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ABSTRACT

Deep Metric Learning (DML) provides a crucial tool for visual similarity and zero-
shot retrieval applications by learning generalizing embedding spaces, although
recent work in DML has shown strong performance saturation across training
objectives. However, generalization capacity is known to scale with the embedding
space dimensionality. Unfortunately, high dimensional embeddings also create
higher retrieval cost for downstream applications. To remedy this, we propose
S28D - Simultaneous Similarity-based Self-distillation. S2SD extends DML with
knowledge distillation from auxiliary, high-dimensional embedding and feature
spaces to leverage complementary context during training while retaining test-time
cost and with negligible changes to the training time. Experiments and ablations
across different objectives and standard benchmarks show S25D offering notable
improvements of up to 7% in Recall@1, while also setting a new state-of-the-art.

1 INTRODUCTION

Deep Metric Learning (DML) aims to learn embedding space (£) models in which a predefined
distance metric reflects not only the semantic similarities between training samples, but also transfers
to unseen classes. The generalization capabilities of these models are important for applications in
image retrieval (Wu et al., 2017), face recognition (Schroff et al., 2015), clustering (Bouchacourt
et al., 2018) and representation learning (He et al., 2020). Still, transfer learning into unknown test
distributions remains an open problem, with Roth et al. (2020b) and Musgrave et al. (2020) revealing
strong performance saturation across DML training objectives. However, Roth et al. (2020b) also
show that embedding space dimensionality (D) can be a driver for generalization across objectives
due to higher representation capacity. Indeed, this insight can be linked to recent work targeting
other objective-independent improvements to DML via artificial samples (Zheng et al., 2019), higher
feature distribution moments (Jacob et al., 2019) or orthogonal features (Milbich et al., 2020), which
have shown promising relative improvements over selected DML objectives. Unfortunately, these
methods come at a cost; be it longer training times or limited applicability. Similarly, drawbacks can
be found when naively increasing the operating (base) D, incurring increased cost for data retrieval
at test time, which is especially problematic on larger datasets. This limits realistically usable Ds and
leads to benchmarks being evaluated against fixed, predefined Ds.

In this work, we propose Simultaneous Similarity-based Self-Distillation (S2SD) to show that complex
higher-dimensional information can actually be effectively leveraged in DML without changing the
base D and test time cost, which we motivate from two key elements. Firstly, in DML, an additional
& can be spanned by a multilayer perceptron (MLP) operating over the feature representation shared
with the base & (see e.g. (Milbich et al., 2020)). With larger D, we can thus cheaply learn a secondary
high-dimensional £ simultaneously, also denoted as farget £. Relative to the large feature backbone,
and with the batchsize capping the number of additional high dimensional operations, only little
additional training cost is introduced. While we can not utilize the high-dim. target £ at test time for
aforementioned reasons, we may utilize it to boost the performance of the base £.

Unfortunately, a simple connection of base and target £s through the shared feature backbone is
insufficient for the base £ to benefit from the auxiliary, high-dimensional information. Thus, secondly,
to efficiently leverage the high-dimensional context, we use insights from knowledge distillation
(Hinton et al., 2015), where a small “student” model is trained to approximate a larger “teacher” model.
However, while knowledge distillation can be found in DML (Chen et al., 2018), few-shot learning
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(Tian et al., 2020) and self-supervised extensions thereof (Rajasegaran et al., 2020), the reliance
on additional, commonly larger teacher networks or multiple training runs (Furlanello et al., 2018),
introduces much higher training cost. Fortunately, we find that the target £ learned simultaneously at
higher dimension can sufficiently serve as a “teacher” during training - through knowledge distillation
of its sample similarities, the performance of the base £ can be improved notably. Such distillation
intuitively encourages the lower-dimensional base £ to embed semantic similarities similar to the
more expressive target £ and thus incorporate dimensionality-related generalization benefits.

Furthermore, S2SD makes use of the low cost to span additional £s to introduce multiple target Es.
Operating each of them at higher, but varying dimensionality, joint distillation can then be used to
enforce reusability in the distilled content akin to feature reusability in meta-learning (Raghu et al.,
2020) for additional generalization boosts. Finally, in DML, the base £ is spanned over a penultimate
feature space of much higher dimensionality, which introduces a dimensionality-based bottleneck
(Milbich et al., 2020). By applying the distillation objective between feature and base embedding
space in S2S8D, we further encourage better feature usage in base £. This facilitates the approximation
of high-dimensional context through the base £ for additional improvements in generalization.

