtained, 230

which are then averaged to get a similarity 231

score. SVCCA measures how well subspaces 232

of two SAE weight matrices align, essentially 233

quantifying the global feature space overlap. 234

3.2.2 Representational Similarity 235

Analysis (RSA) 236

Representational Similarity Analysis 237

(Kriegeskorte et al., 2008) calculates, for 238

each space, a Representation Dissimilarity 239

Matrix (RDM) D ∈ Rnxn. Each element 240

in this matrix represents the dissimilarity 241

between every pair of data points in the space. 242

Following RDM, a correlation metric such as 243

Spearman’s rank correlation coefficient is used 244
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to compute a similarity score.245

3.3 Semantic Subspaces246

In addition to the layer-wise SAE comparisons,247

we also test semantic subspaces, collections248

of words defined by a high-level concept249

that contain concept-specific keywords. For250

example, “emotions” is a subspace with251

concept-specific keywords like “happy”and252

“sad”. By testing these subspaces, we can253

evaluate whether LLMs encode the same254

semantic categories.255

256

For each high-level concept, we first use257

GPT-4o (Achiam et al., 2023) to generate258

three independent lists of representative259

keywords. We then intersect these lists and260

retain only terms that are unambiguous (each261

having a single and clear meaning). Next,262

we add to the keyword set their hyponyms263

from WordNet (wor, 2010). This combined264

collection of keywords plus and their hyponyms265

defines the final semantic subspace for that266

concept.267

268

To evaluate semantic subspaces more269

rigorously, we combine two different subspaces270

in the following ways:271

Multi-token subspaces: In the multi-token272

subspaces, we concatenate keywords from273

different concepts together. For instance,274

“happy” (from “emotions”) and “child” (from275

“person”) becomes “happy child”. In these276

types of subspaces, we aim to understand277

if different LLMs internally process longer278

sentences similarly. Furthermore, we con-279

catenated unlikely pairs of concepts, such as280

“calender” and “emotions”, which the LLMs281

were unlikely to see during their training to282

check whether the LLMs process previously283

unseen data in a similar manner.284

Overlapping subspaces: Overlapping285

subspaces are formed by taking the union286

of whole subspaces together. For instance,287

the “emotions” and “person” subspaces288

would yield (“happy”, “teacher”, “sad”,289

“child”, ...). This aims to test if the different290

LLMs interact with multiple concepts similarly.291

292

4 Experiments and Results293

Layer-wise similarity of full SAE spaces294

1-to-1 (5 run mean): In Fig. 2a the di- 295

agonal band of Paired SVCCA now peaks at 296

0.73 (Gemma-2-2B L14 and Gemma-2-9B L19) 297

and stays consistently high across contiguous 298

mid-layer pairs (0.64 – 0.71). Early layers sit 299

at 0.35 ± 0.05, and the last decoder layer of 300

Gemma-2-9B (L39) experiences a drop to an 301

average of 0.374. Through these visualizations 302

(Fig. 2a & Fig. 2b), it is observable that the 303

middle layers between both models share the 304

most similarity compared to other layers. 305

Paired RSA (Fig. 2b) follows the same shape 306

but at roughly one-third of the magnitude: 307

maxima of 0.22 and a midlayer plateau of 0.15 308

– 0.20, with edges staying less than 0.08. Yet 309

again, the last decoder layer of Gemma-2-9B 310

(L39) experiences a drop. This figure further 311

displays the pattern of middle layers sharing 312

the most similarity, especially compared to 313

early and late layers. 314

Many-to-1 (Single run): When we allow 315

duplicates (Fig. 4a) the peak SVCCA softens 316

to 0.69 (Gemma-2-2B L14 and Gemma-2-9B 317

L19) and the mid-layer plateau narrows (0.54 – 318

0.66). RSA follows suit, topping out at around 319

0.18 - 0.2. This confirms that when features 320

are matched more than once, the alignment 321

scores drop slightly, but the overall pattern is 322

maintained. 323

Many-to-1 (5 run mean): Averaging 324

five random initializations barely changes the 325

picture (Fig. 6a): peak SVCCA = 0.69, peak 326

