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Abstract

Calibration of language models is typically studied at the token level, with scalar temperature
scaling serving as the primary approach for recalibrating models. Recent multi-sampling
techniques allow us to elicit semantic uncertainty measures from language models. However,
these techniques focus on summary statistics of the limited existing semantic confidence
distributions rather than on how well-calibrated these distributions are, a crucial factor
in ensuring that the resulting semantic likelihoods are both meaningful and reliable. In
this paper, we investigate whether and how temperature scaling, which directly influences
generative diversity and token-level calibration, affects semantic calibration. We address
these question by investigating semantic-level calibration in both pre-trained and fine-tuned
models. In particular, we introduce a framework for assessing semantic confidence that
incorporates both existing and novel confidence measures, comparing them to a single-
generation confidence measure. Furthermore, we investigate various temperature scaling
methods and their effect on semantic calibration. Our experiments span both open-book
and closed-book question answering datasets. Our empirical findings demonstrate that
scalar temperature scaling, when appropriately applied, provides a simple, widely applicable,
and effective method for improving semantic calibration in language models.

1. Introduction

Token-level calibration in LMs is well-studied (Achiam et al., 2023), but sentence-level
semantic calibration, where a model’s confidence reflects the correctness of its meaning,
remains underexplored. For instance, both Tchaikovsky and Pyotr Ilyich Tchaikovsky
correctly answer Which Russian composer wrote the ballets “The Stone Flower” and “Romeo
and Juliet”?, whereas Shostakovich and Sergei Prokofiev do not. A semantically calibrated
model should assign high confidence to correct meanings and low confidence to incorrect
ones, expressing uncertainty at a semantic level rather than tied to a particular wording.

Temperature scaling (Guo et al., 2017) is a popular post-hoc technique, adopted for
token-level recalibration—especially after RLHF fine-tuning where calibration can degrade
(Ouyang et al., 2022; Achiam et al., 2023; Kadavath et al., 2022). Beyond calibration,
temperature is used heuristically to control output diversity and for semantic uncertainty
estimation: e.g., semantic entropy clusters multiple generations by meaning for uncertainty
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measures (Kuhn et al., 2023; Farquhar et al., 2024). However, there is no unified approach to
deriving semantic confidence scores nor evaluating semantic-level calibration in NLG tasks.

Prior work shows LMs can self-assess via few-shot prompting in open-ended tasks
(Kadavath et al., 2022), but this requires an extra assessment step and does not leverage
initial-generation likelihoods or operate inherently at the semantic level. Moreover, calibration
discussions for NLG beyond multiple-choice QA are limited.

These discussions raise the following key questions that we address in this paper: (i) How
can we formally define and measure semantic calibration in NLG? (ii) How does temperature
scaling interact within this framework? (iii) Can temperature scaling provide simple semantic-
level recalibration akin to its token-level success? In answering these questions, we make the
following contributions

1. Semantic Confidence Framework: A unified framework integrating existing and
novel metrics to evaluate semantic calibration in pre-trained and fine-tuned LMs.

2. Temperature Scaling Analysis: A systematic study of scalar and adaptive temperature
methods across calibration objectives.

3. Empirical Evaluation: Benchmarks on open-book (CoQA, SQuAD) and closed-book
(TriviaQA, Natural Questions) QA vs. single-generation confidence methods.

4. Ablations: Demonstrating robustness of semantic calibration via temperature scaling
to model size and sample count, enabling efficient recalibration.

Reflecting its token-level success, we show that temperature scaling, when properly
applied, offers a simple and effective means to enhance semantic calibration in LMs.

2. Confidence metrics

We consider an autoregressive language model, pϕ, operating on a vocabulary V. Given
an input prompt x ∈ V l consisting of l tokens, the LM pϕ(· | x) generates a sequence
y = (y1, . . . , yn) ∈ Vn of n tokens as a response. The log-probability of the response y given
the prompt x under the LM is:

log pϕ(y | x) =
n∑

i=1

log pϕ(yi | y<i,x), , where y<i = (y1, . . . , yi−1). (1)

In what follows, we define five confidence measures: one single generation confidence (pSGC),
and four semantic confidence (SC) measures based on a consistency-based approach.