The benefits to generalization are highlighted in performance boosts across three standard benchmarks,
CUB200-2011 (Wah et al., 2011), CARS196 (Krause et al., 2013) and Stanford Online Products
(Oh Song et al., 2016), where S2SD improves test-set recall@ 1 of already strong DML objectives by
up to 7%, while also setting a new state-of-the-art. Improvements are even more significant in very
low dimensional base £s, making S2SD attractive for large-scale retrieval problems which can benefit
from reduced Ds. Importantly, as S2SD is applied during the same DML training process on the
same network backbone, no large teacher networks or additional training runs are required. Simple
experiments even show that S2SD can outperform comparable 2-stage distillation at much lower cost.

In summary, our contributions can be described as:

1) We propose Simultaneous Similarity-based Self-Distillation (S2SD) for DML, using knowledge
distillation of high-dimensional context without large additional teacher networks or training runs.
2) We motivate and evaluate this approach through detailed ablations and experiments, showing that
the method is agnostic to choices in objectives, backbones, and datasets.

3) Across benchmarks, we achieve significant improvements over strong baseline objectives and
state-of-the-art performance, with especially large boosts for very low-dimensional embedding spaces.

2 RELATED WORK

Deep Metric Learning (DML) has proven useful for zero-shot image/video retrieval & clustering
(Schroff et al., 2015; Wu et al., 2017; Brattoli et al., 2020), face verification (Liu et al., 2017; Deng
et al., 2019) and contrastive (self-supervised) representation learning (e.g. He et al. (2020); Chen
et al. (2020); Misra & van der Maaten (2020)). Approaches can be divided into 1) improved ranking
losses, 2) tuple sampling methods and 3) extensions to the standard DML training approach.

1) Ranking losses place constraints on relations in image tuples ranging from pairs (e.g. Hadsell et al.
(2006)) to triplets (Schroff et al., 2015) and more complex orderings (Chen et al., 2017; Oh Song
etal., 2016; Sohn, 2016; Wang et al., 2019). 2) The number of possible tuples scales exponentially
with dataset size, leading to many tuple sampling approaches to ensure meaningful tuples presented
during training. These tuple sampling methods can follow heuristics (Schroff et al. (2015); Wu et al.
(2017)), be of hierarchical nature (Ge, 2018) or learned (Roth et al., 2020a). Similarly, learnable
proxies to replace tuple members (Movshovitz-Attias et al., 2017; Kim et al., 2020; Qian et al., 2019)
can also remedy the sampling issue, which can be extended to tackle DML from a classification
viewpoint (Zhai & Wu, 2018; Deng et al., 2019). 3) Finally, extensions to the basic training scheme
can involve synthetic data (Lin et al., 2018; Zheng et al., 2019; Duan et al., 2018), complementary
features (Roth et al., 2019; Milbich et al., 2020), a division into subspaces (Sanakoyeu et al., 2019;
Xuan et al., 2018; Kim et al., 2018; Opitz et al., 2018), training of multiple networks (Park et al.,
2020) using mutual learning Zhang et al. (2018) or higher-order moments (Jacob et al., 2019).
S28D can similarly be seen as an extension to DML, though we specifically focus on capturing and
distilling complex high-dimensional sample relations within lower dimensional embedding spaces to
improve generalization.
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Knowledge Distillation involves knowledge transfer from teacher to (usually smaller) student mod-
els, e.g. by matching network softmax outputs/logits (Bucilud et al., 2006; Hinton et al., 2015),
(attention-weighted) feature maps (Romero et al., 2015; Zagoruyko & Komodakis, 2016), or latent
representations (Ahn et al., 2019; Park et al., 2019; Tian et al., 2019; Laskar & Kannala, 2020).
Importantly, Tian et al. (2019) show that under fair comparison, basic matching via Kullback-Leibler
(KL) Divergences as used in Hinton et al. (2015) performs very well, which we also find to be the
case for S2SD. This is further supported in recent few-shot learning literature (Tian et al., 2020),
wherein KL-distillation alongside self-distillation (by iteratively reusing the same network as a
teacher (Furlanello et al., 2018; Lan et al., 2018)) in additional meta-training stages improves feature
representation strength important for generalization (Raghu et al., 2020).

More specifically, our work most closely resembles Zhang et al. (2019) and Liu et al. (2020), which
propose to break down a network into a cascading set of subnetworks, wherein each subsequent
subnetwork builds on its predecessors. In doing so, each subnetwork is trained independently on a
classification task at hand. Knowledge distillation is then applied either from the full network (Zhang
et al., 2019) acting as a teacher or via soft targets generated from a meta-learned label generator (Liu
et al., 2020), to each smaller student subnetwork during the same training run to improve overall
performance. In a related manner, S2SD utilizes similar concurrent, but relational self-distillation to
instead encode high-dimensional sample relation context from multiple, higher-dimensional teacher
embedding spaces; crucial to improve the generalization capabilities of a single student embedding
space for zero-shot, out-of-distribution image retrieval tasks. As such, it operates orthogonally to
proposals made by Zhang et al. (2019) and Liu et al. (2020). The concurrency of the self-distillation
in turn is a consequence of the novel insight that solely the dimensionality of embedding spaces can
serve as meaningful teachers, as these can be spanned cheaply over a large, shared feature backbone.

