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a b s t r a c t 

Vote-boosting is a sequential ensemble learning method in which the individual classifiers are built on 

different weighted versions of the training data. To build a new classifier, the weight of each training 

instance is determined in terms of the degree of disagreement among the current ensemble predictions 

for that instance. For low class-label noise levels, especially when simple base learners are used, emphasis 

should be made on instances for which the disagreement rate is high. When more flexible classifiers are 

used and as the noise level increases, the emphasis on these uncertain instances should be reduced. 

In fact, at sufficiently high levels of class-label noise, the focus should be on instances on which the 

ensemble classifiers agree. The optimal type of emphasis can be automatically determined using cross- 

validation. An extensive empirical analysis using the beta distribution as emphasis function illustrates 

that vote-boosting is an effective method to generate ensembles that are both accurate and robust. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In ensemble learning, the outputs of a collection of diverse clas-

ifiers are combined to exploit their complementarity, in the ex-

ectation that the global ensemble prediction be more accurate

han the individual ones [17] . The complementarity of the clas-

ifiers is either an indirect consequence of diversity, as in bag-

ing [9] , random forests [13] , and class-switching [45] , or can be

xplicitly favored by design, as in negative correlation learning

41] and boosting [26,27,56,57] . In this manuscript, we present

ote-boosting, an ensemble learning method of the latter type, in

hich the progressive focus on a particular training instance de-

ends on the degree of disagreement among the predictions of the

nsemble classifiers. By contrast to standard boosting algorithms,

he strength of this emphasis is independent of whether the in-

tance is correctly or incorrectly classified. The optimal emphasis

rofile depends on the characteristics of the classification problem

onsidered and on the complexity of the base learners. In prob-

ems with no or low levels of noise in the class labels of the train-

ng instances the appropriate focus is on instances on which the

lassifiers disagree (i.e. instances for which the ensemble predic-

ion has a high degree of uncertainty). As the noise level increases,

specially when more flexible base learners (e.g. unpruned CART

r random trees) are used, the emphasis on uncertain instances

hould be reduced. In fact, in problems with sufficiently high levels
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f class-label noise, the optimal strategy is to assign larger weights

o instances on which the ensemble classifiers agree. In practice,

he determination of the optimal emphasis strategy can be auto-

atically made through parameter selection (e.g. through cross-

alidation on the training data). The results of an extensive empir-

cal are used to illustrate that vote-boosting is an effective method

o build ensembles that are both accurate and robust to class-label

oise. 

The article is organized as follows: In Section 2 , we provide a

eview of ensemble methods that are related to the current pro-

osal. Vote-boosting is described in Section 3 . In this section, we

how that the ensemble construction algorithm can be viewed as

n optimization by gradient descent in the functional space of lin-

ar combinations of hypothesis. In Section 4 , the properties and

erformance of vote-boosting ensembles are analyzed in an exten-

ive empirical evaluation on synthetic and real-world classification

asks from different domains of application. Finally, the conclusions

f this study are summarized in Section 5 . 

. Previous work 

There are a wide variety of methods to build ensembles. In this

ork, we focus on homogeneous ensembles, which are composed

f predictors of the same type. Each of the predictors in the en-

emble is built from a training set composed of labeled instances.

nce the individual predictors have been built, their outputs are

ombined to reach a global ensemble decision. A wide range of

lternatives can be used to carry out this combination [63] . Nev-

rtheless, simple strategies, such as averaging real-valued outputs,

https://doi.org/10.1016/j.patcog.2018.05.022
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or majority voting, if the individual classifiers yield class-labels, are

generally effective [28] . 

Randomization techniques can be used to generate collections

of diverse classifiers. The objective is to build predictors that err

on different exam ples. If the errors of these classifiers are inde-

pendent, they can be averaged out by the combination process.

An example of these types of ensembles is bagging [9] . The in-

dividual classifiers in a bagging ensemble are built by applying a

fixed learning algorithm to independent bootstrap samples drawn

from the original training data. In class-switching ensembles, each

member is built using a perturbed versions of the original train-

ing set, in which the class labels of a fraction of instances are

modified at random [12,45] . Alternatively, diverse classifiers can

be built by including some randomized steps in the learning algo-

rithm itself. For instance, in one of the earliest works on ensembles

[35] , one takes advantage of the presence of multiple local min-

ima in the optimization process used to determine the synaptic

weights of a multilayer perceptron. Starting from different initial

seeds, it is possible to build neural networks with the same ar-

chitecture, but different weights. Each of these different networks

yields a different prediction. The final ensemble prediction can be

obtained by pooling the individual decisions of the neural net-

works that result from the different weight initializations. Ran-

dom forests [13] , which are one of the most effective ensemble

methods [20] , are built using a combination of data randomiza-

tion and randomization in the learning algorithm: The ensemble

classifiers are random trees trained on bootstrap replicates of the

original training dataset. The individual ensemble trees are gen-

erated using the random subspace method [37] . Other effective

classifiers of this type are rotation forests [55] , ensembles of ex-

tremely randomized trees [30] , and other variants of random forest

[64,65] . 

An alternative to simply generating diversity is to explicitly aim

to increase the complementarity of the ensemble classifiers. An ex-

ample of such strategy is Negative Correlation Learning [41] . In this

method, complementarity is favored by simultaneously training all

the classifiers in the ensemble: The parameters of the individual

classifiers and the weights of the combination of their outputs are

determined globally by minimizing a cost function that penalizes

coincident predictions. One can also build ensembles of base learn-

ers that are trained to focus on different regions in feature space

[5] . Boosting is another ensemble method in which complemen-

tarity among the classifiers is explicitly favored. Boosting origi-

nally refers to the problem of building a strong learner out of a

collection of weak learners; i.e. learners whose predictive accu-

racy is only slightly better than random guessing [27,56,57] . Ad-

aBoost is one of the most widely used boosting algorithms [26] .

In its original formulation, AdaBoost considered only binary classi-

fication tasks. Nonetheless, there are numerous extensions to deal

with multiclass problems (see e.g. the references in [21] ). In Ad-

aBoost an ensemble is grown by incorporating classifiers that pro-

gressively focus on instances that are misclassified by the previous

classifiers in the sequence. The individual classifiers are built by

applying a learning algorithm that can handle individual instance

weights. Alternatively, weighted resampling in the training set can

be used. The first classifier is obtained by assuming equal weights

for all instances. The subsequent classifiers are built using different

emphasis on each of the training instances. Specifically, to build

the t th classifier in the sequence, the weights of instances that are

misclassified by the most recent classifier in the ensemble are in-

creased. Correspondingly, the weights of the correctly classified in-

stances are reduced. The final prediction of the ensemble is de-

termined by weighted majority voting. The weight of an individual

classifier in the final ensemble prediction depends on the weighted

accuracy of this classifier on the training set. The margin of an

instance is defined as the sum of weighted votes for the correct
lass minus the sum of weighted votes for the most voted incor-

ect class. Therefore, misclassified instances have negative margins.

n AdaBoost, the evolution of the weight of a particular instance is

 monotonically decreasing function of its margin [25] . 

AdaBoost is one of the most effective ensemble methods

18,20,44] . However, it is not robust to class-label noise [7,39,53] .

pecifically, AdaBoost gives unduly high weights to noisy instances,

hose class labels are incorrect. There are numerous studies that

ddress this excessive sensitivity of AdaBoost to class-label noise

1,14,15,19,23,24,27,31,33,38,43,54,59,61,62] . A possible strategy is to

dentify and either remove noisy instances in the training data, or

orrect their class-labels [1,29,43] . Modified weight update rules

an be used for instances that are identified as noisy [14,60] . An-

ther alternative is to apply explicit or implicit regularization tech-

iques to avoid assigning excessive weight to a reduced group of

nstances [19,31,34,38,48,59] . For instance, the logistic loss func-

ion employed in LogitBoost [27] gives less emphasis to instances

ith large negative margins than the exponential loss function

sed in AdaBoost. In consequence, LogitBoost is generally more ro-

ust to class-label noise [49] . In other studies, penalty terms are

sed in the cost function to avoid focusing on outliers or on in-

tances that are difficult to classify [33,54,61,62] . It is possible to

lso use hybrid weighting methods that modulate the emphasis

n instances according to their distance to the decision bound-

ry [2,3,31,32] . Most boosting algorithms use convex loss func-

ions. This has the advantage that the resulting optimization prob-

em can be solved efficiently using, for instance, gradient descent.

owever, as shown in [42] , the generalization capacity of boost-

ng variants that use convex loss functions can be severely affected

y class-label noise. Alternative non-convex loss functions are used

n BrownBoost and other robust boosting variants [15,23,24,46,50] .

n these methods, the evolution of the weights is not a monotonic

unction of the margin: instances with small negative margins (i.e.

isclassified instances that are close to the decision boundary)

re assigned higher weights, as in AdaBoost. However, instances

hose margin is negative and large receive lower weights. The

ationale for using this type of emphasis is that instances in re-

ions with a large class overlap tend to have small margins. Fo-

using on these instances is beneficial because the classification

oundary can be modeled in more detail. By contrast, large nega-

ive margins correspond to misclassified instances that are far from

he classification boundary. A robust boosting algorithm should

herefore avoid emphasizing these instances, which are likely to be

oisy. 