RSA = 0.20. The variance across runs is <0.02 327

for every cell, indicating that the many-to-one 328

procedure is stable, but still consistently lower 329

than the ceiling of the 1-to-1 strategy. 330

331

Random-pair baselines and signifi- 332

cance. Across the three experiments, the 333

mean random SVCCA spans 0.005 – 0.034, 334

with a majority of cells below 0.02 (Fig. 8a, 335

Fig. 9a, Fig. 10a). Consequently, every em- 336

pirical SVCCA score beyond the first residual 337

layer lands in the 0.0 p-value bucket (≤ 0.1% 338

chance of getting such a good alignment by 339

random) (Fig. 8b, Fig. 9b, Fig. 10b). In other 340

words, even the weakest observed alignment 341

(SVCCA ≊ 0.30) is simply too strong to be by 342

chance. 343

344

Effect of filtering non-concept fea- 345

tures. Mean activation correlation before 346
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Figure 2: (a) SVCCA and (b) RSA 1-to-1 paired scores of SAEs for layers in Gemma-2-2B vs Gemma-2-9B.
Note the pattern of higher scores between the middle layer pairings indicating similarity in middle layers
between both models.

Figure 3: (a) 1-to-1 Mean Activation Correlation before and (b) after filtering non-concept features for
Gemma-2-2B vs Gemma-2-9B. Note these patterns generally contrast from those of the SVCCA and RSA
scores in Figure 1, indicating that these metrics each reveal different patterns not shown previously such
as the pattern of middle layers between both models exhibiting higher correlation.

filtering peaks at 0.70 (L22 & L39) and347

averages 0.60 ± 0.07 on the mid-layer block348

(Fig. 3a). After removing unimportant349

features (Fig. 3b) the pattern of middle layers350

having an increased correlation between the351

two models becomes more evident, while more352

surrounding random matches fall by 0.10 –353

0.15, raising the peak correlation from 0.70 to354

0.74. Another result to note is that early layers355

and late layers of both models share strikingly356

higher similarity compared to other layers; for357

example L2 of both models, L6 of both models,358

and Gemma-2-2B L22 & Gemma-2-9B L39 all359

have the highest correlation (Fig. 3b, Fig. 5b,360

Fig. 7b). In other words, removing low-level361

features (such as punctuation) made strong362

alignments clearer and more meaningful,363

without just artificially boosting scores.364

Semantic-subspace alignment. When we365

fix a single Gemma-2-2B layer and correlate366

every semantic-concept row against layers 2, 6,367

10, 19, 25, and 39 for Gemma-2-9B, the same368

mid-on-mid pattern re-emerges: mid-stack lay- 369

ers in both models align best. Among the 370

2-2B sources we tried, the layer centred around 371

L14 most consistently exhibited the highest 372

SVCCA and RSA scores, reinforcing the idea 373

that internal concept geometry more commonly 374

converges in the middle of the networks. Full 375

heat-maps for every source layer and metric 376

are collected in Appendix B. 377

Overlapping Semantic Subspaces. 378

When two semantic subspaces are combined, 379

there are two different trends in the results 380

based on the compatibility of the subspaces. 381

For instance, combining the subspaces “coun- 382

try” and “people” in Table 2 which is a 383

non-ideal pair results in low average SVCCA 384

and RSA scores across the layers, indicating 385

that there is insignificant correlation in how 386

the models internally represent this subspace. 387

This phenomenon could be caused by the 388

fact that the models are unlikely to group 389

these subspaces together during training. 390
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Overlapping Concept Paired SVCCA Mean Random Shuffling Mean p-value

Emotion and Time 0.62 0.13 0.0
Nature and People 0.63 0.17 0.0

Table 1: Comparison of paired SVCCA, random shuffling mean, and p-values for reasonable pairs of
concepts at layers 10 of both Gemma-2-2B and Gemma-2-9B.

Overlapping Concept Paired SVCCA Mean Random Shuffling Mean p-value

Country and People 0.03 0.13 0.02

Table 2: Comparison of paired SVCCA, random shuffling mean, and p-values for bad pairs of concepts at
layers 10 of Gemma-2-2B and layer 19 of Gemma-2-9B. These results indicate that these pairs are not
encoded similarly

