
Only-Style: Stylistic Consistency in Image Generation
without Content Leakage

Tilemachos Aravanis1 Panagiotis Filntisis2,3 Petros Maragos1, 2, 3 George Retsinas2, 3

1School of Electrical & Computer Engineering, National Technical University of Athens, Greece
2Robotics Institute, Athena Research Center, 15125 Maroussi, Greece

3HERON - Center of Excellence in Robotics, Athens, Greece

Abstract

Generating images in a consistent reference visual style
remains a challenging computer vision task. State-of-the-
art methods aiming for style-consistent generation struggle
to effectively separate semantic content from stylistic ele-
ments, leading to content leakage from the image provided
as a reference to the targets. To address this challenge, we
propose Only-Style: a method designed to mitigate content
leakage in a semantically coherent manner while preserving
stylistic consistency. Only-Style works by localizing con-
tent leakage during inference, allowing the adaptive tuning
of a parameter that controls the style alignment process,
specifically within the image patches containing the sub-
ject in the reference image. This adaptive process best bal-
ances stylistic consistency with leakage elimination. More-
over, the localization of content leakage can function as a
standalone component, given a reference-target image pair,
allowing the adaptive tuning of any method-specific pa-
rameter that provides control over the impact of the stylis-
tic reference. In addition, we propose a novel evaluation
framework to quantify the success of style-consistent gener-
ations in avoiding undesired content leakage. Our approach
demonstrates a significant improvement over state-of-the-
art methods through extensive evaluation across diverse in-
stances, consistently achieving robust stylistic consistency
without undesired content leakage. Project-Page

1. Introduction

State-of-the-art text-to-image (T2I) models [3, 7, 34, 36, 40]
demonstrate impressive results in transforming text into
compelling visual outputs. However, such models do not
hand the user control over specific visual stylistic results,
often producing widely varying interpretations of the same
textual descriptor, as shown in the first row of Fig. 1.

For this reason, several works aim to provide visual the-

“A car...” “A bear...” “A circus tent...” “A tiger...”

Initial stylistic
alignment
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Figure 1. Only-Style: The top row shows images independently
generated by a text-to-image model using the style descriptor “in
vintage poster style”. Applying a state-of-the-art method (here
StyleAligned [13]) to align these images stylistically with the first
image (the car) leads to unintended content leakage, causing vi-
sual elements of the car to infiltrate the other images. Only-Style
addresses this by first localizing the semantic content of the refer-
ence subject in the target images (third row) and then guiding the
alignment process to eliminate this undesired effect (fourth row).

matic consistency across different generated concepts, as
they were created or performed in the same manner or
technique (e.g., from the same artist). Even though these
methods achieve the desired stylistic alignment of a refer-
ence image with a target one, they frequently exhibit con-
tent leakage. In other words, unintended semantic elements
from the reference image subject, appear in the target im-
age. Such cases are evident in the second row of Fig. 1.
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The main motivation of this work is to find a semanti-
cally meaningful way to remove this content leakage while
preserving consistency in style. To achieve this, we intro-
duce a method to control the transfer of the reference sub-
ject patches in the target image, through a simple scaling of
their representations. This scaling operation is adaptively
tuned via the localization of the reference subject in the tar-
get image to determine whether the transfer of the reference
subject features should be further restrained (see third row
of Fig. 1). The final stylistic alignment is illustrated in the
bottom row of Fig. 1. As it can be observed, the resulting
target images exhibit no content leakage - thus we dubbed
our method Only-Style.

Additionally, we present two novel evaluation methods
to measure the impact of content leakage in style consis-
tent image generation, both coarsely via an encoder-based
metric (CL) and fine-grained via Large Vision-Language
Models (LVLMs). The former quantifies the semantic cor-
relation between the target image and the reference subject,
thereby assessing content leakage, while the latter detects
even subtle leakage cases by prompting LVLMs. We bench-
mark many state-of-the-art methods, showing that content
leakage is a main challenge shared across all of them. To
our knowledge, although content leakage has been recog-
nized as an issue in stylistic consistency, no prior work has
proposed a way to measure the appearance of content leak-
age cases — a very useful tool to understand the efficacy of
methods that promote stylistic consistency.

Our main contributions are: • We introduce fine-grained
control over the leakage of reference semantic elements
to the target image, tailored for attention sharing ap-
proaches [13]. • We propose a novel method for subtle
leakage localization, applicable to any style consistent gen-
eration approach. • We design an end-to-end method that
achieves style-consistent image generation by adaptively
scaling down the contribution of the reference subject, ad-
dressing the problem of content leakage. • We propose an
evaluation framework that quantifies content leakage using
two distinct metrics (coarse and fine-grained version). We
release this benchmark to serve as a standardized baseline,
addressing a notable gap in the community and facilitating
more consistent comparisons of style alignment methods.

2. Related Work
Text-to-Image diffusion models. Diffusion models [15,
41, 43, 44] have transformed the field of image genera-
tion, producing highly diverse and visually striking outputs.
Further, text-conditioned diffusion models [30, 37] enable
the generation process to be guided by natural language
prompts, leveraging these powerful generative capabilities.
Controlling the attention in T2I diffusion models. The
attention mechanism is the common underlying ingredient
within neural network backbones in T2I diffusion mod-

els. Recent works have explored how the self-attention
and cross-attention layers can be harnessed to define both
the layout and semantic content of text-generated images
[4, 12, 32, 45]. Additionally, attention mechanisms have
been widely applied for editing text-generated images [1, 6,
29, 33, 46]. Building on insights from these methods, we
utilize the attention layers to disentangle content and style,
addressing the challenge of style-consistent generation.
Style Transfer. Style transfer is a long-standing challenge
in computer vision [5, 14] that refers to the process of trans-
forming the visual style of an input image while preserving
its content. Neural Style Transfer leverages deep features
from pretrained networks to alter the style of a target im-
age based on a reference [10, 20]. Moreover, GAN-based
techniques have been developed to transfer images across
different stylistic domains [18, 21, 31, 52].
Consistent style Generation. With the advent of diffu-
sion models stylization research has focused on generating
target text-specified concepts using either real or synthe-
sized stylistic reference images. Different approaches have
emerged to tackle this task: • One family of approaches in-
volves training diffusion models to incorporate condition-
ing from the output representation of a pretrained image
encoder[48–51], such as CLIP[35]. However these meth-
ods require significant computational resources to train this
conditioning and tend to drive the model away from its
training distribution. Following this paradigm and con-
ceptually close to our work, InstantStyle [48], in a coarse
attempt to reduce content leakage, injects the CLIP im-
age embedding of the stylistic reference, subtracted by the
CLIP text embedding of the reference subject, into specific
blocks within the diffusion model. • Another line of re-
cent works developed optimization techniques over one or
more images that let the model capture certain visual fea-
tures [8, 9, 11, 22, 39, 42] such as a style interpretation. For
example B-LoRA [8] trains specific LoRAs within the dif-
fusion backbone to capture separately the content and style
of an image. • Closer to our work, to circumvent the com-
putationally intensive pretraining or fine-tuning process per
instance, recent approaches utilize self-attention layers of
the model’s backbone to allow communication between im-
ages within a batch, and thus the transfer of stylistic features
from a single reference to other images [13, 19]. Build-
ing upon these state-of-the-art approaches, our method ad-
dresses the persistent challenge of content leakage.

3. Proposed Method: Only-Style
3.1. Overview of Only-Style
In the forthcoming analysis, we consider the following
setup1: • The goal is the generation of two images Iref and

1Our method can be easily extended to support multi-image and multi-
subject generation (see Suppl. Mat. and Fig. 7)
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Figure 2. Overview of Only-Style: By localizing semantic con-
tent leakage, we adaptively tune a scaling parameter α that con-
trols style sharing in image patches containing the reference sub-
ject (subject map Âsub), resulting in the optimal value that elimi-
nates leakage while preserving stylistic consistency.

Itgt with visually “aligned” style, but driven from different
prompts Pref and Ptgt. • The considered prompts have a
specific structure of {subject} + {style}. Specifically, we
have the textual descriptions of the reference subject Sref

(e.g., “a cat”) and the target subject Stgt (e.g., “a train”),
which are combined with the desired stylistic description
Pstl (e.g., “in realistic 3D render”).

Content leakage occurs when attributes of Sref visually
“leak” into patches of Itgt leading to unwanted semantic
content overlap. The core idea behind Only-Style is to detect
these image patches associated with the reference subject
and adaptively reduce their contribution to the shared style
generation, as shown in Fig. 2. The algorithm consists of
three main steps that are performed at inference time:

• Content Leakage Control (Sec. 3.3): First, we identify the
patches in Iref that are relevant to the reference subject.
This way, their contribution to the shared style generation
can be reduced by simply scaling them down.

