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Abstract

The world is not static: This causes real-world time series to change over time
through external, and potentially disruptive, events such as macroeconomic cycles
or the COVID-19 pandemic. We present an adaptive sampling strategy that selects
the part of the time series history that is relevant for forecasting. We achieve this by
learning a discrete distribution over relevant time steps by Bayesian optimization.
We instantiate this idea with a two-step method that is pre-trained with uniform
sampling and then training a lightweight adaptive architecture with adaptive sam-
pling. We show with synthetic and real-world experiments that this method adapts
to distribution shift and significantly reduces the forecasting error of the base model
for three out of five datasets.

1 Introduction

Time series forecasting uses historical data to forecast the evolution of a time series to assist decision
making in several domains, for example retail [24, 5, 32], electric load planning [30, 13], cloud
computing management [25, 26], or labor planning [3]. Most time series forecasting algorithms make
the assumption that the data distribution does not change over time. However, this is violated in
practice where real-world time series data is affected by drifts such as evolving customer demand or
disruptive events (like the COVID-19 pandemic). These distribution shifts will inevitably be part of
the time series history and therefore forecasting algorithms need to be able to account for them.

Distribution shifts can occur with different (possibly reoccurring) patterns, but likely result in higher
test error because the train and test distribution differs. Thus, only a subset of the time series history
might come from the same distribution as the test set. Driven by this observation, we propose an
adaptive sampling mechanism that explicitly feeds the model with inputs from the history that are
only relevant for forecasting in the current (most recent) distribution. Instead of sampling uniformly
over the history, our method learns a discrete distribution over past time steps and explicitly allows
continuous adaptation, so that the model can react and adapt to distribution shifts.

Our contribution is an adaptive sampling mechanism that learns the sampling distribution over
time steps via gradient-free Bayesian optimization. We propose a two-step framework where the
forecasting model is pre-trained with uniform sampling and then a lightweight architecture is trained
with adaptive sampling. We evaluate the properties and performance of this approach with experiments
on synthetic and real-world data. This paper is organized as follows: Section 2 introduces the reader
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Figure 1: Data distribution shift that our model can address. Each frame shows an indicator function plotted
over time with respect to an assumed “standard” distribution (a value of 1 indicates a distribution shift). The
red dashed line separates the past (i.e., the training set) from the future (i.e. test set). a) New or reoccurring
shift: the distribution over time steps should focus on the shifted regions. b) This case is complementary to the
previous one: here the distribution over time steps should exclude the shifted regions. c) The shift occurs in the
forecasting window but not in the most recent region before the forecast start date: our model needs to wait until
part of the shift is in the training set in order to be able to adapt to it.

to the background of this paper and the types of data distribution shifts for forecasting that we address.
and Section 3 introduces our method and we present experiments in Section 4. Section 5 concludes
the paper. Note that the discussion of the related work can be found in Section A.1 in the Appendix.

2 Background

Notation We denote the value of time series i at time t by zi,t, where zi,t ∈ R, and corresponding
time-varying covariates as xi,t ∈ Rd. The past of each time series (i.e., training set) is denoted
as zi,1:T := (zi,1, . . . , zi,T ), and the future (i.e., forecasting window or test set) as zi,T+1:T+τ :=
(zi,T+1, . . . , zi,T+τ ). The number of time series in the dataset is denoted by N .

Our main assumption in this work is that we are able to observe at least some of the forthcoming
shift in order to be able to react and adapt to it:

Assumption 1 Let c be a constant number of (past) time steps set a priori. We assume that there is no
(marginal) distribution shift between the most recent training window of c steps and the forecasting
(test) window. More precisely, let zi,t be the given time series at time t and let z̄i,t be the time series
at time t obtained after removing trend, seasonalities and other effects of available features, then

p(z̄i,T−c) = · · · = p(z̄i,T ) = p(z̄i,T+1) = · · · = p(z̄i,T+τ ), ∀i = 1, . . . , N. (1)

This assumption implies that the data with t ∈ [T − c, T ] is the closest in time to the forecasting
window, therefore it is reasonable to regard it as the most similar to the future. In practice, we take
c to be equal to the sum of context and prediction lengths, so that we can use {zi,T−c:T }Ni=1 as a
validation set to learn and adapt to any distribution shift. In general, we consider the following two
scenarios illustrated in Figure 1): (a) A new or reoccurring shift in the past and no shift between
the recent training and test window; and (b) a shift that occurred in the past but reverted back to the
"standard" regime. Note that we do not address the case where the distribution shift occurs in the test
window only, which would be more of a fundamental generalization problem (case (c) in Figure 1).
See Section A.2 in the Appendix for a detailed definition of the cases that we consider.

