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Abstract

We investigate feature universality in Gemma-2
language models (Gemma-2-2B & Gemma-2-
9B), asking whether models with a fourfold
difference in scale still converge on compa-
rable internal concepts. Using the sparse au-
toencoder (SAE) dictionary learning pipeline,
we used pretrained SAEs on each model’s
residual-stream activations, aligned the result-
ing monosemantic features via activation cor-
relation, and compared the matched feature
spaces with metrics such as SVCCA and RSA.
Middle layers yield the strongest overlap, indi-
cating that this is where both models most sim-
ilarly represent concepts, while early and late
layers show much less similarity. Preliminary
experiments extending the analysis from sin-
gle tokens to multi-token subspaces show that
semantically similar subspaces tend to interact
similarly with LLMs. These results offer fur-
ther evidence that large language models carve
the world into broadly similar, interpretable
features despite size differences, reinforcing
universality as a foundation for cross-model
interpretability.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Touvron et al., 2023; Guo et al., 2025) have
demonstrated increasing reasoning abilities across
many tasks (Bubeck et al., 2023). However, our
understanding of the internal representations and
computations that support this behavior remains
limited (Bereska and Gavves, 2024).

Previous work (Lan et al., 2024) has shown
that models with the same tokenizer rely on
similar internal representations and structures,
indicating that universal feature spaces might
exist. We define a feature as being universal if
its activation corresponds to the same semantic
concept regardless of model size or architecture.
Universal feature spaces may be encoded across

different layers or neurons in different models,
but there would exist a sparse direction in each
model’s activation space that consistently “lights
up” on these concepts. Understanding universal
feature spaces is a crucial step in learning if general
rules govern how LLMs internally structure and
use their nodes. This key would increase the
generalizability of interpreting different LLMs and
may accelerate LLM training efficiency as well as
LLM safety (Chughtai et al., 2023; Gurnee et al.,
2024; Bricken et al., 2023).

Comparing features between LLMs is chal-
lenging because nodes in the model usually
represent multiple features, rather than one specific
feature. This is called polysemanticity (Elhage
et al., 2022). In this paper, we build on the methods
shown in Lan et al. (2024) that leverage Sparse
Autoencoders (SAEs) to transform LLM node
activations into lower dimensional spaces that are
easier to interpret. The main advantage of using
SAEs is that they have the ability to decompose the
complex, polysemantic representations in an LLM
into distinct features that can be interpreted more
easily (Cunningham et al., 2023; Bricken et al.,
2023). Then, representational space similarity
metrics are used on these SAE features to check
for similarities in the internal structure of the LLM.

Although results for feature universality in Lan
et al. (2024) were promising, only single token
words, in a limited number of semantic subspaces,
were tested for the semantic experiments. Fur-
thermore, the experiments were only carried out
against similar sized models, namely Pythia-70m
with Pythia-160m (Biderman et al., 2023) and
Gemma-1-2B with Gemma-2-2B (Team et al.,
2024b,a). Therefore, in this paper, we will further
investigate the universality of feature spaces.

In our experiments, we use models with a four



fold size difference. Our results demonstrate that
the similarity in internal feature representations re-
mains across these models despite difference in
complexity. Furthermore, in our semantic sub-
spaces studies, we show that there are certain
groups of overlapping concepts that the models
internally represent similarly. This is another indi-
cation of feature universality.
In summary, our contributions are the following:

1. Probe universality in multi-token semantic
subspaces, including overlaps of related con-
cepts, to see whether phrase-level and higher-
order features align across models.

2. Quantify universality across a 4× model-size
gap and compare similarity measures (e.g.,
SVCCA, RSA) to test how metric choice af-
fects the result.

Our results reveal that, despite the fourfold size
difference, models share strongly aligned internal
representations. In addition, we demonstrate that
conceptually coherent semantic groups align. We
also illustrate that models encode multi-token
phrases across the layers, where phrases are
represented more strongly than individual tokens
in the earlier layers.

Understanding whether different-sized language
models develop similar internal representations
has significant practical implications. If models
trained independently converge to shared semantic
features, this suggests the existence of a common
representational structure, opening the door to
transferable interpretability tools, cross-scale
safety interventions (Engels et al., 2025), and
more efficient model distillation pipelines (Turc
et al., 2019). These insights could fundamentally
reshape how we evaluate, interpret and design
future language models.

