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Abstract

The landscape of research leveraging large language models
(LLMs) has seen remarkable growth, with numerous stud-
ies harnessing these models’ powerful reasoning capabilities
across modalities like text, speech, images, and videos. How-
ever, the domain of multi-modal music comprehension and
generation remains relatively unexplored, primarily due to the
lack of a comprehensive well-annotated multi-modal music
dataset. To address this gap, we introduce a novel dataset con-
taining 167.69 hours of multi-modal data, including text, im-
ages, videos, and music annotations, tailored for multi-modal
music understanding and generation, annotated using ad-
vanced visual models like LLaVA and Video-LLaVA. Based
on this well-annotated dataset, we propose a multi-modal
music understanding and generation model named MuMu-
LLaMA. This framework integrates LLMs to comprehend in-
put music and generate music across various modalities, uti-
lizing pretrained models for music, images, and videos. For
music generation, we incorporate AudioLDM 2 and Music-
Gen, connecting multi-modal understanding with music gen-
eration through the LLaMA model. Our comprehensive eval-
uation, encompassing four key tasks—music understanding,
text-to-music generation, prompt-based music editing, and
multi-modal music generation—demonstrates that MuMu-
LLaMA outperforms current state-of-the-art models, high-
lighting the potential of combining LLMs with multi-modal
inputs for innovative music applications.

Introduction
The landscape of research leveraging large language models
(LLMs) has seen remarkable growth, with numerous studies
harnessing these models’ powerful reasoning capabilities across
modalities like text, speech, images, and videos. These models fa-
cilitate semantic comprehension and interaction within and across
modalities, enabling dynamic conversations (OpenAI 2023; Tou-
vron et al. 2023), sophisticated audio and video event recogni-
tion (Tang et al. 2023a), and detailed image and 3D data annota-
tion (Xu et al. 2023b). Despite these advancements, the domain
of multi-modal music comprehension and generation remains rel-
atively unexplored, primarily due to the lack of a comprehensive,
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well-annotated multi-modal music-centric dataset, which is crucial
for instruction tuning in this domain.

Multi-modal large language models (MLLMs) have emerged as
a thriving area of research, captivating the current scholarly land-
scape (Yin et al. 2023). They primarily serve as a bridge connect-
ing diverse modalities, such as visual (Alayrac et al. 2022; Li et al.
2023a; Xu et al. 2023a), audio (Tang et al. 2023a; Huang et al.
2023; Liu et al. 2023c), 3D (Xu et al. 2023b; Sun et al. 2023) and
so on, transcending mere textual interactions. This significant ad-
vancement greatly expands the application scenarios of large lan-
guage models (LLMs).

Addressing this gap is crucial, as the absence of a well-
annotated, balanced, and music-centric multi-modal dataset hin-
ders progress in developing models that can effectively understand
and generate music based on multi-modal inputs. To overcome this
challenge, we introduce a novel dataset comprising 167.69 hours
of multi-modal data, including text, images, videos, and music an-
notations. This dataset is specifically tailored for multi-modal mu-
sic understanding and generation tasks. Annotated with advanced
models such as LLaVA(Liu et al. 2023a) and Video-LLaVA(Lin
et al. 2023), it offers a rich and diverse set of examples related
to music, ensuring the quality and diversity of the data. The cre-
ation of this dataset is a pivotal step in advancing the field, as it
equips models with the necessary training data to perform effec-
tively across a wide range of music-related tasks.

Large language models are typically composed of a large num-
ber of parameters and trained on extensive datasets, endowing them
with powerful comprehension and reasoning capabilities. Leverag-
ing these qualities, researchers have utilized LLMs to achieve se-
mantic understanding across various modalities. Examples include
engaging in free-form conversations with humans (OpenAI 2023;
Touvron et al. 2023), comprehending audio/video events and per-
forming event-based question answering (Tang et al. 2023a; Huang
et al. 2023; Muhammad Maaz and Khan 2023; Zhao et al. 2023), as
well as captioning images/3D point cloud data (Chen et al. 2022; Li
et al. 2023a; Xu et al. 2023b). In addition to harnessing the capabil-
ities of LLMs for multi-modal understanding, researchers have also
strived to utilize these models to grasp the creative intentions of hu-
mans. For instance, they have explored generating images (Brade
et al. 2023), videos (Hong et al. 2023), audio (Liu et al. 2023d), or
music (Copet et al. 2023a) based on textual descriptions, thereby
providing valuable assistance in artistic pursuits. Especially for the
visual content, some well-performance generative models like Sta-
ble Diffusion (Rombach et al. 2022; Blattmann et al. 2023) and
Sora (Brooks et al. 2024) can produce high-quality images and
videos which even human-eyes cannot distinguish.
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Figure 1: Multi-modal music understanding and generation by our proposed MuMu-LLaMA framework.

Building upon our collected dataset, we propose the Multi-
modal Music Understanding and Generation using LLaMA
(MuMu-LLaMA) framework. This innovative framework lever-
ages novel multi-modal adapters that, in conjunction with en-
coders such as ViT (Dosovitskiy et al. 2021), ViViT (Arnab et al.
2021), and MERT (Li et al. 2023b), effectively capture sequence-
level information from various modalities—music, images, and
videos—and transform these inputs into rich feature representa-
tions. The LLaMA model (Touvron et al. 2023) interprets these
features to facilitate both comprehension and generation tasks, tai-
lored to the user’s intentions and contextual requirements.