2.1. Single Generation Confidence (SGC)

We interpret the log-probability in Equation 1 as a single-generation confidence (SGC)
score, where higher (less negative) values indicate greater confidence. Since log-probabilities
depend on the sequence length n = |y| (Wu, 2016), we length-normalise to obtain the
length-normalised log-likelihood (LN-LL):

ℓ(y | x) = 1

n

n∑
i=1

log pϕ(yi | y<i,x). (2)

Exponentiating this, equivalent to taking the geometric mean of token probabilities yields:

pSGC
ϕ (y | x) := exp

(
ℓ(y | x)

)
= pϕ(y | x)

1
n ∈ [0, 1]. (3)
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2.2. Semantic Confidence (SC)

For a given input prompt x ∈ V l, we generate m responses from a LM: y(1), . . . ,y(m) ∼
pϕ(· | x). We then follow Kuhn et al. (2023) and cluster the responses based on which
responses are semantically equivalent. This produces k semantic clusters, C1, . . . , Ck, where
the number of clusters k depends on the input x and generations y(i).

Empirical Semantic Confidence (E-SC). The simplest way to measure the confidence
of a semantic cluster Ci would be to consider the empirical proportion of responses that
belong to it. We define this to be the Empirical Semantic Confidence (E-SC):

pE-SCϕ (Ci | x) :=
|Ci|∑k
j=1 |Cj |

=
|Ci|
m

, i = 1, . . . , k. (4)

We note that this is the same distribution used to compute the semantic entropy of black-box
models in (Farquhar et al., 2024).

Likelihood-based Semantic Confidence (L-SC). Assuming access to likelihoods, we
define an alternative confidence measure by combining the SGC metric (Equation 2) with
the E-SC measure (Equation 4). For each semantic cluster Ci, we compute its score by
summing the length-normalised likelihoods of its responses:

s(Ci | x) :=
∑
y∈Ci

pϕ(y | x)
1
|y| , i = 1, . . . , k. (5)

Normalising these scores yields the Likelihood-based Semantic Confidence (L-SC) distribution:

pL-SCϕ (Ci | x) :=
s(Ci | x)∑k
j=1 s(Cj | x)

, i = 1, . . . , k. (6)

Originally introduced by Farquhar et al. (2024), we use this distribution to measure calibration
rather than to compute derived quantities like its entropy.

Mean Likelihood-based Semantic Confidence (ML-SC). Summing length normalised
likelihoods may bias scores toward larger clusters, so we compute the mean likelihood for
each cluster:

s̄(Ci | x) :=
s(Ci | x)

|Ci|
, i = 1, . . . , k. (7)

Normalising these scores yields the Mean Likelihood-based Semantic ConfidenceML-SC
distribution:

pML-SC
ϕ (Ci | x) :=

s̄(Ci | x)∑k
j=1 s̄(Cj | x)

, i = 1, . . . , k. (8)

Bayesian Semantic Confidence (B-SC). We introduce a Bayesian inspired semantic
confidence measure that merges the E-SC and L-SC approaches. Specifically, we adopt the
empirical distribution from Equation 4 as a prior over clusters:

π(Cj | x) := pE-SC(Cj | x), ∀j = 1, . . . , k. (9)
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Table 1: Closed-book results. Table showing the average ECE (↓) and AUROC (↑) scores
for single-generation and semantic confidence measures across the three LMs using m = 10
generations on closed-book datasets, Natural Questions and TriviaQA. Individual model
results are displayed in Figure 7 and Figure 8 in the Appendix.

SGC E-SC ML-SC L-SC B-SC
ECE AUROC ECE AUROC ECE AUROC ECE AUROC ECE AUROC

N
Q

pPT 0.343 0.727 0.140 0.707 0.106 0.698 0.156 0.699 0.127 0.707
pSFT 0.247 0.767 0.105 0.760 0.133 0.728 0.123 0.741 0.116 0.738
pNLL 0.207 0.769 0.083 0.768 0.123 0.726 0.106 0.743 0.098 0.739
pSS 0.043 0.757 0.092 0.767 0.083 0.693 0.078 0.734 0.084 0.691
pATS 0.245 0.724 0.103 0.761 0.092 0.728 0.153 0.740 0.143 0.737

T
r
iv

ia
Q

A pPT 0.156 0.765 0.103 0.800 0.170 0.790 0.096 0.793 0.128 0.779
pSFT 0.120 0.840 0.052 0.850 0.128 0.839 0.060 0.842 0.054 0.846
pNLL 0.115 0.840 0.051 0.848 0.133 0.843 0.060 0.842 0.059 0.844
pSS 0.097 0.842 0.083 0.861 0.163 0.841 0.040 0.844 0.078 0.825
pATS 0.177 0.783 0.046 0.849 0.064 0.833 0.105 0.836 0.119 0.836

We then define the joint length normalised likelihood for all generated responses, y(1):(m) :=
(y(1), . . . ,y(m)), given a cluster Ci and input x, as

p̄ϕ

(
y(1):(m) | Ci,x

)
=

∏
y∈Ci

pϕ(y | x)
1
|y| =

∏
y∈Ci

pSGC(y | x), i = 1, . . . , k. (10)

This yields the posterior distribution over clusters:

pB-SC
ϕ (Ci | x) =

p̄ϕ
(
y(1):(m) | Ci,x

)
π(Ci | x)∑k

j=1 p̄ϕ
(
y(1):(m) | Cj ,x

)
π(Cj | x)

, i = 1, . . . , k. (11)

We refer to this measure as Bayesian Semantic Confidence (B-SC).

