Explore Spreading of Droplets
with Computer Simulation

Abstract—In the realm of production and daily life, the
collision phenomenon between droplets and objects is a focal
point in the study of engineering fluid dynamics. The infiltration
and spreading behavior of various types of droplets on solid and
liquid surfaces constitute a prominent subject of investigation.
The research outcomes in this domain find extensive applications
in fields such as multiphase flows and thermal spray coating.
However, due to the intricate nature of their dynamical states,
probing into issues within this domain typically necessitates the
utilization of computational methodologies from computer
science for simulation, emulation, and analysis.

To delve into the dynamical states of the droplet spreading
process and address the pivotal influencing factors therein, this
study devises a simplified model based on rational assumptions.
Evolution models employing ordinary and partial differential
equations are derived. Furthermore, incorporating finite element
analysis techniques, the model undergoes simulation and analysis
via computer experimental methods, leading to reasonably sound
conclusions.

Keywords—Droplet impact, wetting properties, spreading, fluid
dynamics model, numerical computation, finite element
simulation, VOF

I. INTRODUCTION
11 Background

The spreading process of droplets on flat surfaces is
ubiquitous in daily life and holds significant importance in
many industrial applications. From the minute raindrops
spreading on window glass to the formation of ice on aircraft
wings due to water droplet spreading during flight, and from
industrial techniques such as the formation of water films on
oil reservoir surfaces for fluid sealing to semiconductor device
production, the phenomenon of droplet spreading on surfaces
is indispensable[1]. Moreover, after establishing simplified
models to describe the dynamic states, the complex numerical
solution and simulation processes often require the assistance
of computer science-related methods. Therefore, the dynamics
of droplet spreading are subjects of interest and research in
various fields such as physics, computer science, and
engineering.

1.2 Problem posing

Assuming a droplet falls onto a surface with a certain initial
velocity and gradually spreads on the surface. Influenced by
gravity, surface tension, and viscous forces, the spreading
process of the droplet can be mainly divided into stages such
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as inertial jumping, drainage/gas expulsion, rapid spreading,
and stable spreading (as shown in Figure 1).

Fig. 1. Illustration of the droplet spreading process.
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To deeply investigate the influencing factors of the droplet
spreading process and apply them to practical industrial
engineering, we will establish a mathematical model to
explore the dynamic states and key influencing factors during
the droplet spreading process, and address the following
questions:

Question 1: A water droplet with a diameter of 100
micrometers starts falling from a stationary state closely to the
surface, and eventually reaches a contact angle of 120 degrees
with the surface. Model and solve the spreading process of the
droplet to obtain its final stable static spreading state.

Question 2: Modify the initial stationary state of the water
droplet in Question 1 to have a certain initial velocity, and
determine the relationship between the droplet's falling
velocity and the spreading process of the droplet.

Question 3: Change the solid surface in Questions 1 and 2
to a gasoline surface, and re-solve the above two questions to

explore the differences in the results.t for the added
nonlinearities.
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1.3  Problem Analysis

During the spreading process, a droplet is primarily
influenced by gravity, surface tension, and viscous forces.
Fundamentally, the droplet spreading process is a fluid flow
problem under the action of these three forces. Therefore, it
satisfies the Navier-Stokes equations, and the entire process
also inevitably complies with the conservation of energy
equation, providing two approaches for problem-solving.

Considering the droplet's spherical shape and symmetry, we
can select the vertical direction and any horizontal direction to
form a two-dimensional plane, thus reducing the three-
dimensional problem to a two-dimensional one for analysis.
Research indicates that the static contact angle model alone
cannot fully describe the dynamic spreading characteristics of
fluid on solid surfaces. Therefore, the concept of wetting
contact lines[2] (dynamic contact lines formed at the solid-
liquid-gas three-phase contact interface when the droplet
spreads along the solid wall), droplet spreading dynamic
equations[3], and precursor films[4] are introduced. This paper
will describe the spreading process using parameters such as



film thickness (distance from the droplet's apex to the solid
plane), spreading radius, and wetting contact lines.