• Content Leakage Localization (Sec. 3.4): Next, we detect
the patches in Itgt that are more relevant to Sref than to
Stgt, denoting content leakage.

• Adaptive Scaling (Sec. 3.5): Finally, we combine the
steps above to determine the optimal scaling, eliminating
content leakage while retaining the stylistic alignment,
via a binary search process.

3.2. Preliminaries
Attention in T2I Diffusion Models. State-of-the-art T2I
diffusion models [3, 34, 40] typically use a U-Net [38] ar-
chitecture as the backbone2. These image-to-image archi-
tectures are augmented with transformer blocks, each one
of them consisting of a self-attention layer followed by a
cross-attention layer. The latter contextualizes the deep im-
age features with the text token embeddings. The proposed
method is employed on these transformer blocks.

2some models, such as [7], use a Transformer [47] backbone - which is
in line with the proposed framework since it relies on attention layers

Following the typical attention layer conventions [47],
deep features are projected into queries Q ∈ Rn×dk , keys
K ∈ Rm×dk , and values V ∈ Rm×dv . The output of the
attention layer is computed as:

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

)
V = AV, (1)

where A ∈ Rn×m is the output of the softmax operator,
referred to as the attention probabilities and essentially de-
scribing the correlation between Q and K. In self-attention,
Q, K, and V are all derived from the same image features
F, while in cross-attention, Q comes from the image fea-
tures and K, V come from the text token embeddings.

3.3. Content Leakage Control
The first step in mitigating content leakage is to regulate the
influence of the reference image. Most existing approaches
incorporate hyperparameters that serve this purpose (see
Fig.5 and the relevant discussion). Aiming for a finer
control, Only-Style builds upon an attention-based method
that achieves consistent style generation, StyleAligned [13].
Our objective is to leverage the attention mechanism to se-
lectively scale down reference subject patches while main-
taining style consistency, even under scaling adjustments.

Specifically, this control module consists of two steps:
1) detection of image patches in Iref that visually corre-
spond to the subject Sref , and 2) scaling down the contri-
bution of these subject patches only, according to a given
scale parameter a. The first step requires the inference of
the reference image Iref according to the reference prompt
Pref = Sref + Pstl, and is performed within the cross-
attention layers of the transformer blocks. The second step
is then performed on the self-attention layers, by scaling
down the reference keys Kref of the shared attention mech-
anism employed in [13] (see suppl. material) during the
generation of Itgt.

Detecting Subject Patches. As evident in Fig. 1, con-
tent leakage in Itgt originates from the transfer of patches
in Iref that are semantically close to the reference subject
Sref . Our key observation is that cross-attention layers,
which serve as a semantic explanation in T2I models[12],
can be leveraged to annotate these patches in Iref .

Thus, to access and control the “leakage” of a subject,
an aggregated attention visual map asub ∈ Rn ≡ Âsub ∈
RH×W is required, referred to as subject map, where asub is
the flattened version across all the patches, while Âsub is re-
shaped to match the image’s spatial structure. Specifically,
we use the cross attention probabilities (Al,t, see Eq. 1) at
iteration t and in the layer l. The considered layers are the
bottleneck layers of the U-Net backbone, known to contain
rich semantic information [23, 32].

Given a set of bottleneck attention layers B and itera-
tions t ∈ [1, T ], we compute the averaged cross attention
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probabilities with respect to the subject token Sref as:

asub =
1

T |B|

(∑
t

∑
l∈B

Al,t
)
es (2)

where es isolates the column corresponding to the subject.
The output of this step is a binary mask R ∈ RH×W ,

identifying patches relevant to the subject. Thus, given the
subject map Âsub, we aim to separate the patches content-
related patches (source of leakage) from unrelated ones.
Since it is impossible to a priori specify a good thresholding
value across all cases (slightly different text prompts lead to
different attention values, even for the same subject token),
we perform the separation via a K-means clustering method
with two centroids. See Suppl. Mat. for details.

Controlling Content Leakage. Following [13], content
leakage can be mitigated by reducing the contribution of
reference key features Kref in shared self-attention layers.

However, scaling all the patches is not optimal, since
style contribution can be affected too (see ablation on Suppl.
Mat.). Instead, we selectively scale only the key features of
“content patches,” as determined by the subject mask R.
Using a single scalar parameter α ∈ [0, 1], we scale the key
features at each iteration t and layer l ∈ B as:

K̂ref = (1−R)⊙Kref + αR⊙Kref (3)

Intuitively, by reducing α, this weighting makes the at-
tention distribution on the reference subject patches more
uniform, resulting in a global stylistic alignment rather than
a polarised local “semantic” transfer. As shown in Fig. 2,
decreasing α progressively reduces content leakage in a se-
mantically explainable manner.

3.4. Content Leakage Localization
Reducing the influence of reference subject patches may
lead to stylistic misalignment, as shown in Fig. 4. This ne-
cessitates finding a scaling parameter high enough for ac-
curate style transfer yet low enough to minimize content
leakage. To achieve this, we must measure content leakage
in target images to establish a lower bound for scaling.

To this end, we introduce a patch-level content leakage
localization method at inference, applied in two consecutive
diffusion iterations. Our method relies on a simple premise:
determining whether a target image patch contains more
information about the reference than the target subject. To
implement this, we need to define the following: 1) how to
extract robust and faithful representations v for both sub-
jects, 2) how to use them to detect leakages.

Extracting Subject Representations. The CLIP to-
ken embeddings that guide the generation via the cross-
attention, are not expressive enough to localize subtle ref-
erence subject that overlap with the target. To improve this,
we use cross-attention maps Âsub (Sec. 3.3), averaged on a

Itgt Cref Ctgt L⊙(Cref −Ctgt)

Figure 3. Similarity maps of the original reference subject (cat)
and the target subject (train). By combining these maps we can
effectively localize content leakage in the target image.

single iteration, to pool one representation per subject be-
fore each self-attention layer. Since directly using Âsub

does not reliably localize the most relevant features to the
subject, we refine this via clustering and percentile thresh-
olding, forming a binary mask Msub of subject-relevant
patches3. The refined subject-relevant attention map Ãsub

is then extracted as:

Ãsub = (Msub ⊙ Âsub)/
∑

(Msub ⊙ Âsub) (4)

In the iteration following the extraction of Ãsub, each
layer l uses the feature map Fl before the self-attention
layer to extract a per-layer visual representation vl ∈ Rd

that best describes the subject in layer l:

vl
sub =

∑
i

∑
j

[Fl ⊙ Ãsub]ij (5)

This gives us two sets of representation vectors: {vl
ref}

corresponding to Sref in Iref and {vl
tgt} for Stgt in Itgt.

Detecting Leakages. The semantic relevance of each
patch in Itgt to the subject can then be computed using the
cosine similarity scores between the target image features
Fl

tgt and the subject representations vl
sub. For each subject,

we aggregate this similarity across bottleneck layers {B},
resulting in the similarity map Csub ∈ RH×W . Formally:

[Csub]ij =
1

|B|
∑
l∈B

cos([Fl
tgt]ij ,v

l
sub), (6)

where i ∈ [1, H] and j ∈ [1,W ] denote spatial patch po-
sitions, and cos is cosine similarity. Thus, we obtain the
similarity map Cref of Sref and Ctgt of Stgt (see Fig. 3).

A patch pij is marked as content leakage (binary value
Lij) if it contains more of Sref than Stgt:

Lij =
(
[Cref ]ij ≥ [Ctgt]ij + tleak

)
∧(

([Ctgt]ij ≥ trel) ∨ ([Cref ]ij ≥ trel)
) (7)

where tleak determines the minimum difference for leak-
age detection, and trel filters out irrelevant/background
patches.

3Check Suppl. Mat. for more details on this step.
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Reference Adaptive α α = .9 α = .5

“A shoe” “A phone” “... in pop art style.”

“A house” “A lion” “.. in stickers style.”

“A cup” “Beans” “... in cafe logo style.”

“A spoon” “A knife” “... in melting golden 3D style.”

Figure 4. Adaptive vs Fixed Scaling: Fixing the scaling param-
eter that controls shared attention does not yield consistent results
across all instances, often failing to prevent content leakage or ac-
curately align the desired style with the target subject.

Finally, we can obtain the overall leakage value as the
logical addition of Lij : Lo =

∨
ij Lij . Both thresholds

remain fixed across all experiments (tleak=0.1 & trel=0.4).
A key property of generative diffusion models is that

structure and semantics emerge early in the process [32].
Since content leakage is inherently semantic, we can apply
the proposed process early in the denoising stage, bypassing
full generation. Thus, to increase efficiency, we perform the
proposed localization approach at t = T/2, as our experi-
ments indicate that leakage is observable by this stage.