3 Our Method

Training of deep learning models in time series settings is usually done by sampling fixed-size
windows uniformly at random over the available time series history (i.e., the past). Since distribution
shifts happen with different (possibly reoccurring) patterns over time, uniform sampling over the
training set would likely feed the algorithm with irrelevant or even misleading data to forecast in the
current distribution regime. Therefore we propose to adaptively generate these training windows
depending on the regime of the validation set (and by Assumption 1, the test set). The key element of
our approach is automatically learning which regions to focus on to accurately forecast the test set.
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Figure 2: Schematic descrip-
tion of the two-step proce-
dure. i) Pre-train the full model
with uniform sampling; ii.a) use
Bayesian optimization to find
the optimal ϕ⋆; ii.b) use ϕ⋆ to
train the lightweight architecture
with adaptive sampling.

To achieve this, we introduce a discrete distribution pϕ(·) over time steps 1, . . . , T that determines
the probability of sampling a training window starting at a time point t. In practice, pϕ(·) can be any
discrete distribution that is well defined over integers, such as Geometric, Negative Binomial, Poisson,
or mixtures of these distributions, parameterized by ϕ. This distribution is responsible for sampling
time windows that are used to train our forecasting model (see Figure A.1 in the Appendix for an
illustration). We learn ϕ by minimizing validation loss of the model that is trained using examples
generated according to pϕ(·). Ideally, the learned distribution parameters ϕ⋆ will avoid sampling
distribution shifts in history that do not correspond to the current regime. This distribution replaces
uniform sampling over the history, which cannot distinguish between distribution shifts and normal
regions. However, our model should fall back to uniform sampling if this results in lowest validation
error. This suggests that no distribution shift is present in the validation window and consequently in
the forecast window (by Assumption 1).

Adaptive training of a lightweight architecture In practice, we would expect to frequently re-
estimate ϕ⋆ to adapt to the current distribution. To address this, we propose a two-step procedure
with a lightweight adaptive architecture that is fast to train and can be frequently re-trained. In this
sense, this approach is explicitly considering a notion of time-varying parameters. i) The model is
pre-trained using uniform sampling over the whole training history. Intuitively, this step aims at
learning common features that are useful everywhere in time. ii) After freezing the weights of the
pre-trained model, an adaptive lightweight architecture is attached and trained using the adaptive
sampling mechanism, where the training windows are generated according to pϕ∗(·). The goal of
this step is to learn time-specific features that are relevant to forecast in the current distribution. The
lightweight architecture can be a short sequence of fully connected layers, or it can even be a subset
of the pre-trained model.

Learn ϕ via Bayesian Optimization We now describe how we estimate the parameters ϕ of the
distribution pϕ(·). Let us denote the parameters of the pre-trained model as wpre and those of the
lightweight architecture as wada. Moreover, let fw({zi,1:T }) denote the forecasts {ẑi,T+1:T+τ} of the
model whose weights are given by w. Given input time series {zi,t}, i = 1, . . . , N and t = 1, . . . , T ,
we set aside the last τ observations {zi,T−τ+1:T },∀i, for estimating ϕ. We learn ϕ by minimizing
loss on this validation channel of the model trained according to pϕ(·). More precisely, we have

ϕ∗ = argmin
ϕ

ℓ(ϕ),

where ℓ(ϕ) is the validation loss of the model that is trained using adaptive sampling pϕ(·),

ℓ(ϕ) = loss
(
fwpre∪w∗

ada(ϕ)

(
{zi,1:T−τ}

)
, {zi,T−τ+1:T }

)
.

Here w∗
ada(ϕ) are the weights obtained after fine-tuning the pre-trained model on the input data

{zi,1:T−τ} where the training examples are generated according to the distribution pϕ(·); note the
dependence of w∗

ada on ϕ. A crucial observation is that one can only evaluate ℓ(ϕ) and cannot obtain
its gradients with respect to ϕ; hence we cannot train (wada,ϕ) jointly end-to-end. We propose to treat
ϕ as hyper-parameters and use Bayesian optimization [9] to find ϕ∗. Assumption 1 plays a key role in
this step because the most recent region in the training set is used as validation channel to choose ϕ⋆

during Bayesian optimization. The overall approach is depicted in Figure 2 and the implementation
details with DeepAR [28] as the base model are given in Algorithm 1. In our experiments we assume
wada ⊂ wpre and hence the algorithm is presented for this case.