By integrating understanding and generation tasks within the
framework of LLMs, we have the potential to significantly enhance
the user experience. For example, users can leverage LLMs to sum-
marize videos and generate accompanying audio commentary or
suitable background music, thus assisting them in their video cre-
ation process. However, research that combines both understand-
ing and generation using LLMs is still limited and in its nascent
stage (Moon et al. 2022; Ge et al. 2023a; Huang et al. 2023; Wu
et al. 2023a; Guo et al. 2023; Yang et al. 2023; Zhou et al. 2024;
Team 2024) especially when it also covers music modality. Among
these few existing studies, NExT-GPT (Wu et al. 2023a) stands
out as a significant advancement in the field of multi-modal large
language models (MLLMs), excelling in both understanding and
generation tasks. Notably, it demonstrates impressive capabilities,
including music understanding and generation, image and video
question answering, text-to-image and text-to-video generation, as
well as audio-driven image and video generation. Despite these ad-
vancements, the exploration of music understanding and generation
leveraging LLMs remains relatively unexplored. While NExT-GPT
exhibits some capabilities in music understanding and generation,
its proficiency in music-related tasks is modest due to the absence
of specialized training on music datasets. To bridge this gap, we
explore the use of LLMs for music understanding and multi-modal
music generation.

Our contributions are summarized as follows:

1. We present a novel dataset containing 167.69 hours of well-

annotated and balanced multi-modal data, annotated with ad-
vanced visual models, to support multi-modal music research.

2. We introduce the MuMu-LLaMA model, a novel data-centric
architecture for comprehensive music understanding and multi-
modal music generation.

3. Through rigorous evaluations across four key tasks—music
understanding, text-to-music generation, prompt-based music
editing, and multi-modal music generation—we demonstrate
that MuMu-LLaMA outperforms existing state-of-the-art mod-
els, highlighting the potential of combining LLMs with multi-
modal inputs for innovative music applications.

Related Works

Multi-modal Understanding

The integration of multi-modal data is pivotal in developing AI
systems capable of interpreting the complex and heterogeneous in-
formation that defines human environments. Research in this do-
main covers a wide range of tasks, including audio/visual classifi-
cation (Arnab et al. 2021), question answering (Lei et al. 2018),
captioning (Mei et al. 2021), tagging (Gong, Chung, and Glass
2021), event detection (Dinkel, Wu, and Yu 2021), and summariza-
tion (Ji et al. 2019). The emergence of Vision Transformer (ViT)
(Dosovitskiy et al. 2021) revolutionized the field of computer vi-
sion by enabling highly effective visual encoding, leading to the
development of methodologies such as ViViT (Arnab et al. 2021),
which incorporates both temporal and spatial data for enhanced
video representation. Similarly, in the domain of music encoding,
recent findings have highlighted the superiority of the MERT en-
coder (Li et al. 2023b) in downstream music tagging tasks. In our
work, we align with these insights and leverage the MERT en-
coder to enhance the MuMu-LLaMA framework’s ability to com-
prehend music-related data effectively, thereby ensuring robust per-
formance in multi-modal understanding tasks.



Figure 2: Multi-modal Music Understanding and Generation Model (MuMu-LLaMA). This model framework includes four core com-
ponents: (1) Pre-trained feature encoders that process inputs from diverse modalities including music, images, and videos. (2) Understanding
adapters that integrate these features into a coherent representation suitable for the LLaMA model. (3) The LLaMA model, which contextual-
izes and interprets the integrated information. (4) An output projection layer that translates the contextual understanding into outputs for the
music generation decoder.

Multi-modal Music Generation
The field of music generation has witnessed substantial advance-
ments, particularly with the adoption of Transformer (Vaswani
et al. 2017) and diffusion models (Ho, Jain, and Abbeel 2020),
which have significantly elevated the complexity and quality of
generative AI outputs. Models such as MusicLM (Agostinelli et al.
2023) and MusicGen (Copet et al. 2023a) have established new
benchmarks in music generation. MusicGen, with its autoregres-
sive Transformer decoder, excels in sequence generation, while
AudioLDM 2 (Liu et al. 2023b) utilizes a diffusion process to pro-
duce high-fidelity audio outputs. Despite these advancements, pre-
vious works like Vis2Mus (Zhang et al. 2022) and CMT (Di et al.
2021) primarily focus on single-modality music generation, limit-
ing their applicability in diverse contexts. In contrast, our MuMu-
LLaMA framework expands these concepts into a comprehensive
multi-modal approach, integrating text, image, and video inputs.
This approach not only enriches the music generation process but
also provides a more holistic understanding and generation of mu-
sic across various modalities, positioning it as a significant ad-
vancement in the field.

LLM-assisted Multi-modal Understanding and
Generation
Multi-modal Large Language Models (MLLMs) have emerged as a
frontier in AI research, aiming to unify the understanding and gen-
eration of diverse data modalities within a single framework. In-
novations such as Macaw-LLM (Lyu et al. 2023) and DreamLLM
(Dong et al. 2023) illustrate the potential of integrated multi-modal
systems in enhancing user interactions through dynamic content
generation. SEED-LLaMA (Ge et al. 2023b) combines the LLaMA
model with diffusion techniques to achieve superior performance
in image-related tasks. Similarly, NExT-GPT (Wu et al. 2023a) in-
troduces a novel approach to manage multi-modal conversations,
although it exhibits limitations in handling music-related content
due to its restricted music training data. Building on these devel-
opments, our contribution, MuMu-LLaMA, specifically addresses
the challenges and opportunities in multi-modal music understand-
ing and generation. By enabling the modification of input music

based on user prompts and integrating multiple modalities, MuMu-
LLaMA significantly enhances AI’s role in creative and artistic ap-
plications, aligning with the broader objectives of advancing in-
novative AI technologies with substantial societal and cultural im-
pacts.

MuMu-LLaMA Model Architecture &
Training

The MuMu-LLaMA model is engineered to harness the synergy
of diverse modalities, particularly focusing on music, images, and
videos. Figure 2 delineates the architecture which we detail below
along with our innovative training methodologies.