Selecting a final response. From the m responses grouped into k clusters, we select the
final output by identifying the most confident cluster C∗ and choosing the response within
it with the highest LN-LL: y∗ =y∈C∗ ℓ(y | x)..

3. Experiments

3.1. Experiment setup

Models and Datasets. We assess the semantic calibration of LMs and the effectives
of temperature scaling for semantic recalibration using the semantic confidence measures
from section 2. Our experiments use Llama-3.1-8B-Instruct (Dubey et al., 2024), Ministral-
8B-Instruct-2410 (MistralAI, 2024), and Qwen-2.5-7B-Instruct (Team, 2024), evaluated on
generative QA datasets. For closed-book QA, we use TriviaQA (Joshi et al., 2017) and
Natural Questions (NQ, Kwiatkowski et al., 2019), and for open-book QA, we use CoQA
(Reddy et al., 2019) and SQuAD (Rajpurkar, 2016).

Training procedure: Supervised fine-tuning and calibration. For each dataset, we
first perform supervised fine-tuning (SFT) followed by calibration training on a separate
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Table 2: Open-book results. Table showing the average ECE (↓) and AUROC (↑) scores
for single-generation and semantic confidence measures across the three LMs using m = 10
generations on the open-book datasets, CoQA and SQuAD. Individual model results are
displayed in Figure 9 and Figure 10 in the Appendix.

SGC E-SC ML-SC L-SC B-SC
ECE AUROC ECE AUROC ECE AUROC ECE AUROC ECE AUROC

C
o
Q

A

pPT 0.141 0.721 0.156 0.720 0.262 0.705 0.145 0.707 0.191 0.712
pSFT 0.048 0.747 0.069 0.792 0.145 0.793 0.063 0.786 0.084 0.789
pNLL 0.050 0.748 0.063 0.800 0.145 0.792 0.059 0.789 0.087 0.785
pSS 0.106 0.735 0.103 0.802 0.200 0.797 0.069 0.795 0.120 0.717
pATS 0.111 0.729 0.062 0.797 0.080 0.787 0.079 0.782 0.099 0.782

S
Q

u
A

D

pPT 0.086 0.729 0.071 0.594 0.088 0.598 0.072 0.588 0.082 0.628
pSFT 0.036 0.688 0.099 0.695 0.167 0.688 0.087 0.690 0.105 0.699
pNLL 0.038 0.687 0.097 0.692 0.167 0.689 0.089 0.681 0.107 0.701
pSS 0.077 0.670 0.135 0.737 0.230 0.737 0.115 0.706 0.153 0.731
pATS 0.049 0.679 0.099 0.683 0.078 0.684 0.055 0.681 0.052 0.685

subset, reflecting deployment of small- to medium-sized models. All metrics are reported on
a held-out test split.

For SFT, we apply parameter-efficient fine-tuning (PEFT) using LoRA (Hu et al., 2021),
selecting the model with the best accuracy on a held-out SFT-validation set for calibration.
Full details on dataset splits, training, and hyperparameters are provided in section C.

Calibration and Discrimination Metrics. We assess calibration and discriminative
ability using Expected Calibration Error (ECE) and AUROC (see Appendix D.1) respectively.
For short-form QA tasks, we view correctness as binary, defined as c = 1(ŷ ∼ y | x), where
∼ denotes semantic equivalence given x, and ŷ ∼ pϕ(· | x; τ) is the final response. As
described in section 2, the final response to be assessed is selected as the one with the highest
LN-LL within the most confident cluster C∗. We report calibration metrics both for the
LN-LL of this response and for its corresponding confidence cluster.

Calibration methods and baselines. Our empirical investigation is focused on the
role of temperature scaling in semantic calibration. We compare a range of temperature
calibration methods and baselines using the aforementioned metrics on held-out test sets.
The calibration methods and models we consider are:

• No calibration baselines: the original pre-trained LM, pPT, and the SFT model pSFT.

• Scalar temperature optimisation methods: with the NLL loss (Eq. 13) and the SS
loss (Eq. 14) (Xie et al., 2024). We denote results pertaining to these methods by pCE

and pSS, respectively.

• Adaptive temperature scaling: optimising a temperature prediction head as in
subsection B.2, using the SS loss (Eq. 14), pATS-SS (Xie et al., 2024).