Generalization. The proposed localization approach
can be applied in the output of any style consistency dif-
fusion pipeline, used as a standalone component. Specifi-
cally, given the images Iref and Itgt along with their sub-
jects Sref and Stgt we can use DDIM inversion to obtain la-
tents zT , zT−1 for each image. Then, we simulate the final
two diffusion steps to localize content leakage as described
in this section. This has minimal computational overhead
and can serve as a post-processing step for any style consis-
tency method.

3.5. Adaptive Scaling

As mentioned before, we would like to choose the maxi-
mum value of scale α that resolves content leakage, as faith-
fully aligning the style of the reference “subject” with the
target one is also necessary in many cases, and it is intu-
itively natural that lower values of scale, lower that align-
ment. To avoid a linear search, we exploit the monotonicity

Reference β = 0.875 Content Leakage Adaptive
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“A wave” “Cherries” “...in Japanese Ukiyo-e style.”

Figure 5. Hyperparameter tuning to mitigate content leak-
age. We apply the leakage detection of Sec.3.4 to adaptively tune
hyperparameters presented in B-LoRA[8] and InstantStyle[48].
While these methods reduce leakage, they distort the reference
style. Only-Style preserves both style and content integrity.

of α with respect to the binary leakage indicator Lo, which
answers the decision problem: “Is there any content leak-
age on Itgt?”. Given this property, we apply binary search
on α to efficiently minimize leakage. This process has a
multiplicative computational overhead of Θ(| log(p)|), re-
quiring | log(p)| style aligning generations, where p is the
enforced precision of α.

4. Experiments and Evaluation
4.1. Experimental setup
Implementation. We implement our method on top of
StyleAligned [13] which uses Stable Diffusion XL (SDXL)
[34] at its core. The proposed leakage control process (for a
single scale α) takes 31 seconds in a NVIDIA GeForce RTX
3090, only 2 seconds more than the base StyleAligned gen-
eration. We set a fixed precision value of p = 0.03125 for
the binary search of Sec. 3.5, which means that the whole
process involves 4 half generations (see Sec. 3.4), each one
of them determining the binary indication of leakage, and
one whole, to generate the final style-consistent pair. Thus,
our method runs for approximately 1.5 minutes per style
alignment instance. Details on time requirements of sota in
the Suppl. Mat.

Evaluation prompt set. We create an evaluation set of
100 prompts, by extracting the 100 creative style descrip-
tors used in the evaluation set of StyleAligned [13], and
then employing ChatGPT to generate highly diverse objects
(4 per style) that could appear in the specific style con-
text. The unified style prompt looks like the following: {‘A
clock’, . . . , ‘A cupcake’} in abstract rainbow colored flow-
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Figure 6. Text Alignment vs Stylistic Set Consistency: We com-
pare three state-of-the-art methods (blue marks), a baseline with-
out stylistic alignment (grey mark), our two ablation variants (or-
ange marks) and Only-Style (green mark) in terms of text align-
ment (CLIP similarity) and set consistency (DINO similarity).

ing smoke wave design. The textual descriptions of the ob-
jects are kept minimal without modifiers such as adjectives
and prepositional phrases, as the linguistic identification of
the subject text tokens within a prompt, that is necessary for
the localization of content leakage, remains out of the scope
of our work. The set is presented in the Suppl. Mat.

Comparison with state-of-the-art methods. We com-
pare our work with the following state-of-the-art style-
consistent generation methods, implemented on top of
generative diffusion models. Apart from StyleAligned
(SA) [13], we considered InstantStyle (IS) [48] as an
adapter-based method that focuses on avoiding content
leakage, B-LoRA [8] and StyleDrop (SDRP), as two
optimization-based baselines that yield state-of-the-art re-
sults. For B-LoRA [8] we utilize only the style adapta-
tion and employ it for text-based style consistent genera-
tion. For the first three we utilize their official implemen-
tations, while we implement SDRP on top of SDXL. All
methods use SDXL as their base model. Comparisons with
additional baselines can be found in the Suppl. Mat.

4.2. Ablation study
Adaptive vs Fixed scaling. To highlight the critical role
of adaptivity in style alignment, we fix the scaling param-
eter α into distinct values, essentially performing only the
approach presented in Sec. 3.3. Specifically, we select two
different fixed values (α = 0.9 and α = 0.5) and qual-
itatively compare the results with those of Only-Style, as
shown in Fig. 4 - quantitative results with these fixed value
alternatives will be presented in upcoming sections. It is ev-
ident that in both cases, the fixed scaling parameter is either
unnecessarily low, ruining stylistic alignment, or not low
enough to erase the effect of content leakage. On the con-
trary, Only-Style faithfully removes content leakage while

maintaining the desired stylistic alignment. More ablation
studies can be found in the Suppl. Mat.

4.3. Comparisons

Qualitative Comparisons.Figure 7 presents qualitative
comparisons between Only-Style and the considered base-
lines. The first four rows showcase results from our eval-
uation prompt set, the fifth row depicts an example of an
intricate multi-subject reference and target scene, while the
bottom three rows include real stylistic reference images,
a common application scenario in the literature. Concern-
ing the case of real images, we employ a DDIM-based in-
version technique to transfer the style of real images to the
generated images of different target prompts, following the
paradigm of StyleAligned [13]. Please refer to the Suppl.
Mat. for details on the multi-subject extensions, as well as
more qualitative results.

Tuning method-specific hyperparameters. Many
methods that tackle style-consistent image generation have
introduced hyperparameters to control the impact of the
stylistic reference to the target. For example B-LoRA [8]
introduces a scalar β ∈ [0, 1] to reduce the influence of the
style-LoRA adapter δW : W = W0 + β · ∆W . On the
other hand, InstantStyle [48] addresses leakage by modu-
lating the subtraction of the subject CLIP text embedding
from the reference image CLIP embedding using a scalar
σ ∈ [0, 1]: CLIPimg(Iref) − σ · CLIPtxt(Sref). We com-
pare the effects of these parameters with our approach in
Fig. 5. Additionally, we apply the proposed adaptive tun-
ing algorithm—leveraging the generalized leakage localiza-
tion method presented in Sec. 3.4—to determine the max-
imum values of these parameters that prevent content leak-
age. While this effectively eliminates content leakage, we
observe that such parameters degrade the stylistic alignment
with the reference. In contrast, Only-Style preserves the in-
tended stylistic alignment while mitigating content leakage.

Text Alignment and Stylistic Set Consistency. Fol-
lowing [8, 13, 19], we use CLIP [35] cosine similarity to
measure the text alignment between each target image Itgt
and the text description of the target subject Stgt, while as
stylistic set consistency we measure the cosine similarity
between DINO [2] embeddings of the generated target im-
ages Itgt with their reference Iref . The results prompt set
can be seen in Figure 6, where we compare our method to
the four state-of-the-art baselines we mentioned, a baseline
generation method without any stylistic alignment (Stan-
dard T2I [34]) and the two fixed scale variants of Sec. 3.3.
Only-Style exhibits a notable balance between retaining the
style of the reference image (set consistency) and faithfully
depicting the target subject (text alignment). Despite an
expected drop in set consistency compared to StyleAlign,
which generates aligned images at the cost of exhibiting
leakages, our method achieves almost identical text align-
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Reference B-LoRA [8] InstantStyle [48] StyleDrop [42] StyleAligned [13] Content Leakage Only-Style (Ours)

“A rollercoaster” “Balloons” “...in retro amusement park style.”

“A suitcase” “A map” “...in travel agency logo style.”

“A heart” “Cotton” “...in pixel art style.”

“A mouse” “A laptop” “...in digital glitch style.”

“An austronaut on a roaring lion” “A knight on a dragon” “...in medieval fantasy illustration style.”

“A man” “A cup” “...in oil painting style.”

“A house” “An apple” “...in isometric illustration style.”

“The Tower of Babel” “The Taj Mahal” “...in Bruegel’s painting style.”

Figure 7. Qualitative results. We compare Only-Style against StyleAligned [13], InstantStyle [48], B-LoRA [8]. and StyleDrop [42]. In
the next-to-last column we also highlight the content leakage observed in StyleAligned, which is localized and effectively mitigated by our
method. First four rows are examples from our evaluation set, fifth row showcases an intricate multi-subject case, while the last three rows
correspond to real reference images.
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Table 1. Content Leakage (CL) Metric Results. We calculate CL scores across various methods, quantifying content leakage as the
cosine similarity between CLIP embeddings of the target image and the reference subject’s text description. Lower is better (less leakage).

full leakage SA [13] SDRP [42] IS [48] B-LoRA [8] Ours (α = 0.5) Ours (α = 0.9) Only-Style no leakage

0.28 0.231 0.227 0.220 0.223 0.214 0.219 0.215 0.21

Table 2. Content Leakage Measurements using LVLM-Based Prompting. Our method shows very low content leakage, closely
matching the performance of standard T2I. For all questions, the numbers denote success rate.