Multi-modal Feature Encoders
To minimize training costs while ensuring the multi-modal en-
coder’s robust capability to handle diverse multi-modal data inputs,
MuMu-LLaMA leverages state-of-the-art pre-trained encoders to
efficiently extract and integrate complex data across different sen-
sory modalities.

Utilizing the MERT model (Li et al. 2023b), which excels in
music tagging (Liu et al. 2023c), we encode music features XMusic
into embeddings EMERT. The Vision Transformer (ViT) (Dosovit-
skiy et al. 2021) processes images XImage into feature embeddings
EViT. For video data XVideo, the Video Vision Transformer (ViViT)
(Arnab et al. 2021) extracts spatio-temporal tokens, resulting in
embeddings EViViT.

EMERT = FMERT(XMusic) ∈ R25×1024 (1)

EViT = FViT(XImage) ∈ R197×768 (2)

EViViT = FViViT(XVideo) ∈ R3137×768 (3)

where FMERT(·), FViT(·), and FViViT(·) represent feature encoders
specifically designed for music, image, and video modalities. The
resulting embeddings EMERT, EViT, and EViViT have dimensions of
25× 1024, 197× 768, and 3137× 768.



Multi-modal Understanding Adapters
To integrate diverse modal outputs within the LLaMA frame-
work (Touvron et al. 2023), we employ multi-modal understanding
adapters, which consist of a 1D convolutional layer, linear projec-
tion, and a dense network. Since music and video data inherently
possess a time dimension and are highly time-dependent, we uti-
lize an RNN coupled with an attention mechanism to project these
temporal inputs into a shared 4096-dimensional space. In contrast,
image data does not require temporal processing, so we bypass the
RNN and attention components for this modality, ensuring efficient
and effective cross-modal interaction.

For music and video understanding, the input features EMERT
for music and EViViT for video are first encoded using the MERT
and ViViT encoders, respectively. These encoded features are then
passed through a 1D convolutional layer (Conv1D feature aggre-
gator) to capture local temporal dependencies for better multi-
modal alignment. Following this, the features are further processed
through an RNN with attention mechanisms to model the sequen-
tial nature of the data. The RNN output, ARNN ∈ RL×d, where L
denotes the sequence length and d is the feature dimension, is used
to compute the Query (Q), Key (K), and Value (V) matrices:

Q = ARNNW
Q, K = ARNNW

K , V = ARNNW
V (4)

where WQ ∈ Rd×d, WK ∈ Rd×d, and WV ∈ Rd×d are learn-
able weight matrices. The attention scores are then calculated as:

Attention Scores = Softmax
(
Q ·KT

√
d

)
(5)

Finally, the attention-weighted output is linearly projected to
generate the final modality-specific embeddings:

AMusic = LinearProjection(Attention Scores ·V) (6)
AVideo = LinearProjection(Attention Scores ·V) (7)

In contrast, for image understanding, the input features EViT
for images are encoded using the ViT encoder. Since image data
does not have a temporal dimension, the encoded features skip the
RNN and attention layers. Instead, the features are directly passed
through the Conv1D Feature Aggregator and then linearly pro-
jected to generate the final image-specific embedding:

AImage = LinearProjection(FConv1D(EViT)) (8)
This method for multi-modal understanding ensures that each

modality’s unique characteristics are appropriately handled to pro-
duce rich, unified representations for subsequent tasks.

LLM as a Bridge
MuMu-LLaMA strategically integrates multi-modal data into
LLaMA to enhance context-aware processing. Modality-specific
features are introduced every 6 layers within the 32-layer struc-
ture, with the last 18 layers divided into three sets of 6 layers
(L18−23, L24−29, L30−35) corresponding to each modality. In each
of these sets, hidden states from previous layers are combined with
modality-specific features, ensuring that the model effectively pro-
cesses the input from different modalities.

For each set of layers, the hidden states HLLaMA from the
previous layers are combined with the modality-specific features
AModality (i.e., AVideo, AImage, or AMusic) and a corresponding prefix
query Pquery,i. The equations governing this integration process are
as follows:

H
(18−23)
LLaMA = Layer18−23

(
H

(12−17)
LLaMA ,AVideo +Pquery,1

)
(9)

H
(24−29)
LLaMA = Layer24−29

(
H

(18−23)
LLaMA ,AImage +Pquery,2

)
(10)

H
(30−35)
LLaMA = Layer30−35

(
H

(24−29)
LLaMA ,AMusic +Pquery,3

)
(11)

Here, Pquery,i ∈ Rd represents the prefix query for each
modality-specific integration step, which provides an additional
contextual signal during the multi-modal fusion. The prefix query
is crucial for maintaining consistency in the integration process
across different layers and modalities. If a modality is unavailable
at a particular layer, the model defaults to using only the prefix
query for that integration step. The final hidden state H35

LLaMA is
then normalized and passed through the LLaMA output layer, com-
pleting the multi-modal integration process and ensuring that the
combined features are well-prepared for subsequent tasks.

Music Understanding and Generation
Inspired by models like NExT-GPT (Wu et al. 2023a), our frame-
work employs discrete audio tokens [AUDi] (i ∈ {0, 1, · · · , 7}) to
enable dynamic music understanding and generation. This strategy
allows for context-sensitive generation of music or text, depending
on the task requirements during inference.

Training Method
Considering the computational demands of training from scratch,
we utilize the LoRA fine-tuning approach (Hu et al. 2022), which
allows us to effectively adapt MuMu-LLaMA’s capabilities while
freezing the base encoders and generative models. This not only
conserves computational resources but also accelerates the training
process. The loss function is designed to optimize the following
components depending on the task:

Loss =


LCE(ytokens, f(y)logits)

+ ∥yembeddings − g(f(x)hidden)∥
, if music

LCE(ytokens, f(y)logits), else

(12)

Here, LCE denotes the cross-entropy loss, crucial for refining
text token generation and g(·) denotes the Music Output Trans-
former. For music generation tasks, we employ mean squared error
(MSE) to align the generated embeddings with target music cap-
tions, ensuring the high fidelity of generated audio content. An ad-
ditional regularization term penalizes improper generation of audio
tokens, promoting precision in both textual and musical outputs.

