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Abstract
Deep reinforcement learning (RL) works impres-
sively in some environments and fails catastrophi-
cally in others. Ideally, RL theory should be able
to provide an understanding of why this is, i.e.
bounds predictive of practical performance. Un-
fortunately, current theory does not quite have
this ability. We compare standard deep RL al-
gorithms to prior sample complexity bounds by
introducing a new dataset, BRIDGE. It consists
of 155 deterministic MDPs from common deep
RL benchmarks, along with their corresponding
tabular representations, which enables us to ex-
actly compute instance-dependent bounds. We
choose to focus on deterministic environments
because they share many interesting properties
of stochastic environments, but are easier to ana-
lyze. Using BRIDGE, we find that prior bounds do
not correlate well with when deep RL succeeds
vs. fails, but discover a surprising property that
does. When actions with the highest Q-values
under the random policy also have the highest Q-
values under the optimal policy, deep RL tends to
succeed; when they don’t, deep RL tends to fail.
We generalize this property into a new complex-
ity measure of an MDP that we call the effective
horizon, which roughly corresponds to how many
steps of lookahead search would be needed in
that MDP in order to identify the next optimal
action, when leaf nodes are evaluated with ran-
dom rollouts. Using BRIDGE, we show that the
effective horizon-based bounds are more closely
reflective of the empirical performance of PPO
and DQN than prior sample complexity bounds
across four metrics. We also show that, unlike ex-
isting bounds, the effective horizon can predict the
effects of using reward shaping or a pre-trained
exploration policy.
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Figure 1. We introduce the effective horizon, a property
of MDPs that controls how difficult RL is. Our analysis
is motivated by Greedy Over Random Policy (GORP), a
simple Monte Carlo planning algorithm (left) that exhaus-
tively explores action sequences of length k and then uses
m random rollouts to evaluate each leaf node. The effec-
tive horizon combines both k and m into a single measure.
We prove sample complexity bounds based on the effective
horizon that correlate closely with the real performance of
PPO, a deep RL algorithm, on our BRIDGE dataset of 155
deterministic MDPs (right).

1. Introduction
Deep reinforcement learning (RL) has produced impressive
results in robotics (Levine et al., 2016), strategic games (Sil-
ver et al., 2016), and control (Mnih et al., 2015). However,
the same deep RL algorithms that achieve superhuman per-
formance in some environments completely fail to learn in
others. Sometimes, using techniques like reward shaping
or pre-training help RL, and in other cases they don’t. Our
goal is to provide a theoretical understanding of why this
is—a theoretical analysis that is predictive of practical RL
performance.

Unfortunately, there is a large gap between the current the-
ory and practice of RL. Despite RL theorists often focusing
on algorithms using strategic exploration (e.g., UCB explo-
ration bonuses; Azar et al. (2017); Jin et al. (2018)), the
most commonly-used deep RL algorithms, which explore
randomly, resist such analysis. In fact, theory suggests that
RL with random exploration is exponentially hard in the
worst case (Dann et al., 2022), but this is not predictive
of practical performance. Some theoretical research has
explored instance-based bounds, identifying properties of
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MDPs when random exploration should perform better than
this worst case (Liu & Brunskill, 2019; Malik et al., 2021).
However, it is not clear whether these properties correlate
with when RL algorithms work vs. fail—and our results
will reveal that they tend not to.

If the current theory literature cannot explain the empirical
performance of deep RL, what can? Ideally, a theory of
RL should provably show why deep RL succeeds while
using random exploration. It should also be able to predict
which environments are harder or easier to solve empirically.
Finally, it should be able to explain when and why tools like
reward shaping or initializing with a pre-trained policy help
make RL perform better.

We present a new theoretical complexity measure for MDPs
called the effective horizon that satisfies all of the above
criteria. Intuitively, the effective horizon measures approxi-
mately how far ahead an algorithm must exhaustively plan
in an environment before evaluating leaf nodes with random
rollouts.

In order to assess previous bounds and eventually arrive
at such a property, we start by creating a new dataset,
BRIDGE, of deterministic MDPs from common deep RL
benchmarks. A major difficulty with evaluating instance-
dependent bounds is that they can’t be calculated without
tabular representations, so prior work work has typically
relied on small toy environments for justification. To get a re-
alistic picture, we choose 155 MDPs across different bench-
marks and compute their tabular representations—some
with over 100 million states which must be exhaustively ex-
plored and stored. This is a massive engineeering challenge,
but it enables connecting theoretical and empirical results at
an unprecedented scale. We focus on deterministic MDPs
in BRIDGE and in this paper because they are simpler to
analyze but still have many of the interesting properties of
stochastic MDPs, like reward sparsity and credit assignment
challenges. Many deep RL benchmarks are (nearly) deter-
ministic, so we believe our analysis is highly relevent to
practical RL.

Our journey to the effective horizon began with identifying
a surprising property that holds in many of the environments
in BRIDGE: one can learn to act optimally by acting ran-
domly. More specifically, actions with the highest Q-values
under the uniformly random policy also have the highest Q-
values under the optimal policy. The random policy is about
as far as one can get from the optimal policy, so this prop-
erty may seem unlikely to hold. However, about two-thirds
of the environments in BRIDGE satisfy the property. This
proportion rises to four-fifths among environments that PPO
(Schulman et al., 2017), a popular deep RL algorithm, can
solve efficiently (Table 1). Conversely, when this property
does not hold, PPO is more likely to fail than succeed—and
when it does succeed, so does simply applying a few steps of

lookahead on the Q-function of the random policy (Figure
6). We found it remarkable that, at least in the environ-
ments in BRIDGE, modern algorithms seem to boil down to
not much more than acting greedily on the random policy
Q-values.

The property that it is optimal to act greedily with respect to
the random policy’s Q-function has important implications
for RL theory and practice. Practically, it suggests that very
simple algorithms designed to estimate the random policy’s
Q-function could efficiently find an optimal policy. We
introduce such an algorithm, Greedy Over Random Policy
(GORP), which also works in the case where one may need
to apply a few steps of value iteration to the random policy’s
Q-function before acting greedily. Empirically, GORP finds
an optimal policy in fewer timesteps than DQN (another
deep RL algorithm) in more than half the environments
in BRIDGE. Theoretically, it is simple to analyze GORP,
which consists almost entirely of estimating the random
policy’s Q-function via a sample average over i.i.d. random
rollouts. Since GORP works well empirically and can be
easily understood theoretically, we thoroughly analyze it
in the hopes of finding sample complexity bounds that can
explain the performance of deep RL.

Our analysis of Greedy Over Random Policy leads to a
single metric, the effective horizon, that measures the com-
plexity of model-free RL in an MDP. As shown in Figure 1,
GORP is an adaptation of a Monte Carlo planning algorithm
to the reinforcement learning setup (where the transitions are
unknown): it mimics exhaustively planning ahead k steps
and then sampling m random rollouts from each leaf node.
The effective horizon H combines the depth k and number
of rollouts m. We call it the effective horizon because worst-
case sample complexity bounds for random exploration are
exponential in the horizon T , while we prove sample com-
plexity bounds exponential only in the effective horizon H.
For most BRIDGE environments, H ≪ T , explaining the
efficiency of RL in these MDPs.

In the environments in BRIDGE, we find that the effective
horizon-based sample complexity bounds satisfy all our
desiderata above for a theory of RL. They are more pre-
dictive of the empirical sample complexities of PPO and
DQN than several other bounds from the literature across
four metrics, including measures of correlation, tightness,
and accuracy (Table 2). Furthermore, the effective horizon
can predict the effects of both reward shaping (Table 7) and
initializing using a pre-trained policy learned from human
data or transferred from a similar environment (Table 8).
In contrast, none of the existing bounds we compare to de-
pend on both the reward function and initial policy; thus,
they are unable to explain why reward shaping, human data,
and transfer learning can help RL. Although our results fo-
cus on deterministic MDPs, we plan to extend our work to
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stochastic environments in the future and already have some
promising results in that direction.

2. Preliminaries
We begin by presenting the reinforcement learning (RL)
setting we consider. An RL algorithm acts in a deterministic,
tabular, episodic Markov decision process (MDP) with finite
horizon. The MDP comprises a set of states S, a set of
actions A, a horizon T ∈ N and optional discount factor
γ ∈ [0, 1], a start state s1, transition function f : S ×A →
S, and a reward function R : S ×A → R. Throughout the
paper we use γ = 1 but all our theory applies equally when
γ < 1.

An RL agent interacts with the MDP for a number of
episodes, starting at a fixed start state s1. At each step
t ∈ [T ] of an episode (using the notation [n] = {1, . . . , n}),
the agent observes the state st, picks an action at, re-
ceives reward R(st, at), and transitions to the next state
st+1 = f(st, at). A policy π is a set of functions
π1, . . . , πt : S → ∆(A), which defines for each state and
timestep a distribution πt(a | s) over actions. If a policy is
deterministic at some state, then with slight abuse of nota-
tion we denote a = πt(s) to be the action taken by πt in
state s.

We denote a policy’s Q-function Qπ
t : S×A → R and value

function V π
t : S → R for each t ∈ [T ]. In this paper, we

also use a Q-function which is generalized to sequences of
actions. We use the shorthand at:t+k to denote the sequence
at, . . . , at+k, and define the action-sequence Q-function as

Qπ
t (st, at:t+k) = Eπ

[
T∑

t′=t

γt′−t R(st′ , at′) | st, at:t+k

]
.

The objective of an RL algorithm is to find an optimal pol-
icy π∗, which maximizes J(π) = V π

1 (s1), the expected
discounted sum of rewards over an episode, also known as
the return of the policy π.

Generally, an RL algorithm can be run for any number of
timesteps n (i.e., counting one episode as T timesteps),
returning a policy πn. We define the sample complexity N
of an RL algorithm as the minimum number of timesteps
needed such that the algorithm has at least a 50-50 chance
of returning an optimal policy:

N = min {n ∈ N | P (J(πn) = J∗) ≥ 1/2} .
Here, the probability is with respect to any randomness in
the algorithm itself. One can estimate the sample complex-
ity N empirically by running an algorithm several times,
calculating the number of samples n needed to reach the
optimal policy during each run, and then taking the median.

The following simple theorem gives upper and lower bounds
for the worst-case sample complexity in a deterministic
MDP, depending on A and T .

Theorem 2.1. There is an RL algorithm which can solve any
deterministic MDP with sample complexity N ≤ T ⌈AT /2⌉.
Conversely, for any RL algorithm and any values of T and
A, there must be some deterministic MDP for which its
sample complexity N ≥ T (⌈AT /2⌉ − 1).

All proofs are deferred to Appendix A. In this case, the
idea of the proof is quite simple, and will later be useful
to motivate our idea of the effective horizon: in an MDP
where exactly one sequence of actions leads to a reward,
an RL algorithm may have to try almost every sequence
of actions to find the optimal policy; there are AT such
sequences. As we develop sample complexity bounds based
on the effective horizon in Section 5, we can compare them
to the worst-case bounds in Theorem 2.1.

Why deterministic MDPs? We focus on deterministic
(as opposed to stochastic) MDPs in this study for several
reasons. First, focusing on deterministic MDPs avoids the
need to consider generalization within RL algorithms. In
common stochastic MDPs, one often needs neural-network
based policies, whereas in a deterministic MDP one can
simply learn a sequence of actions. Since neural network
generalization is not well understood even in supervised
learning, analyzing generalization in RL is an especially dif-
ficult task. Second, deterministic MDPs still display many
of the interesting properties of stochastic MDPs. For in-
stance, deterministic MDPs have worst case exponential
sample complexity when using naive exploration; environ-
ments with dense rewards are easier to solve empirically
than those with sparse rewards; credit assignment can be
challenging; and there is a wide range of how tractable en-
vironments are for deep RL, even for environments with
similar horizons, state spaces, and action spaces.