Several factors influence the spreading process:
1. The properties of the solid plane affect surface tension and
determine the contact angle at stability (final contact angle).
2. The size of the droplet affects gravity.
3. The viscosity of the droplet affects viscous forces.
4. The initial velocity of the droplet upon touching the solid
plane affects the spreading process.
5. Additionally, the spreading conditions on both the solid and
liquid surfaces will vary.

This paper will explore the impact of these factors on the
droplet spreading process.

II. BEFORE STARTING

2.1  Basic Symbols

Symbol Explanation
U, Velocity component in
the X-direction
u, Velocity component in
the Z-direction

P Intensity of pressure

p Density of the droplet

m Kinematic viscosity of

the droplet

g Acceleration due to

gravity
z=h(z,t) Two-dimensional
contour curve of the

droplet

R Spreading radius of the
droplet

Ié; Contact angle

o Surface tension

coefficient of the droplet

d, Initial diameter of the

droplet

2.2 Assumptions

(1) The characteristic scale of the liquid droplet in the
horizontal direction is much larger than its characteristic scale
in the vertical direction.

(2) Droplet spreading is primarily governed by surface
tension and constitutes an isothermal motion of an
incompressible Newtonian fluid.

(3) The initial state of the liquid droplet is spherical and
possesses cylindrical symmetry. Therefore, the three-
dimensional problem is reduced to a two-dimensional problem
in the vertical direction and any horizontal direction.

(4) The diameter of the liquid droplet is approximately 0.1
mm, at which scale, the Bond number is very small. Hence,

the influence of gravity can be neglected when considering
droplet spreading on the solid surface.

(5) In the scenario of droplet collision with the solid
surface, considering the droplet diameter and to avoid the
phenomenon of complete fragmentation and splashing, it is
assumed that the droplet velocity is not too high, ranging from
0 m/sto 1 m/s.

(6) The droplet does not mix with gasoline, and the density
of the droplet (water droplet) is greater than the density of the
liquid surface (gasoline).

(7) The diameter of the liquid droplet is still around 0.1 mm,
and the initial velocity of the droplet colliding with the oil
surface ranges from 0 m/s to 1 m/s. The oil pool is considered
to be infinitely large and sufficiently deep.

III. IMPLEMENTION

31 Problem 1

3.1.1 Basis of dynamic equations

For the problem of droplet spreading along a horizontal wall
with an initial velocity of 0, where the lower surface of the
droplet is the solid substrate and the upper surface is the gas-
liquid interface, both the effect of gravity and the surface
tension at the free interface need to be simultaneously
considered. For the sake of modeling convenience, we assume
that the characteristic scale of the droplet in the horizontal
direction is much larger than that in the vertical direction, and
droplet spreading is dominated by surface tension, constituting
an isothermal motion of an incompressible Newtonian fluid.
Due to the aforementioned assumptions and the isotropic
nature of droplet spreading in the horizontal direction
considered in this problem, we can consider the problem in a
two-dimensional plane. Below are the two-dimensional
Navier-Stokes equations and continuity equation for droplet
spreading:

dp (D%, 82uw>
Op _ (D%u,  O’u,
Ou, , Ou, _
9z T 5, =0 (3

Where % and % are the velocity components of the
droplet in the x and z directions, respectively. p is the liquid
density,

u is the kinematic viscosity of the droplet, P is the pressure,

G G.

7 and are the accelerations due to gravity in the x and
z directions, respectively.

The symbols for the various aspects of the droplet spreading
process described above are indicated in Figure 2.

Fig. 2. Droplet spreading process.
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3.1.2 Boundary condition treatment

Boundary conditions at the solid-liquid interface: For the
boundary conditions at the solid-liquid interface, we adopt the
Navier linear slip boundary condition, which is represented as
follows at z=0:

u, =0 (4
_, Ou,

In the above equations, b represents the slip length, defined
as:

p= 2=l (6)
T

Where Vs is the velocity of the fluid in the x-direction, n is

the dynamic viscosity of the fluid, and T is the shear stress.
The Navier linear slip model established based on the linear
slip boundary condition is illustrated in Figure 3.