3.2. Semantic calibration on closed-book datasets (TriviaQA and NQ)

Table 1 summarises the average ECE and AUROC scores for single-generation and SC
measures across three LMs using m = 10 generations on the closed-book datasets, Natural
Questions and TriviaQA. Note that single-generation confidence reflects a single output’s
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score, while SC measures capture a broader confidence in the overall response meaning;
these metrics are thus fundamentally different and not directly comparable.

The pre-trained models pPT exhibit high ECE values, indicating poor calibration, whereas
pSFT shows improvement. Moreover, all temperature scaling methods consistently lower
ECE values, demonstrating enhanced calibration in both cases. Notably, the SS loss method
generally yields the best overall calibration performance, outperforming the more complex
and expressive pATS-SS method although we do see greater improvements of the pATS-SS

method on TriviaQA for E-SC and ML-SC methods. In conclusion, temperature scaling
improves semantic calibration as well as single-generation confidence calibration.

Regarding AUROC, which measures discrimination ability, temperature scaling methods
generally achieve higher scores than both pPT and pSFT (except for B-SC on TriviaQA),
further supporting the benefits of temperature optimisation for both calibration
and discrimination.

3.3. Semantic calibration on open-book datasets (CoQA and SQuAD)

Table 2 shows the average ECE and AUROC scores for single generation and semantic
confidence measures using m = 10 generations on the open book datasets CoQA and SQuAD.
For SC measures (except E-SC on SQuAD and B-SC on CoQA), temperature scaling reduces
ECE relative to pPT and pSFT; in contrast, SGC shows no such improvement on either
dataset. Although the optimal method for ECE improvement is less clear cut than for the
closed-book datasets, the ATS method generally yields better calibration as evidenced by,
for example, by the lowest ECE scores of 0.080 on ML-SC for CoQA and 0.078 on ML-SC
for SQuAD, suggesting that longer context aids in training the adaptive temperature head.
Regarding AUROC, the SS loss method consistently achieves the highest scores, which
in context of these open-book datasets results, indicates enhanced discriminability at the
expense of calibration. Overall, our findings indicate that temperature scaling,
particularly via ATS, generally improves SC but tends to hurt single-generation
confidence measures on the open-book datasets that we experiment on.

4. Conclusion

In this work, we investigated both existing and novel extensions of semantic confidence
measures, focusing on their calibration at a semantic level. Furthermore, we explored
how temperature scaling, a simple token-level recalibration technique that affects sample
diversity and hence multi-sample confidence measures, can influence semantic calibration
within our framework. Our results indicate that pre-trained models tend to be poorly
calibrated at a semantic level, whereas applying temperature scaling to fine-tuned models
generally yields improvements over both pre-trained and fine-tuned variants. This shows
that simple token-level calibration techniques can be extended to improve calibration at the
more meaningful semantic level for NLG tasks. We hope that these findings will motivate
future research into the development of more advanced methods for improving semantic
calibration using token-level operations.
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Figure 1: Generative Confidence Framework. This framework integrates single-
generation confidence (SGC) and semantic confidence (SC) methods for LMs. SGC (top
box) is the length-normalised likelihood of a beam-searched response for prompt x. SC
(bottom box) computes a semantic confidence score by sampling multiple responses from
pϕ(· | x) and using an NLI model to assess bidirectional entailment, determining whether
responses yi and yj are semantically equivalent (yi ∼ yj). Here, s(C | x) denotes the sum,
and s̄(C | x) the average, of length-normalised log-likelihoods within cluster C.

Appendix A. Background and Related Work

Confidence and calibration for LMs. Confidence in large language models (LLMs)
typically relies on model likelihoods, derived from model outputs, post-processing steps, or
additional modules (Ulmer et al., 2024). Calibration, defined as the alignment between model
confidence and correctness, has traditionally been examined primarily at the token level.
While pre-trained models such as GPT-4 exhibit strong token-level calibration (Achiam et al.,
2023), this calibration often degrades following fine-tuning (Achiam et al., 2023; Kadavath
et al., 2022). To address this, temperature scaling, originally introduced for recalibration
by Guo et al. (2017), is widely applied in LLMs to adjust confidence and control response
diversity (Chang et al., 2024). Recent approaches have gone beyond scalar temperatures,
introducing input-dependent temperature parameters trained per decoding step (Xie et al.,
2024) to enable more granular calibration adjustments. Furthermore, Xie et al. (2024)
employ a selective smoothing loss to increase uncertainty specifically on incorrectly predicted
tokens.