Finally, many common RL benchmark environments are
deterministic or nearly-deterministic. For instance, the ALE
Atari games used to evaluate DQN (Mnih et al., 2015),
Rainbow (Hessel et al., 2017), and MuZero (Schrittwieser
et al., 2020) are all deterministic after the first state, which
is selected randomly from one of only 30 start states. The
widely used DeepMind Control Suite (Tassa et al., 2018)
is based on the MuJoCo simulator (Todorov et al., 2012),
which is also deterministic given the initial state (some of
the environments do use a randomized start state). MiniGrid
environments (Chevalier-Boisvert et al., 2018), which are
commonly used for evaluating exploration (Seo et al., 2021),
environment design (Dennis et al., 2020), and language
understanding (Chevalier-Boisvert et al., 2019), are also
deterministic after the initial state. Thus, our investigation
of deterministic environments is highly relevant to common
deep RL practice.
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3. Related Work
Before introducing our contributions, we provide a brief sur-
vey of existing work in theoretical RL and sample complex-
ity bounds. We will later compare the previously proposed
sample complexity bounds to our new bounds in Sections
5.1 and 6. For more related work, please refer to Appendix
D, and for a detailed comparison of our results with full
definitions and proofs, please see Appendix E.

Recent RL theory literature focuses primarily on algorithms
employing strategic exploration, often using upper confi-
dence bound (UCB) exploration bonuses or other techniques
from the bandit literature to efficiently explore the state
space (Kakade, 2003; Azar et al., 2017; Jiang et al., 2017;
Jin et al., 2018; 2019; Du et al., 2021; Jin et al., 2021). These
bounds generally match lower bounds up to constant factors
and suggest RL is tractable when the state space is small
or has low-dimensional structure. For deterministic MDPs,
the UCB-based R-MAX algorithm (Brafman & Tennenholtz,
2002; Kakade, 2003) has sample complexity bounded by
SAT .

Some prior work has focused on sample complexity bounds
for random exploration. Liu & Brunskill (2019) give bounds
based on the covering length L of an MDP, which is the
number of episodes needed to visit all state-action pairs at
least once with probability at least 1/2 while taking actions
at random. This yields a sample complexity bound of TL
for deterministic MDPs. Other work suggests that it may not
be necessary to consider rewards all the way to the end of
the episode to select an optimal action (Kearns et al., 2002;
Jiang et al., 2016; Malik et al., 2021). One can define a
“effective planning window” of W timesteps ahead that must
be considered, resulting in a sample complexity bound of
T 2AW for deterministic MDPs. Finally, Dann et al. (2022)
define a “myopic exploration gap” that controls the sample
complexity of using ϵ-greedy exploration, a form of naive
exploration. However, in Appendix E.4, we demonstrate
why their bounds are impractical and often vacuous.

4. The BRIDGE Dataset
In order to assess how well existing bounds predict prac-
tical performance, and gain insight about novel properties
of MDPs that could be predictive, we constructed BRIDGE
(Bridging the RL Interdisciplinary Divide with Grounded
Environments), a dataset of 155 popular deep RL benchmark
environments with full tabular representations. One might
assume that the ability to calculate the instance-dependent
bounds we just presented in Section 3 already exists; how-
ever, it turns out that for many real environments even the
number of states S is unknown! This is because a signif-
icant engineering effort is required to analyze large-scale
environments and compute their properties.

Acting greedily with PPO finds the optimal policy
respect to Qπrand

in ≤ 5M timesteps?
is optimal? Yes No

Yes 80 MDPs 24 MDPs
No 18 MDPs 33 MDPs

Table 1: The distribution of the MDPs in our BRIDGE
dataset according to two criteria: first, whether PPO empiri-
cally converges to an optimal policy in 5 million timesteps,
and second, whether acting greedily with respect to the Q-
function of the random policy is optimal. We find that a
surprising number of environments satisfy the latter prop-
erty, especially when only considering those where PPO
succeeds.

In BRIDGE, we tackle this problem by computing tabular
representations for all the environments using a program that
exhaustively enumerates all states, calculating the reward
and transition functions at every state-action pair. We do
this for 67 Atari games from the Arcade Learning Enivorn-
ment (Bellemare et al., 2013), 55 levels from the Procgen
Benchmark (Cobbe et al., 2020), and 33 gridworlds from
MiniGrid (Chevalier-Boisvert et al., 2018) (Figure 4). The
MDPs have state space sizes S ranging across 7 orders of
magnitude from tens to tens of millions, 3 to 18 discrete
actions, and horizons T ranging from 10 to 200, which are
limited in some cases to avoid the state space becoming too
large. See Appendix F for the full details of the BRIDGE
dataset.

A surprisingly common property To motivate the ef-
fective horizon, which is introduced in the next section, we
describe a property that we find holds in many of the MDPs
in BRIDGE. Consider the random policy πrand, which as-
signs equal probability to every action in every state, i.e.,
πrand
t (a | s) = 1/A. We can use dynamic programming on

a tabular MDP to calculate the random policy’s Q-function
Qπrand

. We denote by Π(Qπrand
) the set of policies which act

greedily with respect to this Q-function; that is,

Π
(
Qπrand

)
=
{
π | ∀s, t πt(s) ∈ argmax

a∈A
Qπrand

t (s, a)
}
.

Perhaps surprisingly, we find that all the policies in
Π(Qπrand

) are optimal in about two-thirds of the MDPs in
BRIDGE. This proportion is even higher when considering
only the environments where PPO empirically succeeds in
finding an optimal policy (Table 1). Thus, it seems that
this property may be the key to what makes many of these
environments tractable for deep RL.

5. The Effective Horizon
We now theoretically analyze why RL should be tractable in
environments where, as we observe empirically in BRIDGE,
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Algorithm 1 The Greedy Over Random Policy (GORP)
algorithm, used to motivate the effective horizon.

1: procedure GORP(k,m, πexpl)
2: for i = 1, . . . , T do
3: for ai:i+k−1 ∈ Ak do
4: sample m episodes following π1, . . . , πi−1,

then actions ai:i+k−1, and finally πexpl.
5: Q̂i(si, ai:i+k−1)←

1
m

∑m
j=1

∑T
t=i γ

t−iR(sjt , a
j
t ).

6: end for
7: πi(si)← argmaxai∈A

maxai+1:i+k−1∈Ak−1 Q̂i(si, ai, ai+1:i+k−1).
8: end for
9: return π

10: end procedure

it is optimal to act greedily with respect to the random pol-
icy’s Q-function. This leads to a more general measure of an
environment’s complexity for model-free RL: the effective
horizon.

Our analysis begins with a simple algorithm, GORP (Greedy
Over Random Policy), shown in Algorithm 1. GORP con-
structs an optimal policy iteratively; each iteration i aims
to calculate an optimal policy πi for timestep i. In the case
where we set k = 1 and πexpl = πrand, GORP can solve envi-
ronments which have the property we observed in BRIDGE.
However, GORP can also handle a generalization of this
property to cases where one may have to apply a few steps
of value iteration to the random policy’s Q-function before
acting randomly. Furthermore, it can use an “exploration
policy” πexpl different from the random policy πrand. These
two generalizations are captured in the following definition.
In the definition, we use the notation that a step of Q-value it-
eration transforms a Q-function Q to Q′ = QVI(Q), where

Q′
t(s, a) = Rt(s, a) + argmax

a′∈A
Qt+1 (f(s, a), a

′) .

Definition 5.1 (k-QVI-solvable). Given an exploration
policy πexpl (πexpl = πrand unless otherwise noted), let
Q1 = Qπexpl

and Qi+1 = QVI(Qi) for i = 1, . . . , T − 1.
We say an MDP is k-QVI-solvable for some k ∈ [T ] if every
policy in Π(Qk) is optimal.

We will see that running GORP with k > 1 will allow it
to find an optimal policy in MDPs that are k-QVI-solvable.
Although the sample complexity of GORP scales with Ak,
we find that nearly all of the environments in BRIDGE are
k-QVI-solvable for very small values of k (Figure 6).

We now use GORP to define the effective horizon of an MDP.
Note that the total number of timesteps sampled by GORP
with parameters k and m is T 2Akm = T 2Ak+logA m .

Thus, analogously to how the horizon T appears in the expo-
nent of the worst-case sample complexity bound O(TAT ),
we define the effective horizon as the exponent of A in the
sample complexity of GORP:

Definition 5.2 (Effective horizon). Given k ∈ [T ], let Hk =
k + logA mk, where mk is the minimum value of m needed
for Algorithm 1 with parameter k to return the optimal
policy with probability at least 1/2, or∞ if no value of m
suffices. The effective horizon is H = mink Hk.

By definition, the sample complexity of GORP can be given
using the effective horizon:

Lemma 5.3. The sample complexity of GORP with optimal
choices of k and m is T 2AH .

As we noted in the introduction, when H ≪ T , as we find
is often true in practice, this is far better than the worst-case
bound given in Theorem 2.1 which scales with AT .

Definition 5.2 does not give a method for actually calcu-
lating the effective horizon. It turns out we can bound the
effective horizon using a generalized gap notion like those
found throughout the RL theory literature. We denote by
∆k

t the gap of the Q-function Qk from Definition 5.1, where
∆k

t (s) = max
a∈A

Qk
t (s, a)− max

a′ ̸∈argmaxa Qk
t (s,a)

Qk
t (s, a

′).

The following theorem gives bounds on the effective horizon
in terms of this gap.

Theorem 5.4. Suppose that an MDP is k-QVI-solvable and
that all rewards are nonnegative, i.e. R(s, a) ≥ 0 for all
s, a. Let ∆k denote the gap of the Q-function Qk as defined
in Definition 5.1. Then

Hk ≤ k + max
t∈[T ],s∈Sopt

i ,a∈A
logA

(
Qk

t (s, a)V
∗
t (s)

∆k
t (s)

2

)
+ logA 6 log

(
2TAk

)
, (1)

where Sopt
i is the set of states visited by some optimal policy

at timestep i and V ∗
t (s) = maxπ V

π
t (s) is the optimal value

function.

A full proof of Theorem 5.4 is given in Appendix A. Intu-
itively, the smaller the gap ∆k

t (s), the more precisely we
must estimate the Q-values in GORP in order to make sure
that we pick an optimal action.

The GORP algorithm is very amenable to theoretical anal-
ysis because it reduces the problem of finding an optimal
policy to the problem of estimating several k-step Q-values,
each of which is a simple mean of i.i.d. random variables.
There are endless tail bounds that can be applied to analy-
sis of GORP; we use some of these to obtain even tighter
bounds on the effective horizon in Appendix C. In Appendix
B, we present other algorithms with similar sample com-
plexities to GORP, bounds on the effective horizon, and
information-theoretic lower bounds in terms of H.
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(a) Sparse rewards: when only one
sequence of actions gives a reward
of 1 and all others give 0, the effec-
tive horizon H = Õ(T ).
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(b) Dense rewards: when every op-
timal action gives a reward of 1 and
suboptimal actions give no reward,
the effective horizon H = Õ(1).
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(c) Delayed rewards: when the re-
wards in (b) are all delayed to the
end of the episode, the effective
horizon remains Õ(1).
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1
10(s, NOOP) = .118

Q
1
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Q
1
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Q
∗
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Q
∗
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Q
∗
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(d) For the first 50 timesteps of the Atari game Free-
way, we can bound H ≤ 10.2, which is much lower
than the horizon T = 50.

Figure 2. Examples of calculating the effective horizon H using Theorem 5.4; see Section 5.1 for the details.