Fig. 3. The Navier linear slip model.
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Boundary condition at the liquid-gas interface: At the

interface between the liquid and gas 2=h (w’ t) , the
velocity of the droplet in the z-direction is:

_ 9z _Oh(zt) _ Oh Ok
ST et %ar Tar (7
Furthermore, it is noted that at the interface between the
z=h(z,t)

liquid and gas, at , under the assumption of air
having no viscosity, it is considered that the surface tension
between the liquid and gas is continuous. Hence, we have:

ou, -
92 |, =0 (8)

Taking into account the Laplace-Y oung boundary condition
at the interface between the liquid and gas, for a curved liquid

. g .
surface, the presence of surface tension ~ 7 at the interface

p

between the liquid and gas results in a pressure difference
on the two sides near the liquid surface. According to the
Laplace pressure formula, the Laplace-Young boundary

condition at the interface between the liquid and gas can be
expressed as:

p=-0,"Kk (9)
The various physical quantities in the above equation are
indicated in the following diagram (Figure 4).

Fig. 4. Surface Laplace pressure of the droplet.
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After non-dimensionalization and simplification, the
differential equation for membrane thickness considering the
curvature of the curved liquid surface is obtained:
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Where,

3.1.3 Numerical computation and solution.

The following numerical computation will be used to solve
the differential equation for membrane thickness. Let t =0 be
the initial moment of the droplet spreading motion, at which
the droplet just contacts the solid wall, forming a spherical
droplet. Thus, we have:

h(z,0)=4/R?>—2z*, —R<z<R (11)
In the numerical simulation process, given the initial radius

R=>50pm

of the spherical droplet as , and assuming the

actual spreading radius of the droplet is 9, we have the

relationship:
h(z,t)=0, z==+ Ly, (12)

Based on the initial conditions and boundary conditions
described above, a numerical calculation program will be
written in Mathematica to obtain the results. The specific
calculation process is illustrated in the flowchart shown in
Figure 5.



Fig. 5. The Navier linear slip model.
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The spreading radius of the droplet can to some extent
measure the degree of spreading of the droplet on the solid
surface. Based on numerical calculations, the relationship
between the spreading radius of the droplet on the solid
surface and time can be plotted. Specifically, the spreading
radius exhibits periodic oscillations with decay over time. The
variation of the spreading radius within one period is
illustrated in Figure 6:

Fig. 6. Graph showing the variation of the spreading radius of
the droplet on the solid surface over time in the absence of
initial velocity.
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Additionally, numerical calculations can also be used to plot
the relationship between the membrane thickness (height) of
the droplet during spreading on the solid surface and time.
Specifically, the membrane thickness exhibits periodic
oscillations with decay over time, as shown in the Figure 7.

Fig. 7. Graph showing the variation of membrane thickness
over time when the droplet has no initial velocity.
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After obtaining the results from the calculations, they can
be compared with the simulation results obtained using
simulation software to validate the correctness of the model
results.

Based on the results obtained from the model, further analysis
reveals that for small droplets with a certain diameter (around
100 um), the properties of the wall surface will have a

significant impact on the spreading and recoiling processes of

the droplet. When the wall surface becomes more hydrophobic,
the surface tension coefficient of the droplet increases,
resulting in a decrease in the final spreading radius and

making it more prone to rebounding phenomena.

3.14 Verification of Simulation for Problem 1

We utilized the fluid dynamics module of the finite element
simulation software Ansys Student 2021 R2, specifically
Fluent, to perform simulation of the spreading process of the
droplet without initial velocity. We selected liquid water and
air as the two phases, employing the Volume of Fluid (VOF)
multiphase flow model and laminar viscosity model. The
parameters used in the multiphase flow model include the
surface tension coefficient between water and air and the
contact angle (120°) between solid and liquid. The working
pressure of air was set to standard atmospheric pressure, the
gravitational acceleration was set to g=9.81m/s?, and the
density was set to 1.225kg/m>. Suitable volume parameters,
coordinate parameters, and material parameters were assigned
for element marking. Proper planes and contours were
selected, and volume gradient parameters were set to record
the animation.