Music Oriented Instruction Dataset
Training MLLMs requires extensive data, but there is a shortage of
multi-modal datasets focused on music-related tasks. MusicCaps
(Agostinelli et al. 2023) and MusicQA (Liu et al. 2023c) are the
largest public datasets for music captioning and question answer-
ing, but they are insufficient for multi-modal music understand-
ing and generation. For our MuMu-LLaMA model, we need multi-
modal instruction datasets for any-to-music generation and exten-
sive datasets such as text-image pairs for alignment training. We
use datasets such as Alpaca (Taori et al. 2023) for instruction fol-
lowing and COCO (Lin et al. 2014) for image encoder alignment.
Additionally, we collect our own dataset using automated methods
inspired by previous works (Liu et al. 2023c; Gong et al. 2023),
leveraging models like MU-LLaMA (Liu et al. 2023c), Mistral-
7B-Instruct (Jiang et al. 2023), LLaVA (Liu et al. 2023a), and Vide-
oLLaVA (Lin et al. 2023) to perform data annotation.

We create a comprehensive multi-modal dataset with a total
of 167.69 hours to enhance MuMu-LLaMA’s performance. This



Table 1: Descriptions of Our Proposed Music Dataset. A/D/R* represents Add/Delete/Replace.

Dataset # Audios Avg. Time (s)/Audio Total Time (h) Data Source

MUCaps 18,515 10.00 51.43 AudioSet (Gemmeke et al. 2017)
MUImage 14,520 10.00 40.33 Balanced-AudioSet (Gemmeke et al. 2017)
MUVideo 14,504 10.00 40.29 Balanced-AudioSet (Gemmeke et al. 2017)

MUEdit
Speed 2384 15.11 10.01

35.64
Looperman (Looperman 2000)

Pitch 2369 15.20 10.00 Looperman (Looperman 2000)
A/D/R* 229 245.66 15.63 Slakh (Manilow et al. 2019)

fine-grained captioned dataset supports multi-modal understand-
ing and generation. Detailed descriptions are in Table 1. Figure
3 shows balanced instrument distributions in MUImage and MU-
Video datasets. Figures 3b and 3c indicate a generally balanced
distribution in MUEdit, while Figure 3a shows a long-tail distribu-
tion due to the rarity of certain instruments during data collection
and processing.

In the following subsections, we provide a comprehensive
overview of the methodologies employed in crafting the datasets
used for training the MuMu-LLaMA model.

MUCaps Dataset
We develop the MUCaps dataset, composed of text-music pairs
(Table 1), encompassing 51.43 hours of 10-second music files
sourced from AudioSet (Gemmeke et al. 2017) and publicly acces-
sible music websites. The MU-LLaMA model captions the music
files with the question: “Describe the music in detail, including as-
pects such as instruments used, tempo, and the mood of the song”.
The MUCaps dataset is used for encoder and decoder alignment
training.

MUEdit Dataset
To enable music editing in response to prompts, we curated the
MUEdit dataset, which includes 35.64 hours of music pairs (Table
1). The dataset generation involves:

1. Use the WSOLA algorithm (Grofit and Lavner 2008) in the
sox (Klauer 1999) tool to generate speed and pitch-changed
music files for origin-to-target pairs, and manipulate individual
tracks in the Slakh (Manilow et al. 2019) dataset for origin-to-
Add/Delete/Replace pairs.

2. Employ the Mistral-7B-Instruct (Jiang et al. 2023) model to
generate an instruction-response pool with hundreds of tem-
plates for each MUEdit subtype, diversifying the dataset and
enhancing model robustness.

3. For each origin-to-X music pair, randomly select instructions
and responses from the template pool to construct the final
MUEdit dataset.

Speed The WSOLA algorithm modifies music speed without
changing pitch to create the Speed split of MUEdit. Supported
duration changes are 0.5, 0.7, 1.3, and 1.5 times the original.
Instruction-response pairs represent these changes explicitly with
numerical values and by degrees of speed variation.

Pitch The Pitch split of MUEdit uses the sox tool’s pitch shift
feature, allowing pitch changes without altering duration. Permit-
ted pitch variations are ±100 and ±200 cents, representing a semi-
tone and a whole tone. Instructions express pitch variations through
verbal expressions, not just numerical values.

Add/Delete/Replace For this branch, we use MIDI data with
explicit individual instrument tracks from the Slakh dataset, suit-
able for tasks like music source separation. In the ”Add” sub-split,
different tracks from the same MIDI are combined. In the ”Delete”
sub-split, the mixed track is the input, and individual tracks are
the output. In the ”Replace” sub-split, tracks from different instru-
ments are selected as input and output.

MUImage Dataset
The MUImage dataset generates fitting music for a given image by
pairing music samples from AudioSet with corresponding images.
Key steps include:

1. Use the MU-LLaMA (Liu et al. 2023c) model to generate mu-
sic captions for the sampled music files.

2. Generate captions for the corresponding images using the
LLaVA-v1.6-34B model (Liu et al. 2023a, 2024) with detailed
instructions to describe the image, focusing on instruments and
other relevant elements.

3. Employ the Mistral-7B-Instruct model (Jiang et al. 2023) to
produce approximately 200 unique instructions that begin with
”Generate,” such as: ”Generate music to match the image.”

4. Generate the model side of the conversation to integrate in-
formation from ground-truth tags, music, and image captions,
following specific instructions to describe and match the music
to the image.