This result supports the idea that universality is
a structural property of the Gemma family, not an
accident of size or training noise. It gives practi-
tioners a clear path to build and test interpretability
tools on the lighter 2 B model before deploying
them unchanged on the 9 B model. Similar
mid-layer convergence has also been reported for
the Pythia family (70 M → 160 M) by Lan et al.
(2024). Taken together with our Gemma results,
this suggests that feature universality extends

across at least two independent model families.

This work opens up several branches of future re-
search that we believe are worth studying. Training
SAEs on multiple model layers can reveal internal
representations that are not captured in a single
layer. In addition, comparing the internal repre-
sentations of SAEs trained on MLP layers may
provide deeper insights about the universality of
MLP features. These findings can accelerate AI
reasoning and safety training (Hendrycks et al.,
2023). Through understanding the similarities be-
tween models, and their differences, a more com-
plete picture of how LLMs process, reason and
understand natural language would be formed (Lan
et al., 2024).

2 Background

Sparse Autoencoders. Sparse Autoencoders
(SAEs) are a type of neural network used to
learn efficient, sparse representations of input
data (Makhzani and Frey, 2013). Unlike other
autoencoders, SAEs incorporate a sparsity con-
straint, typically an L1 penalty on the hidden layer
activations or a KL divergence term, which pushes
most hidden units to be inactive (i.e. any output
values close to zero) for any input given. This
leads to features that are more interpretable and
disentangled. The aim is to discover a basis of
features, similar to dictionary learning (Olshausen
and Field, 1997), where each feature activates for
semantically meaningful concepts.
Mathematically, an input x ∈ Rn is given to
the neural network which is reconstructed into
x̂ using x̂ = W ′σ(Wx + b), where W ∈ Rhxn

is the encoder weight matrix, b is the bias
term, σ is a nonlinear activation function, and
W ′ is the decoder matrix, which often uses
the transpose of the encoder weights. SAE
training seeks to both encourage sparsity in
the activations h = σ(Wx + b) and to mini-
mize the reconstruction loss Lrec(x, x̂) = ∥x−x̂∥2.

3 Methods

3.1 Feature Pairings
To determine whether different models of varying
sizes converge on similar internal representations,
generalizations of feature spaces, spaces formed
by feature groups, and feature relations must
be explored. To quantitatively measure these



Figure 1: Workflow of pairing rows with the highest correlated features between two models (Gemma-2-2B and
Gemma-2-9B) and performing similarity tests to assess feature alignment.

similarities, we follow the methods of Lan et al.
(2024). Overall, we compare an SAE trained on
layer Ai from LLM A with another SAE trained
on layer Bj from LLM B for every layer pairing.

However, accurate comparisons between spaces
hinges on solving two issues:
Permutation issue. To solve the permutation issue,
we find neuron pairings that are the most similar in
SAEA and SAEB . Since the mapping of features
is unknown due to arbitrary neuron indexing and
some features may not have a “similar” feature in
the other SAE, we pairwise match them using a
correlation metric.
Rotational Alignment issue. Even after per-
mutation alignment, each SAE may use its own
orthonormal basis for latent space. To ensure that
the true relational similarity is captured, we apply
rotation-invariant similarity measures, namely
SVCCA and RSA.

To score the results against a baseline, ran-
domly paired features are obtained. Then, the
score of the features paired by correlation (referred
to as “paired features”) is compared with the
average score of N runs of randomly paired
features to obtain a p-value score.

3.1.1 1-to-1 vs. Many-to-1 Feature Matching
Following Lan et al. (2024), we consider two ways
of pairing SAE features from layer Ai of the first
model with layer Bj of the second.

1-to-1 (bijective) matching. We iteratively build
a one–to–one assignment: at each step we pick

the still–unmatched pair of features with the high-
est Pearson correlation. Each feature is used
at most once, yielding a bijection of size K =
min

(
|Ai|, |Bj |

)
.

Many-to-1 matching. To probe whether the en-
tire dictionary of the smaller layer can be embedded
inside the larger one, we relax the uniqueness con-
straint on layer Bj . Every feature in Ai is matched
to its most-correlated partner in Bj , even if that
target has already been claimed by other sources.
Thus one feature in Bj may receive multiple links,
while each feature in Ai is still matched exactly
once.

Unless stated otherwise, all correlations are com-
puted with Pearson correlation; the aligned pairs
returned by the chosen strategy are then fed into
the subsequent SVCCA and RSA calculations.