Question SA [13] SDRP [42] IS [48] B-LoRA [8] Ours (α = 0.5) Ours (α = 0.9) Only-Style Standard T2I [34]

“Are there any {Sref} visual features in this {Stgt} image?” (Q1) 0.470 0.553 0.647 0.643 0.663 0.603 0.683 0.703
“Is there any {Sref} in this image?” (Q2) 0.583 0.687 0.793 0.786 0.823 0.770 0.830 0.833
“Is there any {Stgt} in this image?” (Q3) 0.850 0.903 0.94 0.947 0.943 0.930 0.957 0.963

ment with standard T2I, supporting our claim on keeping
the semantics of the target subject intact. On the other hand
InstantStyle [48] and B-LoRA [8] preserve alignment with
the target subject but compromise stylistic consistency.

Additionally, we observe that fixed scaling results in
lower stylistic consistency, as it indiscriminately scales in-
stances that might not exhibit any leakage, while the text
alignment can be negatively affected by a high scale value
(0.9) that allows leakage cases. Even though this experi-
ment offers a strong indication of the effectiveness of our
method, the capability to eliminate content leakage is not
captured properly by the above metrics. This is because the
cosine similarity of the image DINO embeddings is favored
by semantic content leakage (details on Suppl. Mat.).

Content Leakage. The aforementioned metrics fail to
quantify content leakage in a straightforward way. To ad-
dress this, we introduce a novel metric, called CL, which
is defined as the cosine similarity between the CLIP em-
beddings of the target image Itgt and the text description of
the reference image subject Sref , namely quantifying the
correlation of the reference subject with the target image.
Results of the CL metric can be found in Table 1. Standard
T2I is used as a lower bound for the metric, which denotes
the “no leakage” case, since no style sharing takes place.
Likewise, we use standard T2I to generate images of Sref

and compute CL again in order to define the upper bound,
denoting the “full leakage” case, when we expect to detect
the subject in the image. As we can see, Only-Style ob-
tains a score very close to the “no leakage” case, showing
minor bias towards generating the reference subject. On
the contrary, other methods exhibit considerably higher CL
scores, indicating non-trivial leakage of the reference sub-
ject. As expected, InstantStyle (IS) [48], that tries to address
the leakage issue, has the best performing score out of the
compared methods, but still is out-performed by Only-Style.

LVLM-based Quantitative Evaluation Protocol. The
aforementioned metrics are not adept in capturing fine-
grained details. For example, subtle content leakage may
not be penalized by the cosine similarity between the CLIP
representations. For this reason, we introduce a novel eval-
uation protocol based on Large Vision-Language Models.

Specifically, we employ LLaVA [24–27] in order to un-
veil content leakage by prompting the model to identify the
desired target subject and possibly the undesired reference
subject in the generated target image Itgt. Specifically we
provide the LVLM the generated images Itgt along with fol-
lowing questions. Q1: “Are there any {Sref} visual fea-
tures in this {Stgt} image?” - if the answer is positive, it
suggests the existence of undesired semantic features of the
reference subject. Q2: “Is there any {Sref} in this image?”
- a more robust question that naturally exposes only severe
content leakage cases. Q3: “Is there any {Stgt} in this im-
age?” - check if the desired target subject is not rendered at
all in the target image.

We present the results of the aforementioned evaluation
in Table 2. We explicitly ask the LVLM to “Choose one:
Yes or No” along with the question and the image sub-
jected in stylistic alignment in order to measure the success
rate of the respective method in the question we pose. We
observe, again, significant content leakage across state-of-
the-art methods and almost identical to standard T2I per-
formance from our method, suggesting almost no leakage.
Please refer to the Suppl. Mat. for qualitative examples in-
dicating the performance of the proposed framework as well
as benchmarking of additional methods that highlights the
presence of content leakage in style-consistent generation.

User Study. We conducted a user study where partici-
pants were shown randomized triplets consisting of a refer-
ence image and two target images generated by Only-Style
and one competitor method. Participants were asked to se-
lect their preferred image based on the following criteria:
stylistic alignment, text alignment, and overall image qual-
ity. An option “Cannot Decide” was also provided. We col-
lected 800 pairwise method comparisons across 100 users
and show the results in Table 3. Only-Style was signifi-
cantly preferred over all other baselines, indicating the ef-
fectiveness of resolving content leakage in terms of human
preference. More information provided in the Suppl. Mat.

5. Conclusion
We introduced Only-Style, a novel approach designed to
pinpoint and mitigate unwanted semantic content leakage in

8



Table 3. User study: ‘a/b’ indicates that Ours (left) was preferred
a times, while the competing method was chosen b times. Only-
Style was the preferred method by the participants.

StyleAligned [13] IS [48] B-LoRA [8] SDRP [42]

Only-Style 357/137 319/210 419/155 321/202

style-consistent generation. Extensive experiments demon-
strate that Only-Style prevents content leakage, ensuring
stylistic consistency in target images with the reference
style. Finally, we proposed a framework to quantitatively
assess this issue within style alignment methods, providing
a structured approach to evaluate their effectiveness.
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Only-Style: Stylistic Consistency in Image Generation
without Content Leakage

Supplementary Material

6. Methodology Details
6.1. Preliminaries: StyleAligned
As we discussed in the main manuscript, recent state-of-the-
art style alignment methods in image generation [13, 19]
leverage the self-attention layers of T2I models during in-
ference to facilitate communication between images within
a batch, thereby aligning their styles. We will provide fur-
ther details on the operations involved in these methods
and the underlying intuition, focusing on StyleAligned [13],
which our method builds upon.

StyleAligned employs an attention sharing operation be-
tween a stylistic reference image (typically the first one
within a batch) and the target images (other images within
the same batch). This operation is only applied to the self-
attention layers of the attention-augmented UNet backbone.
On such an attention layer of the model’s backbone, the
queries Qtgt and keys Ktgt of the target image are normal-
ized using the queries Qref and keys Kref of the reference,
with the adaptive instance normalization operation (AdaIN)
[17], which essentially aligns the target features with re-
spect to the first and second moments of the reference fea-
tures. Formally, we have:

AdaIN(X,Y) = σ(Y)

(
X− µ(X)

σ(X)

)
+ µ(Y)

Q̂tgt = AdaIN(Qtgt,Qref ), K̂tgt = AdaIN(Ktgt,Kref )

Then, to further promote sharing, the attention operation
is applied to concatenated versions of the keys and the val-
ues that include both reference and target features. This
way, the sharing is performed in a “natural” way, where
features from both reference and target images are mingled
together, essentially providing style context from the refer-
ence images to the target one. More specifically, the tar-
get queries are replaced by the normalized ones Q̂tgt, the
target keys are replaced by the concatenation of the refer-
ence keys Kref with the normalized target ones K̂tgt and
finally the target values are replaced by the concatenation
of the reference values Vref with the target ones Vtgt. The
concatenation is performed at a token level, duplicating the
context length in the attention layer. Following the nota-
tion of [13], the substituted shared self-attention layer is
denoted as Attention(Q̂tgt,Krt,Vrt), where:

Krt =

[
Kref

K̂tgt

]
, Vrt =

[
Vref

Vtgt

]

Reference Features 𝐹𝑟𝑒𝑓

𝐾𝑟𝑒𝑓 𝐾𝑡𝑔𝑡 𝑄𝑟𝑒𝑓 𝑄𝑡𝑔𝑡 𝑉𝑟𝑒𝑓 𝑉𝑡𝑔𝑡
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Figure 8. Content Leakage Control: Content leakage is miti-
gated by applying a weighting of the localized reference subject
Key representations Kref , in every self-attention module that is
used to align the style of a reference image with a target.

Note that this concatenation does not affect the size of the
output, since the patch length of the queries is not affected.

The concatenation of the target features with the refer-
ence ones at a token level allows a minimal contextual-
ization of the target image features with the reference, ef-
fectively aligning the two images. Meanwhile, applying
AdaIN to the target keys using the reference boosts the at-
tention similarity scores between the target features and the
reference, facilitating a smoother attention flow from the
reference to the target.

6.2. Extracting the Subject Mask R
As we discussed in Sec. 3.3 of the main manuscript, given
the subject map Âsub ∈ RH×W (illustrated in Fig. 9), we
aim to separate the patches into two distinct groups: one
that is semantically related to the reference subject (and is
the source of content leakage) and one unrelated.