3



Figure 3: Experiments with
synthetic data. a) Synthetic
data with injected shift (top)
and noise (bottom). b1) (top
case in a): Adaptive sampling
focuses on the shifted region
in the past (red and green
bars denote the shifted region)
that is relevant for the current
regime. b2 (bottom case in a):
Adaptive sampling avoids the
injected noise shifts.

Algorithm 1 Adaptive DeepAR
1: procedure Ada-DeepAR({zi,t}, i ∈ [1 .. N ], t ∈ [1 .. T ])
2: Ztrain = {zi,t}, ∀i, ∀t
3: wpre ← DeepAR(Ztrain) ▷ Standard training with uniform train sampler

4: Zada_train = {zi,t}, ∀i, t ∈ [1 .. T − τ ]
5: Zvalidation_labels = {zi,t}, ∀i, t ∈ [T − τ + 1 .. T ]
6: ϕ = ϕ0 ▷ Random initialization
7: w = wpre
8: Split w into wada and wfrozen
9: while CONVERGENCE do ▷ Solve minϕ ℓ(ϕ)

10: wada ← DeepAR(Zada_train, init = w, sampler = pϕ(·), fixed = wfrozen) ▷ Train with adaptive train
sampler by fixing weights wfrozen

11: w = wada ∪wfrozen
12: Ẑvalidation_preds = forecast(Zada_train,model = w)

13: ℓ(ϕ) = loss(Ẑvalidation_preds, Zvalidation_labels)
14: update ϕ based on the new evaluation ℓ(ϕ) ▷ Bayesian Optimization
15: end while

▷ pϕ(·) likely has more mass on indices t that help predict Zvalidation_labels accurately
16: return w ▷ Model is ready to predict {zi,t}, ∀i, t ∈ [T + 1 .. T + τ ]
17: end procedure

4 Experiments

The instantiation of our model in this manuscript is called Ada-DeepAR and uses DeepAR [28] as a
base model with a two-layer LSTM (other base models could be used). The adaptive part of our model
is the second LSTM layer. Additionally, we perform Bayesian optimization using MOBSTER, which
combines asynchronous successive halving and asynchronous Hyperband with gaussian-process
based Bayesian optimization [17]. We use the implementation available in Syne Tune [29]. For
any time series i with training history T and forecast horizon τ , we use zi,T−τ :T as a validation
channel for Bayesian optimization. We consider a geometric and a mixture of two negative binomial
distributions as our sampling distributions pϕ(·). Training details are given in Section A.4.

Experiments on synthetic data: To demonstrate the applicability of our method, we first evaluate
it on two synthetic experiments that mimic cases (a) and (b) of Figure 1. We generated an artificial
sinusoidal dataset and then injected shifts or noise in different regions. Focus on shifted regions
distant in time: In this example we injected a shift in a distant portion of the training dataset and
also in the validation and test sets (see the top of panel a) in Figure 3). We show that the sampling
distribution over time steps can focus on specific regions that are relevant to the current domain,
regardless of when they occurred in the available history (see b1) in Figure 3). Exclude noisy regions:
In this example, we injected noise (a negative constant) in two different regions of the training dataset.
Our adaptive sampling mechanism avoids these noisy regions from the history (b2) in Figure 3).
Interestingly, this sometimes corresponds to sampling only in the most recent window, while in other
cases the distribution exploits its bimodality to focus on two distant windows.
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Ada-DeepAR Ada-DeepAR-uniform RevIn DeepAR TFT
Dataset (ours) (ablation)

Covid-deaths 0.074∗±0.013 0.088±0.011 0.13±0.006 0.103±0.053 0.053±0.061

Electricity 0.048∗†±0.002 0.054†±0.005 0.063±0.005 0.062±0.011 0.082±0.000

Traffic 0.172±0.002 0.171±0.004 0.172±0.003 0.176±0.004 0.306±0.050

Solar 0.370∗†±0.003 0.376†±0.003 0.376±0.004 0.388±0.007 0.562±0.015

Taxi 0.286†±0.003 0.278∗†±0.001 0.288±0.004 0.279±0.004 0.509±0.001

Mean nCRPS 0.190 0.193 0.202 0.206 0.302
Mean Rank 1.8 1.8 3.4 3.4 4.2

Table 1: The nCRPS loss (lower is better) for all datasets and models. We average over ten runs and report
the mean and standard deviation. We took the results for TFT from TSBench [4], which only uses two
runs. Boldface numbers indicate that the differences in error between the best and the second-best method
are statistically significant (paired t-test p-value < 0.05). * indicates a statistically significant result when
comparing Ada-DeepAR and Ada-DeepAR-uniform. † indicates a statistically significant result when comparing
Ada-DeepAR or Ada-DeepAR-uniform to its base model DeepAR.