However, token-level calibration alone is insufficient for open-ended generative tasks. Such
tasks require uncertainty to be assessed at the semantic or meaning level, accommodating
semantically equivalent correct responses. Band et al. (Band et al., 2024) introduce linguistic
calibration (LC) for long-form generation, calibrating outputs to yield downstream user
forecasts. Nevertheless, this method does not directly ensure that the model’s self-reported
confidence reflects response correctness semantically. In contrast, our work introduces a
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formal framework explicitly designed to elicit and evaluate semantic confidence scores and
their calibration.

Semantic measures of uncertainty for LMs. Traditional uncertainty quantification
methods such as Bayesian techniques (Blundell et al., 2015), latent-space metrics (Mukhoti
et al., 2023; Liu et al., 2020), predictive entropy, and ensembles (Lakshminarayanan et al.,
2017)—primarily target classification tasks, often proving challenging to scale for modern
large language models (LLMs) (Yang et al., 2023). These methods typically quantify
uncertainty at token or prediction levels, limiting their applicability to open-ended generative
tasks requiring semantic-level uncertainty evaluation due to multiple valid outputs (Kuhn
et al., 2023).

Recently, semantic uncertainty approaches have emerged, utilizing multi-sampling and
consistency-based strategies (Kuhn et al., 2023; Lin et al., 2023; Nikitin et al., 2024). These
methods cluster semantically similar outputs to measure uncertainty at the meaning level.
Notably, semantic entropy (SE) (Kuhn et al., 2023) employs natural language inference
(Williams et al., 2018) to group outputs and compute uncertainty, while graph-based (Lin
et al., 2023) and kernel-based (Nikitin et al., 2024) extensions further refine this approach.

However, current semantic uncertainty methods do not directly measure whether a
model’s reported confidence aligns with the semantic correctness of its outputs. Similarly,
self-reported confidence approaches (Kadavath et al., 2022; Xiong et al., 2023) usually operate
post-hoc and lack a direct semantic connection to initial predictions. Thus, there’s a clear
need for methods explicitly linking semantic confidence to the correctness of model-generated
responses, a gap this work aims to address.

Appendix B. Confidence Calibration

A model is well-calibrated when its confidence matches its empirical accuracy (Flach,
2016; Ulmer et al., 2024). Calibration techniques adjust output probabilities for over-
or underconfident predictions. We focus on temperature scaling (Guo et al., 2017) for
its simplicity, popularity, and dual role in controlling response diversity and token-level
calibration.

B.1. Scalar Temperature Scaling (STS)

Given logits zt ∈ R|V| at decoding step t from an LM pϕ(· | x), the output probabilities are
computed as pϕ(yt | x,y<t; τ) = σ (zt/τ) , where σ : R|V| → ∆|V|−1 is the softmax function
and τ > 0 is the scalar temperature parameter.

Temperature scaling adjusts token confidence and modulates diversity: lower tempera-
tures yield more deterministic outputs (with τ → 0 equivalent to greedy decoding) while
higher temperatures promote diversity. However, under deterministic methods such as beam
search (Freitag and Al-Onaizan, 2017), temperature scaling does not affect candidate ranking
and thus the final output.

B.2. Adaptive Temperature Scaling (ATS)

ATS (Xie et al., 2024) replaces the global scalar τ ∈ R>0 with token-specific temperatures
via a learned prediction head. Given input x and final hidden representations h ∈ Rdmodel×n,
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ATS applies a transformation ψ : Rdmodel×n → Rn, implemented as a single-layer transformer
block (Vaswani et al., 2017), to produce a scalar temperature for each token position:

τ−1 = exp(ψ(h)), pϕ(yt | x,y<t; τ ) = σ (zt/τt) , (12)

with all operations on τ ∈ Rn performed element-wise.

B.3. Calibration Loss Functions

Negative Log-Likelihood (NLL). Calibration is often achieved by optimizing the
negative log-likelihood, equivalent to the standard cross-entropy loss with one-hot targets
and a proper scoring rule (Gneiting and Raftery, 2007). The NLL loss is defined as:

ℓNLL(pϕ(· | x,y<t; τ), yt) = − log pϕ(yt | x,y<t; τ). (13)

Selective Smoothing (SS). Introduced by Xie et al. (2024), the selective smoothing loss
minimizes the NLL for correct token predictions while maximizing the entropy for incorrect
ones:

ℓSS(pϕ(· | x,y<t; τ), yt)

= −(1− α) log pϕ(yt | x,y<t; τ)1(ŷt = yt)−
α

|V|
∑
y∈V

log pϕ(y | x,y<t; τ)1(ŷt ̸= yt),
(14)

where 1(·) is the indicator function, ŷt =y∈V pϕ(y | x,y<t; τ) is the model’s top prediction,
and α ∈ [0, 1] controls the balance between the two terms. We employ this loss to optimise
the temperature head in the ATS method described in subsection B.2.