3.2 Representational Similarity Metrics
3.2.1 Singular Value Canonical Correlation

Analysis (SVCCA)
Singular Value Canonical Correlation Analysis
(Raghu et al., 2017) is a variation of the Canon-
ical Correlation Analysis CCA (Hotelling, 1936)
which finds a pair of the most correlated variables,
ui and vi from two sets of variables X ∈ Rn×d1

and Y ∈ Rn×d2 . Before applying CCA, SVCCA
reduces noise by applying Singular Value Decom-
position (SVD) to X and Y using X = UXSXV T

X

and Y = UY SY V
T
Y , where UX and UY are the

matrices containing the left singular vectors (in-
formative directions), and SX and SY are diago-
nal matrices containing the singular values. After
CCA is applied on the new data, correlation scores



between the most informative components are ob-
tained, which are then averaged to get a similarity
score. SVCCA measures how well subspaces of
two SAE weight matrices align, essentially quanti-
fying the global feature space overlap.

3.2.2 Representational Similarity Analysis
(RSA)

Representational Similarity Analysis (Kriegeskorte
et al., 2008) calculates, for each space, a Repre-
sentation Dissimilarity Matrix (RDM) D ∈ Rnxn.
Each element in this matrix represents the dissimi-
larity between every pair of data points in the space.
Following RDM, a correlation metric such as Spear-
man’s rank correlation coefficient is used to com-
pute a similarity score.

3.3 Semantic Subspaces

In addition to the layer-wise SAE comparisons,
we also test semantic subspaces, collections
of words defined by a high-level concept that
contain concept-specific keywords. For example,
“emotions” is a subspace with concept-specific
keywords like “happy”and “sad”. By testing these
subspaces, we can evaluate whether LLMs encode
the same semantic categories.

For each high-level concept, we first use
GPT-4o (Achiam et al., 2023) to generate three
independent lists of representative keywords. We
then intersect these lists and retain only terms
that are unambiguous (each having a single and
clear meaning). Next, we add to the keyword set
their hyponyms from WordNet (wor, 2010). This
combined collection of keywords plus and their
hyponyms defines the final semantic subspace for
that concept.

To evaluate semantic subspaces more rigorously,
we combine two different subspaces in the
following ways:
Multi-token subspaces: In the multi-token sub-
spaces, we concatenate keywords from different
concepts together. For instance, “happy” (from
“emotions”) and “child” (from “person”) becomes
“happy child”. In these types of subspaces, we
aim to understand if different LLMs internally
process longer sentences similarly. Furthermore,
we concatenated unlikely pairs of concepts, such
as “calendar” and “emotions”, which the LLMs
were unlikely to see during their training to check
whether the LLMs process previously unseen data

in a similar manner.
Overlapping subspaces: Overlapping subspaces
are formed by taking the union of whole subspaces
together. For instance, the “emotions” and “person”
subspaces would yield (“happy”, “teacher”,
“sad”, “child”, ...). This aims to test if the differ-
ent LLMs interact with multiple concepts similarly.

4 Experiments and Results

4.1 Feature Analysis

Layer-wise similarity of full SAE spaces
1-to-1 (5 run mean): In Fig. 2a the diagonal

band of Paired SVCCA now peaks at 0.73 (Gemma-
2-2B L14 and Gemma-2-9B L19) and stays consis-
tently high across contiguous mid-layer pairs (0.64
– 0.71). Early layers sit at 0.35 ± 0.05, and the last
decoder layer of Gemma-2-9B (L39) experiences
a drop to an average of 0.374. Through these visu-
alizations (Fig. 2a & Fig. 2b), it is observable that
the middle layers between both models share the
most similarity compared to other layers.

Paired RSA (Fig. 2b) follows the same shape
but at roughly one-third of the magnitude: maxima
of 0.22 and a midlayer plateau of 0.15 – 0.20, with
edges staying less than 0.08. Yet again, the last
decoder layer of Gemma-2-9B (L39) experiences a
drop. This figure further displays the pattern of mid-
dle layers sharing the most similarity, especially
compared to early and late layers.

Many-to-1 (Single run): When we allow dupli-
cates (Fig. 4a) the peak SVCCA softens to 0.69
(Gemma-2-2B L14 and Gemma-2-9B L19) and the
mid-layer plateau narrows (0.54 – 0.66). RSA fol-
lows suit, topping out at around 0.18 - 0.2. This
confirms that when features are matched more than
once, the alignment scores drop slightly, but the
overall pattern is maintained.

Many-to-1 (5 run mean): Averaging five
random initializations barely changes the picture
(Fig. 6a): peak SVCCA = 0.69, peak RSA = 0.20.
The variance across runs is <0.02 for every cell,
indicating that the many-to-one procedure is stable,
but still consistently lower than the ceiling of the
1-to-1 strategy.