In the next section we introduce vote-boosting, a novel boost-

ng algorithm in which the weights of the instances are deter-

ined in terms of the degree of agreement or disagreement among

he predictions of the ensemble members, irrespective of their ac-

ual class labels. As illustrated by the results of empirical evalu-

tion presented in Section 4 , the optimal type of emphasis (that

s, whether the focus should be placed on instances on which

he classifiers disagree, or on instances on which they agree) can

e determined from the training data alone using, for instance,

ross-validation. Since the instance weights do not depend on

hether the predictions by the ensemble classifiers are correct,

t is possible to avoid unduly emphasizing incorrectly classified

nstances that are outliers, which is one of the weaknesses of

tandard boosting algorithms, such as AdaBoost. In this manner,

ne can build accurate ensembles that are robust to class-label

oise. 

. Vote-boosting 

Consider the problem of automatic induction of a classification

ystem from labeled data. The original training set is composed of

 train attribute class-label pairs D train = { ( x i , y i ) } N train 
i =1 

, where x ∈ X .
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n this article, we focus on binary classification tasks, in which y ∈
−1 , 1 } . Problems with multiple classes can be addressed with a

umber of strategies, such as the ones used in combination with

daBoost for this purpose [57] . 

Let { f τ (·) } t τ=1 be a partially-grown ensemble of size t . The τ th

lassifier in the ensemble is a function f τ : X → {−1 , 1 } that maps

 vector of attributes x ∈ X to a class label f τ (x ) ∈ {−1 , 1 } . This

unction is obtained by applying a base learning algorithm to a

raining set, taking into account the individual instance weights
 

w 

[ τ ] 
i 

} N train 

i =1 
. 

To obtain the prediction of the ensemble, the predictions of the

ndividual classifiers are aggregated by weighted averaging 

 t (x ) = 

t ∑ 

τ=1 

α[ t] 
τ f τ (x ) , F t ∈ [ −1 , 1 ] , (1)

here α[ t] 
τ ≥ 0 is the weight of the prediction of the τ classifier.

hese weights are normalized 

∑ t 
τ=1 α

[ t] 
τ = 1 . In (unweighted) ma-

ority voting one assumes that all the predictions have the same

eight , α[ t] 
τ = 1 /t . This simple voting scheme provides good over-

ll results. For this reason, it will be used in our implementation.

ased on this aggregated output, the final prediction of the ensem-

le of size t is 

 t (x ) = sign ( F t (x ) ) . (2)

ssuming that t is odd, H t (x ) ∈ { −1 , 1 } . At this stage of the ensem-

le construction process, instance x can be characterized by t + (x )

nd t −(x ) = t − t + (x ) , the counts of positive and negative votes, re-

pectively. The fractions of votes in each class are 

[ t] 
± (x ) = 

t ±(x ) 

t 
; π [ t] 

+ (x ) + π [ t] 
− (x ) = 1 . (3)

hese values can be used to quantify the level of certainty of the

nsemble prediction. Values π [ t] 
+ (x ) close to 0 or 1 correspond to

nstances for which the predictions of most ensemble classifiers

oincide. Instances whose classification by the ensemble is uncer-

ain are characterized by π [ t] 
+ (x ) close to 1/2. In contrast to stan-

ard boosting algorithms, in vote-boosting, the instance weights

epend on the degree of agreement or disagreement among the

redictions of the individual classifiers, not on whether these pre-

ictions are erroneous. The pseudo-code of the proposed vote-

oosting algorithm is presented in Fig. 1 . 

The final ensemble is composed of T classifiers, each of which

s built by applying the base learning algorithm L on the training

ata with different sets of instance weights. The weights of the in-

tances can be taken into account using weighted resampling with

eplacement 

 

[ t] 
train 

= Sample 
(
D train , w 

[ t] 
)

f t (·) ← L 

(
D 

[ t] 
train 

)
. (4) 

For the induction of the first ensemble classifier all instances

re assigned the same weight. These weights are updated at each

teration according to the tally of votes: Assuming that instance x i 
as received t + ( x i ) votes for the positive class at the t th iteration,

e use the Laplace estimator of the probability that a classifier in

he ensemble outputs a particular class prediction 

[ t] 
± (x i ) = 

t ±(x i ) + 1 

t + 2 

. (5) 

inally the weights are updated 

 

[ t+1] 
i 

= 

1 

Z t+1 

g 

(
π [ t] 

+ (x i ) 
)
, for i = 1 , . . . , N train , (6)
here g : [0 , 1] → R 

+ is an emphasis function, which is non-

egative, and 

 t+1 = 

N train ∑ 

i =1 

g 

(
π [ t] 

+ (x i ) 
)

(7) 

s a normalization constant. These weights are then used to build

he following classifier in the ensemble. 

A natural choice for the emphasis function is the probability

ensity of the beta distribution with shape parameters a, b 

(p) ≡ β( p; a, b ) = 

�(a + b) 

�(a )�(b) 
p a −1 (1 − p) b−1 , 0 ≤ p ≤ 1 . (8)

or this particular emphasis function, the weights at the (t + 1) th

teration are updated according to 

 

[ t+1] 
i 

= 

1 

Z t+1 

β
(
π [ t] 

+ (x i ) ; a, b 

)
(9) 

f the class distributions are not strongly imbalanced, the choice

 = b, in which the two classes are handled in a symmet-

ical manner, is generally appropriate. In problems with a

arge class imbalance, an asymmetric choice of the emphasis

unction may be preferable. In Fig. 1 the density profiles of

he symmetric beta distribution for different values of a = b ∈
 0 . 25 , 0 . 75 , 1 , 1 . 5 , 2 . 5 , 5 , 10 , 20 , 40 } are shown. If a = b = 1 . 0 , the

istribution is uniform. Therefore, all instances are given the same

mportance (plot in the first row, third column of Fig. 1 ). In this

ase, the proposed algorithm is equivalent to bagging [9] . For a =
 > 1 . 0 the distribution becomes unimodal, with a maximum at

.5. In this range, the higher the values of a = b, the more concen-

rated becomes the probability around the mode. In consequence,

ote-boosting emphasizes uncertain instances and reduces the im-

ortance of those instances on which most classifiers agree. For

imple classifiers, the emphasis on uncertain instances that one

btains is similar to the error-based emphasis of AdaBoost. The

eason is that uncertain instances are generally more difficult to

lassify and, in consequence, are more likely to be incorrectly clas-

ified. In the regime a = b < 1 . 0 , vote-boosting progressively fo-

uses on instances on which classifiers agree. As will be illustrated

n the section on experiments, this strategy is effective in complex

r noisy problems, especially when the ensemble is composed of

exible classifiers, because of its regularizing effects. 

It is common, especially in the first iterations of the algorithm,

hen the ensemble is still small, that all the classifiers predict the

ame class label for some instances. In such cases, the fraction of

ositive votes is either 0 or 1. Except for a = b = 1 , the value of

he beta distribution at these points is either zero or infinity. In the

ase of zero density values, those instances would be assigned zero

eight in the next iteration of the algorithm. Thus, they would

e effectively removed from the sample. In the other extreme,

ome instances would have infinite weights. To avoid these evalu-

tions of the beta distribution at the boundaries of its support, the

aplace correction has been used in the estimation of class predic-

ion probabilities (5) . 