Appendix C. Training and Optimisation Settings

C.1. Dataset splits

Recall that our training procedure consists of two stages: Supervised fine-tuning stage (SFT)
and post-SFT calibration via temperature optimisation. Accordingly, we split original data
sets into 7 splits, 6 of which are used during training and one is a held-out test set.

• Supervised fine-tuning stage. We have SFT-training, SFT-early-stopping SFT-validation,
used for SFT training and selection of LMs. We fine-tune models on the SFT-training
set, applying early stopping based on the accuracy on the SFT-early-stopping set. The
final SFT model is chosen as the model with the highest accuracy on the SFT-validation.
This model then proceeds to the calibration stage.

• Calibration stage: In this stage, we have calibration-training, calibration-early-stopping
and calibration-validation data splits. Using the best-performing SFT model, we
conduct calibration training on the calibration-training split. We use early stopping
based on the calibration loss on the calibration-validation split. We then choose
the hyperparameter settings that optimises each metric for each confidence measure
independently, and then proceed to use this hyperparameter settings to report the
final metric score for the particular confidence score on the test set.
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• Final Evaluation We use the test split for evaluating and reporting final calibra-
tion and discriminative metrics (ECE, AUROC score) of all methods based on the
hyperparameter settings chosen during the calibration-stage.

For further clarity, Figure 2 illustrates visually the training procedures and dataset splits
used within our SFT and calibration training pipeline described above.

To ensure fair comparison across datasets, we restrict each split size to be comparable
for each dataset. Table 3 table gives each dataset’s specific split sizes.

Table 3: Dataset sizes. Dataset split sizes for SFT, calibration, and final evaluation stages
across datasets.

Stage Split TriviaQA Natural Questions CoQA SQuAD

SFT
Training 41639 43200 42441 41781
Early stopping 1156 1200 1178 1160
Validation 3471 3600 3538 3483

Calib.
Training 12337 12800 12575 12380
Early-Stopping 771 800 785 773
Validation 2314 2400 2359 2322

Final Eval. Test 4000 3610 4000 4000

C.2. Hyperparameter Settings for SFT and Calibration

Below we list the hyperparameter settings swept over for both SFT and temperature
calibration. Note that for both SFT and temperature calibration across all methods, we use
the AdamW optimiser (Loshchilov and Hutter, 2017) with a cosine-annealing learning rate
scheduler with a linear warm-up consisting of 10% of the first epoch of optimisation (Radford
et al., 2018). We additionally perform early stopping based on a held out early stopping set
for a particular training stage (SFT vs calibration), with a patience of 4 epochs. For SFT
we early stop based on early-stopping accuracy, whereas for each calibration method, we
early stop based on the early stopping loss value.

SFT Training. For the SFT training stage, we use PEFT using LoRA (Hu et al., 2021)
. We sweep over the following set of hyperparamaters:

• Learning rates: [10−6, 10−5, 10−4, 10−3].

• Weight decay: [0.0, 0.01].

• Maximum number of training epochs: [16].

• LoRA α : [64]

• LoRA r = [32].

Scalar Temperature Optimisation. For each scalar temperature loss used for
temperature calibration, we sweep over the following set of hyperparamaters:
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SFT Stage

Final Evaluation Stage

SFT-training set
SFT of pre-trained LM.

SFT-early-stopping set
Early stopping of SFT training based on

accuracy.

SFT-validation set
Choose model from the hyperparameter setting

that leads to the best accuracy on this set.

Calibration Stage

Calibration-training set
Calibration of SFT model.

Calibration-early-stopping set
Early stopping of calibration optimisation training

based on calibration loss.

Calibration-validation set
Choose the final temperature setting

independently for each calibration metric and
confidence measure combination, based on the

hyperparameter setting achieving the best 
calibration metric performance on this set.

Test set
Evaluate the final chosen temperature setting for
each calibration metric and confidence measure
combination on this held-out set to report final

calibration performance metrics.

Best SFT model moves 
to the calibration stage.

Best temperature settings for each calibration
metric-confidence measure combination move

to the final evaluation stage.

Pre-trained LM

Pre-trained language model
is evaluated as a baseline

Figure 2: SFT-calibration training and evaluation pipeline. Figure illustrating the
dataset splits and how they are used within our SFT and calibration training pipelines
described in subsection C.1.

• Learning rates: [10−4, 10−3, 10−2].

• Initial temperature value, τ : [1.0].

• Loss weight α for the SS loss: [0.25, 0.5, 0.75].

• Maximum number of training epochs: [32].

Temperature head optimisation. For temperature head optimisation, ATS-SS,
during calibration, we sweep over the following set of hyperparamaters:

• Learning rates: [10−6, 10−5, 10−5] - we use smaller learning to maintain stability during
optimisation.