Specifically, we consider the one-dimensional seman-
tic representations of the image patches in Âsub and use
a K-means clustering method with two centroids to sepa-
rate them, fixed across all of our experiments. Retrieving
the patches grouped in the cluster with the maximum value
centroid gives us the annotated subject of the image. This
is equivalent to a binarization approach with a threshold de-
pending on the image and its subject map Âsub [45]4, as op-
posed to a fixed threshold approach across all images [32]

4A similar mask extraction was employed in [45] to extract a subject
mask and then preserve the identity of this subject across multiple images,
following a “dual” direction of aligning subjects and not style.
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Âsub 2-means clustering Closed mask (R)

Figure 9. Visualization of the intermediate results in the ex-
traction of mask R. We cluster the aggregated cross-attention
probabilities Âsub using K-means with two centroids and then ap-
ply morphological closing to fill small gaps in the foreground.

which typically under performs (see Suppl. Sec. 2.1). To
ensure that all the subject patches are obtained, we apply a
denoising morphological closing in the binary subject mask,
filling small holes and gaps in the foreground. The result-
ing binary mask R ∈ RH×W , takes true values if the cor-
responding patch is deemed relevant to the subject. The
intermediate results of this process are illustrated in Fig. 9

Then, we use this binary subject mask to scale down
the influence of the reference key features Kref on the
shared self-attention layers. As outlined in Eq. 3 of the
main manuscript, we apply a uniform scalar value across
all subject patches for scaling, following a ”hard” decision
rationale instead of using a “soft” scaling via the cross-
attention probabilities Âsub for those patches. Such “hard”
choice allows the scaling parameter to be set to α = 1
when no leakage is detected, effectively replicating the base
StyleAligned [13] process in our implementation. In other
words, we wanted to keep the functionality of StyleAligned
as it is if no leakage is detected, rather than modifying the
subject contribution every time regardless the leakage.

6.3. Leakage Control over StyleAligned
The scaling of the content patches is performed using the
following equation, as it was derived in Sec. 3.3 of the main
manuscript.

K̂ref = (1−R)⊙Kref + αR⊙Kref (8)

This way, following the notation of [13], we effectively
control the self-attention distribution A, between Q̂tgt and
the updated K̂rt = [K̂ref K̂tgt]

⊤, thus controlling the
transfer of the value representations Vrt, and more pre-
cisely their subset that corresponds to the reference subject
patches, in the target image. Note that when α =1, we have
the exact same behavior with StyleAligned [13].

The proposed functionality of the scaling operation over
the shared attention mechanism of [13] is depicted in Fig. 8.

6.4. Extracting the Subject Description Mask M
As outlined in Sec. 3.4 of the main manuscript, we focus on
isolating a subset of the subject map Âsub to pool the repre-

Âsub 3-means clustering Msub ⊙ Âsub

Figure 10. Visualization of intermediate steps in extracting the
mask Msub. Using K-means clustering with 3 centroids, we seg-
ment the subject map Âsub to identify semantically rich subject
patches (yellow-labeled Msub). Cross-attention values from these
patches (third image) are then used to compute a weighted aver-
age of image representations during inference, yielding the subject
representation.

sentations of image patches, thereby extracting a represen-
tation of the image’s subject. This is achieved again using a
binary mask Msub, which contains true values for patches
whose representations should be included in the pooling op-
eration. This subject description mask Msub, differs from
the previously defined subject mask R in its granularity.
Here, we are interested in more fine-grained localization of
patches that are relevant to the subject and can help build
robust pooled representations.

To extract this mask we perform again a K-means clus-
tering of the subject map Âsub, using three clusters this
time, one grouping the background patches, one grouping
the poor semantic patches, and one grouping the patches
with rich semantic information. We only use the latter
to represent the respective subject, making sure that, the
patches do not exceed 10% of the total image patches in
order to retrieve a compact representation and not average-
out important semantic features. This is performed via per-
centile thresholding if the resulting cluster with the maxi-
mum value centroid exceeds the 10th percentile. Note that
if the number of subject patches exceeds the 10%, the clus-
tering operation is redundant, since one can apply percentile
thresholding directly on the values of Âsub. Nonetheless,
the clustering step is crucial in cases of small objects, as
the percentile thresholding would also annotate background
patches. Again, this is equivalent to a binarization with a
threshold dependent on Âsub, but following a “stricter” cri-
terion compared to R. The intermediate results of this pro-
cess are illustrated in Fig. 10. The proposed mask extrac-
tion was deemed helpful in practice, providing robust sub-
ject descriptions and thus helping the localization of content
leakage, and no further exploration was performed on alter-
native ways to extract Msub.

6.5. Extensions

Multi-Image Extension. To create a set of style-consistent
images using the same stylistic reference image, we follow
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Reference StyleAligned [13] Leakage Only-Style

“A cat and a tree” “A train” “... in wooden sculpture.”

“A car and a house” “A bird” “... in isometric illustration.”

Mushroom city on a whale’s back Sunflower city on a turtle’s shell

“An octopus holding a beer” “A cat holding a cup of coffee”

Figure 11. Examples including multi-reference and multi-
target subjects. Only-Style can be directly extended to remove
content leakage in multi-reference and multi-target subject scenes.

the StyleAligned [13] approach by extending the batch with
multiple target images. Specifically, the target images at-
tend to the first image in the batch, which serves as the refer-
ence. Our end-to-end method can be applied independently
to each target image by replicating the process described
in the main manuscript. This involves defining a unique
scaling parameter α for each target image and using a bi-
nary search algorithm to optimize the scaling by localizing
content leakage for each such image. Importantly, this ap-
proach preserves batch parallelism, as both content leakage
control and localization rely on tensor operations that can be
executed in parallel. An example of a stylistically aligned
image set is illustrated in Fig. 1 of the main manuscript.

Multi-subject Extension. In the main manuscript, we
analyzed the single-subject scenario, where both the refer-
ence and the target prompt contained one subject. Nonethe-
less, our method can easily be extended in multi-subject
scenarios.

For multiple reference subjects, our approach can be
generalized by replicating the process outlined in the main
manuscript. Here, we assume that each subject can have an
optimal scaling value independent of the values selected for
the other reference subjects - such an assumption stems that
in theory the subject masks should be disjoint and scale a
different part of the common reference image. Thus, exactly
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Figure 12. Text Alignment vs Stylistic Set Consistency: We
compare three additional state-of-the-art methods (blue marks), a
baseline without stylistic alignment (grey mark) and Only-Style
(green mark) in terms of text alignment (CLIP similarity) and set
consistency (DINO similarity).

as in the multi-image scenario, we duplicate the batch and
independently apply the end-to-end method to each subject,
disregarding the others. Finally, we combine the optimal
scaling parameters α for each reference subject to generate
the resulting image, ensuring that no subject experiences
leakage. It is important to note that this process requires
extending the batch to include as many images as there
are reference subjects, as well as performing an extra fi-
nal generation of the optimal scaling set. These operations
increase computational overhead, both time-wise (the extra
generation step leads to a ×6 overhead, including the bi-
nary search, to the standard StyleAligned for this batched
multi-reference case) and memory-wise (memory require-
ments are multiplied by the number of reference subjects).
We illustrate some indicative examples on Fig. 11. Our
experimentation with multiple subjects shows that usually
only the visually dominant reference subject leaks in the
target image, as text-to-image models frequently focus on
one subject in multi-subject scenarios [4].

For multiple target subjects, we just need to perform
the content leakage localization (Sec. 3.4 of the main
manuscript) of the reference subject with each target one,
distinctly. Essentially we check if any patch of the gener-
ated target image contains more information about the refer-
ence subject than each of the target ones. It is worth noting
that this requires extracting a subject representation for each
target subject, which adds minimal computational overhead,
since it is only performed at the last iteration of the genera-
tion process (see Sec. 3.4 of the main manuscript).
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Reference IP-Adapter [51] CSGO [50] DB-LoRA [39] StyleAligned [13] Content Leakage Only-Style (Ours)

“A bed” “A fireplace” “...in cozy winter lifestyle photography style.”

“A rocket” “A dinosaur” “...in 3D render, animation studio style.”

“A car” “A tree” “...in miniature model style.”

“A tree” “A bowl” “...in minimal vector art style.”

“A hand” “An eye” “... in line drawing style.”

“A unicorn” “A rainbow” “...in enchanted 3D rendering style.”

“A tree” “A butterfly” “...in flat cartoon illustration style.”

“A building” “A truck” “...in blueprint style.”

Figure 13. Additional Qualitative results. We compare Only-Style against StyleAligned [13], IP-Adapter [51], CSGO [50] and DB-
LoRA [39]. In the next-to-last column we also highlight the content leakage observed in StyleAligned, which is localized and effectively
mitigated by our method.
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Metric IP-Adapter CSGO DB-LoRA Only-Style
CL (↓) 0.232 0.223 0.229 0.215
Q1 Success (↑) 0.467 0.614 0.607 0.683
Q2 Success (↑) 0.542 0.908 0.737 0.830
Q3 Success (↑) 0.886 0.732 0.857 0.957

Table 4. Quantitative comparison between IP-Adapter [51],
CSGO [50], DB-LoRA [39], and Only-Style, in the metrics dis-
cussed in the main manuscript that quantify content leakage.