Finally, we note that vote-boosting can be used with base learn-

rs that achieve zero or low error rates in the training data. In

uch cases, the weights that AdaBoost assigns to the training in-

tances are ill-defined. By contrast, even if the training error of a

ingle ensemble classifier is zero or close to zero, there can be dis-

greement among the individual predictions. Therefore, provided

hat the Laplace correction is used in the estimation of class pre-

iction probabilities, the weights given by Eq. (9) , are always well

efined. This feature allows us to build vote-boosting ensembles of

npruned CART or random trees, which, as illustrated by the re-

ults of Section 4 are both accurate and robust to class-label noise.
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Fig. 1. Symmetric beta distribution with a = b = [0 . 25 , 0 . 75 , 1 , 1 . 5 , 2 . 5 , 5 , 10 , 20 , 40] . 
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3.1. An interpretation of vote-boosting as functional gradient descent 

Similarly to other boosting methods, vote-boosting can be

viewed as a gradient descent algorithm in the hypothesis space of

linear combinations of predictors [47] . Consider an ensemble of t

predictors { f τ } t τ=1 . The global ensemble prediction on instance x is

of the form 

H t (x ) = sign [ F t (x )] , (10)

where 

F t (x ) = 

1 

t 

t ∑ 

τ=1 

f τ (x ) , F t (x ) ∈ [ −1 , 1] . (11)

The fraction of votes for the positive class can be expressed in

terms of this quantity 

π [ t] 
+ (x ) = 

1 + F t (x ) 

2 

. (12)

Consider the predictor F : x ∈ X → F (x ) ∈ [ −1 , 1] . Let the cost

functional for this predictor be 

[ F ] = 

1 

N train 

N train ∑ 

i =1 

y i c(F (x i )) , (13)

where c ( z ) is a monotonically non-increasing function of z ∈
[ −1 , 1] , such that c(0) = 0 . These properties ensure that when the

prediction of F for the i th example is class −1 (i.e. F ( x i ) < 0), then

c ( F ( x i )) > 0. Similarly, when the prediction is class +1 (i.e. F ( x i ) > 0),

then c ( F ( x i )) < 0. Therefore, when the prediction F ( x i ) is incorrect

(i.e. y F ( x ) < 0), the contribution to the cost functional y c ( F ( x )) is
i i i i 
ositive. When the prediction is correct, the corresponding contri-

ution is negative. From these properties ones concludes that C [ F ]

chieves its global minimum when the training error is zero. Fur-

hermore, this quantity increases with each incorrect prediction.

n consequence, the minimizer of C [ F ] also minimizes the error of

redictor F in the training set. 

If | F ( x i )| is a measure of how certain the prediction of F for in-

tance x i is, the value | c ( F ( x i ))| provides also a measure of such cer-

ainty. The magnitude of contribution y i c ( F t ( x i )) to the cost func-

ional increases with the margin of the prediction. It is largest

hen | F t (x i ) | = 1 ; that is, when all ensemble classifiers agree. 

In vote-boosting, the first classifier in the ensemble is built

y assuming equal weights for all the instances in the training

et. Then, the ensemble is grown in a sequential manner by in-

orporating to { f τ } t τ=1 , the ensemble of size t , the classifier that

inimizes the value of cost functional for the enlarged ensemble

 

f τ } t τ=1 ∪ { f t+1 } 

f t+1 = arg min 

f∈F 
C 

[ 
F [ f ] 

t+1 

] 
, (14)

here 

 

[ f ] 
t+1 

(x ) = 

1 

t + 1 

t ∑ 

τ=1 

f τ (x ) + 

1 

t + 1 

f (x ) 

= F t (x ) + 

1 

t + 1 

( f (x ) − F t (x ) ) . (15)

Assuming the change in the value of the cost functional when

he ensemble incorporates the new classifier f is small 
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C[ F t ] 

≡ C 

[ 
F [ f ] 

t+1 
(x ) 

] 
− C [ F t (x ) ] 

= 

1 

N train 

N train ∑ 

i =1 

y i 

[ 
c 

(
F t (x i ) + 

1 

t + 1 

( f (x i ) −F t (x i ) ) 

)
−c ( F t (x i ) ) 

] 

≈ 1 

(t +1) N train 

[ 

N train ∑ 

i =1 

y i c 
′ (F t (x i )) f (x i ) −

N train ∑ 

i =1 

y i c 
′ (F t (x i )) F t (x i ) 

] 

, 

(16) 

o lowest order in the Taylor expansion. The second term in the

ast expression does not depend on f . Therefore, to lowest order,

inimizing the cost functional is equivalent to minimizing 

 train ∑ 

i =1 

y i c 
′ (F t (x i )) f (x i ) = 

∑ 

i : y i = f (x i ) 

c ′ (F t (x i )) −
∑ 

i : y i � = f (x i ) 

c ′ (F t (x i )) 

= 

N train ∑ 

i =1 

c ′ (F t (x i )) − 2 

∑ 

i : y i � = f (x i ) 

c ′ (F t (x i )) 

= 2 

N train ∑ 

j=1 

c ′ (F t (x j )) 

( 

1 

2 

−
∑ 

i : y i � = f (x i ) 

w 

[ t+1] 
i 

) 

, 

here 

 

[ t+1] 
i 

= 

c ′ ( F t (x i ) ) ∑ N train 

j=1 
c ′ 
(
F t (x j ) 

) . (17) 

ince c ( z ) is a monotonic non-increasing function, then −c ′ (z) is

on-negative, and the values 

{ 

w 

[ t+1] 
i 

} N train 

i =1 
defined in Eq. (17) can

e thought of as a set of instance weights. The denominator in

17) ensures that these weights are normalized 

 train ∑ 

i =1 

w 

[ t+1] 
i 

= 1 . (18) 

sing this expression for the instance weights, Eq. (16) becomes 

C[ F t ] ∝ 

∑ 

i : y i � = f (x i ) 

w 

[ t+1] 
i 

−
∑ 

i : y i � = F t (x i ) 

w 

[ t+1] 
i 

. (19)

ote that δC [ F t ] < 0 only if the weighted training error of the newly

uilt classifier is lower than the corresponding error for the en-

emble. 

Under these conditions, the (t + 1) th predictor in the ensemble

s the minimizer of the weighted training error 

f t+1 = arg min 

f∈F 

∑ 

i : y i � = f (x i ) 

w 

[ t+1] 
i 

, (20) 

here F is the functional space of the base learners. In contrast

o standard boosting algorithms, the weights given by (17) depend

nly on the ensemble predictions, irrespective of whether these

redictions are correct. 

Assuming that the function c ( z ) in (13) is bounded, it is conve-

ient to express it in terms of a cumulative distribution function

 ( π ) defined in the unit interval π ∈ [0, 1] 

 ( F (x ) ) = 2 K 

[
G (1 / 2) − G 

(
1 + F (x ) 

2 

)]
, (21) 

here K is a positive constant. Without loss of generality, this con-

tant is set to one ( K = 1 ). Because of the monotonicity of G ( p ),

hen the prediction F ( x i ) is incorrect (i.e. y i F ( x i ) < 0), the contri-

ution to the cost functional y i c ( F ( x i )) is positive. Assuming this

orm for c ( F ( x )), its derivative is 

 

′ ( F (x ) ) = −g 

(
1 + F (x ) 

2 

)
, (22) 
here g(p) = G 

′ (p) is the corresponding probability density, which

s non-negative. With these assumptions, the weights of the train-

ng instances are 

 

[ t+1] 
i 

= 

g 

(
π [ t] 

+ (x i ) 
)

∑ N train 

j=1 
g 

(
π [ t] 

+ (x j ) 
) , i = 1 , 2 , . . . , N train , (23)

here the density g ( p ) plays the role of an emphasis function. Note

hat this density need not be symmetric around π [ t] 
+ (x i ) = 

1 
2 . In

act, asymmetries in the emphasis could be useful in classification

roblems with unbalanced classes. In contrast to most boosting al-

orithms, including AdaBoost, the weights given by Eq. (23) do not

epend on the actual class label of the instance. Therefore, it does

ot seem possible to derive error bounds similar to those enunci-

ted in Theorem 6 (e.g. Eq. (21)) of [26] . 

. Empirical evaluation 

In this section we present the results of an empirical analy-

is of vote-boosting. Different sets of experiments have been per-

ormed to analyze the properties ensembles built with this method

nd evaluate their accuracy in a wide range of classification tasks

rom different areas of application. In these experiments, the sym-

etric beta distribution has been used as the emphasis function.

 first set of experiments is carried out to investigate the rela-

ionship of vote-boosting with bagging and AdaBoost. The results

f these experiments illustrate that, when simple (e.g. decision

tumps) or regularized learners (e.g. puned CART trees) are used

s base learners, vote-boosting performs an interpolation between

agging ( a = b = 1 . 0 ) and AdaBoost (high values of a = b). In a

econd set of experiments, we investigate the behavior of vote-

oosting composed of different classifiers. In particular, we com-

are the accuracies of vote-boosting ensembles composed of de-

ision stumps, pruned CART trees, unpruned CART trees, and (un-

runed) random trees. The best overall results in terms of predic-

ive accuracy are obtained with random trees. However, the dif-

erences with vote-booting ensembles composed of pruned or un-

runed CART trees are not statistically significant. Finally, the ac-

uracy of vote-boosting ensembles composed of random trees is

ompared with bagging, AdaBoost and random forest. From the re-

ults of this benchmarking exercise, we conclude that, in the prob-

ems investigated, vote-boosting ensembles composed of random

rees achieve state-of-the-art classification accuracy rates. These

ates are comparable or superior to random forest and AdaBoost.

 final batch of experiments is carried out to analyze the differ-

nces among the optimal emphasis profiles for different classifica-

ion problems using random trees as base learners. This analysis

llustrates that in problems with low levels of noise in the class

abels, new classifiers should focus on instances whose classifica-

ion by the current ensemble is uncertain By contrast, in problems

ith contaminated labels, the optimal emphasis is to reduce the

eights of such uncertain instances, which are likely to be noisy. 