5.1. Examples of the effective horizon

To gain some intuition for the bound in Theorem 5.4, we can
look at the examples in Figure 2. MDP (a) has extremely
sparse rewards, with a reward of 1 only given for a single
optimal action sequence. However, note that this MDP is
still 1-QVI-solvable by Definition 5.1. The maximum of the
bound in Theorem 5.4 is at t = 1 with the optimal action,
where Q1

1(s, a) = 1/AT−1, V ∗
1 (s) = 1, and ∆1

1(s) =
1/AT−1. Ignoring logarithmic factors and constants gives
H ≲ 1 + logA AT−1 = T . That is, in the case of MDP (a),
the effective horizon is no better than the horizon.

Next, consider MDP (b), which has dense rewards of 1 for
every optimal action. Again, this MDP is 1-QVI-solvable.
The maximum in the bound is obtained at t = 1 and the
optimal action with Q1

1(s, a) ≤ 2, V ∗(s) = T , and the gap
∆1

1(s, a) ≥ 1. Again ignoring logarithmic factors gives in
this case H ≲ 1+logA T = Õ(1). In this case, the effective
horizon is much shorter than the horizon, and barely depends
on it! This again reflects our intuition that in this case,
finding the optimal policy via RL should be much easier.

MDP (c) is similar to MDP (b) except that all rewards are de-
layed to the end of the episode. In this case, the Q function
is the same as in MDP (b) so the effective horizon remains
Õ(1). This may seem counterintuitive since one needs to
consider rewards T timesteps ahead to act optimally. How-
ever, the way GORP uses random rollouts to evaluate leaf
nodes means that it can implicitly consider rewards quite far
in the future even without needing to exhaustively plan that
many timesteps ahead.

Finally, consider MDP (d), the first 50 timesteps of the Atari
game Freeway, which is included in the BRIDGE dataset.
This MDP is also 1-QVI-solvable and the maximum in the
bound is obtained in the state shown in Figure 2d at timestep
t = 10. Plugging in the Q values shown in the figure gives
H ≤ 10.2, which is far lower than the horizon T = 50.
The low effective horizon reflects how this MDP is much
easier than the worst case in practice. Both PPO and DQN
are able to solve it with a sample complexity of less than
1.5 million timesteps, while the worst case bound would

suggest a sample complexity greater than 50×350/2 ≈ 1025

timesteps!

Comparison to other bounds Intuitively, why might the
effective horizon give better sample complexity bounds than
previous works presented in Section 3? The MDP in Figure
2b presents a problem for the covering length and UCB-
based bounds, both of which are Ω(AT ). The exponential
sample complexity arises because these bounds depend on
visiting every state in the MDP during training. In contrast,
GORP doesn’t need to visit every state to find an optimal
policy. The effective horizon of Õ(1) for MDP (b) reflects
this, showing that our effective horizon-based bounds can
actually be much smaller than the state space size, which is
on the order of AT for MDP (b).

The effective planning window (EPW) does manage to cap-
ture the same intuition as the effective horizon in the MDP
in Figure 2b: in this case, W = 1. However, the analysis
based on the EPW is unsatisfactory because it entirely ig-
nores rewards beyond the planning window. Thus, in MDP
(c) the EPW W = T , making EPW-based bounds no better
than the worst case. In contrast, the effective horizon-based
bound remains the same between MDPs (b) and (c), show-
ing that it can account for the ability of RL algorithms to
use rewards beyond the window where exhaustive planning
is possible.

6. Experiments
We now show that sample complexity bounds based on the
effective horizon predict the empirical performance of deep
RL algorithms far better than other bounds in the literature.
For each MDP in the BRIDGE dataset, we run deep RL
algorithms to determine their empirical sample complexity.
We also use the tabular representations of the MDPs to
calculate the effective horizon and other sample complexity
bounds for comparison.

Deep RL algorithms We run both PPO and DQN for five
million timesteps for each MDP in BRIDGE, and record the
empirical sample complexity (see Appendix G for hyper-
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parameters and experiment details). PPO converges to the
optimal policy in 98 of the 155 MDPs, and DQN does in 99
of 155. At least one of the two finds the optimal policy in
110 MDPs.

Sample complexity bounds We also compute sample
complexity bounds for each MDP in BRIDGE. These in-
clude the worst-case bound of TAT from Theorem 2.1, the
effective-horizon-based bound of T 2AH from Lemma 5.3,
as well as three other bounds from the literature, introduced
in Section 3 and proved in Appendix E: the UCB-based
bound SAT , the covering-length-based bound TL, and the
effective planning window (EPW)-based bound of T 2AW .

Evaluation metrics To determine which sample complex-
ity bounds best reflect the empirical performance of PPO
and DQN, we compute a few summary metrics for each
bound. First, we measure the Spearman (rank) correlation
between the sample complexity bounds and the empirical
sample complexity over environments where the algorithm
converged to the optimal policy. The correlation (higher is
better) is a useful for measuring how well the bounds can
rank the relative difficulty of RL in different MDPs.

Second, we compute the median ratio between the sample
complexity bound and the empirical sample complexity for
environments where the algorithm converged. The ratio
between the bound Nbound and empirical value Nemp is cal-
culated as max{Nbound/Nemp, Nemp/Nbound}. For instance,
a median ratio of 10 indicates that half the sample com-
plexity bounds were within a factor of 10 of the empirical
sample complexity. Lower values indicate a better bound;
this metric is useful for determining whether the sample
complexity bounds are vacuous or tight.

Finally, we consider the binary classification task of predict-
ing whether the algorithm will converge at all within five
million steps using the sample complexity bounds. That is,
we consider simply thresholding each sample complexity
bound and predicting that only environments with bounds
below the threshold will converge. We compute the area
under the ROC curve (AUROC) for this prediction task as
well as the accuracy with the optimal threshold. Higher
AUROC and accuracy both indicate a better bound.

Results The results of our experiments are shown in
Table 2. The effective horizon-based bounds have higher
correlation with the empirical sample complexity than the
other bounds for both PPO and DQN. While the EPW-based
bounds are also reasonably correlated, they are significantly
off in absolute terms: the typical bound based on the EPW
is 3-4 orders of magnitude off, while the effective horizon
yields bounds that are typically within an order of magni-
tude. The UCB-based bounds are typically somewhat close
to the empirical sample complexity, but are not well cor-
related; this makes sense since the UCB bounds depend

on strategic exploration, while PPO and DQN use random
exploration. Finally, the effective horizon bounds are able to
more accurately predict whether PPO or DQN will find an
optimal policy, as evidenced by the AUROC and accuracy
metrics.

As an additional baseline, we also calculate the four evalu-
ation metrics when using the empirical sample complexity
of PPO to predict the empirical sample complexity of DQN,
or vice-versa, and while using the empirical sample com-
plexity of GORP to predict PPO or DQN’s performance
(bottom two rows of Table 2). While these are not provable
bounds on the sample complexity, they provides another
point of comparison for each metric. The effective-horizon
based bounds perform similarly to using one algorithm’s
sample complexity to predict the other’s, and the empirical
performance of GORP is typically even closer to the deep
RL algorithms than the effective horizon-based bounds.

Reward shaping, human data, and transfer learning
In order for RL theory to be useful practically, it should
help practitioners make decisions about which techniques
to apply in order to improve their algorithms’ performance.
We show how the effective horizon can be used to explain
the effect of three such techniques: reward shaping, using
human data, and transfer learning.

Potential-based reward shaping (Ng et al., 1999) is a clas-
sic technique which can speed up the convergence of RL
algorithms. It is generally used to transform a sparse-reward
MDP like the one in Figure 2a to a dense-reward MDP like
in Figure 2b without changing the optimal policy. If the
effective horizon is a good measure of the difficulty of RL
in an environment, then it should be able to predict whether
(and by how much) the sample complexity of practical algo-
rithms changes when reward shaping is applied. We develop
77 reward-shaped versions of the original 33 Minigrid envi-
ronments and run PPO and DQN. Results in Table 7 show
the effective horizon accurately captures the change in sam-
ple complexity from using reward shaping. We use similar
metrics to those in Table 2: the correlation between the pre-
dicted and empirical ratio of the shaped sample complexity
to the unshaped sample complexity, and the median ratio
between the predicted change and the actual change.

Out of the five bounds we consider, three—worst case, cov-
ering length, and UCB—don’t even depend on the reward
function. The EPW does depend on the reward function
and captures some of the effect of reward shaping for DQN.
However, it predicts a far larger change in sample com-
plexity than the empirical change for PPO and DQN. In
comparison, the effective horizon does well on both metrics,
showing that it can accurately capture how reward shaping
affects RL performance.

Another tool used to speed up RL is initializing with a pre-
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PPO DQN
Bound Correl. Median ratio AUROC Acc. Correl. Median ratio AUROC Acc.

Worst-case (T ⌈AT /2⌉) 0.08 6.2× 109 0.66 0.66 0.22 1.1× 108 0.68 0.68
Covering length (TL) 0.35 3.5× 106 0.81 0.77 0.22 8.6× 105 0.77 0.74
EPW (T 2AW ) 0.65 4.5× 104 0.85 0.78 0.62 8.6× 103 0.83 0.78
UCB (SAT ) 0.30 27 0.66 0.66 0.21 14 0.64 0.66
Effective horizon (T 2AH ) 0.79 15 0.94 0.88 0.65 10 0.86 0.79

Other deep RL algorithm 0.70 8.7 0.82 0.90 0.70 8.7 0.80 0.89
GORP empirical 0.72 5.4 0.83 0.86 0.64 7.8 0.86 0.83

Table 2: Effective horizon-based sample complexity bounds are the most predictive of the real performance of PPO and
DQN according to the four metrics we describe in Section 6. The effective horizon bounds are nearly as good at predicting
the sample complexity of PPO and DQN as one algorithm’s sample complexity is at predicting the other’s.

trained policy, which is used practically to make RL work
on otherwise intractable tasks. Can the effective horizon
also predict whether initializing RL with a pre-trained pol-
icy will help? We initialize PPO with pre-trained policies
for 82 of the MDPs in BRIDGE, then calculate new sample
complexity bounds based on using the pre-trained policies
as an exploration policy πexpl. Table 8 shows that the ef-
fective horizon accurately predicts the change in sample
complexity due to using a pre-trained policy. Again, three
bounds—worst case, EPW, and UCB—do not depend on
the exploration policy at all, while the covering length gives
wildly inaccurate predictions for its effect. In contrast, the
effective horizon is accurate at predicting the change in
sample complexity due to using a pre-trained policy.

Long-horizon environments We also perform experi-
ments on full-length Atari games to evaluate the predictive
power of the effective horizon in longer-horizon environ-
ments. It is intractable to construct tabular representations
of these environments and thus we cannot compute instance-
dependent sample complexity bounds. However, it is still
possible to compare the empirical performance of PPO,
DQN, and GORP. If the performance of GORP is close to
that of PPO and DQN, then this suggests that the effective
horizon, which is defined in terms of GORP, can explain
RL performance in these environments as well. Figure 5
compares the learning curves of PPO, DQN, and GORP,
and provides evidence that the effective horizon is also pre-
dictive of RL performance in long-horizon environments.

7. Discussion
Overall, our results suggest the effective horizon is a key
measure of the difficulty of solving an MDP via reinforce-
ment learning. The intuition behind the effective horizon
presented in Section 5 and the empirical evidence in Section
6 both support its importance for better understanding RL.

Limitations While we have presented a thorough theo-
retical and empirical justification of the effective horizon,

there are still some limitations to our analysis. First, we
focus on deterministic MDPs with discrete action spaces,
leaving the extension to stochastic environments and those
with continuous action spaces an open question. Further-
more, the effective horizon is not easily calculable without
full access to the MDP’s tabular representation. Despite this,
it serves as a useful perspective for understanding RL’s ef-
fectiveness and potential improvement areas. An additional
limitation is that the effective horizon cannot capture the
performance effects of generalization – the ability to use
actions that work well at some states for other similar states.
For an example where the effective horizon fails to predict
generalization, see Appendix H.2. However, the effective
horizon is still quite predictive of deep RL performance
even without modeling generalization.