Experiments on real-world datasets: Finally, we show preliminary results on five real-world
datasets (see Section A.3 for details). We compare the following models: our two-step training
procedure with adaptive sampling (Ada-DeepAR), reversible instance normalization (RevIn) [16],
and the attention-based Temporal Fusion Transformer TFT [20]. We also consider an ablation variant
of our method, Ada-DeepAR-uniform, which uses the same architecture and two-step procedure as
Ada-DeepAR, but performs adaptive training (i.e., fine-tuning of the adaptive weights wada) using
uniform sampling instead of pϕ(·). This variant is included to highlight the effectiveness of learning
the sampling distribution pϕ by isolating the gains obtained by our model due to the fine-tuning
step. For Ada-DeepAR, Ada-DeepAR-uniform and RevIn we use DeepAR[28] as the base model.
Ada-DeepAR-uniform is different from DeepAR because of the fine-tuning step where adaptive
weights are again trained one more time; this might help correcting the overfitting of the DeepAR
model (and reduce test error) because of the lower capacity of adaptive weights and/or help es-
cape local minima (and reduce training loss). We evaluate these probabilistic methods using the
continuous-ranked probability score (CRPS) [11, 23]. Table 1 summarizes the results. Averaged over
all datasets, Ada-DeepAR improves over the base model DeepAR by 8.4% (relative improvement).
For three out of five datasets, the improvements over the base model are statistically significant
(paired Student’s t-test p-value < 0.05, see Table 1). Ada-DeepAR selected the mixture of two
negative binomial distributions for all datasets except Covid-deaths (for which the geometric
distribution was selected). RevIn also improves over DeepAR, but with a much smaller margin. TFT
performs best on Covid-deaths, but overall worse than the other methods on these datasets. Inter-
estingly, Ada-DeepAR-uniform also improves the error by 6.7% over its base model. In particular,
Ada-DeepAR-uniform is the best model on the Traffic and Taxi datasets. Our hypothesis is that
adaption to distribution shift is not necessary, and perhaps even counterproductive, for these datasets.
This is also suggested by the performance of RevIn, which performs similar to Ada-DeepAR on these
datasets. Note that a uniform distribution could be seen as one of the possible distributions pϕ(·) that
our adaptive architecture should consider and if no other distribution reduces the validation error,
the uniform distribution should be selected. The performance differences between Ada-DeepAR and
Ada-DeepAR-uniform are statistically significant for all datasets except Traffic.

5 Conclusion

We introduced an adaptive sampling mechanism over the training history, whose parameters are
learned using Bayesian optimization. Our experiments show that our method can improve the
forecasting error over its base model (in this work, the improvements over the base model where
statistically significant for three out of five datasets). While we find Bayesian optimization to be
a powerful technique to find good adaptive sampling parameters, this approach is computationally
expensive (because many parallel trials need to be evaluated) and could degrade as the number
of parameters increases. Re-framing our approach as an input-selection layer that uses the re-
parametrization trick for sampling could allow for cheaper end-to-end learning of the adaptive model
parameters and pϕ(·).
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A Appendix

A.1 Related Work

The problem of learning under distribution shift for time series has been extensively studied for many
years. For example, change point detection analyzes when the statistical distribution of a time series
changes [27]. Another related field is adaptive control, where the system parameters are continuously
adjusted to account for discrepancies of expected and observed data [15]. We focus our review on
recent methods that address distribution shifts when forecasting with neural networks. Kim et al. [16]
employs a trainable instance-wise normalization-and-denormalization layer to address non-stationary
mean and variance in time series forecasting. Arik et al. [2] proposes Self-Adaptive Forecasting to
adapt the forecasting model using test-time training by "backcasting" and using the backcast errors to
signal a potential distribution shift to adjust the weights of the model before inference. AdaRNN [7]
splits the time series history into dissimilar segments and learns importance weights to combine the
RNN hidden states over these segments. Another notion of distribution shift, adversarial attacks, has
been recently considered to build more robust forecasting [35, 21].

Another class of approaches to time series forecasting use specific weighting schemes to weight the
time series history to make predictions, for example exponential smoothing, the Non-Parametric
Time Series (NPTS) Forecaster [10, 1], or stratified sampling [22]. In contrast to these models, our
approach adaptively learns the weighting scheme over the history. Thus, our work can be seen as a
specific instantiaten of weighted re-sampling (or importance sampling) for time-series forecasting.
Importance sampling weights the log-likelihood in supervised learning tasks by importance weights
w(x) = ptest(x)/ptrain(x) where ptest and ptrain are the respective densities from which the
train/test samples are drawn [31, 14, 34, 19]. Here, we propose to avoid estimating ptrain and ptest
and instead tune the parameters of a parametric re-sampling function using Bayesian optimization.