The novel dimensionality-based concurrent distillation also sets S2SD apart from existing knowledge
distillation applications to DML, which are done in a generic manner with separate, larger teacher
networks or additional training stages (Chen et al., 2018; Yu et al., 2019; Han et al., 2019; Laskar &
Kannala, 2020).

3 METHOD

We now introduce key elements for Simultaneous Similarity-based Self-Distillation (§2SD) to im-
prove generalization of embedding spaces by utilizing higher dimensional context. We start with
preliminary notation and fundamentals to Deep Metric Learning (§3.1). We then define the three key
elements to S2SD: Firstly, the Dual Self-Distillation (DSD) objective, which uses KL-Distillation on
a concurrently learned high-dimensional embedding space (§3.2) to introduce the high-dimensional
context into a low-dimensional embedding space during training. We then extend this to Multiscale
Self-Distillation (MSD) with distillation from several different high-dimensional embedding spaces
to encourage reusability in the distilled context (§3.3). Finally, we shift to self-distillation from
normalized feature representations to counter dimensionality bottlenecks (MSDF) (§3.4).

3.1 PRELIMINARIES

DML builds on generic Metric Learning which aims to find a (parametrized) distance metric dy :
® x ® — R on the feature space ® C R over images X’ that best satisfy ranking constraints usually
defined over class labels ). This holds also for DML. However, while Metric Learning relies on a
fixed feature extraction method to obtain ®, DML introduces deep neural networks to concurrently
learn a feature representation. Most such DML approaches aim to learn Mahalanobis distance metrics,
which cover the parametrized family of inner product metrics (Sudrez et al., 2018; Chen et al., 2019).
These metrics, with some restrictions (Sudrez et al., 2018), can be reformulated as

d(61,62) = \/(L(d1 — 62)TL(d1 — 62) = | Lé1 — Lo, = 1 — vl ()

with learned linear projection L € R4 from d*-dim. features ¢; € ® to d-dim. embeddings
;= (f o ¢)(z;) € Uy with embedding function f : ¢, — L¢;. Importantly, this redefines the
motivation behind DML as learning d-dimensional image embeddings v s.t. their euclidean distance
d(e,e) = ||e — e, is connected to semantic similarities in X'. This embedding-based formulation
offers the significant advantage of being compatible with fast approximate similarity search methods
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Figure 1: S2SD. We use a standard encoder ¢, embedding f, and multiple auxiliary embedding
networks g; (used only during training) depending on the S2SD approach used. During training, for
each batch of embeddings produced by the respective embedding network g;, we compute DML
losses while applying embedding distillation on the respective batch-similarity matrices (DSD/MSD).
We further distill from the feature representation space for additional information gain (MSDF).

(e.g. Johnson et al. (2017)), allowing for large-scale applications at test time. In this work, we
assume W to be normalized to the unit hypersphere Sy ,, which is commonly done (Wu et al., 2017;
Sanakoyeu et al., 2019; Liu et al., 2017; Wang & Isola, 2020) for beneficial regularizing purposes
(Wu et al., 2017; Wang & Isola, 2020). For the remainder we hence set W to refer to Sy .

Common approaches to learn such a representation space involve training surrogates on ranking
constraints defined by class labels. Such approaches start from pair or triplet-based ranking objectives
(Hadsell et al., 2006; Schroff et al., 2015), where the latter is defined as

£lriplet = l/lTB‘Z(Ii,wj,a:k)ETB [d(wla w]) - d(¢l7 ¢k) + m]+ (2)

with margin m and the set of available triplets (x;,z;, ) € Tg in a mini-batch B C X, with
Yi = y; # Yr. This can be extended with more complex ranking constraints or tuple sampling
methods. We refer to Supp. B and Roth et al. (2020b) for further insights and detailed studies.

3.2 EMBEDDING SPACE SELF-DISTILLATION

For the aforementioned standard DML setting, generalization performance of a learned embedding
space can be linked to the utilized embedding dimensionality. However, high dimensionality results in
notably higher retrieval cost on downstream applications, which limits realistically usable dimensions.
In S25D, we show that high-dimensional context can be used as a teacher during the training run of
the low-dimensional base or reference embedding space. As the base embedding model is also the
one that is evaluated, test time retrieval costs are left unchanged.