Method Set Consistency (DINO ↑)
StyleAligned 0.372± 0.22
Consistory (fixed object) 0.326± 0.19
Standard T2I (fixed object) 0.218± 0.2
Standard T2I (fixed style) 0.225± 0.21
Only-Style 0.345± 0.2

Table 5. Detailed Quantitative Results on Stylistic Set Consis-
tency. We evaluate the generated image sets in terms of set con-
sistency (DINO embedding similarity). ±X denotes the standard
deviation of the score across the evaluation set.

7. Additional Results

7.1. Additional Comparisons
To further highlight the effectiveness of the proposed ap-
proach, we additionally compare with the following state-
of-the-art methods for style consistent image generation,
namely IP-Adapter [51], CSGO [50] and Dreambooth [39],
using the LoRA [16] variant (DB-LoRA). The first two are
adapter-based methods that introduce additional layers to
condition the diffusion model on the CLIP image represen-
tation of the stylistic reference, similar to InstantStyle [48].
The latter is an optimization-based method, which first fine-
tunes the model on the reference image of a specific style by
learning a compact set of adaptations (LoRA) that capture
the visual characteristics of that style and then when gener-
ating new images, these learned LoRA weights are applied
to transfer the original style to different subjects. All con-
sidered methods use SDXL as their base model as well. We
provide both quantitative comparisons, based on the met-
rics outlined in the main manuscript, in Figures 4 and 12,
as well as qualitative results in Figure 13, evaluated on our
test prompt set. Notably, these methods also exhibit sig-
nificant content leakage across all quantitative metrics as-
sessing leakage, in contrast to Only-Style, emphasizing how
frequently the problem occurs.

7.2. Discussion on Stylistic Set Consistency
As we discussed in the main manuscript, we follow state-of-
the-art style alignment methods [13, 19] and evaluate stylis-
tic set consistency within a style aligned image set, as the
pairwise cosine similarity between DINO [2] embeddings
of the generated target images Itgt with their stylistic ref-
erence images Iref . However, although the aforementioned

Standard T2I

Consistory

Figure 14. Consistent subject in different styles. We employ
Standard T2I [34] to generate images of the same subject in dif-
ferent styles (first row). Since the identity of the subject is not
preserved within different generations, it does not accurately sim-
ulate the effect of content leakage. To achieve this we employ a
subject identity preservation method, ConsiStory [45], rendering
the same object in different stylistic descriptors (second row).

metric promotes the stylistic consistency between images,
it also promotes semantic and structural consistency, which
is undesired in stylistic alignment.

We argue that this is because the metric is favored by se-
mantic content leakage of the reference image subject in the
target image. To quantitatively showcase this phenomenon,
we employ two baselines that consist of generated sets of
images in diverse styles but consistent depicted subjects.
We reverse the logic of our evaluation prompt set (differ-
ent objects in the same style) and generate the same object
in different styles. For example: A bear ‘in Scandinavian
folk art style.’, ‘in bohemian style.’, ‘in tribal tattoo style.’

First, we employ the standard text-to-image model and
generate images of an object in different styles. Note that
the object generated in different styles is not the same for
different generations (e.g., different kinds of bears are gen-
erated as shown in Fig. 14). This does not exactly sim-
ulate the problem of content leakage, which refers to the
leak of semantic attributes of the specific visual interpreta-
tion of the reference object across the target images. To ad-
dress this problem, mimicking the effect of content leakage,
we employ a state-of-the-art subject identity preservation
method, ConsiStory [45]. This method generates the same
object (e.g., the same bear as illustrated in Fig. 14) across
different styles, effectively consisting of a content leakage
baseline w.r.t. the aforementioned evaluation process.

We observe that semantic consistency, expressed by the
baselines we introduced, is favored as much as stylistic con-
sistency within the stylistic set consistency metric. Specif-
ically, the fixed-subject-in-different-styles variant of stan-
dard text-to-image generation achieves a set consistency
score comparable to the different-subjects-in-a-fixed-style
variant. Furthermore, when the identity of the generated
subjects is preserved across styles using the ConsiStory ap-
proach, the pairwise set consistency achieves a level close
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to state-of-the-art style alignment methods line Only-Style
and StyleAligned [13], even though the stylistic alignment
is diminished on purpose. This suggests that reducing un-
wanted content leakage while ensuring stylistic alignment
can be penalized by this metric, which fails to fully reflect
the effectiveness of our approach.

7.3. Additional Ablation Studies
Insufficiency of Fixed Thresholding.

To access and control content leakage we rely on the bi-
nary mask R to scale down only subject-related patches
(see Sec. 3.3 of main manuscript and Sec. 1.2 of Supp.
Material). As we described in Sec. 1.2 of this manuscript,
the proposed extraction of R effectively calculates a dif-
ferent threshold for each Âsub of the reference image. The
same rationale was followed by [45], as opposed to the fixed
threshold assumption of [32]. The fixed threshold alterna-
tive can be motivated by the fact that the Âsub map cor-
responds to the aggregated cross-attention probabilities and
thus a suitable probability-motivated threshold can work for
all cases. Nonetheless, such an approach is inadequate in
practice, as different text prompts result in varying attention
probabilities. This stems from the variability of text-tokens
within the prompt, which leads to distinct cross-attention
distributions that cannot be modeled in advance.

We visually illustrate the effectiveness of our approach
and highlight the insufficiency of fixed thresholding in
Fig. 15. For the fixed thresholding case, we tune the thresh-
old to faithfully capture the image’s subject in the first col-
umn and fix it across all the other instances. As shown,
the fixed threshold often fails, either being too high or too
low, whereas our method consistently captures the visual
elements of the object across all generated instances.

Impact of Subject Detection.
To motivate the annotation of the reference subject

patches, we visually illustrate the effect of scaling all the
reference image patches, essentially setting R = 1H×W .
We compare the results of our fixed scaling pipeline (α =
.5), presented within the ablation study in Sec. 4.2, with
and without this fine-grained choice of patches, and visu-
ally display the results in Fig. 16. It is obvious that scaling
agnostically the reference image patches ruins the stylistic
alignment of the target image with respect to the reference.
Moreover, in many cases the structure and semantics of the
image are ruined as well. Note that this approach (i.e., scal-
ing all patches) has been employed in [13] in order to mit-
igate the transfer of extremely popular reference image as-
sets, which can result in disregarding the target prompt.

CLIP text embeddings vs Subject Representations.
As discussed in Section 3.4 of the main manuscript, we use
a patch-level localization method during inference to anno-
tate reference subject features in the target image, which
indicates content leakage. Given the semantic nature of

this problem, a natural starting point is to explore the layers
responsible for determining the semantics in text-to-image
(T2I) generation. These semantics are primarily guided
by the cross-attention layers. Thus, an intuitive initial ex-
periment involves performing the cross-attention mecha-
nism between the target image features and the reference
subject’s textual description, identifying dominant cross-
attention values in the aggregated subject map. Patches in
the target image that exhibit content leakage are then de-
fined as those that “attend” significantly more to the ref-
erence subject token than to the target subject token. How-
ever, the CLIP token embeddings used in the cross-attention
mechanism are not always sufficiently expressive to local-
ize subtle visual features of the reference subject, especially
when these features overlap with those of the target subject
in the generated image.

To showcase this limitation and motivate our subject rep-
resentation extraction, we perform the localization using
the cross-attention values, as we described above, and vi-
sually illustrate the results in Figure 17. It becomes clear
that while this approach can work in cases that the leakage
is semantically evident or the CLIP representations of the
subjects are expressive enough to distinguish the reference
from the target one (e.g., top row of Fig. 17), it fails to sys-
tematically localize the subtle content leakage features in
the target image. This is because the visual representation
features of our approach are by definition more descriptive
of the per-case generated image and can accurately detect
patches that are correlated with either the reference or the
target subject. On the contrary, the textual CLIP features
used in the cross-attention mechanism are limited to a more
general semantic representation of the subject that can be
hurtful in the context of accurate leakage detection.

7.4. Time requirements of state-of-the-art methods

In Table 6, we present the requirements in terms of time
for the state-of-the-art style alignment methods evaluated.
The reported time reflects the duration each method re-
quires to generate a stylistically aligned set of two im-
ages. For optimization-based methods like B-LoRA [8],
StyleDrop (SDRP) [42] DB-LoRA [39], we account for
both the fine-tuning process on the reference image and the
final inference to produce the stylistically aligned target.
StyleAligned [13] generates a batch of two images, using
the first as the reference and the second as the target.

Adapter-based methods, such as IP-Adapter [51],
CSGO [50], and InstantStyle [48], operate by encoding
the reference image and subsequently generating the target
while integrating the reference information through cross-
attention layers. However, these methods necessitate large-
scale training to effectively enable this image conditioning
within a diffusion model.