However, when the pair of subspaces being391

combined makes sense, such as “nature” and392

“people” in Table 1, both the SVCCA and RSA393

scores are high, leading to the conclusion that394

both models represent these subspaces very395

similarly. All of the results are in Appendix C.396

Multi-token Semantic Subspaces. De-397

spite resource constraints limiting our evalua-398

tions to the ”emotions time” subspace, our pre-399

liminary results on multi-token subspace (see400

Table 3) provide key insights. Notably, high401

SVCCA scores remained in the early and mid-402

dle layers, providing strong empirical evidence403

that models sometimes encode multi-token con-404

cepts. Furthermore, the SVCCA scores are405

drastically higher than ”emotions” or ”time”406

alone in the early layers (see Appendix B), indi-407

cating that earlier layers represent multi-token408

subspaces rather than single-token ones. This409

result challenges the popular, underlying as-410

sumption that models internally encode single-411

token concepts (Dehouck, 2023; Valois et al.,412

2024). Hence, we believe that meaning is some-413

times distributed across multiple tokens, and414

that semantic subspaces are the better level of415

analysis.416

Distance metrics. During layer-to-layer417

SAE feature analysis, we have used the Pear-418

son correlation as done in Lan et al. (2024). We419

tested other metrics such as the cosine similar-420

ity and euclidean distance; however, changing421

the similarity metric did not yield any statisti-422

cally significant changes in the results, implying423

that the distance metric used does not affect424

the accuracy of our results.425

5 Related Works 426

Superposition and Sparse Autoencoders. 427

Previous studies have shown that, when there 428

are more features to be represented than avail- 429

able parameters, feature representations are 430

distributed across multiple parameters, leading 431

to polysemantic neurons (Elhage et al., 2022). 432

Polysemanticity causes challenges in interpret- 433

ing models, which is crucial for AI safety in 434

identifying goal misgeneralization (Shah et al., 435

2022; Langosco et al., 2022) as well as de- 436

ceptive misalignment (Hubinger et al., 2024; 437

Greenblatt et al., 2024). For these reasons, 438

Sparse Autoencoders (SAEs) have been used 439

to transform polysemantic neuron activations 440

into monosemantic feature neurons that usually 441

correspond to one feature (Makhzani and Frey, 442

2013; Cunningham et al., 2023; Gao et al., 2024; 443

Rajamanoharan et al., 2024a,b). It is much 444

easier to conduct quantitative interpretability 445

studies on these monosemantic features. 446

Feature Universality. The existance of “uni- 447

versal” neurons across LLMs were first uncov- 448

ered in a study of GPT-2 (Gurnee et al., 2024). 449

Furthermore, previous studies that have per- 450

formed quantitative analysis using SAEs to 451

test for feature universality (Lan et al., 2024; 452

Bricken et al., 2023) have shown universal- 453

ity in analogous features and representational 454

features (Olah et al., 2020; Yosinski et al., 455

2014; Gurnee et al., 2024; Kornblith et al., 456

2019). These are not measures of “true fea- 457

tures”, which are stricter ground-truth features 458

(Bricken et al., 2023) that represent atomic lin- 459

ear directions (Till, 2023). 460

Previous research on SAEs to test for 461
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Multi-token Concept Paired SVCCA Mean Random Shuffling Mean p-value

Emotion and Time (L6 vs L2) 0.27 0.02 0.0
Emotion and Time (L6 vs L10) 0.53 0.02 0.0

Table 3: Comparison of paired SVCCA, random shuffling mean, and p-values for bad pairs of concepts
at layers 6 of Gemma-2-2B and layer 2 and 10 of Gemma-2-9B. These results indicate that multi-token
inputs are encoded similarly.