.1. Vote-boosting as an interpolation between bagging and AdaBoost 

The objective of the experiments presented in this subsection

s to analyze how the behavior of vote-boosting ensembles com-

osed of simple or regularized learners, such as decision stumps,

r pruned CART trees, changes when different levels of empha-

is on the uncertain training instances are considered. As dis-

ussed earlier, when uniform emphasis is made, vote-boosting is

quivalent to bagging. In most of the problems analyzed, when

uch simple base learners are used, stronger emphasis on uncer-

ain instances (i.e. instances for which the degree of disagreement

mong the ensemble predictions is largest) results in a behavior
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Fig. 2. Weight ranks of the training instances for vote-boosting and AdaBoost of decision stumps in Twonorm (a) a = b = 1 . 0 , (b) a = b = 2 . 0 , (d) a = b = 30 . 0 . 

Fig. 3. Weight ranks of the training instances for vote-boosting and AdaBoost of decision stumps in Twonorm with 30% class-label noise, (a) a = b = 1 . 0 , (b) a = b = 2 . 0 , (c) 

a = b = 30 . 0 . 

Fig. 4. Error rate as a function of number of classifiers in Twonorm for bagging, AdaBoost, and vote-boosting ensembles of pruned CART trees: (a) training error (b) test 

error. 

 

 

 

 

 

 

 

 

 

 

 

o  

e  

r  

A  

i  

i  

s  

s  

T  

s  

c  

a  
that is similar to AdaBoost. In such cases, vote-boosting provides

an interpolation between bagging and AdaBoost, depending on the

strength of the emphasis on uncertain instances. 

To investigate this relationship between vote-boosting and Ad-

aBoost, we first present the results of an experiment in the bi-

nary classification problem Twonorm using decision stumps as base

learners. In Twonorm , instances are drawn from two unit-variance

Gaussians in 20 dimensions whose means are (a, a, . . . , a ) for class

1 and (−a, −a, . . . , −a ) for class 2, with a = 2 / 
√ 

20 [10] . This is

not a trivial task for decision stumps because, as individual classi-

fiers, they can model only class boundaries that are parallel to the

axes. In the experiments performed, the training set is composed
f 500 independently generated instances. Different vote-boosting

nsembles composed of 100 stumps were built using the symmet-

ic beta distribution for emphasis, with a = b ∈ { 1 . 0 , 2 . 0 , 30 . 0 } . An

daBoost ensemble composed of 100 stumps was also built us-

ng the same training data. The final weights given to the train-

ng instances in the different ensembles were recorded and sub-

equently ranked. Ties were resolved by randomizing the corre-

ponding ranks. In Fig. 2 , a scatter plot of these ranks is shown.

he position along the horizontal axis corresponds to the rank as-

igned by AdaBoost. Correspondingly, the location along the verti-

al axis corresponds to the ranks assigned by vote-boosting with

 = b = 1 . 0 in (a), a = b = 2 . 0 in (b), and a = b = 30 . 0 in (c). When
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Fig. 5. Error rate as a function of the number of classifiers in Pima for bagging, AdaBoost, and vote-boosting ensembles of pruned CART trees: (a) training error (b) test error. 

Table 1 

Characteristics of the classification problems analyzed and training / test partitions. 

Dataset Instances Training Test Number of 

attributes 

Adult 32,561 21,707 10,854 15 

Australian 690 460 230 14 

Breast W. 699 466 233 9 

Blood 748 499 249 5 

Boston 506 337 169 14 

Chess 3196 2131 1065 36 

German 10 0 0 667 333 20 

Heart 270 178 92 13 

Hepatitis 155 104 51 19 

Horse-colic 368 246 122 21 

Ionosphere 351 234 117 34 

Liver 345 230 115 6 

Magic 19,020 12,680 6340 11 

Musk 6598 4399 2199 168 

Ozone 2536 1691 845 74 

Parkinsons 197 132 65 24 

Pima 768 512 256 8 

Ringnorm 2300 300 20 0 0 20 

Sonar 208 139 69 60 

Spambase 4601 3068 1533 58 

Threenorm 2300 300 20 0 0 20 

Tic-tac-toe 958 639 319 9 

Twonorm 2300 300 20 0 0 20 

a  

n  

a  

t  

A  

d  

w  

C  

t  

p  

l  

l  

w  

i  
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c
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Table 2 

Test error rates of vote-boosting ensembles composed of decision stumps, pruned 

CART trees, unpruned CART trees and random trees. 

Dataset Stump Pruned Unpruned Random tree 

Adult 20.9 ± 2.9 13.6 ± 0.3 13.5 ± 6.2 13.6 ± 0.2 

Australian 14.6 ± 2.1 13.6 ± 2.0 13.5 ± 2.1 13.3 ± 2.1 

Breast W. 3.9 ± 1.0 3.8 ± 1.1 4.0 ± 1.2 3.1 ± 1.1 

Blood 22.7 ± 1.5 22.2 ± 1.7 21.8 ± 1.8 21.9 ± 1.7 

Boston 15.2 ± 2.3 12.7 ± 2.5 13.0 ± 2.6 13.1 ± 2.3 

Chess 17.7 ± 14.1 0.6 ± 0.6 0.7 ± 0.6 0.6 ± 0.3 

German 25.4 ± 1.6 24.1 ± 2.1 24.1 ± 2.0 24.3 ± 1.7 

Heart 16.4 ± 3.5 17.8 ± 3.6 18.4 ± 3.9 16.8 ± 3.5 

Hepatitis 16.4 ± 4.3 16.2 ± 4.8 16.9 ± 4.9 14.0 ± 3.9 

Horse-Colic 13.9 ± 2.7 14.1 ± 2.9 13.9 ± 2.7 15.0 ± 2.5 

Ionosphere 8.1 ± 1.7 6.7 ± 2.0 6.7 ± 1.8 6.6 ± 1.8 

Liver 27.5 ± 3.9 28.4 ± 3.6 28.6 ± 3.9 28.4 ± 3.7 

Magic 15.4 ± 0.3 12.7 ± 0.3 12.9 ± 0.3 11.6 ± 0.2 ∗

Musk 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

Ozone 6.3 ± 0.0 5.8 ± 0.4 5.8 ± 0.4 6.0 ± 0.2 

Parkinsons 11.5 ± 4.3 7.4 ± 3.6 7.6 ± 3.2 9.3 ± 3.6 

Pima 24.1 ± 2.0 24.2 ± 2.2 23.8 ± 2.3 23.4 ± 1.8 

Ringnorm 9.3 ± 0.9 4.5 ± 0.8 4.6 ± 0.8 4.4 ± 0.8 

Sonar 18.9 ± 4.6 16.0 ± 4.4 15.8 ± 4.8 15.5 ± 4.5 

Spambase 6.1 ± 0.6 4.5 ± 0.3 4.5 ± 0.3 4.1 ± 0.5 

Threenorm 20.1 ± 1.0 17.1 ± 1.1 17.0 ± 1.0 16.2 ± 1.0 ∗

Tictactoe 22.0 ± 2.9 0.7 ± 0.6 0.7 ± 0.6 1.1 ± 0.7 

Twonorm 4.6 ± 0.7 4.2 ± 0.6 4.2 ± 0.6 3.6 ± 0.5 ∗

s  

m  

i  

a  

t  

n  

w  

n  
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h  

a  
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 = b = 1 . 0 is used, all instances are assigned the same weight and

o correlations between the weight ranks given by vote-boosting

nd AdaBoost is observed. Therefore, the points corresponding to

he training instances appear uniformly distributed in Fig. 2 (a).

s the values of a = b increase, points tend to cluster around the

iagonal. This is a consequence of the fact that the ranks of the

eights given by both types of ensembles become more similar.

omparing Fig. 2 (a)–(c), it is apparent that the correlations be-

ween the weight ranks become stronger as a = b increases. In

articular for a = b = 30 . 0 vote-boosting and AdaBoost give simi-

ar emphasis, even though the former does not make use of class

abels to decide whether an instance should be given more weight,

hereas the latter does. The reason for this coincident emphasis

s that, in this simple problem, the ensemble classifiers are more

ikely to disagree precisely in the instances that are incorrectly

lassified. 