• Weight decay: [0.0, 0.01]

• Loss weight α for the SS loss: [0.25, 0.5, 0.75].

• Gradient clipping with max gradient norm: [1.0].

• Maximum number of training epochs: [32]

• Temperature head architecture: We a single transformer block for the temperature
head with the same architecture as for that of the 8B parameter Llama-3 model
(Dubey et al., 2024), with the internal model dimension adapted to the base model
architecture for which the temperature head is being optimised for.
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Appendix D. Evaluation

D.1. Evaluation metrics

Expected Calibration Error (ECE) ECE quantifies the misalignment between predicted
confidence and actual correctness:

Ex∼P(·) [|P(c = 1 | pϕ(ŷ | x) = p)− p|] . (15)

Following Naeini et al. (2015), ECE is estimated by binning predictions into M intervals
and computing the weighted average of the absolute accuracy-confidence difference:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)|. (16)

AUROC The Area Under the Receiver Operating Characteristic Curve (AUROC) mea-
sures how well confidence scores distinguish between correct and incorrect responses. The
ROC curve is constructed by varying a confidence threshold λ and plotting the true positive
rate (TPR) against the false positive rate (FPR) at each threshold (Bradley, 1997).

Given a dataset of N examples with inputs xi, model-generated responses ŷi, correctness
indicators ci = 1(ŷi ∼ yi), and model confidence scores pϕ(ŷi | xi), we define:

TPR(λ) =

∑
i:ci=1 1(pϕ(ŷi | xi) ≥ λ)∑

i:ci=1 1
, FPR(λ) =

∑
i:ci=0 1(pϕ(ŷi | xi) ≥ λ)∑

i:ci=0 1
. (17)

AUROC is then computed as:

AUROC =

∫ 1

0
TPR(λ) dFPR(λ), (18)

which represents the probability that a randomly chosen correct response receives a higher
confidence score than a randomly chosen incorrect response.

A higher AUROC indicates better uncertainty quantification, with AUROC = 0.5
corresponding to a random or uninformative confidence metric.

D.2. Evaluation of Accuracy

To assess accuracy in generative QA tasks, we implement a series of checks designed to
balance correctness assessment with computational efficiency:

• Initial text cleaning: We first preprocess the model’s response by discarding any
extraneous text beyond its first direct answer to the posed question.

• Direct answer matching: If one of the reference answers appears in the model’s
response, we consider the response correct.

• Fuzzy matching: If the reference answer is not directly present, we apply fuzzy
matching (Bachmann, 2021), leveraging string-distance metrics to check for semantically
similar generations. If the fuzzy-match ratio exceeds 90, we classify the response as
correct.

15



Lamb Ivanova Torr G.J. Rudner

• SQuAD F1 evaluation: If the response remains unverified, we compute the SQuAD-
F1 metric. If the F1 score is above 50.0, we deem the model’s response correct.

An alternative approach to accuracy evaluation could involve using an additional model
such as Llama-3.1 (Dubey et al., 2024) or GPT-4 (Achiam et al., 2023) as a judge to
determine whether a response is equivalent to a reference answer. However, this introduces
additional computational, time, and cost constraints. Our current methodology aligns with
prior work (Kuhn et al., 2023; Farquhar et al., 2024) in the literature that uses token level
matching criteria and performs effectively in practice for assessing model correctness. Unlike
(Farquhar et al., 2024), we find that replying on more accuracy checks than just using the
SQuAD-F1 is necessary to mitigate false negative judgments of correctness.

Appendix E. Results

E.1. Model Accuracies on Test Set

Model TriviaQA Natural Questions CoQA SQuAD

LLaMA-8B-Instruct 70.6 39.8 69.2 91.2
LLaMA-8B-Instruct-SFT 74.0 54.2 77.7 96.2

Mistral-8B-Instruct 66.0 32.4 70.3 90.5
Mistral-8B-Instruct-SFT 71.0 46.0 78.3 95.7

Qwen-7B-Instruct 59.7 30.4 68.7 91.4
Qwen-7B-Instruct-SFT 62.0 41.7 77.8 95.8

Table 4: Pre-trained and FT Model Test Set Accuracies (%). Test set accuracy (%)
on NQ, TriviaQA and CoQA datasets for pre-trained and fine-tuned (without any further
calibration) models using beam decoding.