Random-pair baselines and significance.
Across the three experiments, the mean random
SVCCA spans 0.005 – 0.034, with a majority
of cells below 0.02 (Fig. 8a, Fig. 9a, Fig. 10a).
Consequently, every empirical SVCCA score



Figure 2: (a) SVCCA and (b) RSA 1-to-1 paired scores of SAEs for layers in Gemma-2-2B vs Gemma-2-9B. Note
the pattern of higher scores between the middle layer pairings indicating similarity in middle layers between both
models.

Figure 3: (a) 1-to-1 Mean Activation Correlation before and (b) after filtering non-concept features for Gemma-2-2B
vs Gemma-2-9B. Note these patterns generally contrast from those of the SVCCA and RSA scores in Figure 2,
indicating that these metrics each reveal different patterns not shown previously such as the pattern of middle layers
between both models exhibiting higher correlation.

beyond the first residual layer lands in the 0.0
p-value bucket (≤ 0.1% chance of getting such a
good alignment by random) (Fig. 8b, Fig. 9b, Fig.
10b). In other words, even the weakest observed
alignment (SVCCA ≊ 0.30) is simply too strong
to be by chance.

Effect of filtering non-concept features.
Mean activation correlation before filtering peaks
at 0.70 (L22 & L39) and averages 0.60 ± 0.07 on
the mid-layer block (Fig. 3a). After removing
unimportant features (Fig. 3b) the pattern of
middle layers having an increased correlation
between the two models becomes more evident,
while more surrounding random matches fall by
0.10 – 0.15, raising the peak correlation from 0.70
to 0.74. Another result to note is that early layers
and late layers of both models share strikingly
higher similarity compared to other layers; for
example L2 of both models, L6 of both models,
and Gemma-2-2B L22 & Gemma-2-9B L39 all
have the highest correlation (Fig. 3b, Fig. 5b,

Fig. 7b). In other words, removing low-level
features (such as punctuation) made strong
alignments clearer and more meaningful, without
just artificially boosting scores.

4.2 Semantic Subspace Analysis

Semantic subspace alignment. When we fix
a single Gemma-2-2B layer and correlate every
semantic-concept row against layers 2, 6, 10, 19,
25, and 39 for Gemma-2-9B, the same mid-on-mid
pattern re-emerges: mid-stack layers in both mod-
els align best. Among the 2-2B sources we tried,
the layer centered around L14 most consistently
exhibited the highest SVCCA and RSA scores, re-
inforcing the idea that internal concept geometry
more commonly converges in the middle of the
networks. Full heat-maps for every source layer
and metric are collected in Appendix B.

Overlapping Semantic Subspaces. When two
semantic subspaces are combined, there are two
different trends in the results based on the compat-
ibility of the subspaces. For instance, combining



Overlapping Concept Paired SVCCA Mean Random Shuffling Mean p-value

Emotion and Time 0.62 0.13 0.0
Nature and People 0.63 0.17 0.0

Table 1: Comparison of paired SVCCA, random shuffling mean, and p-values for reasonable pairs of concepts at
layers 10 of both Gemma-2-2B and Gemma-2-9B.

Overlapping Concept Paired SVCCA Mean Random Shuffling Mean p-value

Country and People 0.03 0.13 0.02

Table 2: Comparison of paired SVCCA, random shuffling mean, and p-values for bad pairs of concepts at layers 10
of Gemma-2-2B and layer 19 of Gemma-2-9B. These results indicate that these pairs are not encoded similarly

the subspaces “country” and “people” in Table 2
which is a non-ideal pair results in low average
SVCCA and RSA scores across the layers, indi-
cating that there is insignificant correlation in how
the models internally represent this subspace. This
phenomenon could be caused by the fact that the
models are unlikely to group these subspaces to-
gether during training. However, when the pair of
subspaces being combined makes sense, such as
“nature” and “people” in Table 1, both the SVCCA
and RSA scores are high, leading to the conclusion
that both models represent these subspaces very
similarly. All of the results are in Appendix C.