Implications and future work We hope that this paper
helps to bring the theoretical and empirical RL communities
closer together in pursuit of shared understanding. Theo-
rists can extend our analysis of the effective horizon to new
algorithms or explore related properties, using our BRIDGE
dataset to ground their investigations by testing assumptions
in real environments. Empirical RL researchers can use the
effective horizon as a foundation for new algorithms. For
instance, Brandfonbrener et al. (2021) present an offline RL
algorithm similar to GORP with k = 1; our theoretical un-
derstanding of GORP might provide insights for improving
it or developing related algorithms.
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Appendix

A. Proofs of main results
A.1. Proof of Theorem 2.1

Theorem 2.1. There is an RL algorithm which can solve any deterministic MDP with sample complexity N ≤ T ⌈AT /2⌉.
Conversely, for any RL algorithm and any values of T and A, there must be some deterministic MDP for which its sample
complexity N ≥ T (⌈AT /2⌉ − 1).

Proof. Consider the following RL algorithm:
procedure EXHAUSTIVESEARCH
T ← Shuffle(AT )
J is an array of size ⌈AT /2⌉
for i = 1, . . . , ⌈AT /2⌉ do

run one episode, taking the actions in T [i]
J [i]←

∑T
t=1 γ

tR(st, at)
end for
i∗ ← argmaxi J [i]
return the policy which takes the actions in T [i∗]

end procedure

Since the MDP is deterministic, an RL algorithm only needs to find an optimal sequence of actions. Clearly, there is
at least a 1/2 chance that some optimal sequence of actions is in the first ⌈AT /2⌉ elements of T . If this is the case,
then EXHAUSTIVESEARCH will return an optimal policy corresponding to that optimal sequence. Since the number of
environment timesteps taken by EXHAUSTIVESEARCH is equal to T ⌈AT /2⌉, we have that N ≤ T ⌈AT /2⌉.

For the converse, fix A and T along with any RL algorithm. Consider a set of states indexed by sequences of actions of
length 0 to T :

S = {sa1:ℓ
| ℓ ∈ 0, . . . , T, a1:ℓ ∈ Aℓ}.

Then, define a transition function
f(sa1:ℓ

, a) = sa1:ℓ,a.

Now consider AT different MDPs which share the state space S and transition function f , differing only in their reward
functions:

M = {Ma1:T
| a1:T ∈ AT } where the MDPMa1:T

has R(sa1:ℓ
, a) =

{
1 a1:ℓ, a = a1:T

0 otherwise.

That is, each MDP has a single optimal sequence of actions that gives reward 1 on the final timestep; all other rewards are 0.

Let the RL algorithm in question take in some source of randomness z and output a policy πn
t (a | s; z,M) after n timesteps

in MDPM. Now suppose by way of contradiction the sample complexity of the algorithm is less than T (⌈AT /2⌉ − 1) in
all MDPs in M. By our definition of sample complexity, this means that

∀M ∈M Pz

(
J
(
π
T (⌈AT /2⌉−2)
t (·; z,M)

)
= 1
)
≥ 1/2. (2)

Clearly a policy can only be optimal in these MDPs if it is deterministic, so let τ(z,M) be the sequence of actions that

π
T (⌈AT /2⌉−2)
t (a | s; z,M) takes if it is optimal, and let it be any suboptimal sequence of actions if the policy is suboptimal.

We can rewrite (2) as
∀Ma1:T

∈M Pz (τ(z,Ma1:T
) = a1:T ) ≥ 1/2.

Letting Unif(AT ) define a uniform distribution over action sequences of length T , this implies

Pa1:T∼Unif(AT ),z

(
τ(z,Ma1:T

) = a1:T

)
≥ 1/2

which means that there must be some particular z such that

Pa1:T∼Unif(AT )

(
τ(z,Ma1:T

) = a1:T

)
≥ 1/2∣∣{a1:T ∈ AT | τ(z,Ma1:T

) = a1:T
}∣∣ ≥ AT /2 (3)
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Given that the RL algorithm is now deterministic due to the fixed z, we will prove that the LHS of (3) must be less than
or equal to ⌈AT /2⌉ − 1. This can be shown via induction. For the first episode, the algorithm must take the same actions
in every MDP since all MDPs give zero reward until the final action (so there is no way to distinguish them). After the
first episode, only one MDP can be distinguished from the others: the one corresponding to the action sequence taken in
the first episode, which has reward 1 instead of 0. Thus in the remaining AT − 1 MDPs the algorithm must take the same
actions in the second episode. Continuing this argument shows that after episode ⌈AT /2⌉ − 2, the algorithm must still be
unable to distinguish between AT −

(
⌈AT /2⌉ − 2

)
= ⌊AT /2⌋+ 2 of the MDPs, and so τ(z,M) must be the same for all

MDPs in this set. Since all of these MDPs have different optimal action sequences, τ(z,M) can only be optimal in one
of them. Thus τ(z,M) must be suboptimal in at least ⌊AT /2⌋+ 1 MDPs, which means the LHS of (3) must be at most
AT − (⌊AT /2⌋+ 1) = ⌈AT /2⌉ − 1.

Combining this with (3) gives ⌈AT /2⌉ − 1 ≥ AT /2, which is a contradiction. Thus, the sample complexity of the RL
algorithm must be at least T (⌈AT /2⌉ − 1). ■

A.2. Proof that k = T in the worst case

Lemma A.1. Let Q1 = Qπrand
, Qi+1 = QVI(Qi) for i = 2, . . . , T , and Π(Qi) be defined as in Section 4. Then for any

horizon T and number of actions A ≥ 2 there is an MDP such that no policy in Π(Qi) is optimal for i < T .

Proof. As in the proof of Theorem 2.1, define an MDP where every action sequence leads to a different state. Pick an
arbitrary action sequence a1:T , and let the reward of taking the final action in that sequence be 1:

R(sa1:T−1
, aT ) = 1.

Now take some action a′1 ̸= a1, and let the reward for taking that action at the beginning of an episode be 3/4:

R(s1, a
′
1) = 3/4.

Let the rewards for all other state-action pairs be 0. We will show by induction that

Qi
t(sa1:t−1 , at) =

1

Amax{T−i−t+1,0} and Qi
1(s1, a

′
1) = 3/4. (4)

The left half of (4) is clearly true for i = 1, since the random policy will take all action sequences following the t− 1-th
optimal action with probability 1/AT−t, and exactly one of those gives reward 1. The right half is also clear since following
a′1 gives immediate reward of 3/4 and then no reward afterwards.

For the inductive step, we begin with the left half of (4); assume it holds for some i. By the definition of Q-value iteration,
we have for t < T

Qi+1
t (sa1:t−1

, at)

(i)
= R(sa1:t−1

, at) + max
a

Qi
t+1(sa1:t

, a)

= 0 +
1

Amax{T−i−(t+1)+1,0}

=
1

Amax{T−(i+1)−t+1,0}

and for t = T ,

Qi+1
T (sa1:T−1

, aT ) = R(sa1:T−1
, aT ) = 1 =

1

A0
=

1

Amax{T−(i+1)−t+1,0} .

(i) is because only one action at timestep t+ 1 can have a Q-value greater than 0, since only one action sequence leads to
reward after taking a1. For the right half of (4), we have

Qi+1
1 (s1, a

′
1) = R(s1, a

′
1) + max

a
Qi

2(sa′
1
, a) = 3/4 + 0 = 3/4.

which is due to no reward being possible after taking a′1 at the first timestep.

Given that (4) holds for i = 1, . . . , T , it is easy to see that for i < T , any π ∈ Π(Qi) will take a′1 on the first timestep, since

Qi
1(s1, a1) =

1

Amax{T−i,0} =
1

AT−i
≤ 1

A
≤ 1

2
≤ 3

4
= Qi

1(s1, a
′
1).

This means that π will be suboptimal, since a1 is the only optimal action at t = 1. ■
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A.3. Proof of Lemma 5.3

Lemma 5.3. The sample complexity of GORP with optimal choices of k and m is T 2AH .

Proof. Recall the definition of effective horizon:

Definition 5.2 (Effective horizon). Given k ∈ [T ], let Hk = k+ logA mk, where mk is the minimum value of m needed for
Algorithm 1 with parameter k to return the optimal policy with probability at least 1/2, or∞ if no value of m suffices. The
effective horizon is H = mink Hk.

Let k ∈ argmink Hk. Then by Definition 5.2, GORP (Algorithm 1) with parameters k,mk will converge to an optimal
policy with probability at least 1/2. Clearly, Algorithm 1 interacts with the environment for T iterations, each of which
require evaluating Ak action sequences with mk episodes of T timesteps each, for a total of

T 2Akmk = T 2AHk = T 2AH

timesteps. Thus the sample complexity of GORP satisfies NGORP ≤ T 2AH .

Now, suppose by way of contradiction that NGORP < T 2AH . Then this must mean that there are parameters k′,m′ such
running GORP with these parameters converges to an optimal policy with probability at least 1/2, and

k′ + logA m′ < k + logA mk.

By Definition 5.2, this means that mk′ ≤ m′, and thus

H = min
k

H ≤ k′ + logA mk′ ≤ k′ + logA m′ < k + logA mk = H

which is clearly a contradiction. Thus, it must be that NGORP = T 2AH . ■

A.4. Proof of Theorem 5.4

Theorem 5.4. Suppose that an MDP is k-QVI-solvable and that all rewards are nonnegative, i.e. R(s, a) ≥ 0 for all s, a.
Let ∆k denote the gap of the Q-function Qk as defined in Definition 5.1. Then

Hk ≤ k + max
t∈[T ],s∈Sopt

i ,a∈A
logA

(
Qk

t (s, a)V
∗
t (s)

∆k
t (s)

2

)
+ logA 6 log

(
2TAk

)
, (1)

where Sopt
i is the set of states visited by some optimal policy at timestep i and V ∗

t (s) = maxπ V
π
t (s) is the optimal value

function.

Proof. Let

m = log
(
2TAk

)
max

t∈[T ],s∈Sopt
t ,a∈A

6Qk
t (s, a)V

∗
t (s)

∆k
t (s)

2
.

We will show that GORP (Algorithm 1) converges to the optimal policy with probability at least 1/2 given parameters
k and m. By Definition 5.2, this means the effective horizon must be at most k + logA m, which gives the bound in the
theorem. More precisely, we will show that GORP converges to a policy in Π(Qk) with probability at least 1/2, which must
be optimal because of the assumption that the MDP is k-QVI-solvable.

First, we will show the following relationship between the k-action Q1 values and Qk:

Qk
i (si, ai) = max

ai+1:i+k−1∈Ak−1
Q1

i (si, ai, ai+1:i+k−1). (5)

We prove that (5) holds inductively. For k = 1, (5) is obviously true. Supposing it holds for k, then

Qk+1
i (si, ai) = QVI(Qk

i )(si, ai)

= R(si, ai) + max
ai+1∈A

Qk
i+1(f(si, ai), ai+1)

(i)
= R(si, ai) + max

ai+1:i+k∈Ak
Q1

i+1(f(si, ai), ai+1:i+k)

= max
ai+1:i+k∈Ak

Q1
i (si, ai, ai+1:i+k),
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which shows (5) holds for k + 1. (i) holds due to the inductive hypothesis.

Recall that in Algorithm 1, we use Q̂i(si, ai:i+k−1) to denote the estimated Q-value of the k-action sequence ai:i+k−1.
Analogously to (5), define

Q̂k
i (si, ai) = max

ai+1:i+k−1∈Ak−1
Q̂i(si, ai, ai+1:i+k−1)

to be the maximum estimated Q-value of any action sequence that starts with ai. We can rewrite line 7 of Algorithm 1 as

πi(si)← arg max
ai∈A

Q̂k
i (si, ai).