E.2. Semantic Calibration and model size

We evaluate the impact of model size on semantic calibration using Qwen-2.5-Instruct models
with 1.5B, 3B, and 7B parameters, each generating 10 samples per test prompt. As shown in
Figure 3, SGC for the pre-trained models exhibits minimal changes in ECE or AUROC from
1.5B to 7B, whereas SC measures for the pre-trained worsen in calibration as model size
increases. Meanwhile, temperature scaling methods consistently improve calibration over
both pre-trained and SFT models, with ECE for these methods remaining largely stable, and
with AUROC steadily improving in discriminability as model size increases. Overall, these
results highlight three key points: (1) SGC metrics remain relatively unaffected by
model size, (2) larger pre-trained models can exhibit poorer semantic calibration,
and (3) temperature scaling enhances discriminability and mitigates calibration
degradation of pre-trained models, and improves calibration for SFT models as
model size increases.
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Figure 3: SC measures over varying model size. ECE and AUROC for both SGC and
SC confidence measures over 1.5B, 3B and 7B models selected from the Qwen-2.5-Instruct
family of models across SC measures.
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Figure 4: SC measures over varying numbers of generations. ECE and AUROC
metrics for the Llama-3.1-8B-Instruct model on the SQuAD dataset over varying number of
sample generations per input prompt.

E.3. Semantic calibration and number of generations

We evaluate the effect of the number of sample generationsm on calibration and discriminabil-
ity of SC measures. Figure Figure 4 reports ECE and AUROC for Llama-3.1-8B-Instruct on
SQuAD for m ∈ {5, 10, 15, 20}. ECE remains largely stable across pre-trained, SFT, and
temperature-calibrated models, except on ML-SC where we observe a mild degradation,
particularly for the pre-trained model. In contrast, AUROC shows more sensitivity to m,
with most methods peaking around m = 10 or m = 15, followed by a decline. In conclusion,
(1) Increasing the number of generations has negligible impact on ECE, and (2)
AUROC benefits from moderate m (10–15 generations), but degrades beyond
this.
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E.4. Distribution and reliability plots showing influence of temperature
calibration on SC measures
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Figure 5: SC Distributions. Log-
density of SC measures for the pPT, pSFT,
and pSS Mistral models.
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Figure 6: Reliability Plots. Reliability
plots of SC measures for the pPT, pSFT,
and pSS Mistral models.

E.5. Final Temperature values attained via Temperature Calibration

TriviaQA Natural Questions CoQA SQuAD

pSS 1.41± 0.171 1.6± 0.216 1.49± 0.162 1.49± 0.143
pCE 1.02± 0.0153 1.09± 0.113 1.01± 0.0165 1.02± 0.0307

Table 5: Average temperatures achieved through calibration training. Average
temperature paramters across all hyperparameter settings swept over for scalar temperature
calibration. Results show mean ± sample standard deviation for each scalar temperature
optimisation method and dataset.
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E.6. Fine-Grained Results
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Figure 7: Avg Calibration Metrics Using 10 Generations on NQ (↑). Figure showing
the average of different calibration metrics on the NQ dataset using different confidence
measures (columns) for three different models (rows) across three repeats.
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Figure 8: Avg Calibration Metrics Using 10 Generations on TriviaQA (↑). Figure
showing the average of different calibration metrics on the TriviaQA dataset using different
confidence measures (columns) for three different models (rows) across three repeats.
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Figure 9: Avg Calibration Metrics Using 10 Generations on CoQA (↑). Figure
showing the average of different calibration metrics on the CoQA dataset using different
confidence measures (columns) for three different models (rows) across three repeats.

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Ll
am

a

SGC

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

E_SC

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

ML-SC

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

L-SC

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

B-SC

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

M
is
tr
al

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Q
w
en

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

Brier

1- ECEAUROC

0.5
0.6
0.7
0.8
0.9
1.0

pPT pSFT pNLL pSS pATS

Figure 10: Avg Calibration Metrics Using 10 Generations on SQuAD (↑). Figure
showing the average of different calibration metrics on the SQuAD dataset using different
confidence measures (columns) for three different models (rows) across three repeats.

20


	Introduction
	Confidence metrics
	Single Generation Confidence (SGC)
	Semantic Confidence (SC)

	Experiments
	Experiment setup
	Semantic calibration on closed-book datasets (TriviaQA and NQ)
	Semantic calibration on open-book datasets (CoQA and SQuAD)

	Conclusion
	Background and Related Work
	Confidence Calibration
	Scalar Temperature Scaling (STS)
	Adaptive Temperature Scaling (ATS)
	Calibration Loss Functions

	Training and Optimisation Settings
	Dataset splits
	Hyperparameter Settings for SFT and Calibration

	Evaluation
	Evaluation metrics
	Evaluation of Accuracy

	Results
	Model Accuracies on Test Set
	Semantic Calibration and model size
	Semantic calibration and number of generations
	Distribution and reliability plots showing influence of temperature calibration on SC measures
	Final Temperature values attained via Temperature Calibration
	Fine-Grained Results