To achieve this, we simultaneously train an additional high-dimensional auxiliary/target embedding
space ¥, := (g o ¢)(X) spanned by a secondary embedding branch g. g is parametrized by a MLP
or a linear projection, similar to the base embedding space W ; spanned by f, see §3.1. Both f and g
operate on the same large, shared feature backbone ¢. For simplicity, we train ¥ and ¥, using the
same DML objective Lpp -

Unfortunately, higher expressivity and improved generalization of high-dimensional embeddings
in ¥, hardly benefit the base embedding space, even with a shared feature backbone. To explicitly
leverage high-dimensional context for our base embedding space, we utilize knowledge distillation
from target to base space. However, while common knowledge distillation approaches match single
embeddings or features between student and teacher, the different dimensionalities in ¥ ¢ and ¥,
inhibit naive matching.

Instead, S2SD matches sample relations (see e.g. Tian et al. (2019)) defined over batch-similarity
matrices D € R5*B in base and target space, D/ and D9, with batchsize 3. We thus encourage the
base embedding space to relate different samples in a similar manner to the target space. To compute
D, we use a cosine similarity by default, given as D; ; = ol 1;, since v; is normalized to the unit
hypersphere. Defining o,y as the softmax operation and Dy (p, ¢) = > log(p)los(r)/10g(q) as the



Under review as a conference paper at ICLR 2021

Kullback-Leibler-divergence, we thus define the simultaneous self-distillation objective as
Ldist(Dfa Dg) = leB‘ DKL (Umax (Difﬁ/T) ’ O—ITnaX (Dfﬁ/T)) (3)

with temperature 7', as visualized in Figure 1. (¥) denotes no gradient flow to target branches
g as we only want the base space to learn from the target space. By default, we match rows or
columns of D, D; ., effectively distilling the relation of an anchor embedding ; to all other batch
samples. Embedding all batch samples in base dimension, \I!? : B +— 1¢(B), and higher dimension,

\Ilf : B — 14(B), the (simultaneous) Dual Self-Distillation (DSD) training objective then becomes
Losp(TF, E) =12 [Lom(TF) + Lome(U5)] + 7 - Laiw(D7, D) “)

3.3 REUSABLE SAMPLE RELATIONS BY MULTISCALE SELF-DISTILLATION

While DSD encourages the reference embedding space to recover complex sample relations by
distilling from a higher-dimensional target space spanned by g, it is not known a priori which
distillable sample relations actually benefit generalization of the reference space.

To encourage the usage of sample relations that more likely aid generalization, we follow insights
made in Raghu et al. (2020) on the connection between reusability of features across multiple tasks
and better generalization thereof. We motivate reusability in S2SD by extending DSD to Multiscale
Self-Distillation (MSD) with distillation instead from m multiple different target spaces spanned by
G = {9k} re{1,m}- Importantly, each of these high-dimensional target spaces operate on different
dimensionalities, i.e. dim f < dim g1 < ... < dim gm—1 < dim g,,. As this results in each target
embedding space encoding sample relations differently, application of distillation across all spaces
spanned by G pushes the base branch towards learning from sample relations that are reusable across
all higher dimensional embedding spaces and thereby more likely to generalize (see also Fig. 1).

Specifically, given the set of target similarity matrices { D*} kE{f.g1,....gm} and target batch embed-
dings I'™ := {\Ilf}ke{f_,gl ,,,,, gm 1> We then define the MSD training objective as

Lyusp(T™) = Y2 [LomL(WF) +Ym 370 Lo (VE)] +9/m 3%, Law(DT, D) (5)
3.4 TACKLING THE DIMENSIONALITY BOTTLENECK BY FEATURE SPACE SELF-DISTILLATION

As noted in §3.1, the base embedding space V¥ utilizes a linear projection f from the (penultimate)
feature space ® where dim ® is commonly much larger than dim ¥. While compressed semantic
spaces encourage stronger representations (Alemi et al., 2016; Dai & Wipf, 2019) to be learned,
Milbich et al. (2020) show that the actual test performance of the lower-dimensional embedding
space @ is inferior to that of the non-adapted, but higher-dimensional feature space W.

This supports a dimensionality-based loss of information beneficial to generalization, which can
hinder the base embedding space to optimally approximate the high-dimensional context introduced
in §3.2 and 3.3.

To rectify this, we apply self-distillation following eq. 3 on the normalized feature representations "
generated by normalizing the backbone output ¢. With the batch of normalized feature representations
\I/fn we get multiscale self-distillation with feature distillation (MSDF) (see also Fig. 1)

Lyspr(T™, UE.) = Lysp(T™) + vLas (DT, D) (6)
In the same manner, one can also address other architectural information bottlenecks such as through
the generation of feature representations from a single global pooling operation. While not noted in
the original publication, Kim et al. (2020) address this in the official code release by using both global
max- and average pooling to create their base embedding space. While this naive usage changes
the architecture at test time, in S2SD we can fairly leverage potential benefits by only spanning the
auxiliary spaces (and distilling) from such feature representations (denoted as DSDA/MSDA/MSDFA).