A.2 Scenarios of distribution shift occurrence

Assumption 1 allows us to provide a precise breakdown of the specific cases of distribution shift that
our model can handle. This is important because it determines the exact applicability of the work
described in this paper. As Figure 1 shows, we identify three domains:

New or reoccurring shift: When a distribution shift is new or reoccurring in the past and there is no
shift between t ∈ [T − c, T ] and t ∈ [T +1, T + τ ]. In this case the adaptive sampling mechanism is
expected to focus only on the shifted regions that are relevant for the current regime.

Reverted shift: When a shift occurred in the past but the distribution eventually reverted back to
the “standard” regime. This case is complementary to the previous one: here the adaptive sampling
mechanism provides a way to exclude the shifted regions. One can see the shifts in this case as
regions with noisy or corrupted data: excluding them during training would guarantee robustness
against noise.

Future shift: When the shift occurs in the forecasting window but not in the most recent region before
the forecast start date. Our adaptive sampling mechanism cannot work if we have no information
regarding the distribution shift happening in the test set (no free lunch).2

A.3 Datasets

We use datasets from the Monash Time Series Forecasting Repository [12] and GluonTS [1] for our
experiments. We use the same train/test splits as described in TSBench [4]. See Table A.1 for dataset
statistics. The frequencies of our used datasets are 30 minutes (30 MIN), hourly (H), and daily (D).

In particular, we use the following datasets:

Covid-deaths: Daily COVID-19 deaths of different countries between January 22 and August 21
2020 [6].

2Note that in our setting we consider the forecasting window to be a mere continuation of the training set,
which implies that the context window used at test time was part of training inputs. In this sense, our procedure
cannot handle this case if and only if the shift happens solely in the forecasting range.
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Freq. Horizon Number of Series Avg. Length Number of observations

Covid-deaths D 30 227 182 41,314
Electricity H 24 321 21,044 6,755,124
Traffic H 48 862 17,496 15,081,552
Solar H 24 137 7,009 960,233
Taxi 30 MIN 24 1,214 1,488 1,806,432

Table A.1: Dataset statistics for the used datasets, taken from Borchert et al. [4].

Electricity: Hourly household consumption data between January 2012 and June 2014 [8].

Traffic: Hourly occupancy rates of freeways in the San Francisco Bay area between 2015 and
2017 [8].

Solar: Hourly power output of 137 photovoltaic power stations in the US [18].

Taxi: Number of taxi rides in different locations in New York sampled at 30 minute windows [33].

A.4 Training Details

The parameters of the distribution over history are optimized via Bayesian Optimization [9] using the
recent scalable implementation provided in Syne-Tune [29]. We leveraged an AWS EC2 instance
with ≈ 42 cores and set the number of random initializations to 44 to allow for sufficient exploration
of the parameter space. That is, the optimizer starts with 44 trials, each with a different parameter
configuration, and sequentially stops some of them or instantiate new ones given the information
from the Gaussian Process posterior. The optimizer stopping criterion was chosen to be the maximum
number of trials taken to completion, which was set to 200. We used the CRPS used to decide which
trials were stopped or continued was the mean quantile loss over the validation set.

The lightweight architecture is supposed to be simple enough to allow frequent re-training
through adaptive sampling, so that the forecasting model can quickly adapt to new distributions.
Clearly, different architectures will work better with different datasets. In all our experiments
with DeepAR [28], we found that using the default two-layer LSTM with 40 hidden units for the
pre-trained model, and freezing the first layer only for adaptive training yielded the best results. To
clarify, this means that wada ⊂ wpre. Both pre-training and adaptive training were done over 100
epochs with a small dropout probability equal to 0.1.

For TFT, we selected the hyperparameter setting from the TSBench [4] that resulted in lowest CRPS
loss on the validation set for each dataset. The hyperparameters tuned in TSBench are the context
length, the number of hidden states, and the number of heads.

For the DeepAR and TFT models, we use the implementation available in GluonTS [1].

A.5 Additional Figures
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Figure A.1: Adaptive sam-
pling uses pϕ to sample
training windows to come
from distributions that are
similar to the forecasting
window. Both panels show a
time series (blue) at the top,
with windows (orange) sam-
pled during training, and the
distribution over time steps at
the bottom. a) Uniform sam-
pling. b) Adaptive sampling.
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