Figure 8 below shows a portion of the simulation process for
the droplet spreading without initial velocity. A final stable
static contact angle of 120° has been set. It has been verified
that the maximum height, spreading radius, and other relevant
parameters have relative errors controlled within 10%,
demonstrating a high level of agreement with the numerical
solution.

Fig. 8. droplet spreading at different time points.
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3.2 Problem 2

The entire impact process of the droplet can be divided into
two stages. The first stage is the initial impact stage, during
which the droplet deforms from a spherical shape when falling
to a disk attached to the solid surface. The second stage is the
expansion and contraction stage of the liquid, during which
the liquid disk expands along the solid surface to its maximum
diameter and then contracts to its final diameter.

3.2.1 Analysis of Kinetic Energy Loss during

Initial Impact Stage

During the initial deformation, some of the initial kinetic
energy of the droplet is dissipated due to molecular

interactions inside the liquid. We define ¢ as the impact
coefficient to measure the kinetic energy loss during the
deformation stage, which is given by the formula:

Ekl — CEkO (13)

Where Eio is the initial kinetic energy of the droplet and

1 is the initial kinetic energy of the expanded liquid disk.

¢ , according to Toda's experimental
1, we have the following expression:

626*0.083'11101’5 (14)

From this equation, we can deduce that when the collision
velocity is 0, the impact coefficient is 1; when the collision
velocity is 1 m/s the impact coefficient is approximately 0.92;
when the collision velocity is 4 m/s, the impact coefficient is
approximately 0.51. We consider that when the collision
velocity is greater than 1 m/s, the energy loss cannot be
ignored.

For the value of
resultsl®

Fig. 9. Droplet impacting the solid surface
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3.2.2 Detailed Analysis of Droplet Spreading

Stage

After the initial impact stage, the liquid disk spreads
outward from the collision center along the surface like a
liquid film. According to the law of conservation of energy for
the entire process, we have:

E,+E,+ E;=const (15)
* is the

Where E” is the surface energy of the liquid,

kinetic energy of the liquid disk, and Eq is the energy loss
due to viscous motion inside the liquid. These three types of

energy can be expressed respectively by the following
formulas:

E,=S,0,+ 8,0, (16)
14
p;/ (u.? +u,”)dV (17)
0

2
Ed:/t/thdv (18)

Where S, and Y represent the contact areas between the
liquid droplet and the solid wall, and between the liquid

droplet and the air, respectively. s and Ty represent the
effective surface tension coefficients between gas-liquid-solid
and gas-liquid interfaces, respectively. \( \eta \) is the energy
dissipation rate per unit volume of the droplet, which is given
by:
o= (G) (5 [+ ) -3 (G5 ) (a9)

Where p is the dynamic viscosity of the droplet.

The spreading process of the droplet along the wall surface
is similar to the flow of the droplet toward the surface, hence
the following velocity distribution expressions:

2
n—+1

U, =cxz"

cz" (20

U, — —

QD

These expressions satisfy the continuity equation of the
liquid:

li(acu £ =
z Oz 0z (22)

By selecting different constants n, both zero velocity and
zero shear stress boundary conditions can be satisfied.

Whether the droplet wets the solid surface or not depends
on the relative magnitude of the interaction force between the
liquid molecules and the solid molecules (called adhesion) and
the interaction force between the liquid molecules (called
cohesion). We discuss the impact situation of the droplet in
two scenarios: wetting contact and non-wetting contact (for
detailed analysis, refer to Appendices). The differential
equations for the spreading process under wetting and non-
wetting contact conditions are given as follows:

Differential equation for wetting contact:
4’R (g+ 4’ )7(@)2. d° | 20R(Atcosh) o
“dt? \20 T 378R° dt 126R" do* oy 3p.R?
36R* udR
+< dy 5R> I dt =0 (23)
Differential equation for non-wetting contact:

(LOG+L>CLR, dy’ (@)Z 6R o __,
162R° " 12) dt* ~ 54R7\dt) | pds® 3pRE

Q24

3.23 Numerical Solution for Both Scenarios

We used MATLAB to numerically solve the ordinary
differential equations (23) and (24) for different initial
conditions. This allowed us to obtain the variation of the



spreading radius of the droplet over time for each scenario.
The program codes are provided in the appendix.