That is, the action that GORP selects for timestep i is chosen from those with the highest values of Q̂k
i (si, ai). Suppose we

can show that

P
(
arg max

ai∈A
Q̂k

i (si, ai) ⊆ arg max
ai∈A

Qk
i (si, ai)

)
≥ 1− 1

2T
(6)

holds for each i ∈ [T ]. Then by a union bound,

P
(
∀i ∈ [T ] πi(si) ∈ arg max

ai∈A
Qk

i (si, ai)

)
≥ 1

2
. (7)

This implies that π ∈ Π(Qk), which is the desired result.

It remains to show that (6) holds. We will actually prove the bound assuming that si ∈ Sopt
i . This is still sufficient to imply

(7) since one can inductively assume that previous actions are optimal. We can write (6) equivalently as

P
(
∃ai ∈ arg max

ai∈A
Q̂k

i (si, ai) : ai /∈ arg max
ai∈A

Qk
i (si, ai)

)
≤ 1

2T
. (8)

Let a∗i:i+k−1 ∈ argmaxai:i+k−1∈Ak Q1
i (si, ai:i+k−1) be chosen arbitrarily. By (5), this implies that a∗i ∈

argmaxai∈A Qk
i (si, ai). Then

P
(
∃ai ∈ arg max

ai∈A
Q̂k

i (si, ai) : ai /∈ arg max
ai∈A

Qk
i (si, ai)

)
≤ P

(
∃ai /∈ arg max

ai∈A
Qk

i (si, ai) : Q̂k
i (si, ai) ≥ Q̂k

i (si, a
∗
i )

)
≤ P

(
∃ai /∈ arg max

ai∈A
Qk

i (si, ai), ai+1:i+k−1 ∈ Ak−1 : Q̂i(si, ai, ai+1:k−1) ≥ Q̂i(si, a
∗
i:i+k−1)

)
≤

∑
ai /∈argmaxai∈A Qk

i (si,ai),ai+1:i+k−1∈Ak−1

P
(
Q̂i(si, ai, ai+1:k−1) ≥ Q̂i(si, a

∗
i:i+k−1)

)
. (9)

Consider a single term of the sum in (9). By the definition of the gap and the fact that ai /∈ argmaxai∈A Qk
i (si, ai), we

know that
Qk

i (si, ai) ≤ Qk
i (si, a

∗
i )−∆k

i (si).

Combining this with (5) implies that

Q1
i (si, ai:i+k−1) ≤ Q1

i (si, a
∗
i:i+k−1)−∆k

i (si)

Q1
i (si, a

∗
i:i+k−1)−Q1

i (si, ai:i+k−1) ≥ ∆k
i (si). (10)

Now, consider the random variables Q̂i(si, ai, ai+1:k−1) and Q̂i(si, a
∗
i:i+k−1). Let Xj =

∑T
t=i γ

t−iR(sjt , a
j
t ) be the

discounted reward from timestep i in the jth episode used to estimate Q̂i(si, ai, ai+1:i+k−1); let Yj be the equivalent for
estimating Q̂i(sia

∗
i:i+k−1). Then we can write

Q̂i(si, ai, ai+1:i+k−1) =
1

m

m∑
j=1

Xj Q̂i(si, a
∗
i:i+k−1) =

1

m

m∑
j=1

Yj .

By the definition of the optimal value function V ∗ and the assumption that all rewards are nonnegative, we have that
Xj , Yj ∈ [0, V ∗

i (si)]. We also know that the expectations of the Xj and Yj are bounded:

E[Xj ] = Q1
i (si, ai:i+k−1) ≤ Qk

i (si, ai) ≤ max
ai

Qk
i (si, ai).

E[Yj ] = Q1
i (si, a

∗
i:i+k−1) = Qk

i (si, a
∗
i ) ≤ max

ai

Qk
i (si, ai).
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The variance of a random variable with mean µ bounded on an interval [α, β] is at most (β − µ)(µ− α). This means we
can bound the variance of Xj and Yj as well:

Var(Xj) ≤ max
ai

Qk
i (si, ai)V

∗
i (si) Var(Yj) ≤ max

ai

Qk
i (si, ai)V

∗
i (si).

Now define

Z = Q̂1
i (si, a

∗
i:i+k−1)− Q̂1

i (si, ai, ai+1:i+k−1) =
1

m

m∑
j=1

Yj −Xj =
1

m

m∑
j=1

Zj ,

where Zj = Yj −Xj . Since Xj and Yj are independent,

Var(Zj) = Var(Xj) + Var(Yj) ≤ 2max
ai

Qk
i (si, ai)V

∗
i (si).

Also define centered versions Z̄j = Zj − E[Zj ] and Z̄ = Z − E[Z]. By (10), E[Z] ≥ ∆k
i (si). Furthermore, since

Xj , Yj ∈ [0, V ∗
i (si)], we also know that |Zj | ≤ V ∗

i (si) and |Z̄j | ≤ V ∗
i (si) + E[Z] ≤ 2V ∗

i (si).

We can now finally apply Bernstein’s inequality to bound the probability of one term in (9):

P
(
Q̂i(si, ai, ai+1:k−1) ≥ Q̂i(si, a

∗
i:i+k−1)

)
= P (Z ≤ 0)

= P
(
Z̄ ≤ −E[Z]

)
≤ P

(
Z̄ ≤ −∆k

i (si)
)

(i)
≤ exp

{
− 1

2m∆k
i (si)

2

Var(Zj) +
2
3V

∗
i (si)∆

k
i (si)

}
(ii)
≤ exp

{
− 1

2m∆k
i (si)

2

2maxai
Qk

i (si, ai)V
∗
i (si) +

2
3V

∗
i (si)∆

k
i (si)

}
(iii)
≤ exp

{
−m∆k

i (si)
2

6maxai Q
k
i (si, ai)V

∗
i (si)

}
(iv)
≤ exp

(
− log(2TAk)

)
=

1

2TAk
. (11)

Here, (i) is a direct application of Bernstein’s inequality to the sum Z̄ = 1
m

∑m
j=1 Z̄j . (ii) uses the bound on Var(Zj) =

Var(Z̄j) and (iii) uses the fact that ∆k
i (si) ≤ maxai Q

k
i (si, ai) by definition of the gap ∆k

i . Finally, (iv) uses the definition
of m; since si ∈ Sopt

i by assumption,

m ≥ log
(
2TAk

)
max
ai∈A

6Qk
t (si, ai)V

∗
t (si)

∆k
t (si)

2
.

Applying (11) to (9) gives

P
(
∃ai ∈ arg max

ai∈A
Q̂k

i (si, ai) : ai /∈ arg max
ai∈A

Qk
i (si, ai)

)
≤

∑
ai /∈argmaxai∈A Qk

i (si,ai),ai+1:i+k−1∈Ak−1

1

2TAk

≤ 1

2T
,

which is the only thing left that is needed to complete the proof. ■

B. Additional theoretical results concerning the effective horizon
In this appendix, we present some additional theoretical results concerning the effective horizon. First, we explore two
algorithms—one in the style of policy gradient and one similar to fitted Q-iteration—whose sample complexities can also be
bounded by a quantity related to the effective horizon. Then we show conditions under which the effective horizon is small,
as well as information-theoretic lower bounds for the sample complexity of RL in terms of the effective horizon.
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B.1. PG-GORP and FQI-GORP

The two algorithms we introduce in this section, PG-GORP and FQI-GORP, can be viewed as a bridge between GORP,
which we use to define the effective horizon, and PPO and DQN, the deep RL algorithms whose performance we predict
using the effective horizon in Section 6. They help to explain why the effective horizon is not only useful for understanding
the performance of GORP, but also other RL algorithms.

We will actually give sample complexity bounds on PG-GORP and FQI-GORP in terms of the bound in Theorem 5.4, rather
than the effective horizon itself. Supposing that the MDP is k-QVI-solvable, define

H̄k = k + max
t∈[T ],s∈Sopt

i ,a∈A
logA

(
Qk

t (s, a)V
∗
t (s)

∆k
t (s)

2

)
+ logA 6 log

(
2TAk

)
.

Our bounds will also depend on a quantity measuring how far the exploration policy πexpl is from the uniformly random
policy πrand: ∥∥∥∥πrand

πexpl

∥∥∥∥
∞

= max
(t,s,a)∈[T ]×S×A

1

A πexpl
t (a | s)

.∥∥∥πrand

πexpl

∥∥∥
∞

= 1 in the case when πexpl = πrand, and increases as the smallest probabilities πexpl assigns to actions becomes
smaller.

We now introduce the first algorithm, PG-GORP.

Algorithm 2 The PG-GORP algorithm.

1: procedure PG-GORP(m)
2: π ← πexpl.
3: for i = 1, . . . , T do
4: Sample m episodes following π.
5: for a ∈ A do
6: ∇̂i(a | si)← 1

m

∑m
j=1

1
a
j
i
=a

πi(a|si)
∑T

t=i γ
t−iR(sjt , a

j
t ).

7: end for
8: πi(si)← argmaxa∈A ∇̂i(a | si).
9: end for

10: return π
11: end procedure

PG-GORP resembles the REINFORCE algorithm (Williams, 1992), which gave rise to other policy gradient-based algorithms
like PPO. At each iteration, Algorithm 2 first samples a number of episodes following its current policy (line 4). Then, it
computes a an approximate gradient over the policy parameters—in this case, just the action probabilities πi(a | si)—via
the so-called “policy gradient theorem,” which states

∇πi(·|si)J(π) ≈
1

m

m∑
j=1

∇πi(·|si) log πi(a
j
i | si)

T∑
t=i

γt−iR(sjt , a
j
t )

=
1

m

m∑
j=1

∇πi(·|si)πi(a
j
i | si)

πi(a
j
i | si)

T∑
t=i

γt−iR(sjt , a
j
t )

= ∇̂i(· | si).
Then, in line 8, Algorithm 2 applies optimization to π based on its estimate of the gradient. In this case, it optimizes until πi

assigns all probability to only one action πi(si) at si.

Theorem B.1 (Sample complexity of PG-GORP). Suppose that an MDP is 1-QVI-solvable and that all rewards are
nonnegative. Then the sample complexity of PG-GORP is at most

2T 2AH̄1

∥∥∥∥πrand

πexpl

∥∥∥∥
∞

.
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Proof. Let

m = AH̄1

∥∥∥∥πrand

πexpl

∥∥∥∥
∞

= 12A log (2TA) max
t∈[T ],s∈Sopt

i ,a∈A

(
Qk

t (s, a)V
∗
t (s)

∆1
t (s)

2

)∥∥∥∥πrand

πexpl

∥∥∥∥
∞

.

We will show that Algorithm 2 converges with probability at least 1/2 with this choice of parameter, giving the sample
complexity bound in the theorem since the algorithm clearly samples T 2m total timesteps from the environment.

Similarly to the proof of Theorem 5.4, we will prove this by showing that with probability at least 1 − 1/(2T ), at each
iteration πi(si) ∈ argmaxa∈A Qπexpl

i (si, a). This gives π ∈ Π(Q1), which by 1-QVI-solvability means π must be optimal.

Consider the ith iteration of Algorithm 2. Define for each a ∈ A and j ∈ [m] the random variable

Xj(a) =
1aj

i=a

πi(a | si)

T∑
t=i

γt−iR(sjt , a
j
t ).

First, can see that

0 ≤ Xj(a) ≤
V ∗
i (si)

πi(a | si)
=

V ∗
i (si)

πexpl
i (a | si)

≤ A V ∗
i (si)

∥∥∥∥πrand

πexpl

∥∥∥∥
∞

,

since πi = πexpl
i until line 8.

Second, we have

E [Xj(a)] =
1

πi(a | si)
P
(
aji = a

)
E

[
T∑
t=i

γt−iR(sjt , a
j
t ) | a

j
i = a

]
= Qπexpl

i (si, a).