Multi-token Semantic Subspaces. Despite re-
source constraints limiting our evaluations to the
”emotions time” subspace, our preliminary results
on multi-token subspace (see Table 3) provide key
insights. Notably, high SVCCA scores remained
in the early and middle layers, providing strong
empirical evidence that models sometimes encode
multi-token concepts. Furthermore, the SVCCA
scores are drastically higher than ”emotions” or
”time” alone in the early layers (see Appendix B),
indicating that earlier layers represent multi-token
subspaces rather than single-token ones. This result
challenges the popular, underlying assumption that
models internally encode single-token concepts
(Dehouck, 2023; Valois et al., 2024). Hence, we be-
lieve that meaning is sometimes distributed across
multiple tokens, and that semantic subspaces are
the better level of analysis.

Distance metrics. During layer-to-layer SAE
feature analysis, we have used the Pearson correla-
tion as done in Lan et al. (2024). We tested other
metrics such as the cosine similarity and euclidean
distance; however, changing the similarity metric
did not yield any statistically significant changes in
the results, implying that the distance metric used
does not affect the accuracy of our results.

5 Related Works

Superposition and Sparse Autoencoders. Previ-
ous studies have shown that, when there are more
features to be represented than available parame-
ters, feature representations are distributed across
multiple parameters, leading to polysemantic neu-
rons (Elhage et al., 2022). Polysemanticity causes
challenges in interpreting models, which is crucial
for AI safety in identifying goal misgeneralization
(Shah et al., 2022; Langosco et al., 2022) as well
as deceptive misalignment (Hubinger et al., 2024;
Greenblatt et al., 2024). For these reasons, Sparse
Autoencoders (SAEs) have been used to transform
polysemantic neuron activations into monoseman-
tic feature neurons that usually correspond to one
feature (Makhzani and Frey, 2013; Cunningham
et al., 2023; Gao et al., 2024; Rajamanoharan et al.,
2024a,b). It is much easier to conduct quantitative
interpretability studies on these monosemantic fea-
tures.
Feature Universality. The existance of “univer-
sal” neurons across LLMs were first uncovered in a
study of GPT-2 (Gurnee et al., 2024). Furthermore,
previous studies that have performed quantitative
analysis using SAEs to test for feature universality
(Lan et al., 2024; Bricken et al., 2023) have shown
universality in analogous features and representa-
tional features (Olah et al., 2020; Yosinski et al.,
2014; Gurnee et al., 2024; Kornblith et al., 2019).
These are not measures of “true features”, which
are stricter ground-truth features (Bricken et al.,
2023) that represent atomic linear directions (Till,
2023).

Previous research on SAEs to test for feature
universality (Lan et al., 2024) has demonstrated
that, after aligning neurons via mean activation
correlation, there exists statistically significant
alignment (p < 0.05) for almost all non-input



Multi-token Concept Paired SVCCA Mean Random Shuffling Mean p-value

Emotion and Time (L6 vs L2) 0.27 0.02 0.0
Emotion and Time (L6 vs L10) 0.53 0.02 0.0

Table 3: Comparison of paired SVCCA, random shuffling mean, and p-values for bad pairs of concepts at layers 6
of Gemma-2-2B and layer 2 and 10 of Gemma-2-9B. These results indicate that multi-token inputs are encoded
similarly.

layers. The middle layers exhibited the strongest
correspondence, indicating that distinct LLMs
learn a shared set of features. Beyond layer-wise
comparisons, semantically defined subspaces were
tested by filtering features whose top activating
tokens match curated keyword lists linked to a
conceptual category such as “Emotions”or “Time“.
These subspaces yielded high SVCCA scores
with p ≪ 0.05, illustrating that semantic concept
feature groups are more consistent across models.
Mechanistic Interpretability. Interpreting neu-
rons and MLP analysis have become increasingly
popular (Foote et al., 2023; Garde et al., 2023)
techniques to understand the inner workings of
LLMs. Other mechanistic interpretability methods
have used SAEs (Lan et al., 2024; Nanda and
Conmy, 2024) because of their more interpretable
feature spaces.

6 Conclusion

In this paper, we provided a comprehensive study
on feature universality in models of different
sizes. Our experiments reveal that, in many cases,
internal representations are similar across models
regardless of size. In addition, our semantic
subspace experiments revealed that different
models encode pairs of subspaces and multi-token
subspaces similarly, further enforcing the concept
of LLM universality. These findings are a key step
in forming a comprehensive understanding of how
LLMs internally function.