The results indicate that after the droplet impacts the
surface, it exhibits damping oscillatory characteristics, with
the spreading radius of the droplet showing a decay oscillation
over time.

Wetting Contact: For the wetting contact scenario, by
solving equation (23) for a water droplet with a diameter of
100 um, and substituting different initial velocities, we can
obtain numerical solutions for the variation of the spreading
radius R over time t. The graph below (Figure 10) illustrates
the spreading radius of the droplet over time for different
initial collision velocities:

Fig. 10. Graph showing the variation of spreading radius over
time for different Velocities in yvgtting_ contact scenario
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The graph displays the spreading radius of the droplet over
time, with initial velocities ranging from 0.5 to 4.5 m/s at
intervals of 0.5. It is observed that higher initial velocities
result in larger oscillations in the spreading radius.

Non-wetting Contact: The discussion for the non-wetting
contact scenario is similar to the wetting contact scenario. By
solving equation (24) for a water droplet with a diameter of
100 um and substituting different initial velocities, we can
obtain numerical solutions for the variation of the spreading
radius R over time t. The graph below (Figure 11) illustrates
the spreading radius of the droplet over time for different
initial collision velocities:

Fig. 11. Graph showing the variation of spreading radius over
time for different velocities in non-wetting contact scenario
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The graph displays the spreading radius of the droplet over
time, with initial velocities ranging from 0.5 to 4.5 m/s at
intervals of 0.5. The analysis of the graph indicates that the
spreading radius decay is much slower in the non-wetting
contact scenario compared to the wetting contact scenario.
Therefore, only the variation for the first two oscillation cycles
is depicted. This is attributed to the smaller dissipation energy
between the liquid and the surface in the non-wetting contact
scenario.

3.24 Validation of Simulation for Problem 2

Following a similar simulation process as in Problem 1,
with modifications only to the initial velocity parameters of
the droplet upon collision, we used the Ansys Fluent module
to simulate the spreading process of a droplet with initial
velocity. The simulation results were then compared with the
numerical analysis results, confirming the accuracy of the
model.

Fig. 12. Simulation process of droplet collision with solid
surface with initial velocity

33 Problem 3

3.3.1 Discussion and Condition Specification of

the Problem Scenario

Based on relevant simulations and experiments, when the
droplet size is too large and the impact velocity is too fast, the
droplet will shatter into small droplets and splash!®:

Fig. 13. Droplet with a velocity of 4 m/s and diameter of 3.55
mm impacting an oil film
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Additionally, if the oil pool is too shallow, it will first form
a cylindrical void, followed by the formation of a crown-like
structure. Subsequently, under the influence of gravity, the
crown structure collapses, and after reaching its maximum
size, the void also contracts due to the surface tension and
viscosity forces, leading to the surrounding liquid squeezing
inward. Finally, the mechanical energy contained in the entire
system will cause the liquid in the oil pool to rush out of the
oil-air interface, forming a long and thin liquid column. This
entire process is referred to as the "crater-jet" process [



Fig. 14. Schematic diagram of the "crater-jet" process
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These two phenomena are clearly far from the spreading
phenomenon we are studying. To avoid their occurrence, we
need to specify the discussion conditions for Problem 3: the
droplet size is still around 0.1 mm, the initial velocity of the
droplet upon collision with the oil surface is between 0 and 1
m/s, and the oil pool is considered infinite and sufficiently
deep.