Finally, using same the reasoning as in the proof of Theorem 2, we can bound the variance of Xj(a):

Var (Xj) ≤ A V ∗
i (si)

∥∥∥∥πrand

πexpl

∥∥∥∥
∞

E [Xj ] = AQπexpl

i (si, a)V
∗
i (si)

∥∥∥∥πrand

πexpl

∥∥∥∥
∞

.

We now apply Bernstein’s inequality to

∇̂i(a | si) =
1

m

m∑
j=1

Xj(a)

for each a ∈ A. If a ∈ argmaxa∈A Qπexpl

i (si, a), we apply a lower tail bound:

P
(
∇̂i(a | si) ≤ Qπexpl

i (si, a)−
1

2
∆1

i (si)

)

≤ exp

− m
(
∆1

i (si)
)2

/8(
Qπexpl

i (si, a) +
1
3∆

1
i (si)

)
V ∗
i (si)

∥∥∥πrand

πexpl

∥∥∥
∞


≤ exp

− m
(
∆1

i (si)
)2

12Qπexpl

i (si, a)V ∗
i (si)

∥∥∥πrand

πexpl

∥∥∥
∞


≤ 1

2TA
.

If a /∈ argmaxa∈A Qπexpl

i (si, a), we apply an identical upper tail bound:

P
(
∇̂i(a | si) ≥ Qπexpl

i (si, a) +
1

2
∆1

i (si)

)
≤ 1

2TA
.

These tail bounds hold simultaneously for all actions with probability at least 1− 1
2T . Furthermore, assuming they hold and

using the definition of the gap ∆1
i (si), it must be that

argmax
a∈A
∇̂i(a | si) ⊆ argmax

a∈A
Qπexpl

i (si, a),

which is enough to show that πi(si) ∈ argmaxa∈A Qπexpl

i (si, a) with probability at least 1 − 1
2T and thus prove the

theorem. ■
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Now that we have seen that PG-GORP enjoys similar sample complexity bounds to GORP in the common case that an
MDP is 1-QVI-solvable, we introduce FQI-GORP. FQI-GORP derives its name from fitted Q-iteration (FQI), which was
originally proposed by Ernst et al. (2005). DQN was inspired by neural FQI (Riedmiller, 2005), so FQI-GORP provides a
natural connection to DQN.

Algorithm 3 The FQI-GORP algorithm.

1: procedure FQI-GORP(k,m)
2: for i = 1, . . . , T do
3: Sample Akm episodes, following π for timesteps 1 to i− 1 and then πexpl.

4: Q̂1
i+k−1 ← argminQ̂1

i+k−1

1
Akm

∑Akm
j=1

(
Q̂1

i+k−1(s
j
i+k−1, a

j
i+k−1)−

∑T
t=i+k−1 R(sjt , a

j
t )
)2

.
5: for t = i+ k − 2, . . . , i do

6: Q̂i+k−t
t ← argminQ̂i+k−t

t

1
Akm

∑Akm
j=1

(
Q̂i+k−t

t (sjt , a
j
t )−R(sjt , a

j
t )−maxa′∈A Q̂i+k−t−1

t+1 (sjt+1, a
′)
)2

.

7: end for
8: πi(si)← argmaxa∈A Q̂k

i (si, a).
9: end for

10: return π
11: end procedure

FQI-GORP iteratively constructs a series of Q-functions at each iteration by minimizing a mean-squared temporal difference
error loss, similar to FQI and DQN.

Theorem B.2 (Sample complexity of FQI-GORP). Suppose that an MDP is k-QVI-solvable and that all rewards are
nonnegative. Then the sample complexity of FQI-GORP is at most

T 2

∥∥∥∥πrand

πexpl

∥∥∥∥k
∞

max
{
4AH̄k , 10 log(4TAk)

}
.

Proof. Let

m =

∥∥∥∥πrand

πexpl

∥∥∥∥k
∞

max

{
24 log (2TA) max

t∈[T ],s∈Sopt
i ,a∈A

(
Qk

t (s, a)V
∗
t (s)

∆1
t (s)

2

)
,
10 log(4TAk)

Ak

}
.

We will show that FQI-GORP with parameters k and m will return an optimal policy with probability at least 1/2. Since
FQI-GORP samples a number of timesteps from the environment equal to T 2Akm, this will prove the bound in the theorem.

Consider the ith iteration of Algorithm 2. We will show that with probability at least 1− 1/(2T ), for every si+k−1 ∈ S
reachable at timestep i+ k − 1 starting from si, and for every action ai+k−1∣∣∣Q̂1

i+k−1(s
j
i+k−1, a

j
i+k−1)−Q1

i+k−1(s
j
i+k−1, a

j
i+k−1)

∣∣∣ < ∆1
i (si)

2
. (12)

To prove (12), it is first helpful to write an explicit formula fitted Q-value, assuming that the loss in line 4 of Algorithm 3 is
minimized:

Q̂1
i+k−1(s, a) =

∑Akm
j=1 1sji+k−1=s∧aj

i+k−1=a

∑T
t=i+k−1 R(sjt , a

j
t )∑Akm

j=1 1sji+k−1=s∧aj
i+k−1=a

.

That is, the Q-value is a simple average of several reward-to-go values, each of which has expectation Q1
i+k−1(s, a). The

probability of reaching some reachable state-action pair (s, a) at timestep i+ k − 1 must be at least A−k
∥∥∥πrand

πexpl

∥∥∥−k

∞
. Thus,

we can bound the sample size below via a concentration inequality for binomial random variables:

P

Akm∑
j=1

1sji+k−1=s∧aj
i+k−1=a < 12 log (2TA) max

ai∈A

Qk
i (si, ai)V

∗
i (si)

∆1
i (si)

2

 ≤ exp{−3(10 log(4TA
k))

28
} ≤ 1

4TAk
.

If the sample size is at least 12 log (2TA)maxai∈A
Qk

i (si,ai)V
∗
i (si)

∆1
i (si)

2 , then Bernstein’s inequality (as applied in the proofs of
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Theorems 5.4 and B.1) gives

P
(∣∣∣Q̂1

i+k−1(s
j
i+k−1, a

j
i+k−1)−Q1

i+k−1(s
j
i+k−1, a

j
i+k−1)

∣∣∣ ≥ ∆1
i (si)

2

)
≤ 1

4TAk
.

Thus, taking a union bound, we have that the probability (12) does not hold for some reachable state-action pair at timestep
i+ k − 1 must be at most 1/(2T ), since there can be at most Ak such pairs.

We will now show by induction that given that (12) holds for all reachable state-action pairs,∣∣∣Q̂i+k−t
t (sji+k−1, a

j
i+k−1)− Q̂i+k−t

t i+ k − 1(sji+k−1, a
j
i+k−1)

∣∣∣ < ∆1
i (si)

2
. (13)

holds for t = i+ k − 1, . . . , i for all reachable state-action pairs at t. The base case of t = i+ k − 1 is already taken care
of, so we only need to show the inductive step.

Assume (13) holds for all reachable state-action pairs at t+ 1. We can write an explicit formula for the fitted Q-values at
timestep t, given that the loss function on line 6 of Algorithm 3 is minimized:

Q̂i+k−t
t (s, a) =

∑Akm
j=1 1sjt=s∧aj

t=a

(
R(sjt , a

j
t ) + maxa′∈A Q̂i+k−t−1

t+1 (sjt+1, a
′)
)

∑Akm
j=1 1sjt=s∧aj

t=a

= R(s, a) + max
a′∈A

Q̂i+k−t−1
t+1 (f(s, a), a′).

Given that (13) holds for each pair (f(s, a), a′), it is now easy to see that (13) must hold for t as well.

By induction (13) must hold for t = i with probability at least 1− 1/(2T ). Given that it holds, and by definition of the gap,
this implies that πi(si) ∈ argmaxa∈A Qk

i (si, a). Thus with probability at least 1/2, π ∈ Π(Qk). By the assumption that
the MDP is k-QVI solvable, π must be optimal with probability at least 1/2. ■

B.2. Goal MDPs

Now, we will prove bounds on the effective horizon in one particular class of MDPs: goal MDPs.

Definition B.3 (Goal MDP). An MDP is considered a goal MDP if there is some set of goal states Sgoal which are absorbing,
i.e., f(s, a) = s for every s ∈ Sgoal, and furthermore the reward function is of the form

R(s, a) =

{
1 s /∈ Sgoal ∧ f(s, a) ∈ Sgoal

0 otherwise.

That is, in a goal MDP reward is only received for reaching some set of goal states; the total episode reward is 1 if a goal
state is reached and 0 otherwise. As an example, all of the Minigrid environments in BRIDGE are goal MDPs. We can show
the following bound on the effective horizon in goal MDPs.

Theorem B.4 (The effective horizon in goal MDPs). Suppose that πexpl(a | s) > 0 for all s ∈ S and a ∈ A. Then any
goal MDP is 1-QVI-solvable. Furthermore, suppose that there is some p > 0 such that, for all timesteps t ∈ [T ] and all
state-action pairs st, at at that timestep from which a goal state can be reached,

Pπexpl (sT ∈ Sgoal | st, at) ≥ p.

Then the effective horizon can be bounded as

H ≤ 1 + logA
log(2T )

p
. (14)

Before we see the proof, note that Theorem B.4 agrees with our intuition that it should be harder to find an optimal policy
for a goal MDP when it is less likely that the exploration policy reaches the goal, i.e., when p is smaller.

For instance, consider the MDP in Figure 2a. In this MDP, the minimum probability of reaching the goal with the random
exploration policy after taking some action is exponentially small: p = 1/AT−1. Applying Theorem B.4 gives a bound of
H ≤ T + logA log(2T ).

In contrast, consider the Minigrid gridworld in Figure 3 from BRIDGE. Here we can bound p ≈ 0.00137, which gives
H ≤ 1 + logA(1/p) + logA log(2T ) = 1 + log3 729 + log3 log(200) ≤ 7 + 1.52 = 8.52≪ T = 100. The techniques in
Appendix C give a much tighter bound of H ≤ 1.64.
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Figure 3. Empty-5x5, one of the Minigrid MDPs from BRIDGE and an example of a goal MDP (Definition B.3). The agent
(red triangle) can turn left, turn right, or go forward, and its goal is to reach the green square, which gives a reward of 1.

Proof. We can assume that V ∗
1 (s1) = 1, since otherwise every trajectory in the MDP gives reward 0 and thus the effective

horizon is trivially bounded. First, we will show that

Qπexpl

t (s, a) > 0 ⇔ Q∗
t (s, a) = 1. (15)

This is enough to imply the MDP is 1-QVI-solvable, since any policy in Π(Qπexpl
) must take only actions with Qπexpl

t (s, a) >
0, which must be optimal according to (15).

To show that (15) holds, first consider the⇒ implication. Assume Qπexpl

t (s, a) > 0 and by way of contradiction suppose
that Q∗

t (s, a) ̸= 1, which means that Q∗
t (s, a) = 0. Clearly this cannot happen since this would imply Qπexpl

t (s, a) ≤ 0.
Now, consider the ⇐ direction. If Q∗

t (s, a) = 1, then there must be some sequence of actions starting with a which
leads from s to a goal state. By assumption, πexpl assigns positive probability to each action in this sequence. Thus
Qπexpl

t (s, a) = Pπexpl(sT ∈ Sgoal | s, a) > 0.

Next, we will prove the bound on H from (14). From (15), we can see that Algorithm 1 (GORP) will return an optimal
policy for the MDP as long as at each iteration i it picks some action ai with Qπexpl

i (si, ai) > 0. In turn, this will happen as
long as Q̂1

i (si, ai) > 0 for some such ai, since Q̂1
i (si, a) must be 0 for any suboptimal a.

Thus, we need only show that

P
(
∃ai ∈ A Q̂1

i (si, ai) > 0
)
≥ 1− 1

2T
(16)

holds for each i when m ≥ log(2T )/p. This will allow us to conclude via a union bound that Algorithm 1 will find an
optimal policy with probability at least 1/2 in this case, which gives the desired bound on the effective horizon.