4 EXPERIMENTAL SETUP

We study S2SD in four experiments to establish 1) method ablation performance & relative improve-
ments, 2) state-of-the-art, 3) comparisons to standard 2-stage distillation, benefits to low-dimensional
embedding spaces & generalization properties and 4) motivation for architectural choices.
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Method Notation. We abbreviate ablations of S25SD (see §3) in our experiments as: DSD & MSD for
Dual (3.2) & Multiscale Self-Distillation (3.3), MSDF the addition of Feature distillation (3.4) and
DSDA/MSD(F)A the inclusion of multiple pooling operations in the auxiliary branches (also §3.4).

4.1 EXPERIMENTS

Fair Evaluation of Ablations. §5.1 specifically applies S2SD and its ablations to three DML
baselines. To show realistic benefit, S2SD is applied to best-performing objectives evaluated in Roth
et al. (2020b), namely (i) Margin loss with Distance-based Sampling (Wu et al., 2017), (ii) their
proposed Regularized Margin loss and (iii) Multisimilarity loss (Wang et al., 2019), following their
experimental training pipeline. This setup utilizes no learning rate scheduling and fixes common
implementational factors of variation in DML pipelines such as batchsize, base embedding dimension,
weight decay or feature backbone architectures to ensure comparability in DML (more details in
Supp. A.2). As such, our results are directly comparable to their large set of examined methods and
guaranteed that relative improvements solely stem from the application of S2SD.

Evaluation Across Architectures and Embedding Dimensions. §5.2 further highlights the benefits
of $2SD by comparing S25D’s boosting properties across literature standards, with different backbone
architectures and base embedding dimensions: (/) ResNet50 with d = 128 (Wu et al., 2017; Roth
etal.,, 2019) and (2) d = 512 (Zhai & Wu, 2018) as well as (3) variants to Inception-V1 with Batch-
Normalization at d = 512 (Wang et al., 2019; Qian et al., 2019; Milbich et al., 2020). Only here
do we conservatively apply learning rate scheduling, since all references noted in Table 2 employ
scheduling as well. We categorize published work based on backbone architecture and embedding
dimension for fairer comparison. Note that this is a less robust comparison than done in §5.1, due to
potential implementation differences between our pipeline and reported literature results.

Comparison to 2-Stage Distillation and Generalization Study. §5.3 compares S25D to 2-stage
distillation, investigates benefits to very low dimensional reference spaces and examines the connec-
tion between improvements and increased embedding space feature richness, measured by density
and spectral decay (see Supp. D), which are linked to improved generalization in Roth et al. (2020b).

Investigation of Method Choices. §5.4 finally ablates and motivates specific architectural choices
in S2SD used throughout §4. Pseudo code and detailed results are available in Supp. F, G, and 1.

4.2 IMPLEMENTATION

Datasets & Evaluation. In all experiments, we evaluate on standard DML benchmarks: CUB200-
2011 (Wahetal., 2011), CARS196 (Krause et al., 2013) and Stanford Online Products (SOP) (Oh Song
et al., 2016). Performance is measured in recall at I (R@1) and at 2 (R@2) (Jegou et al., 2011) as
well as Normalized Mutual Information (NMI) (Manning et al., 2010). More details in Supp. A & C.

Experimental Details. Our implementation follows Roth et al. (2020b), with more details in
Supp. (A). For §5.1-5.4, we only adjust the respective pipeline elements in questions. For S2SD,
unless noted otherwise (s.a. in §5.4), we set v = 50,7 = 1 for all objectives on CUB200 and
CARS196, and v = 5,7 = 1 on SOP. DSD uses target-dim. d = 2048 and MSD target-dims.
d € [512,1024, 1536, 2048]. We found it beneficial to activate the feature distillation after n = 1000
iterations for CUB200, CARS196 and SOP, respectively, to ensure that meaningful features are
learned first before feature distillation is applied. The additional embedding spaces are generated by
two layer MLPs with row-wise KL-distillation of similarities (eq. 3), applied as in Ly (eq. 5). By
default, we use Multisimilarity Loss as stand-in for Lpy .

5 RESULTS

5.1 S2SD IMPROVES PERFORMANCE UNDER FAIR EVALUATION

In Tab. 1 (full table in Supp. Tab. 4), we show that under the fair experimental protocol used in
Roth et al. (2020b), utilizing S2SD and its ablations gives an objective and benchmark independent,
significant boost in performance by up to 7% opposing the exisiting DML objective performance
plateau. This holds even for regularized objectives s.a. R-Margin loss, highlighting the effectiveness
of $2S5D for DML. Across objectives, S2SD-based changes in wall-time do not exceed negligible 5%.
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Table 1: S2SD comparison against strong baseline objectives. All results computed over multiple
seeds. Bold denotes best results per loss & benchmark, bluebold marks best results per benchmark.
Evaluations using the mAP@R metric as proposed in Roth et al. (2020b) and Musgrave et al. (2020)
can be found in the Supplementary (Table 5), similarly showing the notable benefits of S2SD.