3.3.2 Qualitative Analysis and Prediction of

Spreading Results

During problem analysis, it was mentioned that due to the
presence of the droplet's own gravity and kinetic energy, the
oil-air interface (the interface between the oil pool and the air)
will deform and shatter under the pressure of the droplet. At
this point, the spreading surface is a complex and oscillating
surface that changes over time. Below, we analyze the
behavior of the oil pool liquid and the droplet during
spreading.

For the oil pool liquid, initially, the central area of impact
will be depressed by the droplet's impact, while small splashes
will form at the edges. According to the discussion conditions,
the droplet's velocity and size are small, so its momentum and
impact force are also small. The Weber number is likewise
small, and surface tension dominates over inertia. Therefore,
the growth rate of the splashes is slow, and the splashes are
relatively short. Subsequently, the splashes collapse under
gravity, and the edge region sinks. At this point, due to the
decreasing pressure in the central area, caused by the droplet's
pressure, the central area begins to rise. Simultaneously, such
disturbances propagate outward in the form of water waves.
Afterwards, every point on the oil-air interface will undergo a
decay oscillation motion 1,

For the droplet, after contacting the oil pool surface, under
the influence of gravity and inertia, one side sinks into the oil
pool while the other forms a water-oil mixture through the oil-
air interface until the entire droplet is submerged in the
gasoline. Since water has a higher density than gasoline, even
if the initial velocity is zero, the droplet can still completely
pass through the oil-air interface. Subsequently, due to gravity,
the droplet will gather towards the lower end. At this point, the
droplet is subject to gravity, inertia, and surface tension at the
oil-air interface, resulting in a spindle shape. If the droplet's
size is slightly larger, the sum of gravity and inertia will be
more significant, causing the droplet to fracture during
oscillation, with the upper part "inverted" and adhering to the
oil-air interface (oil side), while the lower part deposits at the
bottom of the container. If the sum of gravity and inertia is not
sufficient to tear the droplet apart, then the entire droplet will
adhere to the oil-air interface (oil side). Finally, the amplitude
of the oil-air interface tends to zero, and the droplet reaches a

stable spreading state below the oil-air interface. Considering
that gasoline is hydrophobic and the oil pool surface is non-
wetting, the contact angle is greater than 90°.

In summary, we make the following predictions for the final
spreading state: in Case 1, where the droplet size is small and
the collision velocity is low, the droplet will adhere to the
underside of the oil pool surface as a whole, similar to the
non-wetting spreading situation on a solid surface in Problem
1; in Case 2, where the droplet size is slightly larger and the
collision velocity is slightly higher, the droplet will split in
half, with the upper part adhering to the underside of the oil
pool surface.

3.33 Simulation and Verification of Problem 3

We used the Ansys Fluent module to simulate the spreading
process of a droplet with initial velocity on the oil surface. The
process is as follows: select liquid water, air, and liquid
gasoline as the three phases, use the multiphase flow model
(VOF) and laminar viscosity model, with parameters including
surface tension coefficients between water-air, water-gasoline,
and air-gasoline, set the air working pressure to standard
atmospheric pressure, working gravity to g=9.81m/s?, working
density to 1.225kg/m?, initialize the space as air and oil pool,
set appropriate volume, coordinate, and material parameters
for the unit marker, select appropriate plane and cloud maps,
and set volume gradient parameters to record animations.

The figures below (Figures 15 and 16) respectively show
part of the simulation process of a droplet with initial velocity
spreading on the gasoline surface, with and without droplet
fragmentation.

Fig. 15. The spreading of droplet with certain initial velocity
on the surface of gasoline (without droplet fragmentation)
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Fig. 15. The spreading of droplet with certain initial velocity
on the surface of gasoline (with droplet fragmentation)
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IV. CONCLUSION

4.1 Advantages of the Model and Paper

(1) Reasonable Assumptions: Based on extensive literature
review, this paper establishes a series of scientifically
reasonable assumptions, neglecting minor contradictions that
have little impact on the modeling results. With a significant
simplification of the model and algorithm, the paper achieves
considerable modeling results.