MUVideo Dataset
The MUVideo dataset facilitates video-to-music generation and
understanding, sourcing music samples and corresponding videos
from the Balanced-AudioSet (Gemmeke et al. 2017). Key steps in-
clude:

1. Use the MU-LLaMA model to generate captions for all ac-
quired music files.

2. Generate captions for the corresponding videos using the Vide-
oLLaVA captioning model (Lin et al. 2023) with detailed in-
structions to describe the video, focusing on dynamic changes,
storyline progression, and visual cues.

3. Generate both the human and model sides of the conversation
using a process similar to the MUImage dataset.

Efforts are made to minimize overlaps among the music files in
all datasets. Evaluation sets are established to compare our model’s
performance with current state-of-the-art (SOTA) models.

Model Evaluation
We extensively evaluate MuMu-LLaMA on tasks involving music
understanding and generation from multi-modal inputs, and com-
pare its performance against other state-of-the-art models. Direct
comparison with NExT-GPT (Wu et al. 2023a) was not feasible
due to issues with accessing the required checkpoints. For a fair



(a) MUCaps (b) MUEdit - A/D/R (c) MUEdit - Speed & Pitch (d) MUImage & MUVideo

Figure 3: Distribution of instrument categories in our four curated datasets: (a) MUCaps reveals a broad diversity of instruments with a
long-tail distribution. (b) MUEdit - A/D/R shows a relatively even distribution of add, delete, and replace manipulations across various instru-
ments. (c) MUEdit - Speed & Pitch demonstrates a consistent distribution of speed and pitch modifications, suggesting balanced attention to
tempo and tonal adjustments. (d) MUImage & MUVideo illustrates a balanced pairing of instruments with corresponding images and videos,
ensuring a wide representation within these multi-modal components.

evaluation, MuMu-LLaMA’s hyperparameters were set to a tem-
perature of 0.6, top p of 0.8, and a maximum target length of 512
tokens. These hyperparameters were consistently applied across
other models in the evaluation, including LLaMA-Adapter (Gao
et al. 2023), MU-LLaMA (Liu et al. 2023c), and SALMONN (Tang
et al. 2023a). Notably, MuMu-LLaMA was paired with the Mu-
sicGen decoder, which showed superior performance compared to
the AudioLDM 2 decoder. To further understand the contributions
of each component within MuMu-LLaMA, an ablation study was
conducted.

Music Understanding
MuMu-LLaMA’s music understanding capabilities were evalu-
ated using the MTG-eval-QA subset of the MusicQA dataset (Liu
et al. 2023c), consisting of 4,500 music-related question-answer
pairs. The evaluation was conducted against several state-of-the-
art (SOTA) models including LTU (Gong et al. 2023), LLaMA-
Adapter (Gao et al. 2023), SALMONN (Tang et al. 2023a), and
MU-LLaMA (Liu et al. 2023c), the latter being specifically trained
on music-related datasets. We employed well-established evalua-
tion metrics such as BLEU (B-U) (Papineni et al. 2002a), ME-
TEOR (M-R) (Banerjee and Lavie 2005a), ROUGEL (R-L) (Lin
2004a), and BERT-Score (BERT-S) (Zhang* et al. 2020a) to quan-
tify the model’s performance.

Data presented in Table 2 indicate that MuMu-LLaMA outper-
forms the other models significantly across all metrics. This su-
perior performance is largely attributed to MuMu-LLaMA’s ad-
vanced music understanding adapter, which incorporates an ad-
ditional RNN layer and attention mechanism. These components
are particularly effective in capturing the temporal information in-
herent in musical sequences, enabling MuMu-LLaMA to produce
more accurate and contextually relevant responses.

Table 2: Evaluation of Models on Music Understanding. The
best values of different metrics are made bold.

Music Understanding

Model B-U↑ M-R↑ R-L↑ BERT-S↑

LTU 0.242 0.274 0.326 0.887

LLaMA Adapter 0.273 0.334 0.413 0.895

SALMONN 0.286 0.332 0.371 0.898

MU-LLaMA 0.306 0.385 0.466 0.901

MuMu-LLaMA 0.341 0.442 0.491 0.908

Text-to-Music Generation
For the task of text-to-music generation, we utilize the MUCaps
dataset’s 5,000 text-music pairs, comparing MuMu-LLaMA with
state-of-the-art models like CoDi (Tang et al. 2023b), AudioLDM
2 (Liu et al. 2023b), and MusicGen (Copet et al. 2023a), employ-
ing Fréchet Audio Distance (FAD) (Kilgour et al. 2019), Kullback-
Leibler divergence (KL), and CLAP score (Wu et al. 2023b) for
evaluation. As shown in Table 3, MuMu-LLaMA demonstrates su-
perior performance, particularly when paired with the MusicGen
decoder, which enhances the relevance of the generated music to
the input instructions, evidenced by higher CLAP scores. This im-
provement is largely due to the integration of Large Language
Models (LLMs), which enhance the model’s comprehension and
effective use of input instructions for guiding music generation.

Prompt-Based Music Editing
MuMu-LLaMA stands out as one of the few models supporting
music editing through natural language commands, unlike AUDIT
(Wang et al. 2023) and InstructME (Han et al. 2023), which require
specific prompt words like “Add” or “Remove.” Although Loop
Copilot (Zhang et al. 2023) also offers natural language-based edit-
ing, it is not open-sourced and thus excluded from our comparison.
For AUDIT and InstructME, which are also not open-sourced, we
relied on sample outputs available on InstructME’s official website
for comparison purposes.

To evaluate music editing capabilities, we adopted AUDIT’s
evaluation metrics, including Fréchet Audio Distance (FAD) and
Kullback-Leibler divergence (KL), and introduced log spectral dis-
tance (LSD) (Gray and Markel 1976) for additional assessment.
The results in Table 3 show MuMu-LLaMA’s superior performance
over AUDIT and InstructME, attributed to its use of the LLaMA
model for interpreting natural language prompts and the MERT
Encoder for understanding source music, significantly enhancing
its editing capabilities.