BENCHMARKS— CUB200-2011 CARS196 SOP
APPROACHES | I R@1 | NMI I R@1 | NMI | R@1 | NMI
Margin, 3 = 1.2, (Wu et al., 2017) 63.09 £ 0.46 68.21 +0.33 || 79.86 £+ 0.33 | 67.36 £ 0.34 || 78.43 & 0.07 | 90.40 £ 0.03
+DSD 65.11 £ 0.18 | 69.65 £+ 0.44 || 83.19 + 0.18 | 69.28 £+ 0.56 || 79.05 £+ 0.12 | 90.52 £ 0.18
+MSD 66.13 £ 0.34 | 70.83 £ 0.27 || 83.63 £ 0.31 | 69.80 £ 0.36 || 79.26 & 0.15 | 90.60 £ 0.10
+ MSDF 67.58 £0.32|71.47 £ 0.19|| 85.55 + 0.23 [71.68 4+ 0.54||79.63 = 0.15(90.70 + 0.09
+ MSDFA 67.21 +0.23 | 71.43 £ 0.25 ||86.45 +0.35| 71.46 £ 0.24 || 78.82 £ 0.09 | 90.49 £ 0.06
R-Margin, 8 = 0.6, (Roth et al., 2020b)|| 64.93 £ 0.42 68.36 £ 0.32 || 82.37 &+ 0.13 | 68.66 £ 0.47 || 77.58 + 0.11 | 90.42 £ 0.03
+ DSD 66.58 £+ 0.08 | 70.03 £ 0.41 || 84.64 £+ 0.16 | 70.87 £ 0.18 || 77.86 & 0.10 | 90.50 £ 0.03
+MSD 66.81 £+ 0.27 | 70.47 £ 0.16 || 85.01 £ 0.10 | 71.67 £ 0.40 || 78.00 & 0.06 | 90.47 & 0.04
+ MSDF 68.12 + 0.30 |71.80 + 0.33|| 85.78 + 0.22 {72.24 + 0.31||78.57 + 0.09(90.58 + 0.02
+ MSDFA 68.58 +£0.26| 71.64 + 0.40 ||86.81 £ 0.35| 71.48 +0.29 || 78.00 = 0.11 | 90.41 + 0.02
Multisimilarity (Wang et al., 2019) 62.80 £ 0.70 68.55 + 0.38 || 81.68 £+ 0.19 | 69.43 £ 0.38 || 77.99 & 0.09 | 90.00 £ 0.02
+DSD 65.57 £+ 0.26 | 70.08 £+ 0.33 || 83.51 £ 0.20 | 70.30 £ 0.05 || 78.23 & 0.04 | 90.08 & 0.04
+MSD 65.80 £+ 0.16 | 70.66 + 0.01 || 83.98 +0.10 | 71.34 £ 0.09 || 78.42 & 0.09 | 90.09 £ 0.03
+ MSDF 67.04 +0.29 |71.87 £ 0.19]| 85.69 + 0.19 {72.77 + 0.13||78.59 + 0.08(90.09 + 0.06
+ MSDFA 67.68+£0.29| 71.40+0.21 ||85.89 £ 0.15| 71.45 + 0.26 || 78.07 £ 0.06 | 89.88 + 0.10

Table 2: State-of-the-art comparison. We show that S2SD, represented by its variants MSDF(A),
boosts baseline objectives to state-of-the-art across literature. (*) stands for Inception-V1 with frozen
Batch-Norm. Bold: best results per literature setup. Bluebold: best results per overall benchmark.

BENCHMARKS — CUB200 (Wah et al., 2011) CARS196 (Krause et al., 2013) SOP (Oh Song et al., 2016)
METHODS | | R@l | R@2 | NMI | R@l | R@2 | NMI || R@l | R@I0 | NMI
ResNet50-128