(2) Rigorous Modeling: The paper rigorously discusses
different models for different impact surface media and
different initial velocities of droplet collisions, ensuring the
distinct physical mechanisms of various models and accurate
applicability conditions.

(3) Scientific Computation: Numerical solution methods are
employed in the model solving process, with timely
adjustments of relevant parameters, ensuring more reliable
analysis of droplet states.

(4) Accurate Simulation: By using Ansys Fluent software
and accurately defining droplet boundaries and initial
parameters, the simulation is effectively conducted, resulting
in high precision of the final simulation results.

4.2  Further Model Improvement:

(1) The model can only accurately compute the changes of
parameters such as droplet film thickness and spreading radius
over time for relatively small initial velocities (approximately
less than [threshold]). When the initial velocity of the droplet
is large, the model's error becomes significant.

(2) The loss of kinetic energy during the initial collision
stage of the droplet is based on empirical formulas and lacks a
deeper quantitative analysis.
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APPENDICES

Code for Question 1

solution=NDSolve[ {0.001 14*D[h[x,t],t]+D[1/3*h"3*72.75%2%10"-
3*D[D[h[x,t],x.x}/(1+(D[h[x,t],x])"2)* 1.5,x]x]==0,h[x,0]==((5*10"-5)"2-x"2),h[x,0]==-((5* 1 0"-5)2-x2),h[25*370.5* 1 0*-
6,t]==0,h[-25%3/0.5%10/-6,t]==0} ,h[x,t], {x,-5*10"-5,5%10"-5}, {y,0,6*10"-3}]
Plot3D[Evaluate[h[x,t]}/.First[solution]], {x,-5*107-5,5%107-5}, {y,0,6*10~-3} ]

Code for Question 2

BHDTTE

function dy=func2(~,f)

dy=[0;01;

dy(1)=f(2);

dy(2)=(f(2))"2*(1E-4)"6/54/f(1)"7-6*0.073/1000*f(1)/(1E-4)"3+0.073/1000/3/f(1)"2;

end

function dy=func1(~,f)

dy=[0;0];

dy(1)=f(2);

dy(2)=((f(2))"2*(1E-4)"6/126/f(1)"7-2*0.073*f(1)*1.2/(1E-4)*3/1000+0.073/3/1000/(f(1))"2-
0.001/1000*£(2)*(36*(f(1))"4/(1E-4)"6+14/5/(f(1))"2))/(3/20+(1E-4)"6/378/1(1)"6);

end

FERF

options=odeset('RelTol',1E-8,'AbsTol',[ 1E-8,1E-8]);

figure(1)

for i=1:9

hold on;

y10=5E-5;

y20=(0.518*exp(-0.083*(1*0.5)"1.5))"0.5*(1*0.5);

[xi,yi]=ode45('funcl',[0,2E-4],[y10,y20],0ptions);

plot(xi,yi(:,1));axis([0 2E-4 1E-6 1.5E-4]);

end

text(2B-5,2E-5,' ¥ E MK A0.5, 1. 1.5, 2. 2.5, 3. 3.5, 4. 4.5 (m/s) ''FontSize',20);

grid on;

title(CENE BN TAE R EHE LR X TRENZLELC AL,

xlabel('H [E)/t");

ylabel('$# & ¥ 12/m");
figure(2)

for i=1:9

hold on;

y10=5E-5;

y20=(0.518*exp(-0.083*(1*0.5)"1.5))0.5*(i*0.5);
[xi,yi]=ode45('funcl',[0,5E-4],[y10,y20],0options);
plot(xi,yi(:,1));axis([0 SE-4 1E-6 1.5E-4]);

end

text(2E-5,2E-5, ¥13&E E MR 505, 1. 1.5, 2, 2.5, 3. 3.5, 4. 4.5 (m/s) ','FontSize',20);
grid on;

title(CENE1E N T A B R F 2R TR ENEHBERL);

xlabel('R8/1');

ylabel(‘$# & F12/m");

figure(3)

for i=1:9

hold on;