To show (16), consider iteration i of Algorithm 1 and let ai ∈ A such that Qπrand

i (si, ai) > 0. We can assume that such
an action exists as long as Algorithm 1 has succeeded in iterations previous to i. Let Xj =

∑T
t=i γ

t−iR(sjt , a
j
t ) be the

reward-to-go from the jth episode sampled to evaluate Q̂1
i (si, ai). By the definition of a goal MDP, each Xj(ai) ∈ {0, 1}.

Furthermore, since Q̂1
i (si, ai) =

1
m

∑m
j=1 Xj , then Q̂1

i (si, a) > 0 as long as some Xj = 1. This implies

P
(
∃ai ∈ A Q̂1

i (si, ai) > 0
)

≥ P
(
Q̂1

i (si, ai) > 0
)

= P
(
∃j ∈ [m] Xj = 1

)
= 1− P

(
∀j ∈ [m] Xj = 0

)
= 1− P

(
Xj = 0

)m
(i)
≥ 1− (1− p)m

≥ 1− exp(−mp)

≥ 1− 1

2T
,
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the bound previously proposed in (16) which we argued gives the desired bound. (i) uses the assumption that Qπexpl

i (si, ai) =
P(Xj = 1) ≥ p. ■

B.3. Lower bounds

Next, we will show that there are MDPs in which exponential dependence on the effective horizon is unavoidable. That is,
in some cases there is an information-theoretic lower bound on the sample complexity of RL proportional to AH .

Theorem B.5. Fix T ≥ 1, A ≥ 2, and H ∈ [T ]. Then for any RL algorithm, there is an MDP with A actions, horizon T ,
and effective horizon at most H for which the algorithm’s sample complexity is at least

T ⌊T/H⌋
(
⌈AH/2⌉ − 1

)
= Ω(T 2AH/H).

Note that this matches the upper bound on the sample complexity of GORP given in Lemma 5.3 up to a factor of roughly
2H. When H = T , it exactly agrees with the lower bound given in Theorem 2.1.

Proof. The proof uses MDPs with the same state space and transition function as in Theorem 2.1. Define AT such MDPs
which differ only in their reward functions:

M = {Ma1:T
| a1:T ∈ AT } where the MDPMa1:T

has R(sa′
1:ℓ
, a′) =

{
1 a′1:ℓ, a

′ = a1:ℓ+1 and ℓ ≡ 0 (mod H)

0 otherwise.

That is, each MDP has a single optimal sequence of actions that gives reward 1 every H timesteps.

By the same argument as in the proof of Theorem 2.1, for any RL algorithm there must be some MDP in M such that after
interacting with the environment for less than ⌈AH/2⌉ − 1 episodes, the algorithm cannot with probability at least 1/2
identify the optimal actions for timesteps t = 1 to t = H. We can repeat this line of reasoning for timesteps t = H + 1
to t = 2H, and so on for a total of ⌊T/H⌋ steps, to show that with less than ⌊T/H⌋

(
⌈AH/2⌉ − 1

)
episodes, there must

be some MDP in M whose optimal action sequence cannot be identified with probability greater than (1/2)⌊T/H⌋ ≤ 1/2.
Thus, the sample complexity of the RL algorithm on this MDP must be at least

T ⌊T/H⌋
(
⌈AH/2⌉ − 1

)
,

which is the desired bound.

It only remains to be shown that the effective horizon of the MDPs in M is actually H. To see why, consider running
Algorithm 1 with k = H and m = 1. That is, at each iteration i, GORP will try all H-length action sequences followed by
actions from πexpl. Then, it will pick the action sequence with the highest empirical reward-to-go. From the definition of the
MDPs in M, all action sequences starting with a suboptimal action must have empirical reward-to-go of 0. Furthermore,
at least one H-length action sequence starting with an optimal action must get reward-to-go of at least 1. Thus, GORP
will with probability 1 choose an optimal action at each timestep. This means that the effective horizon must be at most
H + logA 1 = H. ■

C. Tighter bounds on the effective horizon
In Theorem 5.4, we obtained bounds on the effective horizon and thus on the sample complexity of GORP. However, we
find that the bounds given by Theorem 5.4 are often very loose compared to the empirical performance of GORP due to two
factors. First, Theorem 5.4 requires considering the worst case of Qk

t (s, a)V
∗
t (s)/∆

k
t (s)

2 over all optimal states. However,
in many MDPs in our dataset, there are optimal states with extremely small gaps that in practice are almost never reached by
GORP. When Theorem 5.4 is applied, these states make the sample complexity bounds very large despite GORP working
well empirically. Second, Theorem 5.4 uses asymptotically tight techniques for bounding the sample complexity that can be
quite loose for small sample sizes. Below, we describe the algorithm we use to provably bound the sample complexity of
GORP (and thus the effective horizon) that gives much tighter results.

Consider the GORP algorithm as given in Algorithm 1. Let at denote the random variable corresponding to the action
ultimately chosen by the algorithm for timestep t. Let st denote the state reached by actions a1, . . . , at−1. Denote by Pm

the probability measure given by running the algorithm with parameter m. We would like to bound the probability that the



Bridging RL Theory and Practice with the Effective Horizon

algorithm does not achieve the optimal return in the MDP. Let this event by denoted as

E :=

T∑
t=1

Rt(st, at) < V ∗
1 (s1)

⇔ ∃t at /∈ A∗
t (st),

where A∗
t (s) denotes the set of optimal actions in state s at timestep t, i.e.

A∗
t (s) = argmax

a∈A
Q∗

t (s).

It is straightforward to see from Algorithm 1 that it requires T 2Akm timesteps of interaction the environment. Thus the
sample complexity of the algorithm is

T 2Akm where m = min{m ∈ N | Pm(E) < 1/2}.
Clearly, we can upper bound the sample complexity using any m such that the probability of failure is bounded as
Pm(E) < 1/2. To do so, for each value of k, we perform a binary search over values of m from 1 to 10100. For each
possible m, we calculate an upper bound on Pm(E). If the upper bound is below 1/2, we then search below m; if it is
greater, we search above m. When the search has converged to a relative precision of 1/100, we output T 2Akm as the
sample complexity and Hk = k + logA m as the effective horizon for that particular value of k.

C.1. Upper bounding Pm(E)

We upper bound the failure probability Pm(E) recursively. Let Ot denote the event that all actions taken before t have been
optimal, i.e.,

Ot := ∀t′ < t at ∈ A∗
t (st).

To begin the recursion, note that at the final timestep,

P(E | OT , sT , aT ) = 1{aT /∈ A∗
T (sT )}.

We will use two recursion rules: one from next states to state-action pairs and one from state-action pairs to states. The first
rule is

P(E | Ot, st) =
∑
at∈A

P(E | Ot, st, at)P(at | st) (17)

and the second (for t < T ) is

P(E | Ot, st, at) =

{
1 at /∈ A∗

t (st)

P(E | Ot+1, st+1) at ∈ A∗
t (st).

(18)

We apply these results recursively from t = T, . . . , 1 to finally obtain P(E | O1, s1) = P(E).

The remaining difficulty is calculating P(at | st). Recall from Algorithm 1 that at is chosen as the first action of a k-action
sequence

at:t+k−1 ∈ arg max
at:t+k−1∈Ak

Q̂t(st, at:t+k−1),

where Q̂t(st, at:t+k−1) is the empirical mean return-to-go from m episodes starting in state st and taking actions
at, . . . , at+k−1 followed by actions sampled from the exploration policy. To simplify notation, let a⃗t denote at:t+k−1. We
use various inequalities, described in detail below, to bound the probability that a particular k-action sequence is chosen:

p(⃗at) ≤ Pm

(
Q̂t(st, a⃗t) > max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
≤ Pm

(
Q̂t(st, a⃗t) ≥ max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
≤ p(⃗at).

Letting p(⃗at) denote the actual probability an action sequence is chosen, we can rewrite (17) to

P(E | Ot, st) =
∑
at∈A

P(E | Ot, st, at)
∑

at+1:t+k−1∈Ak−1

p(⃗at). (19)

Given the bounds on p(⃗at) (i.e., p and p), we formulate a linear program with the bounds as constraints, plus the constraint
that

∑
a⃗t∈Ak p(⃗at) = 1, with the objective of maximizing (19). Solving this gives an upper bound on P(E | Ot, st). We can

then propagate this bound recursively using (18) to bound P(E).
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Calculating p and p

We use up to four methods to bound p(⃗at), and pick the one which gives the lowest conditional failure probability after
solving the linear program described above. As previously, let Dt(st, a⃗t) denote the distribution of the reward-to-go starting
in st and taking actions at, . . . , at+k−1 followed by actions sampled from the exploration policy. Thus we can write

Q̂t(st, a⃗t) =
1

m

m∑
i=1

Xi where X1, . . . , Xm
i.i.d.∼ Dt(st, a⃗t).

Most of the following methods use the following decomposition:

Pm

(
Q̂t(st, a⃗t) > max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
(i)
=

∫ ∏
a⃗′
t∈Ak\{a⃗t}

Pm

(
Q̂(st, a⃗

′
t) < Q̂t(st, a⃗t)

)
dPm

(
Q̂t(st, a⃗t)

)
(ii)
≥

N∑
i=1

Pm

(
qi−1 < Q̂t(st, a⃗t) ≤ qi

) ∏
a⃗′
t∈Ak\{a⃗t}

Pm

(
Q̂(st, a⃗

′
t) ≤ qi−1

)
(20)

for some sequence −∞ = q0 ≤ q1 ≤ . . . ≤ qN =∞. Here, (i) uses the fact that the random variables Q̂t(st, a⃗t) across all
action sequences a⃗t ∈ Ak are independent. (ii) is a lower bound on the integral via a Riemann sum.

Alternatively, suppose we know that the CDF of Q̂t(st, a⃗t) is bounded by

Pm

(
Q̂t(st, a⃗t) ≤ x

)
≥ FZ(x)

where FZ(x) is the continuous CDF of some random variable Z. Then

Pm

(
Q̂t(st, a⃗t) > max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
≥ Pm

(
Z > max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
=

∫ ∏
a⃗′
t∈Ak\{a⃗t}

Pm

(
Q̂(st, a⃗

′
t) < Q̂t(st, a⃗t)

)
dPm (Z)

≥ 1

N

N∑
i=1

∏
a⃗′
t∈Ak\{a⃗t}

Pm

(
Q̂(st, a⃗

′
t) ≤ F−1

Z

(
i− 1

N

))
(21)

by a similar argument. We also have equivalent bounds in the other direction:

Pm

(
Q̂t(st, a⃗t) ≥ max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
≤

N∑
i=1

Pm

(
qi−1 < Q̂t(st, a⃗t) ≤ qi

) ∏
a⃗′
t∈Ak\{a⃗t}

Pm

(
Q̂(st, a⃗

′
t) ≤ qi

)
(22)

Pm

(
Q̂t(st, a⃗t) ≥ max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
≤ 1

N

N∑
i=1

∏
a⃗′
t∈Ak\{a⃗t}

Pm

(
Q̂(st, a⃗

′
t) ≤ F−1

Z

(
i

N

))
(23)

where the CDF of Z is greater than or equal to that of Q̂t(st, a⃗t). We use N = 100 when using these bounds.

Binomial bounds In the case where for all a⃗t ∈ Ak, the distribution Dt(st, a⃗t) has mass on only 0 and some other value
C, we have

Q̂t(st, a⃗t) ∼
C

m
Binom

(
m,

1

C
Qt(st, a⃗t)

)
.