Multi-modal Music Generation
MuMu-LLaMA can generate music from images and videos, a sig-
nificant feature that sets it apart in the realm of multi-modal music
generation. In our experiments, we compare MuMu-LLaMA with
CoDi (Tang et al. 2023b), an any-to-any generation model capable
of both image-to-music (I2M) and video-to-music (V2M) tasks, as
well as with CMT (Di et al. 2021) specifically for V2M tasks. The
evaluation sets for these tasks consist of 2,500 pairs each of image-
music and video-music, providing a robust basis for comparison.



Table 3: Comparison of Models for Music Generation. The best values of different metrics are made bold.

Model
Text-to-Music Generation Prompt-based Music Editing Image-to-Music Generation Video-to-Music Generation

FADvgg↓ KL↓ CLAPscore↑ FADvgg↓ KL↓ LSD↓ FADvgg↓ KL↓ IB Rank↑ FADvgg↓ KL↓ IB Rank↑

CoDi 16.201 6.021 0.143 N/A N/A N/A 10.788 9.925 0.493 11.273 6.267 0.212

AudioLDM 2 11.619 4.074 0.238 N/A N/A N/A N/A N/A N/A N/A N/A N/A

MusicGen 10.697 3.909 0.289 N/A N/A N/A N/A N/A N/A N/A N/A N/A

AUDIT N/A N/A N/A 2.855 9.925 0.987 N/A N/A N/A N/A N/A N/A

InstructME N/A N/A N/A 2.442 6.018 0.846 N/A N/A N/A N/A N/A N/A

CMT N/A N/A N/A N/A N/A N/A N/A N/A N/A 9.021 5.991 0.629

MuMu-LLaMA 9.982 3.191 0.312 1.911 5.028 0.705 6.289 5.021 0.882 7.959 4.784 0.891

To assess the performance of MuMu-LLaMA, we employ
traditional metrics such as Fréchet Audio Distance (FAD) and
Kullback-Leibler divergence (KL), and introduce ImageBind
Ranking (IB Rank) (Girdhar et al. 2023), a novel metric designed
to evaluate the alignment between the input modality (image/video)
and the generated music. This is achieved by using the ImageBind
model to generate embeddings for both the visual input and the cor-
responding music output, allowing for the calculation of similarity
scores that reflect how well the music matches the visual content.

As evidenced by the results in Table 3, MuMu-LLaMA demon-
strates exceptional performance in multi-modal music generation,
both in terms of the quality of the music produced and its rele-
vance to the input modality. The model consistently outperforms
other state-of-the-art (SOTA) models, highlighting its advanced ca-
pability to generate music that is not only high in quality but also
closely aligned with the visual content, whether it be from images
or videos.

Ablation Study

We evaluated the contributions of the multi-modal understanding
adapter’s components through an ablation study focused on the
dense network and the RNN with attention mechanism for the mu-
sic understanding task. The results, presented in Table 4, provide
clear insights into the importance of each component in enhancing
MuMu-LLaMA’s performance. Specifically, the model variant that
excluded both the dense network and the attention RNN showed
the lowest performance across all evaluation metrics, indicating the
critical role these components play in the architecture.

Adding the dense network to the model led to noticeable im-
provements in the evaluation metrics, demonstrating its effective-
ness in refining the feature representations. Incorporating the RNN
component further enhanced the model’s performance, with a more
significant impact than the dense network alone, suggesting the
RNN’s crucial role in capturing temporal dependencies in music
data. The inclusion of the attention mechanism on top of the RNN
provided an additional boost, emphasizing its importance in focus-
ing on the most relevant musical features. Ultimately, the complete
MuMu-LLaMA model, utilizing all these components, achieved
the best performance, underscoring the synergistic contributions of
the dense network, RNN, and attention mechanism in facilitating
comprehensive music understanding.

Table 4: Ablation study of our MU-LLaMA model on the music
understanding task. The best values of different metrics are made
bold.

Model B-U↑ M-R↑ R-L↑ BERT-S↑

w/ Projection layer 0.277 0.302 0.326 0.876

w/ Dense Network 0.303 0.354 0.401 0.880

w/ RNN 0.313 0.367 0.411 0.886

w/ Attn. RNN 0.336 0.375 0.439 0.894

MuMu-LLaMA 0.341 0.442 0.491 0.908

Subjective Evaluation for Music Generation

To assess our model’s music generation capabilities, we conducted
a subjective evaluation involving 45 participants. For this eval-
uation, we designed 13 questions covering three distinct tasks:
text-to-music (T2M), image-to-music (I2M), and video-to-music
(V2M) generation. Each question presented participants with op-
tions generated by different models, and these options were ran-
domly shuffled to eliminate any potential preference bias. This ap-
proach ensures that participants’ choices were based solely on the
quality and relevance of the generated music, rather than any pre-
conceived notions about the models.

In this evaluation, AudioLDM 2 (Liu et al. 2023b) and Music-
Gen (Copet et al. 2023b) were assessed exclusively on the T2M
task, while NExT-GPT (Wu et al. 2023a) and MuMu-LLaMA
were evaluated across all three tasks. The CoDi model (Tang et al.
2023c), however, was not included in the T2M task due to its lim-
ited performance in that area. The results, as presented in Table 5,
indicate that our proposed MuMu-LLaMA model consistently re-
ceived the highest preference among participants across all three
music generation tasks. This strong preference highlights MuMu-
LLaMA’s superior ability to generate music that aligns closely with
user inputs across various modalities.

Table 5: Subjective comparison of models for three music gen-
eration tasks. The best values of different metrics are made bold.