7 Limitations

This study focused only on the Gemma-2-2B and
Gemma-2-9B models due to resource constraints,
particularly GPU availability and compute time.
While this size comparison captures meaningful dif-
ferences in model scale, further work could extend
our approach to a wider range of architectures, pa-
rameter counts, tokenizers and layer comparisons.
It is important to note that using models with the

same tokenizer leads to higher quality pairings and
thus higher accuracy results (Lan et al., 2024). Ad-
ditionally, the number of SAE-derived subspaces
we analyzed was limited to keep manual inspection
and downstream evaluations manageable. Expand-
ing this analysis to a larger, more diverse set of
subspaces could help further characterize the ex-
tent and nature of feature space universality. Fur-
thermore, our experiments with multi-token sub-
spaces only tested a single subspace due to further
resource limitations.
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A Additional Results

Figure 4: (a) SVCCA and (b) RSA Many-to-1 paired
scores of SAEs for layers in Gemma-2-2B vs Gemma-
2-9B. Note the pattern of higher scores in the middle
layers indicating similarity in middle layers between
both models.

Figure 5: (a) Many-to-1 Mean Activation Correlation
before and (b) after filtering non-concept features for
Gemma-2-2B vs Gemma-2-9B. Note these patterns gen-
erally contrast from those of the SVCCA and RSA
scores in Figure 2, indicating that these metrics each
reveal different patterns not shown previously.

Figure 6: (a) SVCCA and (b) RSA Many-to-1 (5 run
average) paired scores of SAEs for layers in Gemma-2-
2B vs Gemma-2-9B. Note the pattern of higher scores in
the middle layers indicating similarity in middle layers
between both models. This pattern is a trend in layer
similarity between the three experiments as seen in Fig.
2a, Fig. 2b, Fig. 10a, and Fig. 4b.

Figure 9: (a) Mean Randomly Paired SVCCA Many-to-
1 scores and (b) SVCCA Many-to-1 P-values of SAEs
for layers in Gemma-2-2B vs Gemma-2-9B.

Figure 7: (a) Many-to-1 (5 run average) Mean Acti-
vation Correlation before and (b) after filtering non-
concept features for Gemma-2-2B vs Gemma-2-9B.
Note these patterns generally contrast from those of
the SVCCA and RSA scores in Figures 2, 4, and 6, indi-
cating that these metrics each reveal different patterns
not shown previously.

Figure 8: (a) Mean Randomly Paired SVCCA 1-to-1
scores and (b) SVCCA 1-to-1 P-values of SAEs for
layers in Gemma-2-2B vs Gemma-2-9B.

Figure 10: (a) Mean Randomly Paired SVCCA Many-
to-1 scores and (b) SVCCA Many-to-1 (5 run average)
P-values of SAEs for layers in Gemma-2-2B vs Gemma-
2-9B.
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B Semantic Subspace Similarity
(Gemma-2-2B → Gemma-2-9B).

The following figures visualize concept-wise align-
ment from fixed layers of Gemma-2-2B to all layers
of Gemma-2-9B. Each heatmap row corresponds
to a semantic category (e.g., Emotions, Biology)
and each column is a layer in Gemma-2-9B.

We show both SVCCA and RSA 1-to-1 results
for 2-2B source layers L6, L10, L14, and L17.
These help assess which layers in Gemma-2-9B
best match the concept geometry of the smaller
model. For most layers, similarity scores peak in
the mid-stack (L10–L19), further supporting the
cross-model alignment trend observed in Section 4.

* Some concepts may not appear across all rows
if they lacked sufficient matched features or token
coverage.

Figure 11: Scores rise into the mid-layers, peaking near
0.40 at L10–L19.

Figure 12: Mid-layer alignment strengthens; several
concepts surpass 0.60.

Figure 13: Highest similarity sits in the center stack;
edge layers lag.

Figure 14: Alignment remains centered; deep and early
layers score lower.

Figure 15: Mid-layer RSA peaks near 0.17; edge layers
stay low. People/Roles dips below 0 at L2.



Figure 16: Mid-to-deep pairs score higher: Biology,
Month-Names reach ∼0.25 at L19.

Figure 17: Highest scores at 9B L19: Biology ∼0.30,
Countries ∼0.25. L2 and L39 remain near zero.

Figure 18: Strongest alignment at L19; outer layers
weak or negative.

C SVCCA by concept in Gemma-2-2B
and Gemma-2-9B.

Figure 19: paired SVCCA 1-to-1 for calendar-nature
concept

Figure 20: paired SVCCA 1-to-1 for calendar-people
concept

Figure 21: paired SVCCA 1-to-1 for country-people
concept



Figure 22: paired SVCCA 1-to-1 for country-time con-
cept

Figure 23: paired SVCCA 1-to-1 for nature-people con-
cept

Figure 24: paired SVCCA 1-to-1 for emotion-time con-
cept
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