y10=5E-5;



y20=(0.348*exp(-0.083*(1*0.5)"1.5))"0.5*(i*0.5);
[xi,yi]=ode45('func2',[0,3E-4],[y10,y20],options);
plot(xi,yi(:,1));axis([0 3E-4 1E-5 1.5E-4]);

end

text(2E-5,2E-5, ¥& EMCR 505, 1. 1.5, 2, 2.5, 3. 3.5, 4. 45 (m/s) ','FontSize',20);
grid on;

title(“NENR BN TARE EHREFEREXTNENZAEERCEH));

xlabel('H&)/t");

ylabel("$# & F12/m");

Discussion on Wetting Contact between Droplets and Solid Surfaces

When the surface temperature is lower than the liquid's saturation temperature, the liquid wets the surface, resulting in wetting
contact. In this situation, n must be greater than 0, thus satisfying the following boundary conditions.

=0, u,=0;

dR
=R, Us =Up = "
z=0, u,=0.

Regression analysis indicates that n=2 provides relatively ideal results. We express each velocity component using the average
perimeter velocity of the liquid droplet disk:

U, = 3 d—sz2
* Rb? dt
2 dR ,

YT R dt ©

where b is the instantaneous thickness of the liquid disk. Substituting yields the expression for kinetic energy:

2 dy’
b= 6R>
2
Ekﬂpl<2%bR2+ §b3> . (Cg?)

where pi is the density of the droplet. In the case of wetting contact, the upper surface and periphery of the liquid droplet disk
are in contact with air, and the bottom is in contact with the solid wall with a contact angle of B. Therefore, the surface energy is:

S,0,=7mR*0cosf3
S,0,=2mRb+7R?)0

At time t, the dissipated energy equals the total dissipation accumulated from time zero to time t. Substituting yields @, further

&4 /5 R? dR\?
Ed57r,u/0 <HT +b> <E> dt

Taking the instant of impact as the starting point in time, the initial instantaneous velocity of the liquid droplet disk can be
solved simultaneously to be:
(%)
dt

calculated as:

—=1/0.518Cu,

0

The initial radius can be approximated as:
_ 4o
T2
Substituting and differentiating both sides, we obtain the differential equation describing the spreading process under wetting
contact conditions as:
dLR.(i dy°® >7(ﬁ)2. do® | 20R(+cosf) o 36R' | 14\ pdR _
dt> \20 ' 378RS dt 126R" do®py 3p:R? ( do® 5R?>‘ P dt

R,




Discussion on Non-Wetting Contact between Droplets and Solid Surfaces

There are various ways to achieve non-wetting contact between a liquid and a solid surface, such as mercury directly
achieving non-wetting contact on a glass surface. In fact, when the surface temperature of the solid is much higher than the
liquid's saturation temperature, a thin layer of vapor separates the liquid droplet disk from the solid flat surface after collision,
also resulting in non-wetting contact. This phenomenon is known as the Leidenfrost Effect, as shown in the figure below.
Although the process of achieving non-wetting contact varies, the kinetic analysis of the non-wetting contact result can be
uniformly solved.

The Leidenfrost
Effect

u — 2% 47
* R dt
W 2dR
7 R dt

Therefore, the expressions for kinetic energy and the initial spreading velocity are:

2 2 2
=M 50) ()

< )
dt

=14/0.348C u,

0

To derive the formula for surface energy at this point, note that during the expansion process, the upper surface of the liquid

droplet disk forms a wavy surface. We approximately consider such a surface as a spherical wave in a state of micro-amplitude
vibration, thus representing the surface energy approximately as:

S.0,=0
S,0,=2nRb +37R*)c

28 /* (dR>2
E,= 2| o(LY) at
=3 T O\ dt

Combining formulas, we obtain the differential equation describing the spreading process under non-wetting conditions as:
( dy’ +L> &R do° <d_R>2 60R o
162R° * 12) dt? 54R" \ dt

The dissipated energy is:

Pldo3 B 3)01R2 N
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