Model T2M I2M V2M

AudioLDM 2 11.6% N/A N/A

MusicGen 21.3% N/A N/A

CoDi N/A 5.8% 4.4%

NExT-GPT 8.9% 12.9% 14.8%

MuMu-LLaMA 58.2% 81.3% 80.7%



Conclusion
This paper presents the MuMu-LLaMA model, a novel framework
utilizing a large language model (LLM) for integrated music com-
prehension and multi-modal music generation. Our contributions
include not only the development of the model but also a compre-
hensive methodology for generating specialized datasets to train
it. Experimental results demonstrate that MuMu-LLaMA surpasses
existing state-of-the-art models in tasks such as music comprehen-
sion, music editing, and music generation from text, image, and
video inputs. Future work will focus on refining the model’s un-
derstanding of complex musical nuances and improving the align-
ment of generated music with diverse multi-modal inputs, further
advancing AI’s capabilities in creative and cultural applications.

Limitations
The reliance on the pre-trained MusicGen/AudioLDM 2 model for
music generation introduces several challenges that can act as a
bottleneck for the overall performance and flexibility of the MuMu-
LLaMA model. While these pre-trained models are state-of-the-
art in their respective domains, they come with inherent limita-
tions that may affect the MuMu-LLaMA’s ability to generate high-
quality, context-aware music.
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Appendix
In the appendix, comprehensive information is provided concern-
ing the model’s training dataset and training methodology, encom-
passing explicit insights into the utilized training approach and the
corresponding model hyperparameters. Additionally, a thorough
exposition is given regarding the composition of the evaluation sets
employed in our study, accompanied by a delineation of the eval-
uation methodology and metrics applied to assess the performance
of our model. To elucidate the diverse capabilities of our model,
illustrative demo examples are also included.

Music Oriented Dataset Information
We generate 4 different datasets to train the MuMu-LLaMA model:
MUCaps, MUImage, MUVideo and MUEdit datasets. An example
of each from the 4 datasets are shown in Figure 4.

Model Training
In this section, we detail the training strategy for the MuMu-
LLaMA model along with parameters used for training.

Model Training Strategy
The MuMu-LLaMA model adopts the adapter training strategy, im-
plementing a three-step training regimen. In the first phase, all pa-
rameters, with the exception of those associated with the Multi-
modal Understanding Adapters, undergo freezing. The training
dataset is configured to incorporate the MUCaps dataset for music
understanding, the COCO dataset for image comprehension, and
the captions sourced from the MUVideo dataset for video under-
standing. During this training stage, the Cross Entropy Loss func-
tion is applied to compute the disparity between the caption gener-
ated by the LLaMA model and the target caption corresponding to
the input modality. This process is illustrated in Figure 5.

In the second training stage, the output projector is trained to
generate conditional embeddings using input captions processed by
the LLaMA model. The LLaMA model produces specialized audio
tokens, denoted as [AUDi] where i ∈ {1, 2, . . . ,K} (with K as a
hyperparameter representing the number of special audio tokens
added to the LLaMA model’s vocabulary) when processing input
captions. The special audio tokens serve as signaling indicators,
aiding the model in determining whether to generate text+music or
solely text. In training, these audio tokens are added to the end of
the text output in datasets requiring music output. During inference,
if the MuMu-LLaMA model generates audio tokens, downstream
music decoders (MusicGen/AudioLDM 2) will perform music gen-
eration, otherwise, solely text will be produced.

The hidden embeddings corresponding to these audio tokens
from the last layer of the LLaMA model is then input into the out-
put projection layer, generating the conditional embedding for the
Music Generation model. The MUCaps dataset is utilized to train
this stage, with captions serving as inputs to the model and the tar-
get output tokens set as the special audio tokens.

Assuming a total of N tokens generated by the LLaMA model,
where [AUDi] with i ∈ {0, 2, . . . , 7} constitutes the last 8 tokens.
The hidden embeddings size is (1, N, 4096), and the last 8 tokens
are extracted along dimension −1, resulting in an input embed-
ding size of the Output Projection layer as (1, 8, 4096). The output
size from the projection layer varies based on the Music Genera-
tion model: for AudioLDM2, it is (1, 512), and for MusicGen, it is
(512, 768).

In the final training stage, the LoRA training strategy is em-
ployed to train the LLaMA model, concurrently fine-tuning the
Multi-modal Understanding Adapter and Output Projection layer.

Table 6: Evaluation Dataset Statistics. The number of instructions
in the evaluation dataset and total hours of music files in the dataset

Dataset Number of Instructions Hours of Music

MUCaps Eval 4000 265.35

MUImage Eval 2500 6.94

MUVideo Eval 2500 6.94

MUEdit Eval 2000 5.55

This stage utilizes datasets including Alpaca, MusicQA, MUIm-
age, MUVideo, and MUEdit. To signal the MuMu-LLaMA model
to generate both music and text, the output text in MUImage, MU-
Video, and MUEdit datasets is extended with the special audio to-
kens.

Reasoning for Training Strategy
Using the initial training stage, the model undergoes training with
the objective of comprehending diverse modalities by leveraging
extensive captioning datasets for music, image, and video. The sub-
sequent training stage focuses on refining the LLaMA model’s ca-
pability to condition music generation based on input captions.

These dual training stages equip the model with the ability to
grasp various modalities and generate distinct music conditions
based on input captions. This proficiency significantly contributes
to the final training stage. In this ultimate phase, the model lever-
ages the trained Multi-modal Understanding Adapters and Out-
put Projection layers to bridge the gap between them, honing the
LLaMA model’s skills through the utilization of multi-modal mu-
sic generation and music understanding datasets.

Model Training Parameters
We conduct training for the three stages of our model, employ-
ing 5, 5, and 2 epochs, respectively. The training process in-
corporates the following hyper-parameters: N = 32, L = 6,
number of Audio Tokens = 8, and lr = 10−4. This choice of
hyper-parameters, coupled with our training strategy, allows for the
effective use of a reduced number of epochs and a smaller dataset
during the final stage of model training.