Div&Conq (Sanakoyeu et al., 2019) 65.9 76.6 69.6 84.6 90.7 70.3 75.9 88.4 90.2
MIC (Roth et al., 2019) 66.1 76.8 69.7 82.6 89.1 68.4 77.2 89.4 90.0
PADS (Roth et al., 2020a) 67.3 78.0 69.9 83.5 89.7 68.8 76.5 89.0 89.9
Multisimilarity+S2SD 68.0 £0.2[78.7 £ 0.1|71.7 £+ 0.4[86.3 + 0.1|91.8 & 0.3]72.0 £ 0.3]]79.0 £ 0.2|{90.2 + 0.1]90.6 + 0.1
Margin+S2SD 67.6 £0.3|78.2 £ 0.2/70.8 4 0.3(|86.0 £ 0.2{91.8 4 0.2(72.2 £ 0.2{|80.2 & 0.2(91.5 £ 0.1/90.9 + 0.1
R-Margin+S2SD 68.9 + 0.3|79.0 + 0.3(72.1 & 0.4/87.6 + 0.2|92.7 & 0.2|72.3 + 0.2{|79.2 & 0.2/90.3 + 0.1]90.8 + 0.1
ResNet50-512

EPSHN (Xuan et al., 2020) 64.9 75.3 - 82.7 89.3 - 78.3 90.7 -
NormSoft (Zhai & Wu, 2018) 61.3 73.9 - 84.2 90.4 - 78.2 90.6 -
DiVA (Milbich et al., 2020) 69.2 79.3 714 87.6 92.9 722 79.6 91.2 90.6
Multisimilarity+S2SD 69.2 £0.1[79.1 £0.2]71.4 £ 0.2[[89.2 £ 0.2]93.8 & 0.2]74.0 £ 0.2][80.8 + 0.2[92.2 £ 0.2[90.5 £ 0.3
Margin+S2SD 68.8 £0.2{78.5 £ 0.2{72.3 4+ 0.1{|89.3 £ 0.2{93.8 4+ 0.2|73.7 £+ 0.3||81.0 & 0.2(92.1 £+ 0.2|91.1 + 0.3
R-Margin+S25D 70.1 £+ 0.2|179.7 £ 0.2|71.6 £ 0.2||89.5 + 0.2{93.9 + 0.3|72.9 + 0.3||80.0 = 0.2{91.4 £ 0.2{90.8 £ 0.1
Inception-BN-512

DiVA (Milbich et al., 2020) [ 66.8 71.7 700 || 84.1 90.7 687 [ 781 90.6 90.4
Multisimilarity+S2SD 66.7 £ 0.3]77.5 £ 0.3]70.5 + 0.2[83.8 + 0.3]90.3 & 0.2|69.8 + 0.3](78.5 & 0.2(90.6 + 0.2/90.6 + 0.1
Margin+S2SD 66.8 £0.2{77.9 £ 0.2(69.9 £ 0.3|/84.3 + 0.2(90.7 £ 0.2|169.8 + 0.2{|78.4 & 0.2/190.5 + 0.2{90.4 + 0.1
R-Margin+S25D 67.4 + 0.3/78.0 + 0.4/70.3 £ 0.2([83.9 + 0.3|90.3 + 0.2|69.4 + 0.2]|78.1 £ 0.2{90.4 £ 0.3{90.3 + 0.2
Softtriple™ (Qian et al., 2019) 65.4 76.4 69.3 84.5 90.7 70.1 78.3 90.3 92.0
Multisimilarity™ (Wang et al., 2019) 65.7 71.0 - 84.1 90.4 - 78.2 90.5 -
Multisimilarity*+S2SD 68.2 £0.3(79.1 £ 0.2|71.6 £ 0.2[86.3 + 0.2]92.2 £ 0.2|72.0 £ 0.3]|78.9 £ 0.2|90.8 £ 0.2]90.6 + 0.1
Margin*+S2SD 68.3+0.2|/78.8 £0.2|71.2 £ 0.2(|87.1 + 0.2{92.4 + 0.1|72.2 + 0.2{|79.1 £ 0.2{91.0 £ 0.3{90.4 £ 0.1
R-Margin*+S2SD 69.6 + 0.3|79.6 + 0.371.2 + 0.1{|86.6 + 0.3(92.1 4 0.3|70.9 £ 0.2{|78.5 & 0.1{90.5 £ 0.2/90.0 + 0.2

5.2 S2SD ACHIEVES SOTA ACROSS ARCHITECTURE AND EMBEDDING DIMENSION

Motivated by Tab. 1, we use MSDFA for CUB200/CARS196 and MSDF for SOP. Table 2 shows
that S2SD can boost baseline objectives to reach and even surpass SOTA, in parts with a notable
margin, even when reported with confidence intervals, which is commonly neglected in DML. S2SD
outperforms much more complex methods with feature mining or RL-policies s.a. MIC (Roth et al.,
2019), DiVA (Milbich et al., 2020) or PADS (Roth et al., 2020a).