feature universality (Lan et al., 2024) has462

demonstrated that, after aligning neurons463

via mean activation correlation, there exists464

statistically significant alignment (p < 0.05)465

for almost all non-input layers. The middle466

layers exhibited the strongest correspondence,467

indicating that distinct LLMs learn a shared468

set of features. Beyond layer-wise comparisons,469

semantically defined subspaces were tested470

by filtering features whose top activating471

tokens match curated keyword lists linked to472

a conceptual category such as “Emotions”or473

“Time“. These subspaces yielded high SVCCA474

scores with p ≪ 0.05, illustrating that semantic475

concept feature groups are more consistent476

across models.477

Mechanistic Interpretability. Interpretting478

neurons and MLP analysis have become479

increasingly popular (Foote et al., 2023; Garde480

et al., 2023) techniques to understand the481

inner workings of LLMs. Other mechanistic482

interpretability methods have used SAEs (Lan483

et al., 2024; Nanda and Conmy, 2024) because484

of their more interpretable feature spaces.485

486

6 Conclusion487

In this paper, we provided a comprehensive488

study on feature universality in models of489

different sizes. Our experiments reveal that, in490

many cases, internal representations are similar491

across models regardless of size. In addition,492

our semantic subspace experiments revealed493

that different models encode pairs of subspaces494

and multi-token subspaces similarly, further495

enforcing the concept of LLM universality.496

These findings are a key step in forming a497

comprehensive understanding of how LLMs498

internally function.499

500

7 Limitations 501

This study focused only on the Gemma-2-2B 502

and Gemma-2-9B models due to resource con- 503

straints, particularly GPU availability and com- 504

pute time. While this size comparison captures 505

meaningful differences in model scale, further 506

work could extend our approach to a wider 507

range of architectures, parameter counts, and 508

layer comparisons. Additionally, the number 509

of SAE-derived subspaces we analyzed was lim- 510

ited to keep manual inspection and downstream 511

evaluations manageable. Expanding this anal- 512

ysis to a larger, more diverse set of subspaces 513

could help further characterize the extent and 514

nature of feature space universality. Further- 515

more, our experiments with multi-token sub- 516

spaces only tested a single subspace due to 517

further resource limitations. 518
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Ferret, Peter Liu, Pouya Tafti, Abe Friesen, 736
Michelle Casbon, Sabela Ramos, Ravin Ku- 737
mar, Charline Le Lan, Sammy Jerome, Anton 738
Tsitsulin, Nino Vieillard, Piotr Stanczyk, Ser- 739
tan Girgin, Nikola Momchev, Matt Hoffman, 740
Shantanu Thakoor, Jean-Bastien Grill, Behnam 741
Neyshabur, Olivier Bachem, Alanna Walton, 742
Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, 743
Allen Hutchison, Alvin Abdagic, Amanda Carl, 744
Amy Shen, Andy Brock, Andy Coenen, An- 745
thony Laforge, Antonia Paterson, Ben Bastian, 746
Bilal Piot, Bo Wu, Brandon Royal, Charlie 747
Chen, Chintu Kumar, Chris Perry, Chris Welty, 748
Christopher A. Choquette-Choo, Danila Sinopal- 749
nikov, David Weinberger, Dimple Vijaykumar, 750
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Plucińska, Harleen Batra, Harsh Dhand, Ivan 756
Nardini, Jacinda Mein, Jack Zhou, James Svens- 757
son, Jeff Stanway, Jetha Chan, Jin Peng Zhou, 758
Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, 759
Joe Fernandez, Joost van Amersfoort, Josh Gor- 760
don, Josh Lipschultz, Josh Newlan, Ju yeong Ji, 761
Kareem Mohamed, Kartikeya Badola, Kat Black, 762
Katie Millican, Keelin McDonell, Kelvin Nguyen, 763
Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoe- 764
sund, Lauren Usui, Laurent Sifre, Lena Heuer- 765
mann, Leticia Lago, Lilly McNealus, Livio Bal- 766
dini Soares, Logan Kilpatrick, Lucas Dixon, Lu- 767
ciano Martins, Machel Reid, Manvinder Singh, 768
Mark Iverson, Martin Görner, Mat Velloso, Ma- 769
teo Wirth, Matt Davidow, Matt Miller, Matthew 770
Rahtz, Matthew Watson, Meg Risdal, Mehran 771
Kazemi, Michael Moynihan, Ming Zhang, Min- 772
suk Kahng, Minwoo Park, Mofi Rahman, Mohit 773
Khatwani, Natalie Dao, Nenshad Bardoliwalla, 774
Nesh Devanathan, Neta Dumai, Nilay Chauhan, 775
Oscar Wahltinez, Pankil Botarda, Parker Barnes, 776

9

https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Activation_Steering_with_SAEs
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Activation_Steering_with_SAEs
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Activation_Steering_with_SAEs
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Activation_Steering_with_SAEs
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Activation_Steering_with_SAEs
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.1016/S0042-6989(97)00169-7
https://doi.org/10.1016/S0042-6989(97)00169-7
https://api.semanticscholar.org/CorpusID:23890457
https://api.semanticscholar.org/CorpusID:23890457
https://api.semanticscholar.org/CorpusID:23890457
https://api.semanticscholar.org/CorpusID:23890457
https://api.semanticscholar.org/CorpusID:23890457
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://doi.org/10.48550/arXiv.2210.01790
https://doi.org/10.48550/arXiv.2210.01790
https://doi.org/10.48550/arXiv.2210.01790
https://doi.org/10.48550/arXiv.2210.01790
https://doi.org/10.48550/arXiv.2210.01790
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295


Paul Barham, Paul Michel, Pengchong Jin, Petko777
Georgiev, Phil Culliton, Pradeep Kuppala, Ra-778
mona Comanescu, Ramona Merhej, Reena Jana,779
Reza Ardeshir Rokni, Rishabh Agarwal, Ryan780
Mullins, Samaneh Saadat, Sara Mc Carthy,781
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A Additional Results 821

Figure 4: (a) SVCCA and (b) RSA Many-to-1
paired scores of SAEs for layers in Gemma-2-2B
vs Gemma-2-9B. Note the pattern of higher scores
in the middle layers indicating similarity in middle
layers between both models.