For our method, we first infer only the reference im-
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(a) “Cat” (b) “Cat” (c) “Truck” (d) “Mushroom” (e) “Rocket” (f) “Jukebox”

Figure 15. Insufficiency of Fixed Thresholding: Binarization of Âsub for different images, indicating the ability to correctly localize the
subject, either via fixed thresholding (top row) or via the proposed approach (bottom row).

Method Pretraining Opt. Time Requirement
IP-Adapter ✓ ✗ 0 min 14 sec
InstantStyle ✓ ✗ 0 min 16 sec
CSGO ✓ ✗ 0 min 20 sec
B-LoRA ✗ ✓ 11 min 13 sec
DreamBooth-LoRA ✗ ✓ 8 min 42 sec
SDRP ✗ ✓ 13 min 09 sec
StyleAligned ✗ ✗ 0 min 29 sec
Only-Style ✗ ✗ 1 min 46 sec

Table 6. Time requirements of different Style Consistent Gen-
eration Methods. We report for each method the time required to
generate a stylistically aligned set of two images on an NVIDIA
RTX 3090. All methods are implemented on top of SDXL. “Pre-
training” denotes methods that use large scale training to incorpo-
rate image conditioning. “Opt.” denotes methods that require per
instance optimization to capture a style.

age to detect the reference subject, followed by a binary
search to determine the optimal scaling factor α, which
results in the final stylistic alignment. As discussed in
the main manuscript, we set a binary search precision of
p = 0.03125, requiring the generation process to be re-
peated five times. All methods are implemented on top
of the SDXL [34] framework and evaluated in a NVIDIA
GeForce RTX 3090.

7.5. LVLM-based Evaluation Protocol
We also display multiple qualitative results of our evalua-
tion framework in Figure 19, to better showcase the pur-
pose of the questions we pose to evaluate content leakage
(see Sec. 4.3 of the main manuscript). Given only the tar-
get image and the respective question, we observe that the
large multimodal model can understand even subtle content
leakage features. Moreover, it can unveil cases where the
prompt specified target subject is not rendered at all, due to

severe content leakage or dominance of background stylis-
tic features (bottom two rows).

Notably, the LVLM systems cannot always provide cor-
rect answers for such an intricate task as the content leak-
age detection of fine-grained visual features. We showcase
such failure cases in Fig. 18. First, the LVLM frameworks
are prone to hallucinations [28], sometimes forcing the re-
sponse to fit the question. For example, we come across
a few object hallucinations, especially when we prompt
the model to identify “visual features” which are subtle by
definition (top row of Fig. 18). Moreover, content leak-
age refers to the presence of the reference image subject
in the target image, where the generated target image is
not semantically consistent to the target prompt anymore.
Nonetheless, the generated target image may include visual
features related to the reference subject that are in line with
the requested style and do not affect the correct generation
of the target subject, without displaying any content leak-
age. In such cases, the LVLM can correctly detect visual
features of the reference subject that, however, do not corre-
spond to a leakage case. This is particularly evident when it
is semantically natural for the reference and the target sub-
ject to co-occur in a stylistic alignment scenario (bottom
rows of figure 18).

However, these limitations do not consistently favor one
method over another, so the mean success rates reported on
our evaluation dataset serve as a reliable indicator of content
leakage for each method.

7.6. Details on the User Study

In the study, users were shown a stylistic reference image
alongside two target images, one generated by Only-Style
and one by a competitor method. The images were ac-
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Reference With Subject Detection Without Subject Detection

Figure 16. Impact of Subject Detection. We compare the results
of the scaling method presented in Sec. 3.3, with and without
the fine-grained choice on the reference image subject patches.
Specifically, we fix the scaling parameter across our experiment
(α = .5), controlling the transfer of, on the one hand, the refer-
ence subject image patches (proposed - middle column), and on
the other hand, all reference image patches (right column). We
observe that scaling all patches ruins the stylistic alignment (top
two rows), or exhibits destructive results (bottom two rows).

companied by their generating text prompts. Participants
were asked to select their preferred target image based on
the following criteria, stylistic alignment to the reference,
alignment with the target image prompt and overall image
quality, an option cannot decide was also provided, as il-
lustrated in the example of Fig. 20. The question aimed to
provide an overall evaluation of the factors contributing to
successful stylistic alignment. Detailed results of our per-
ceptual User Study with human participants are presented in
table 7. As can be observed by the number of undetermined
responses, participants often faced challenges in selecting a
preferred method due to the conflicting evaluation criteria
(style alignment versus text alignment) they were asked to
consider simultaneously. Nonetheless, Only-Style was sig-
nificantly preferred over all other baselines. It is worth not-
ing that the significant number of undetermined responses

Reference style Target image Ours Cross attention

A cat A train cat - train cat - train

A tree A flower tree - flower tree - flower

A house A dog house - dog house - dog

A building A truck building - truck building - truck

Figure 17. CLIP text embeddings vs Subject Representations.
The first two columns are the reference and the target images,
while the next two rows visualize the localization difference be-
tween the target and the reference, as defined by L⊙(Cref−Ctgt)
(see Sec. 3.4 of the main manuscript). Our content leakage local-
ization method, based on the extraction of subject representations
on the image feature space, faithfully localizes the content leakage,
if exists. On the contrary, the cross attention scores between im-
age features and textual CLIP features of the subject token, even
though semantically explainable, are not a trustworthy metric to
perform this localization.

Competitor Our Method Competitor Method Tie/Undetermined
StyleAligned [13] 357 137 306
IS [48] 319 210 271
B-LoRA [8] 419 155 226
SDRP [42] 321 202 277

Table 7. Absolute Numbers of our Perceptual User Study. A
total of 800 pairwise comparisons were performed against each
competitor method.

against StyleAligned is due to instances where StyleAligned
does not exhibit leakage, resulting in our method producing
an identical target image.

8. Limitations
Although Only-Style consistently localizes the semantic
content of the reference image within the target and removes
it while preserving stylistic alignment, it exhibits the fol-
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Reference

Q1: Are there any
scissors visual

features in this face
image?

A: Yes, there are
scissors visible in

the image as part of
the face’s design.

Q1: Are there any
cup visual features
in this plate image?

A: Yes, there are
visual features of
cups in the image.

Q3: Is there a
circle in the

image?

A: Yes, there is a
circle in the image.

Figure 18. Failure cases of the LVLM evaluation framework.
The target image in the first row is generated with Only-Style while
the images in the bottom two rows are standard text-to-image gen-
erations. The subject of each image can be inferred from the re-
spective questions.

lowing limitations.

• Localization Accuracy:
Since our goal is to reveal the semantic visual features
of the reference subject that “leaked” in the target im-
age, we want the subject representations vsub (see Sec.
3.4 of the main manuscript) to focus solely on the se-
mantic features of the image subject. However, in some
cases, the retrieved representations also capture stylistic
features alongside the semantic ones. This results in the
unintended identification of stylistic features from the ref-
erence subject within the target image as content leakage.

• Monotonicity Assumption: The proposed binary search
for determining the optimal scaling operates under the as-
sumption that lower values of the scaling parameter α cor-
respond to reduced content leakage, while higher values
increase it. While this monotonicity assumption relies on
a straight-forward intuition (“if we reduce the contribu-
tion of the reference subject patches, we will will reduce
leakage phenomena”) and has been experimentally vali-
dated, it lacks a formal theoretical guarantee, especially
given the complexity of the diffusion backbone. More-
over, potential non-accurate localization of the leakage
(due to the way that we measure leakage - see 1st limita-
tion) can also disrupt the monotonicity assumption, even
though we have not encountered such problem in practice.

• Computational Complexity: Finally, one already dis-
cussed issue is the increased overhead of the proposed
method compared to the vanilla StyleAligned approach.
This overhead mainly stems from the iterations of the bi-
nary search. Thus, further reducing the complexity is one
of the major directions for future research.

9. Future work
As a potential future enhancement we believe that it is
worth exploring the ability to adaptively change the scal-
ing parameter α during a single style alignment generation
- adopting scheduling tactics or more sophisticated mecha-
nisms.

Moreover, in a different direction, it is imperative to fur-
ther establish and validate well-suited metrics, such as the
proposed LVLM evaluation protocol. The main goal of such
an effort is to minimize metric-induced biases (to avoid is-
sues we met while using the set consistency metric for ex-
ample). Towards this end, we can extend the concept of
LVLM acting as “critics” beyond the content leakage detec-
tion.
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Reference StyleAligned [13] Answer Only-Style Answer

Q1: Are there any
rollercoaster visual

features in this
carousel image?

Yes, the image shows a carousel
with a rollercoaster-like structure,

featuring a series of loops and
turns that resemble the track of a

rollercoaster.

No, there is no rollercoaster in the
image.

Q1: Are there any
rocket visual

features in this
robot image?