If class-label noise is injected in the problem, the weighting

chemes of AdaBoost and vote-boosting become different: Vote-

oosting maintains the focus on instances in the boundary region,

n which classes overlap and the disagreement rates among the en-
emble predictions are highest. By contrast, AdaBoost tends to give

ore weight to those instances whose class label has been mod-

fied. Focusing on these noisy instances is misleading and eventu-

lly impairs the generalization capacity of AdaBoost. To illustrate

his observation, the experiment was repeated injecting class-label

oise in the training data. Specifically, 30% of the training examples

ere selected at random and their class labels flipped, as in the

oisy completely at random model described in [22] . The results of

hese experiments are shown in Fig. 3 . Instances whose class label

as been switched are marked with a red cross in these plots. For

 = b = 1 . 0 , no correlation is observed between the ranks of the

eights given by vote-boosting and AdaBoost. However, instances

hose class label has been switched, which are distributed uni-

ormly in the vertical direction, tend to appear on the right-hand

ide of the plots. This means that they receive special emphasis

n AdaBoost but not in vote-boosting. Increasing the value of a = b

ushes the unperturbed instances towards the diagonal but not the

erturbed ones. However, the correlation between the ranks is less

arked than in the noiseless case, because of the interference of

he noisy instances. 
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Fig. 6. Comparison of the average ranks of decision stumps (ST), pruned CART trees 

(PR), unpruned CART trees (UNPR), and random trees (RT) using a Nemenyi test. 

Horizontal lines connect methods whose average ranks are not significantly differ- 

ent ( p -value < .05). 

Table 3 

Median of the beta distribution parameter ensembles composed of decision stumps, 

pruned CART trees, unpruned CART trees, and random trees. An asterisk is shown 

when all values of the beta parameter yield the same cross-validation error. 

Dataset Stump Pruned Unpruned Random tree 

Adult 40.0 40.0 20.0 1.0 

Australian ∗ 5.0 2.5 1.5 

Breast W. 10.0 5.0 10.0 1.0 

Blood 40.0 1.25 0.75 0.5 

Boston 40.0 20.0 10.0 2.0 

Chess 20.0 20.0 20.0 10.0 

German 40.0 5.0 2.5 2.5 

Heart 10.0 2.5 1.5 0.5 

Hepatitis 10.0 10.0 5.0 2.5 

Horse-Colic 20.0 1.5 1.5 1.5 

Ionosphere 40.0 5.0 10.0 2.5 

Liver 40.0 5.0 5.0 1.5 

Magic 40.0 40.0 40.0 20.0 

Musk ∗ ∗ ∗ 0.7 

Ozone 40.0 10.0 5.0 1.5 

Parkinsons 40.0 15.0 10.0 5.0 

Pima 15.0 1.5 1.0 0.5 

Ringnorm 40.0 20.0 20.0 20.0 

Sonar 40.0 20.0 20.0 10.0 

Spambase 40.0 20.0 20.0 20.0 

Threenorm 40.0 10.0 10.0 5.0 

Tictactoe 40.0 20.0 20.0 10.0 

Twonorm 20.0 20.0 20.0 5.0 
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A second batch of experiments was carried out to analyze the

behavior of vote-boosting composed of pruned CART trees as a

function of the strength of the emphasis that is applied to uncer-

tain instances. Using the symmetric beta distribution as emphasis

function, we analyze how the learning curves, which trace the de-

pendence of the error as a function of the size of the ensemble, de-

pend on the value of the shape parameter. The values explored are

a = b ∈ { 0 . 25 , 0 . 5 , 0 . 75 , 1 . 0 , 1 . 25 , 1 . 5 , 2 . 5 , 5 , 10 , 20 , 40 } . The experi-

ments were made on the classification tasks Twonorm and Pima .

These tasks have been chosen because of the different prediction

accuracies of bagging and AdaBoost on those datasets. In Twonorm ,

AdaBoost significantly outperforms bagging. By contrast in Pima ,

which is a very noisy task, bagging is more accurate than Ad-

aBoost. 

Figs. 4 and 5 display the learning curves for bagging, AdaBoost,

and vote-boosting using different values of the shape parameter in

the classification tasks Twonorm and Pima , respectively. The plots

on the left-hand side show the results for the training error. The

plots on the right-hand side correspond to the test error curves.

When a = b = 1 . 0 , all instances are given equal weights. In this

case, if weighted resampling is used, vote-boosting is equivalent

to bagging. This is apparent from Figs. 4 and 5 : the error curves

of both methods are very close to each other. When values a =
b < 1 . 0 are used, emphasis is made on instances on which most

predictors agree. If regularized classifiers, such as pruned CART

trees, are used as base learners, this type of emphasis is in gen-

eral not effective. Nonetheless, as will be illustrated by the results

presented in Section 4.3 , focusing on these types of instances can

lead to improvements in the generalization capacity when the data

are very noisy and the ensemble is composed of flexible classifiers

that overfit (e.g. unpruned CART or random trees). 

Values of a = b > 1 . 0 correspond to emphasizing instances in

which the ensemble prediction is uncertain. For Twonorm , the

learning curves of vote-boosting using a = b = 40 . 0 and AdaBoost

are quite similar. In this problem, the classification errors are

mainly due to the overlap between the distributions of the two

classes. Therefore, the incorrectly classified instances are close to

the decision boundary, where the ensemble predictions are also

more uncertain. Using a beta distribution sharply peaked around

π = 0 . 5 (see Fig. 1 ) gives more weight to these uncertain instances.

In consequence, the resulting emphasis is similar to AdaBoost’s.

In Pima , which is a noisy problem, the learning curves of vote-

boosting with large a = b and AdaBoost are different. Still, the clos-

est performance to AdaBoost is vote-boosting with large a = b. Fi-

nally, we observe that the optimal value for the shape parame-

ter of the beta distribution in vote-boosting is problem dependent:

Values of a = b ≈ 1 . 25 − 1 . 5 perform well in Pima . The best perfor-

mance in Twonorm requires using a large values of a = b ≈ 40 . For

each problem, the optimal value can be determined using cross-

validation. 

4.2. Vote-boosting with different base learners 

In this section, we present the results of a comparison of vote-

boosting ensembles composed of different base learners. These are,

in order of increasing complexity, decision stumps, pruned and un-

pruned CART trees, and unpruned random trees. Ensembles com-

posed of 501 classifiers are built. This fairly large ensemble size is

needed in some problems to achieve convergence to the asymp-

totic error level [36] . Weighted resampling with replacement is

used to generate the bootstrap samples on which the individual

classifiers are trained. In vote-boosting, the symmetric beta distri-

bution is used for emphasis. The shape parameter is determined

as the value among those in a = b ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5,

2.5, 5, 10, 20, 40} that minimizes the 10-fold cross-validation in

the training set. When uniform emphasis in all the training in-
tances ( a = b = 1 . 0 ) is used, the results are equivalent to bagging

r, if random trees are used as base learners, to random forest. For

alues of the shape parameter above 1.0, the symmetric beta dis-

ribution has a single mode at π = 0 . 5 , which implies that more

mphasis is made on training instances on which the degree of

isagreement among the different classifiers is large. By contrast,

hen the shape parameter is smaller than 1 the focus is on train-

ng instances on which most classifiers agree. 

For the empirical evaluation carried out in this an the follow-

ng section, different binary classification tasks from the UCI repos-

tory [6] and other sources [11] are considered. The characteristics

f the datasets used in this study are summarized in Table 1 . For

ach dataset, the table displays the total number of labeled in-

tances available, the number of those instances used for training

nd for testing, and the number of attributes. The test error rates

eported are averages, followed by the corresponding standard de-

iations after the ± sign, over 100 realizations of the training and

est sets. For classification problems in which only a finite collec-

ion of labeled instances is available, 2/3 of the data are selected

t random for training and the remaining 1/3 for testing. For syn-

hetic problems (namely, Ringnorm, Twonorm , and Threenorm ), in-

tances are generated independently at random: 300 instances are

sed for training and 20 0 0 for testing. In all cases, stratified sam-

ling is used to ensure that the class distributions in the test and

raining sets are similar. 

In Table 2 , the average test errors over the 100 realizations

re shown for all base learners. For each dataset, the lowest av-

rage generalization error is highlighted in boldface. The second
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Table 4 

Test error rates for bagging (unpruned CART trees), boosting (pruned CART trees), random forest, and vote-boosting 

(random trees). 