Figure 5: (a) Many-to-1 Mean Activation Corre-
lation before and (b) after filtering non-concept
features for Gemma-2-2B vs Gemma-2-9B. Note
these patterns generally contrast from those of the
SVCCA and RSA scores in Figure 1, indicating
that these metrics each reveal different patterns not
shown previously.

Figure 6: (a) SVCCA and (b) RSA Many-to-1 (5
run average) paired scores of SAEs for layers in
Gemma-2-2B vs Gemma-2-9B. Note the pattern
of higher scores in the middle layers indicating
similarity in middle layers between both models.
This pattern is a trend in layer similarity between
the three experiments as seen in Fig. 2a, Fig. 2b,
Fig. 10a, and Fig. 4b.
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Figure 9: (a) Mean Randomly Paired SVCCA
Many-to-1 scores and (b) SVCCA Many-to-1 P-
values of SAEs for layers in Gemma-2-2B vs
Gemma-2-9B.

Figure 7: (a) Many-to-1 (5 run average) Mean
Activation Correlation before and (b) after filtering
non-concept features for Gemma-2-2B vs Gemma-
2-9B. Note these patterns generally contrast from
those of the SVCCA and RSA scores in Figures 2,
4, and 6, indicating that these metrics each reveal
different patterns not shown previously.

Figure 8: (a) Mean Randomly Paired SVCCA 1-to-
1 scores and (b) SVCCA 1-to-1 P-values of SAEs
for layers in Gemma-2-2B vs Gemma-2-9B.

Figure 10: (a) Mean Randomly Paired SVCCA
Many-to-1 scores and (b) SVCCA Many-to-1 (5
run average) P-values of SAEs for layers in Gemma-
2-2B vs Gemma-2-9B.

B Semantic Subspace Similarity 822

(Gemma-2-2B → Gemma-2-9B). 823

The following figures visualize concept-wise 824

alignment from fixed layers of Gemma-2-2B 825

to all layers of Gemma-2-9B. Each heatmap 826

row corresponds to a semantic category (e.g., 827

Emotions, Biology) and each column is a layer 828

in Gemma-2-9B. 829

We show both SVCCA and RSA 1-to-1 re- 830

sults for 2-2B source layers L6, L10, L14, and 831

L17. These help assess which layers in Gemma- 832

2-9B best match the concept geometry of the 833

smaller model. For most layers, similarity 834

scores peak in the mid-stack (L10–L19), further 835

supporting the cross-model alignment trend ob- 836

served in Section 4. 837

* Some concepts may not appear across all 838

rows if they lacked sufficient matched features 839

or token coverage. 840

Figure 11: Scores rise into the mid-layers, peaking
near 0.40 at L10–L19.

Figure 12: Scores rise into the mid-layers, peaking
near 0.40 at L10–L19.
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Figure 13: Mid-layer alignment strengthens; several
concepts surpass 0.60.

Figure 14: Highest similarity sits in the center stack;
edge layers lag.

Figure 15: Alignment remains centered; deep and
early layers score lower.

Figure 16: Mid-layer RSA peaks near 0.17; edge
layers stay low. People/Roles dips below 0 at L2.

Figure 17: Mid-to-deep pairs score higher: Biology,
Month-Names reach ∼0.25 at L19.

Figure 18: Highest scores at 9B L19: Biology ∼0.30,
Countries ∼0.25. L2 and L39 remain near zero.
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Figure 19: Strongest alignment at L19; outer layers
weak or negative.

C SVCCA by concept in841

Gemma-2-2B and Gemma-2-9B.842

Figure 20: paired SVCCA 1-to-1 for calender-
nature concept

Figure 21: paired SVCCA 1-to-1 for calender-people
concept

Figure 22: paired SVCCA 1-to-1 for country-people
concept

Figure 23: paired SVCCA 1-to-1 for country-time
concept

Figure 24: paired SVCCA 1-to-1 for nature-people
concept
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Figure 25: paired SVCCA 1-to-1 for emotion-time
concept
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