Yes, the robot in the image has a
prominent cylindrical body with a
red and white color scheme that

resembles a rocket.

No, there are no rocket visual
features in this robot image. The
robot appears to be a humanoid
figure with a white and metallic
color scheme ... It does not have

any visible rockets or other
space-related elements.

Q1: Are there any
dragon visual
features in this

skateboard image?

Yes, the skateboarder in the image
has dragon-like features such as

wings and a tail.

No, there are no dragon visual
features in this skateboard image.

The image is a black and white line
drawing of a skateboard with two
boots placed on top of it, against a
background of clouds and the sky.

Q1: Are there any
chair visual

features in this
couch image?

Yes, the couch in the image has
armrests and legs, which are
typical features of a chair.

No, there are no chair visual
features in this couch image. The
image shows a sofa with a vibrant,
abstract pattern on its upholstery,
but it does not depict any chairs.

Q2: Is there any
cube in this image?

Yes, there is a cube in this image.
It is a central element of the

composition and appears to be
composed of various geometric

shapes and colors.

No, there is no cube in the image.
The image features a colorful,
abstract sphere with multiple

geometric shapes and patterns.

Q2: Is there any
car in this image?

Yes, the image features a car that
has been creatively transformed

into a circus tent...
No.

Q3: Is there any
fork in this image?

No, there is no fork in this image.
The image appears to be a digital
artwork or abstract design with
geometric shapes and vibrant
colors. It does not depict any
objects that resemble a fork.

Yes, there is a fork in the center of
the image.

Q3: Is there any
train in this image?

No, there is no train in this image.
The image features a red and silver

3D model of a semi-truck with a
tanker trailer attached to it.

Yes, there is a red and white train
in the image.

Figure 19. Qualitative examples of our LVLM-based evaluation protocol. We present results from StyleAligned [13], a method prone
to content leakage, and Only-Style that mitigates this undesired effect.
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Figure 20. An example screenshot of a question from the conducted perceptual User Study.
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Evaluation prompt set:
A house, A dog, A lion, A hippo in stickers style.
A kite, A skateboard, A canoe, A hammock in watercolor painting style.
A hand, A leaf, An eye, A feather in line drawing style.
A dragon, A teapot, A skateboard, A cactus in cartoon line drawing style.
A truck, A boat, A train, A car in 3D rendering style.
A mushroom, A dragon, A dwarf, A fairy in glowing style.
A bottle, A wine glass, A teapot, A cup in glowing 3D rendering style.
A bear, A frisbee, A ball, A torch in kid crayon drawing style.
A couch, A table, A bird, A fish in wooden sculpture style.
An elephant, A zebra, A rhino, A giraffe in oil painting style.
A tree, A flower, A mushroom, A butterfly in flat cartoon illustration style.
A clock, A chameleon, A candle, A cupcake in abstract rainbow colored flowing smoke wave design.
A fork, A spoon, A knife, A glass in melting golden 3D rendering style.
A train, A van, An airplane, A bicycle in minimalist round BW logo style.
A stop sign, A traffic light, A cone, A lighthouse in neon graffiti style.
A car, A bear, A circus tent, A clown in vintage poster style.
A wine glass, A cup, A bowl, A pitcher in woodblock print style.
A surfboard, A wave, A dolphin, A palm in retro surf art style.
A swan, An umbrella, A boat, An airplane in minimal origami style.
A robot, A spaceship, A drone, Godzilla in cyberpunk art style.
A scissors, A bug, A face, A rose in tattoo art style.
A lamp, A chair, A sofa, A mirror in art deco style.
A plant, A bed, A wave, A sunbed in vintage travel poster style.
A rollercoaster, A wheel, A carousel, Balloons in retro amusement park style.
A rocket, A dinosaur, A robot, An alien in 3D render, animation studio style.
A jukebox, A milkshake, A bench, A record player in 1950s diner art style.
A bird, A fox, A cactus, A deer in Scandinavian folk art style.
A dragon, A potion, A sword, A shield in fantasy poison book style.
A giraffe, An elephant, A flamingo, A parrot in Hawaiian sunset paintings style.
A guitar, A balloon, A drum, A microphone in paper cut art style.
A car, A vase, A camera, A watch in retro hipster style.
A suitcase, A ship, A train, A map in vintage postcard style.
A mask, A feather, A tent, A sword in tribal tattoo style.
A wave, A mountain, A cherry, A crane in Japanese ukiyo-e style.
A castle, A knight, A dragon, A wizard in fantasy book cover style.
A fireplace, A blanket, A cup, A book in hygge style.
A stone, A rake, A leaf, A lantern in Zen garden style.
A star, A planet, A comet, The moon in celestial artwork style.
A zebra, A giraffe, A horse, A lion in medieval fantasy illustration style.
A unicorn, A fairy, A castle, A rainbow in enchanted 3D rendering style.
A suitcase, A globe, A plane, A map in travel agency logo style.
A cup, Beans, A croissant, A teapot in cafe logo style.
A book, An owl, A globe, A lantern in educational institution logo style.
A screwdriver, A wrench, A hammer, A toolbox in mechanical repair shop logo style.
A stethoscope, A pill, A syringe, A thermometer in healthcare and medical clinic logo style.
A cloud, A heart, A balloon, A blossom in doodle art style.
A knife, A spoon, A fork, A bowl in abstract geometric style.
A kangaroo, A skyscraper, A lighthouse, A bridge in mosaic art style.
A butterfly, A flamingo, A flower, The sun in paper collage style.
A sunflower, A saxophone, A compass, A guitar in origami style.
A fire hydrant, A trash can, A mailbox, A streetlamp in abstract graffiti style.
A bench, A wolf, A can, A dragon in street art style.
A leaf, A clock, A cloud, A star in mixed media art style.
A snowboard, Skis, A helmet, A ski pole in abstract expressionism style.
A mouse, A keyboard, A laptop, A monitor in digital glitch art style.
A chair, A couch, A mirror, A lamp in psychedelic art style.
A clock, A vase, A painting, A torch in street art graffiti style.
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A shoe, A phone, A bottle, A rose in pop art style.
A key, A bird, A door, A lock in minimalist surrealism style.
A cube, A sphere, A pyramid, A circle in abstract cubism style.
A woman, A bicycle, A camera, A bat in abstract impressionism style.
A chair, A table, A lamp, A bookshelf in post-modern art style.
A cat, A car, An android, A drone in neo-futurism style.
A lollipop, A ladder, A star, A rocket in abstract constructivism style.
Lava, Smoke, Water, Fire in fluid art style.
A butterfly, A bug, A blade, A moth in macro photography style.
A burger, A pizza, A salad, A soda in professional food photography style for a menu.
A cup, A wine glass, A plate, A bottle in vintage still life photography style.
A car, A cat, A tree, A bus in miniature model style.
A tent, A campfire, A backpack, A sleeping bag in outdoor lifestyle photography style.
A cat, A train, A serpent, A fish in realistic 3D render.
A record, A cassette, A microphone, A guitar in retro music and vinyl photography style.
A bed, A chair, A fireplace, A table in cozy winter lifestyle photography style.
A candle, A blossom, A light, A vase in bokeh photography style.
A circle, A triangle, A square, A hexagon in minimal flat design style.
A tree, A bird, A bowl, A corn in minimal vector art style.
A cloud, Waves, A blade, A sun in minimal pastel colors style.
A kitten, A tree, A house, A fence in minimal digital art style.
A fish, A bat, A star, A seashell in minimal abstract illustration style.
A mountain, A river, A cloud, A bush in minimal monochromatic style.
A wolf, A skull, A horse, A raven in woodcut print style.
A seashell, A fish, A hand, A starfish in chalk art style.
A heart, A moon, A satellite, Cotton in pixel art style.
A superhero, A villain, A city, A spaceship in comic book style.
A rocket, A planet, A spaceship, A dragon in vector illustration style.
A house, A car, A tree, A cat in isometric illustration style.
A computer, A phone, A camera, A tablet in wireframe 3D style.
A leaf, A cloud, A fish, A wave in paper cutout style.
A building, A bridge, A truck, A leopard in blueprint style.
A hero, A monster, A spaceship, A robot in retro comic book style.
A flowchart, An advertisement, A map, A graph in infographic style.
A microscope, A crystal, A flag, A telescope in geometric shapes style.
A cat, A dog, A bird, A rabbit in cartoon line drawing style.
A flower, A tree, A river, A mountain in watercolor and ink wash style.
A mushroom, A clock, A fish, A key in dreamy surreal style.
A car, A clock, A pipe, A gear in steampunk mechanical style.
Clock, Globe, Map, A compass in 3D realism style.
A bus, A scooter, A car, A bicycle in retro poster style.
A flower, A feather, A bat, A cactus in bohemian hand-drawn style.
Panda, Rhino, Telescope, Hippo in vintage stamp style.
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