Dataset Noise (in %) Bagging AdaBoost Random forest Vote-boosting a = b (median) 

Adult 0 14.6 ± 0.2 13.8 ± 0.2 13.6 ± 0.2 13.6 ± 0.2 1.0 

10 15.5 ± 0.3 14.3 ± 0.3 14.1 ± 0.3 14.0 ± 0.3 0.75 

20 17.0 ± 0.3 14.8 ± 0.2 14.8 ± 0.3 14.3 ± 0.2 0.25 

30 20.3 ± 0.3 15.1 ± 0.3 17.8 ± 0.3 15.1 ± 0.2 0.25 

Australian 0 13.3 ± 2.1 13.7 ± 1.9 13.0 ± 2.0 13.3 ± 2.1 1.5 

10 14.9 ± 2.3 17.6 ± 2.4 13.6 ± 2.0 13.6 ± 2.1 0.75 

20 18.2 ± 2.9 24.3 ± 3.0 15.8 ± 2.2 14.3 ± 2.4 ∗ 0.25 

30 24.6 ± 3.8 32.0 ± 3.5 21.6 ± 3.0 18.2 ± 3.3 ∗ 0.25 

Breast W. 0 4.6 ± 1.2 3.6 ± 1.0 3.0 ± 1.0 3.1 ± 1.1 1.0 

10 6.3 ± 1.6 6.9 ± 1.8 4.1 ± 1.2 3.5 ± 1.2 ∗ 0.5 

20 9.6 ± 2.5 12.0 ± 2.6 6.5 ± 1.9 4.1 ± 1.4 ∗ 0.25 

30 17.7 ± 3.0 20.9 ± 3.4 13.0 ± 2.7 6.8 ± 2.6 ∗ 0.25 

Blood 0 26.3 ± 1.9 25.4 ± 2.1 24.5 ± 2.2 21.9 ± 1.7 ∗ 0.5 

10 28.5 ± 2.2 27.2 ± 2.5 26.6 ± 2.4 22.6 ± 2.0 ∗ 0.25 

20 31.6 ± 2.7 30.2 ± 2.6 29.7 ± 2.6 23.8 ± 2.5 ∗ 0.25 

30 35.8 ± 3.6 34.6 ± 3.8 34.2 ± 3.6 29.0 ± 4.5 ∗ 0.25 

Boston 0 14.2 ± 2.4 12.7 ± 2.4 13.0 ± 2.4 13.1 ± 2.3 2.0 

10 16.2 ± 2.8 16.9 ± 2.5 14.5 ± 2.6 14.9 ± 2.5 0.5 

20 19.1 ± 3.3 22.2 ± 3.6 17.5 ± 3.2 16.2 ± 2.8 0.5 

30 26.4 ± 4.2 31.4 ± 4.0 24.6 ± 3.8 21.3 ± 4.4 ∗ 0.25 

Chess 0 0.6 ± 0.3 0.5 ± 0.3 1.6 ± 0.4 0.6 ± 0.3 10.0 

10 5.1 ± 0.7 2.3 ± 0.5 2.1 ± 0.5 2.1 ± 0.5 1.25 

20 11.9 ± 1.2 3.6 ± 0.7 4.3 ± 0.9 4.0 ± 0.9 0.75 

30 22.4 ± 1.5 5.5 ± 0.9 ∗ 10.2 ± 1.3 7.9 ± 1.5 0.25 

German 0 24.5 ± 2.0 24.8 ± 2.1 24.0 ± 1.8 24.3 ± 1.7 2.5 

10 26.2 ± 2.1 27.9 ± 2.1 25.3 ± 1.8 25.3 ± 1.9 1.0 

20 28.8 ± 2.4 32.2 ± 2.5 27.3 ± 2.2 27.4 ± 2.3 0.75 

30 32.3 ± 3.0 37.4 ± 2.8 31.0 ± 3.1 29.9 ± 3.2 0.5 

Heart 0 19.5 ± 3.7 20.2 ± 3.4 17.2 ± 3.0 16.8 ± 3.5 0.5 

10 22.7 ± 4.2 24.9 ± 4.5 19.3 ± 3.7 18.7 ± 4.0 0.5 

20 26.0 ± 5.0 30.6 ± 5.1 22.7 ± 4.2 20.8 ± 4.0 0.375 

30 32.1 ± 5.4 36.3 ± 6.0 28.5 ± 5.8 25.8 ± 6.6 0.25 

Hepatitis 0 15.8 ± 4.7 15.8 ± 4.0 13.6 ± 3.5 14.0 ± 3.9 2.5 

10 17.1 ± 4.7 20.0 ± 5.0 14.2 ± 3.9 15.3 ± 3.9 1.0 

20 21.0 ± 5.8 26.0 ± 6.9 17.6 ± 4.8 17.3 ± 4.5 0.5 

30 27.8 ± 7.8 33.6 ± 7.2 23.8 ± 7.3 21.9 ± 7.0 0.5 

Horse-colic 0 14.9 ± 2.8 15.4 ± 2.6 15.0 ± 2.5 15.0 ± 2.5 1.5 

10 17.8 ± 3.5 21.2 ± 3.5 17.3 ± 2.9 17.4 ± 3.0 1.0 

20 23.4 ± 4.2 27.6 ± 4.7 21.3 ± 3.6 20.9 ± 3.7 0.625 

30 30.0 ± 5.6 34.9 ± 5.1 28.4 ± 4.6 28.2 ± 5.3 0.75 
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ments. 
est result is underlined. If the differences between the two lowest

est errors is statistically significant at a significance level α = 0 . 05

he lowest error value is marked with an asterisk ( ∗). A resam-

led paired t -test is used for synthetic problems. When random

rain/test partitions of the same dataset are employed a corrected

esampled paired t -test [8,51] is used instead. 

To provide an overall comparison of the accuracies of vote-

oosting using the four tested base learners, we apply the frame-

ork proposed in [16] . To this end, the average rank of the clas-

ifier average errors is computed for the 23 classification prob-

ems investigated. The rank of a classifier in a specific classification

roblem is determined by ordering the different methods accord-

ng to their test errors. A lower rank corresponds to a smaller test

rror and, therefore, better accuracy. The average ranks of vote-

oosting using the four different base learners are displayed in

ig. 6 . In this diagram, the differences of average ranks between

ethods that are connected by a horizontal solid line are not sta-

istically significant according to a Nemenyi test ( p -value < .05). 

From the results presented in Table 2 and Fig. 6 , one concludes

hat vote-boosting composed of random trees has the best overall

ccuracy: except in Boston, Horse-colic , and Parkinsons , these types

f ensembles achieve the lowest or second lowest average test er-

ors. Notwithstanding, according to the Nemenyi test, the average

ank differences are statistically significant only with respect to the

se of stumps (see Fig. 6 ). 
The values of the shape parameters of the symmetric beta dis-

ribution ( a = b) selected by cross-validation are shown in Table 3 .

he figures reported are medians over the 100 realizations of the

raining and test data. An asterisk is shown in the Table when en-

embles built using the different values have the same within-train

ross-validation error. For decision stumps, this occurs in Australian

nd Musk because the individual stumps are the same irrespective

f the type of emphasis employed. In Musk , when more complex

ase classifiers are used, the ensembles built with the different

alues of a = b all achieve zero error. In most cases, the value of

he shape parameter of the beta distribution ( a = b) decreases as

he complexity of the base classifier increases. The reason of this

s that more emphasis is needed in order to boost more stable base

lassifiers. Thus, the largest values of a = b are selected for decision

tumps. Hence, for these types of base learners the focus is on un-

ertain instances, on which most ensemble classifiers disagree. The

owest values of a = b correspond to random trees. In this case,

he emphasis on uncertain instances is reduced. In fact, for Blood,

eart, Musk , and Pima , the focus should be on instances on which

he ensemble classifiers agree. 

In summary, vote-boosting ensembles composed of random

rees provide the best overall accuracy in the problems investi-

ated. Since this type of ensemble can also be built efficiently, they

ill be used for further evaluation in the following set of experi-
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Table 5 

Test error rates for bagging (unpruned CART trees), boosting (pruned CART trees), random forest, and vote-boosting 

(random trees). 

Dataset Noise (in %) Bagging AdaBoost Random forest Vote-boosting a = b (median) 