5.3 S28SD 1S A STRONG SUBSTITUTE FOR NORMAL DISTILLATION & LEARNS GENERALIZING
EMBEDDING SPACES ACROSS DIMENSIONALITIES.

Comparison to standard distillation. With student S (same objective/embed. dim. as the reference
branch in DSD) and a teacher T at highest optimal dim. d = 2048, we find separating DSD into
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(A) Standard Distillation vs. No Distillation vs. Self-Distillation (B) Embedding Dimension vs. Self-Distillation
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Figure 3: S2SD study and ablations. (A) DSD outperforms comparable two-stage distillation on
student S (Dist.) using teacher (T'), with MSD(FA) even outperforming the teacher. We further see that
distillation is essential for improvement - training multiple spaces in parallel (Joint.) or a detached
lower-dimensional base embedding (Concur.) gives little benefit. (B) We see benefits across base
dimensionalities, especially in the low-dimensional regime. (C) We find KL-distillation between
similarity vectors (R-KL) to work best. (D) An additional non-linearity in aux. branches g gives a
boost, but going deeper degenerates generalization. (E) Distilling each aux. embed. space (Multi) to
the reference space compares favourable against other distillation setups s.a. Nested and Chained
distillation. (F) We find performance to be robust to changes in weight values.

standard 2-stage distillation degenerates performance (see Fig. 3A, compare to Dist.). S2SD also
allows for easy integration of teacher ensembles, realized by MSD(FA), to even outperform the
teacher notably while operating on the embedding dimensionality of the student.

Benefits to lower base dimensions. We show that our module is able to vastly boost networks
limited to very low embedding dimensions (c.f. 3B). For example, d = 32 & 64 networks trained
with S25D can match the performance of embed. dimensions four or eight times the size. For
d = 128, S2SD even outperforms the highest dimensional baseline at d = 2048 notably.

Embedding space metrics. We now look at rel- —
ative changes in embedding space density and
spectral decay as in Roth et al. (2020b), although / — / ./
we investigate changes within the same objec-

tives. Fig. 2 shows S2SD increasing embedding

space density and lowering the spectral decay

(hence providing a more feature-diverse embed- Figure 2: Generalization metrics. S2SD increases
ding space) across criteria. embed. space density and lowers spectral decay.

5.4 MOTIVATING S2SD ARCHITECTURE CHOICES

Is distillation in S2SD important? Fig. 3A (Joint) and Fig. 3F (y = 0) highlight how crucial
self-distillation is, as using a secondary embedding space without hardly improves performance. Fig.
3A (Concur.) shows that joint training of a detached reference embedding f while otherwise training
in high dimension also doesn’t offer notable improvement. Finally, Figure 3F shows robustness to
changes in v, with peaks around v = 50 and v = 5 for CUB200/CARS196 and SOP. We also found
best performance for temperatures T' € [0.2, 2] and hence set 7' = 1 by default.

Best way to enforce reusability. To motivate our many-to-one self-distillation Lysp (eq. 5, here
also dubbed Lyyi), we evaluate against other distillation setups that could support reusability of
distilled sample relations: (/) Nested distillation, where instead of distilling all target spaces only to
the reference space, we distill from a target space to all lower-dimensional embedding spaces:

m

LresieaT™) = = | Lo (¥5F) ZCDML ) + Y La(W5,9E) ()

(m—l) i=0,j=1,j#i
dim g; >dim g;
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In the second term, gg denotes the base embedding f. (2) Chained distillation, which distills from a
target space only to the lower-dim. embedding space closest in dimensionality:

-1
Lais(V5, U5 (8)

3

l,
m <
i

1 1 &
Lenained (1) = 3 Lo (VF) + oo > Lo (¥5)| +
i=1

Il
<)

Figure 3E shows that while either distillation method provides strong benefits, a many-to-one
distillation performs notably better, supporting the reusability aspect and L, as our default method.

Choice of distillation method & branch structures. Fig. 3C evaluates various distillation objec-
tives, finding KL-divergence between vectors of similarities to perform better than KL-divergence
applied over full similarity matrices or row-wise means thereof, as well as cosine/euclidean distance-
based distillation (see e.g. (Yu et al., 2019)). Figure 3D shows insights into optimal auxiliary branch
structures, with two-layer MLPs giving the largest benefit, although even a linear target mapping
reliably boosts performance. This coincides with insights made by Chen et al. (2020). Further
network depth only deteriorates performance.

6 CONCLUSION

In this paper, we propose a novel knowledge-distillation based DML training paradigm, Simultaneous
Similarity-based Self-Distillation (S2SD), to utilize high-dimensional context for improved general-
ization. S25D solves the standard DML objective simultaneously in higher-dimensional embedding
spaces while applying knowledge distillation concurrently between these high-dimensional teacher
spaces and a lower-dimensional reference space. S2SD introduces little additional computational
overhead, with no extra cost at test time. Thorough ablations and experiments show S2SD signifi-
cantly improving the generalization performance of existing DML objectives regardless of embedding
dimensionality, while also setting a new state-of-the-art on standard benchmarks.
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