Model Evaluation
In this section, we elaborate on the datasets employed to assess the
various capabilities of the MuMu-LLaMA model, followed by a
discussion of the evaluation metrics utilized.

Evaluation Datasets
For each of the training datasets generated—MUCaps, MUImage,
MUVideo, and MUEdit—we create a corresponding evaluation set.
The methodology employed for generating the evaluation dataset
mirrors that of the training dataset generation. Detailed statistics
for the evaluation datasets are provided in Table 6. However, for
the MUEdit dataset, the evaluation set could not be utilized for
model evaluation due to the unavailability of code bases and trained
checkpoints for InstructME(Han et al. 2023) and AUDIT(Wang
et al. 2023). Consequently, we resort to utilizing samples from In-
structME’s demo website, which includes samples from both AU-
DIT and InstructME, to assess our model’s performance. For eval-
uating the MuMu-LLaMA’s music understanding capabilities we
utilize the evaluation split of the MusicQA dataset.



Figure 4: Music Oriented Dataset. Examples from the MUCaps, MUEdit, MUImage and MUVideo datasets used to train the MuMu-LLaMA
model.

Figure 5: Training Stage 1: The Multi-modal Understanding Adapters are trained to integrate multi-modal features into the different layers
of the LLaMA model.

Evaluation Metrics

To assess music question answering, we adopt the metrics em-
ployed in (Liu et al. 2023c), namely BLEU (B-U) (Papineni et al.
2002b), METEOR (M-R) (Banerjee and Lavie 2005b), ROUGEL

(R-L) (Lin 2004b), and BERT-Score (BERT-S) (Zhang* et al.
2020b). These metrics are widely used for evaluating text genera-
tion. For all music generation tasks, we employ Fréchet Audio Dis-

tance (FAD) (Kilgour et al. 2019) and Kullback-Leibler divergence
(KL), as these metrics are commonly utilized to assess the qual-
ity of generated audio. In addition to these general metrics, task-
specific metrics are applied for each of the music generation tasks,
namely Text-to-Music, Image-to-Music, Video-to-Music, and Mu-
sic Editing.

In the context of Text-to-Music, we employ the CLAP(Wu et al.



Figure 6: Training Stage 2: The Output Projection Layer is trained to generate the conditioning embedding for the MusicGen/AudioLDM 2
model.

Figure 7: Training Stage 3: The Multi-modal Understanding Adapter and Output Projection Layer are fine-tuned while the LoRA-enabled
LLaMA model is trained in this stage.

2023b) score, calculated by determining the cosine similarity be-
tween the CLAP embedding for the generated music and the text
input:

CLAPScore(M,T ) = max(100× cos(EM , ET ), 0)

Here, M represents the generated music, T denotes the text input,
and EM , ET represent the CLAP embeddings for the music and
text, respectively.

For the Music Editing task, we leverage the Log Spectral Dis-
tance (LSD) to assess the disparity between the generated mu-
sic and the target music. This metric facilitates the evaluation of
whether the frequencies in the generated music, post-editing, align
with those in the target music.

For Image-to-Music and Video-to-Music tasks, we introduce the
ImageBind(Girdhar et al. 2023) Ranking (IB Rank), akin to the
CLAP score, to quantify the alignment between the input modality
and the generated music. Considering N distinct models producing
N music files, we generate ImageBind embeddings for the music
files, denoted as EM1, EM2, . . . , EMN , as well as the ImageBind
embedding for the input modality, denoted as EI/V . The embed-
dings for the music files are ranked based on their cosine similarity
to EI/V . Subsequently, after ranking all the samples in the evalu-
ation set, the ImageBind Ranking is computed by calculating the
ranking score using the individual rankings.

Using these evaluation metrics, we are able to evaluate the
MuMu-LLaMA model against other state-of-the-art models for the
different tasks.

Model Demonstration
In this section, we present screenshots of the MuMu-LLaMA
model demo, illustrating various capabilities of the model.

Figures 9, 8, and 10 showcase the MuMu-LLaMA model’s abil-
ity to generate music directly from textual prompts and draw inspi-
ration from images and videos, both with and without textual guid-
ance. Figure 11 exemplifies MuMu-LLaMA’s proficiency in music
editing guided by natural language prompts. Additionally, Figures
12, 13, and 14 illustrate the utilization of MuMu-LLaMA’s editing
capabilities to further refine music generated from different modal-
ities. Collectively, the MuMu-LLaMA model proves to be a robust
framework for Music Understanding, Generation, and Editing.



Figure 8: Image-To-Music Generation and Understanding: The MuMu-LLaMA model is capable of generating music for images and also
answering questions regarding the generated music.

Figure 9: Text-To-Music Generation and Understanding: The MuMu-LLaMA model is capable of generating music from text prompts
and also answering questions regarding the generated music.



Figure 10: Video-To-Music Generation and Understanding: The MuMu-LLaMA model is capable of generating music for videos and also
answering questions regarding the generated music.

Figure 11: Music Editing and Understanding: The MuMu-LLaMA model is capable of editing input music based on natural language
prompts and also answering questions regarding the generated music.



Figure 12: Text-To-Music Generation and Understanding + Music Editing: The MuMu-LLaMA model is capable of generating music
from text prompts, answering questions regarding the generated music and also editing the generated music using Natural Language prompts.

Figure 13: Image-To-Music Generation and Understanding + Music Editing: The MuMu-LLaMA model is capable of generating music
for images, answering questions regarding the generated music and also editing the generated music using Natural Language prompts.



Figure 14: Video-To-Music Generation and Understanding + Music Editing: The MuMu-LLaMA model is capable of generating music
for videos, answering questions regarding the generated music and also editing the generated music using Natural Language prompts.