Ionosphere 0 8.0 ± 2.2 6.6 ± 1.8 6.6 ± 1.6 6.6 ± 1.8 2.5 

10 9.5 ± 2.7 10.5 ± 2.6 7.9 ± 2.2 7.9 ± 2.2 0.75 

20 13.1 ± 3.1 17.0 ± 3.5 10.9 ± 2.9 9.9 ± 3.1 0.5 

30 19.7 ± 4.5 26.4 ± 4.5 17.8 ± 4.6 15.7 ± 5.1 0.25 

Liver 0 29.5 ± 3.9 30.5 ± 3.9 27.7 ± 3.8 28.4 ± 3.7 1.5 

10 31.7 ± 4.1 33.8 ± 4.5 31.0 ± 4.0 31.4 ± 3.8 1.0 

20 36.1 ± 4.3 37.8 ± 4.5 35.1 ± 4.4 35.7 ± 4.4 1.0 

30 39.9 ± 4.7 41.5 ± 4.7 39.6 ± 4.5 39.7 ± 4.9 0.875 

Magic 0 12.3 ± 0.3 12.9 ± 0.3 12.0 ± 0.3 11.6 ± 0.2 ∗ 20.0 

10 12.9 ± 0.3 13.9 ± 0.3 12.4 ± 0.2 12.5 ± 0.2 1.25 

20 14.2 ± 0.4 14.4 ± 0.3 13.6 ± 0.4 13.3 ± 0.4 ∗ 0.5 

30 17.4 ± 0.5 15.0 ± 0.5 16.7 ± 0.4 14.6 ± 0.4 ∗ 0.25 

Musk 0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.7 

10 1.4 ± 0.3 0.6 ± 0.2 1.6 ± 0.3 0.1 ± 0.1 ∗ 0.25 

20 4.5 ± 0.4 0.9 ± 0.6 5.7 ± 0.4 0.8 ± 0.3 0.25 

30 12.0 ± 1.0 2.5 ± 1.2 ∗ 14.4 ± 1.2 5.1 ± 0.7 0.25 

Ozone 0 6.0 ± 0.3 5.7 ± 0.4 ∗ 6.0 ± 0.2 6.0 ± 0.2 1.5 

10 6.2 ± 0.3 6.4 ± 0.5 6.0 ± 0.2 6.0 ± 0.3 5.0 

20 6.6 ± 0.6 9.7 ± 1.0 6.1 ± 0.4 6.2 ± 0.4 1.0 

30 9.1 ± 0.9 18.3 ± 1.5 7.9 ± 1.0 7.5 ± 1.2 0.5 

Parkinsons 0 10.5 ± 4.0 7.1 ± 3.3 ∗ 10.2 ± 3.4 9.3 ± 3.6 5.0 

10 13.8 ± 4.2 12.9 ± 4.0 12.2 ± 3.7 12.7 ± 4.2 1.5 

20 18.6 ± 5.7 20.1 ± 5.9 16.2 ± 4.8 17.0 ± 4.9 0.75 

30 24.1 ± 5.5 28.0 ± 6.0 23.0 ± 5.8 22.6 ± 6.1 0.5 

Pima 0 23.9 ± 1.9 25.9 ± 1.9 23.2 ± 2.0 23.4 ± 1.8 0.5 

10 25.9 ± 2.3 28.9 ± 2.3 24.7 ± 2.2 24.1 ± 2.4 0.25 

20 28.4 ± 2.6 32.9 ± 3.3 26.7 ± 2.5 25.3 ± 2.5 ∗ 0.25 

30 32.6 ± 3.0 38.4 ± 3.3 31.5 ± 2.8 29.8 ± 3.7 ∗ 0.5 

Ringnorm 0 8.9 ± 1.8 4.3 ± 0.6 ∗ 6.0 ± 1.1 4.4 ± 0.8 20.0 

10 9.6 ± 1.7 7.6 ± 1.0 6.7 ± 1.2 6.1 ± 1.4 ∗ 10.0 

20 10.8 ± 1.8 13.0 ± 1.7 7.9 ± 1.4 ∗ 8.4 ± 1.8 1.25 

30 15.6 ± 2.9 22.2 ± 2.3 12.4 ± 2.4 12.5 ± 3.0 0.75 

Sonar 0 22.4 ± 5.1 15.1 ± 4.6 17.9 ± 4.8 15.5 ± 4.5 10.0 

10 23.3 ± 5.5 20.7 ± 5.1 20.6 ± 5.4 19.7 ± 4.6 5.0 

20 26.9 ± 5.7 26.3 ± 5.3 24.2 ± 5.7 24.5 ± 5.6 1.25 

30 32.2 ± 5.0 34.6 ± 5.5 30.4 ± 5.4 30.4 ± 5.3 0.75 

Spambase 0 5.9 ± 0.5 4.3 ± 0.4 5.0 ± 0.5 4.1 ± 0.5 20.0 

10 8.2 ± 0.8 6.1 ± 0.6 6.5 ± 0.6 6.3 ± 0.6 0.75 

20 11.5 ± 1.0 7.5 ± 0.7 9.4 ± 0.8 7.1 ± 0.7 0.25 

30 16.5 ± 1.1 10.3 ± 1.1 14.3 ± 1.0 8.6 ± 0.8 ∗ 0.25 

Table 6 

Test error rates for bagging (unpruned CART trees), boosting (pruned CART trees), random forest, and vote-boosting 

(random trees). 

Dataset Noise (in %) Bagging AdaBoost Random forest Vote-boosting a = b (median) 

Threenorm 0 19.0 ± 1.7 16.8 ± 0.8 16.6 ± 0.9 16.2 ± 1.0 ∗ 5.0 

10 20.6 ± 1.7 20.2 ± 1.2 18.5 ± 1.1 18.6 ± 1.2 1.5 

20 23.3 ± 1.8 24.9 ± 1.6 21.2 ± 1.3 ∗ 21.6 ± 1.5 1.25 

30 28.8 ± 2.1 32.0 ± 1.9 26.9 ± 2.0 ∗ 27.2 ± 2.5 0.62 

Tic-tac-toe 0 2.1 ± 0.9 0.7 ± 0.6 ∗ 2.1 ± 1.0 1.1 ± 0.7 10.0 

10 5.7 ± 1.6 9.9 ± 1.8 5.9 ± 1.6 5.6 ± 1.6 2.5 

20 12.5 ± 2.2 20.6 ± 2.7 12.7 ± 2.6 13.0 ± 2.6 1.25 

30 23.5 ± 2.8 30.3 ± 2.9 22.2 ± 2.7 22.9 ± 2.9 0.75 

Twonorm 0 6.4 ± 1.5 4.0 ± 0.5 3.9 ± 0.5 3.6 ± 0.5 ∗ 5.0 

10 7.3 ± 1.6 7.1 ± 0.9 4.8 ± 0.7 ∗ 4.9 ± 0.8 1.25 

20 9.3 ± 2.1 12.6 ± 1.6 6.6 ± 1.1 6.7 ± 1.2 0.75 

30 14.2 ± 2.3 21.5 ± 2.4 10.7 ± 1.7 9.6 ± 2.5 ∗ 0.5 

win/draw/loss 0 12/11/0 6/13/4 9/14/0 —

10 16/7/0 17/6/0 4/18/1 —

20 18/5/0 16/7/0 7/14/2 —

30 19/4/0 19/2/2 11/11/1 —
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4.3. Comparison of vote-boosting with other ensemble methods 

In this section, we carry out an comparison of vote-boosting

ensembles and other related methods: bagging, AdaBoost and ran-

dom forest. The classification problems considered and experimen-

tal protocol followed are the same as in the previous section. In

each type of ensemble, the base classifier that performs best is

used: pruned CART trees in AdaBoost, unpruned CART trees in bag-
ing, and random trees in vote-boosting and random forest. Note

hat unpruned CART or random trees cannot be used in combina-

ion with AdaBoost because they generally achieve zero training

rror, which gives rise to singularities in the weight updates. As il-

ustrated in the previous section, similar results are obtained with

ote-boosting ensembles composed of unpruned or pruned CART

rees. The adabag [4] , ipred [52] and ranfomForest [40] packages in

 have been used for AdaBoost, bagging, and random forest imple-
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Fig. 7. Comparison of the average ranks of bagging, AdaBoost, random forest and vote-boosting using a Nemenyi test. Horizontal lines connect methods whose average ranks 

are not significantly different ( p -value < .05). The plots correspond to datasets without injected noise (top left), with 10% (top right), 20% (bottom left), and 30% class-label 

noise (bottom right). 

Algorithm 1: Vote-boosting algorithm with resampling. 

Input : 

D train = { ( x i , y i ) } N train 
i =1 

, x i ∈ X , y i ∈ {−1 , 1 } 
T % Ensemble size 

L % Base learning algorithm 

g(p) % Non-negative emphasis function ( 0 ≤ p ≤ 1 ) 

1 F 0 (·) ← 0 

2 t + (x i ) ← 0 ∀ i = 1 , . . . , N train 

3 w 

[1] 
i 

← 

1 
N train 

∀ i = 1 , . . . , N train 

4 for t ← 1 to T do 

5 f t (·) ← L 

(
D train , w 

[ t] 
)

6 t + (x i ) ← t + (x i ) + I ( f t (x i ) > 0) ∀ i = 1 , . . . , N train 

7 π [ t] 
+ (x i ) = 

t + (x i )+1 
t+2 ∀ i = 1 , . . . , N train 

8 w 

[ t+1] 
i 

← g 

(
π [ t] 

+ (x i ) 
)

∀ i = 1 , . . . , N train 

9 Normalize w 

[ t] 

10 F t (·) ← F t−1 (·) + f t (·) 
Output : H T (·) = sign (F T (·)) 
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l  

B  
entations, respectively. As in the previous subsection, ensembles

f 501 classifiers are used to guarantee convergence to the asymp-

otic error level. In both vote-boosting and AdaBoost, weighted re-

ampling with replacement is used to take into account the differ-

nt emphasis on the training instances. In AdaBoost, reweighting

as considered as an alternative. However, as reported in the lit-

rature, similar or slightly better results are obtained when resam-

ling instead of reweighting is used [18,58] . 

The experiments are carried out on the original problem, and

lso with 10%, 20% and 30% class-label noise. Class-label noise is

njected into the training set by randomly switching the class label

f a random subset (10%, 20% and 30%) of the training instances.

his type of label noise is known as completely at random noise

NCAR) [22] . An interesting observation is that, as the noise level

ncreases, the values of the shape parameter that are selected tend

o decrease. 

The test error rates of the different ensembles and classifica-

ion problems considered are displayed in Tables 4–6 . The results

eported are averages, followed by the corresponding standard de-

iations after the ± sign, over 100 realizations of the training

nd test set partitions. The median value for a = b used in vote-

oosting is reported in the last columns of Tables 4–6 . In these ta-

les, the best and second best results for each classification prob-

em are highlighted using bold face and underlined, respectively. In

ddition, the lowest test error rate is marked with an asterisk ( ∗) if

he improvement over to the second best is statistically significant,

t a significance level α = 0 . 05 . The significance of these differ-
nces is determined using a paired resampled t -test for synthetic

roblems, and to a corrected resampled paired t -test [8,51] when

andom train/test partitions are used. Finally, the number of sig-

ificant wins and losses when one compares the average accuracy

f vote-boosting with each of the remaining ensembles, according

o the aforementioned statistical test, are shown in the last row of

able 6 . Draws correspond to differences of average accuracy that

re not statistically significant. 

From the results presented in these tables, it is clear that vote-

oosting ensembles exhibit the best overall performance. In par-

icular, it has the largest number of statistically significant wins at

ll noise levels. The tally is very favorable when one compares the

verage accuracy of vote-boosting with bagging: vote-boosting sig-

ificantly outperforms bagging in 12 out of the 23 datasets (with-

ut injected noise). For 10%, 20% and 30% noise levels, the dif-

erences in number of wins become larger: vote-boosting signifi-

antly outperforms bagging in 16, 18 and 19 out of the 23 tested

atasets, respectively. The comparison with AdaBoost on the ex-

lored datasets is also favorable to vote-boosting. In the origi-

al datasets (i.e. without injected noise) vote-boosting outperforms

daBoost in 6 out of 23 datasets and is inferior in 4 datasets:

zone, Parkinsons, Ringnorm , and Tic-tac-toe ). In this problems vote-

oosting is second best; furthermore, its test error rates of vote-

oosting are fairly close to AdaBoost. In these classification prob-

ems, except for Ozone , the shape parameter of the beta distribu-

ion used as emphasis function in vote-boosting is fairly high. This

ndicates a strong emphasis on uncertain examples, which has a

imilar effect as the emphasis on incorrectly classified instances

hat is characteristic of AdaBoost. On the other hand, in problems

uch as Blood, Heart, Liver or Pima , which are difficult for AdaBoost,

ote-boosting selects low values for a = b, which implies that less

mphasis is made on uncertain examples. 

It is remarkable that, for some datasets, such as Blood, Heart ,

nd Pima , and in most of the problems, for sufficiently high lev-

ls of class-label noise, values of a = b below 1.0 provide the best

ccuracy. In such cases, emphasis is made on instances on which

he individual ensemble classifiers agree the most. The effective-

ess of this type of emphasis, which is somewhat counter-intuitive,

s a consequence of the large intrinsic variability of random trees.

n fact, this effect is less prominent in ensembles of more stable

ase learners, such as decision stumps or pruned CART trees. As

he noise level increases, the performance of AdaBoost rapidly de-

eriorates. By contrast vote-boosting is robust to class-label noise:

t outperforms AdaBoost in 17, 16 and 19 datasets for 10%, 20% and

0% injected noise, respectively. 

Finally, vote-boosting is more accurate than random forest in

 out of the 23 classification problems investigated for the noise-

ess case. In some cases, the improvements can be fairly large (e.g.

lood, Chess, Ringnorm, Sonar or Tic-tac-toe ). In 14 datasets the two
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Fig. 8. Histograms of vote fractions for correctly (white) and incorrectly (red) clas- 

sified instances in Sonar for the training set (left column) and test set (right col- 

umn). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Histograms of vote fractions for correctly (white) and incorrectly (red) clas- 

sified instances in Pima for the training set (left column) and test set (right col- 

umn). (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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methods have comparable accuracies. The accuracy improvements

of random forests over vote-boosting are not statistically significant

in any of the problems investigated. When the class labels are con-

taminated, vote-boosting performs significantly better in 4, 7 and

11, and worse in 1, 2 and 1 datasets for 10%, 20%, and 30% noise

levels, respectively. Again, in the noisy datasets we see that, when

random forest wins, the differences are typically small. By contrast,

when vote-boosting wins, the differences are, in general, large. 

In addition, the overall performance of the accuracies of the dif-

ferent ensembles are summarized in Fig. 7 using the procedure de-

scribed in [16] . The plots in this figure display the average ranks of

bagging, AdaBoost, random forest (RF) and vote-boosting for the

original datasets (top left), and for 10% (top right), 20% (bottom
eft), 30% (bottom right) injected class-label noise. In these plots, a

orizontal solid line connects methods for which the differences of

verage ranks are not statistically significant using a Nemenyi test

ith p-value < 0.05. In the original problems, vote-boosting has

he best average rank. However, the differences with random forest

nd AdaBoost are not statistically significant. The difference with

agging, which has the worst performance in terms average rank,

s statistically significant. For problems contaminated with noise in

he class labels, vote-boosting has the best average rank. The differ-

nces with respect to random forest increase for higher noise lev-

ls. However, they are not statistically significant. In all noisy prob-

ems, the average ranks of both random forest and vote-boosting

nsembles are significantly better than bagging and AdaBoost. 
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.4. Emphasis profiles 

From the values of the shape parameter of the beta distribution

eported in the last column of Tables 4–6 , it is apparent that the

ype of emphasis and its strength need to be adapted to the classi-

cation task considered. To further investigate this point, we have

arried out a detailed analysis of the distribution of class votes for

onar and Pima , in which the optimal emphasis strategies are very

ifferent. 

In Sonar , the vote-boosting ensemble is built using a beta dis-

ribution with a = b = 10 . 0 . Thus, the optimal emphasis is to focus

n training instances in which the disagreement rates are largest.

n Fig. 8 , the histograms of the distribution of votes are plotted

or ensembles of 1, 5, 11 and 501 random trees. The height of the

hite bars indicate the fraction of correctly classified instances for

he corresponding range of voting distributions. The red stripped

ars correspond to incorrectly classified instances. The plots on the

eft are for the training set and on the right for the test set. In

he training set, the strong focus on uncertain instances (those for

hich the fraction of class votes is close to 0.5) leads to a markedly

imodal distribution, in which most predictions are by clear ma-

ority. Incorrectly classified instances disappear because ensembles

hat are sufficiently large achieve zero training error. The distribu-

ion of class votes in the test set is markedly different: It covers

he whole interval, and exhibits a low peak for intermediate class

ote frequencies, especially for instances that are misclassified. 

A very different picture is obtained in Pima ( Fig. 9 ). In this

lassification task, the selected shape parameter for the symmetric

eta distribution is a = b = 0 . 5 . In consequence, the optimal strat-

gy is to avoid focusing on training instances in which the dis-

greement rates are large. For correctly classified instances, the

istograms in training and test sets are similar. Misclassified in-

tances in the training set appear mostly around 0.5. By contrast,

n the test set, they appear in the whole [0,1] interval. This is con-

istent with the observation that Pima has high levels of class-label

oise. 

. Conclusions 

Vote-boosting is a novel ensemble learning method in which

ndividual classifiers are built using different weighted versions of

he training data. To build a new classifier, the weights of the

raining instances are determined in terms of the disagreement

ate among the classifiers that make up the ensemble. The optimal

eighing scheme depends on the complexity of the base classifiers

nd on the level of noise in the class labels of the training data. For

imple or regularized classifiers, such as decision stumps or pruned

ART trees, vote-boosting interpolates between bagging and Ad-

Boost. When the level of class-label noise is small, prediction

rrors are more likely to occur near the classification boundary,

here the uncertainty, as measured by the disagreement among

nsemble predictions, is largest. Therefore, it is possible to build

ore accurate ensembles by focusing on uncertain instances. Since

hese instances are more likely to be misclassified, the emphasis

iven by vote-boosting is similar to AdaBoost’s. For noisy classifi-

ation problems, a softer emphasis on uncertain instances is gener-

lly preferable. In this case, the most accurate predictions are ob-

ained by means of ensembles that are fairly similar to bagging.

hen more variable individual learners are used (e.g. unpruned

ART or random trees) a milder emphasis on uncertain instances

s generally needed to achieve the best generalization performance.

his is a consequence of the fact that some of the uncertainty in

he predictions is due to the intrinsic variability of the base learn-

rs. For problems in which the level of class-label noise is high it is

n fact advantageous to progressively focus on instances in which

he ensemble classifiers agree. In practice, the optimal type of em-
hasis can be readily determined using cross-validation within the

raining data. 

Note that, since AdaBoost is based on emphasizing incorrectly

lassified instances, it cannot be used to improve the performance

f base learners whose training error is small, such as unpruned

ART or random trees. By contrast, vote-boosting does not have

his limitation and can be used to build boosted ensembles com-

osed of these types of classifiers that are both accurate and robust

o noise in the class labels. 
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