This case occurs in many environments that are goal-based, i.e. where the agent gets reward only for reaching some goal and
then the episode ends. We find that it significantly improves the sample complexity bounds in those environments. Without
loss of generality, we may assume C = 1. We then apply (20) and (22) to obtain p(⃗at) and p(⃗at). We let q0, . . . , qN be set
such that

Pm

(
qi−1 < Q̂t(st, a⃗t) ≤ qi

)
≈ 1

N
using either the exact inverse CDF of the binomial distribution for small m or a normal approximation for large m. Then,
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we can calculate all terms in the bounds (20) and (22) using the binomial CDF. Since the CDF is more expensive to calculate
for larger m, we only use the binomial-based bounds when m ≤ 106 and k = 1.

Berry-Esseen bounds For this type of bound, we calculate the variance σ2 = Var(Dt(st, a⃗t)) and third absolute moment

ρ = EX∼Dt(st ,⃗at)[|X|
3]

for each a⃗t ∈ Ak. Then by the Berry-Esseen theorem (Shevtsova, 2011), we have that∣∣∣Pm(Q̂t(st, a⃗t) ≤ u)− PX∼N (Qt(st ,⃗at),σ2/m)(X ≤ u)
∣∣∣ ≤ min{0.3328(ρ/σ3 + 0.429), 0.33554(ρ/σ3 + 0.415)}

√
m

.

The resulting upper and lower bounds on the CDFs of Q̂t(st, a⃗t) for all a⃗t ∈ Ak can be used in (21) and (23) to calculate
p(⃗at) and p(⃗at). Since this bound requires order N evaluations of the normal CDF and inverse CDF, which is somewhat
expensive, we only use it when Ak ≤ 100.

Bernstein bounds Similarly to the Berry-Esseen bounds, Bernstein’s inequality can be used to bound the CDF of
Q̂t(st, a⃗t), and is sometimes superior to Berry-Esseen for large m due to giving tail bounds that decay exponentially rather
than quadratically. In particular, suppose Dt(st, a⃗t) is supported on the interval [α, β]; we can compute these bounds via
value iteration. Then

Var(Dt(st, a⃗t)) ≤ V = (β −Qt(st, a⃗t)) (Qt(st, a⃗t)− α) .

Bernstein’s inequality gives the following bounds on the CDF of Q̂t(st, a⃗t):

Pm

(
Q̂t(st, a⃗t) ≤ Qt(st, a⃗t) + u

)
≥

{
1 u ≤ 0

1− exp
{
− mu2/2

V+(β−α)u/3

}
otherwise

Pm

(
Q̂t(st, a⃗t) ≤ Qt(st, a⃗t) + u

)
≤

{
1 u ≥ 0

exp
{
− mu2/2

V+(β−α)u/3

}
otherwise.

Similarly to the Berry-Esseen bounds, we use these in (21) and (23) to calculate p(⃗at) and p(⃗at) when Ak ≤ 100.

Bennett bounds The final method we use to calculate p(⃗at) and p(⃗at) is computationally cheaper than the others, so we
can use it no matter the size of Ak. As in the Bernstein bounds, we calculate the interval support and bound the variance of
each Dt(st, a⃗t). We then let u be the arithematic mean of the highest action sequence Q value and the second-highest, i.e.

u =
1

2

(
max
a⃗t∈Ak

Qt(st, a⃗t) + max
a⃗′
t /∈argmax

a⃗t∈Ak Qt(st ,⃗at)
Qt(st, a⃗

′
t)

)
.

Then, we for each action sequence with less-than-highest Q-values, i.e. for each a⃗t /∈ argmaxa⃗t∈Ak Qt(st, a⃗t), we calculate
the upper bound

Pm

(
Q̂t(st, a⃗t) ≥ max

a⃗′
t∈Ak\{a⃗t}

Q̂(st, a⃗
′
t)

)
≤ Pm

(
Q̂t(st, a⃗t) ≥ max

a⃗′
t∈argmax

a⃗t∈Ak Qt(st ,⃗at)
Q̂(st, a⃗

′
t)

)

= 1− Pm

(
∃a⃗′t ∈ arg max

a⃗′
t∈Ak

Qt(st, a⃗
′
t) Q̂t(st, a⃗t) < Q̂(st, a⃗

′
t)

)
≤ 1− Pm

(
Q̂t(st, a⃗t) < u ∧ ∀a⃗′t ∈ arg max

a⃗′
t∈Ak

Qt(st, a⃗
′
t) Q̂(st, a⃗

′
t) > u

)
= 1− Pm

(
Q̂t(st, a⃗t) < u

) ∏
a⃗′
t∈argmax

a⃗′
t∈Ak Q̂(st ,⃗a′

t)

Pm

(
Q̂(st, a⃗

′
t) > u

)
= 1−

(
1− Pm

(
Q̂t(st, a⃗t) ≥ u

)) ∏
a⃗′
t∈argmax

a⃗′
t∈Ak Q̂(st ,⃗a′

t)

(
1− Pm

(
Q̂(st, a⃗

′
t) ≤ u

))
. (24)

Each of the tail bounds in (24) can be upper bounded using Bennett’s inequality to obtain p(⃗at). We let p(⃗at) = 1 if
a⃗t ∈ argmaxa⃗t∈Ak Qt(st, a⃗t) and we set p(⃗at) = 0 for all a⃗t ∈ Ak.
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D. Additional related work
In this appendix, we discuss other prior work not mentioned in Section 3.

There have been a few prior attempts to bridge the RL theory-practice gap. bsuite (Osband et al., 2020), MDP playground
(Rajan et al., 2021), and SEGAR (Hjelm et al., 2022) are collections of environments that are designed to vary along
particular axes of difficulty, e.g., sparsity of rewards, difficulty of generalization, or size of the state space. While these
environments allow for empirical evaluation of deep learning algorithms’ strengths and weaknesses, they do not provide
theoretical explanations for why environments with varying properties are actually easier or harder. In contrast, we
focus on the mathematical reasons that properties like reward sparsity affect the sample complexity of RL algorithms.
Furthermore, their environments are artificially constructed to have understandable properties while we analyze “in-the-wild”
environments like Atari and Procgen. Conserva & Rauber (2022) calculate two regret bounds and compare the bounds
to the empirical performance of RL algorithms. However, their analysis is quite limited compared to ours: they consider
tabular RL algorithms in simple artificial environments with less than a thousand states, while we experiment with deep RL
algorithms on real benchmark environments with tens of millions of states.

Our GORP algorithm and effective horizon are inspired by Monte Carlo planning algorithms. These algorithms were used
effectively in Backgammon (Tesauro & Galperin, 1996), Go (Bouzy & Helmstetter, 2004), and real-time strategy games
(Chung et al., 2005) before the start of deep RL.It is interesting that our analysis suggests the success of deep RL is due to
the same assumptions underlying these much older approaches.

E. Previously proposed sample complexity bounds
In this appendix, we give proofs of sample complexity bounds based on properties previously proposed in the RL theory
literature. We also compare these bounds to our effective horizon-based bounds in examples that showcase their failure
modes.

E.1. Upper confidence bounds (UCB) and strategic exploration

A central problem in RL is exploration: how to efficiently reach enough states in an MDP in order to identify the optimal
policy. One common way of approaching exploration is with upper-confidence bounds (UCB), which originated in the
bandit literature. Algorithms using UCBs generally choose actions based on the current best estimate of that action’s value
plus an exploration “bonus” that incentivizes exploration of little-seen states. Examples in the RL literature include Kakade
(2003); Azar et al. (2017); Jiang et al. (2017); Jin et al. (2018; 2019); Du et al. (2021); Jin et al. (2021). Generally, these
UCB algorithms achieve minimax sample complexity in terms of some measure of the “size” of the state space—either the
number of states S (Azar et al., 2017), or quantities like the Bellman-Eluder dimension (Jin et al., 2021).

A very simple UCB-type algorithm, R-MAX (Brafman & Tennenholtz, 2002; Kakade, 2003), achieves a sample complexity
bounded by SAT in deterministic, tabular MDPs. It depends on knowing the maximum reward at any state-action pair in
the MDP, Rmax = max(s,a)∈S×A R(s, a). It also requires access to a computational oracle that can calculate an optimal
policy for any transition function f and reward function R, for instance via value iteration.

1: procedure R-MAX
2: initialize f̂(s, a)← s for all (s, a) ∈ S ×A
3: initialize R̂(s, a)← Rmax for all (s, a) ∈ S ×A
4: for j = 1, . . . , SA do
5: for t = 1, . . . , T do
6: take an action a in the current state s according to the optimal policy for f̂ and R̂
7: R̂(s, a)← the observed reward
8: f̂(s, a)← the observed next state s′

9: end for
10: end for
11: return an optimal policy for f̂ and R̂
12: end procedure

This is the version of R-MAX for deterministic MDPs; there is a more complex version for stochastic MDPs. The exploration
bonuses in R-MAX are simply the initialization of R̂ to the maximum possible reward. This ensures that an optimal value
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function computed from f̂ and R̂ is always an upper bound on the true optimal value function. The following result shows
that R-MAX finds the optimal policy, and thus proves that its sample complexity is at most SAT .
Theorem E.1. R-MAX returns an optimal policy.

Proof. Let V̂ ∗ and Q̂∗ be the optimal value function and Q-function under f̂ and R̂. We will begin by showing that at any
point in the algorithm, V ∗

t (s) ≤ V̂ ∗
t (s) and Q∗

t (s, a) ≤ Q̂∗
t (s, a) for all (t, s, a) ∈ [T ]× S ×A.

The proof is via induction on t from T to 1. To begin, clearly Q̂∗
T (s, a) ∈ {Q∗

T (s, a), Rmax}, so the bound holds for Q̂∗
T .

Now, suppose that at some t ∈ [T ] and all (s, a) ∈ S ×A, Q∗
t (s, a) ≤ Q̂∗

t (s, a). Then
V̂ ∗
t (s) = max

a∈A
Q̂∗

t (s, a) ≥ max
a∈A

Q∗
t (s, a) = V ∗

t (s),

so the bound holds for V̂ ∗
t as well. Finally, say that at some t ∈ [T − 1] and for all s ∈ S , V ∗

t+1(s) ≤ V̂ ∗
t+1(s). To show this

implies Q∗
t (s, a) ≤ Q̂∗

t (s, a) for any (s, a) ∈ S ×A, consider two cases. First, if (s, a) has been seen by the algorithm, then

Q̂∗
t (s, a) = R̂(s, a) + V̂ ∗

t+1(f̂(s, a) = R(s, a) + V̂ ∗
t+1(f(s, a) ≥ R(s, a) + V ∗

t+1(f(s, a) = Q∗
t (s, a).

Otherwise, if (s, a) has not been seen, then R̂(s, a) = Rmax and f̂(s, a) = s. In this case,
Q̂∗

t (s, a) = (T − t+ 1)Rmax ≥ Q∗
t (s, a).

By induction we see that V ∗
t (s) ≤ V̂ ∗

t (s) and Q∗
t (s, a) ≤ Q̂∗

t (s, a) for all (t, s, a) ∈ [T ]× S ×A.

Next, we will prove that any optimal policy π for f̂ and R̂ must either (a) be optimal for f and R or (b) reach a previously
unseen state-action pair. In particular, we will show that if V π

1 (s1) < V̂ ∗
1 (s1), then π must reach a previously unseen

state-action pair. Otherwise, V π
1 (s1) ≥ V̂ ∗

1 (s1) ≥ V ∗
1 (s1), showing that π is optimal for f and R.

We will again work inductively starting from the last timestep. First, suppose that Qπ
T (s, a) < Q̂∗

T (s, a) for some
(s, a) ∈ S ×A. This is equivalent to R(s, a) < R̂(s, a), which clearly means that (s, a) cannot have been explored.

Now, suppose that at some timestep t ∈ [T ], we know that for any (s, a) ∈ S ×A, Qπ
t (s, a) < Q̂∗

t (s, a) implies that π must
explore some new state-action pair at or after timestep t starting in (s, a). If V π

t (s) < V̂ ∗
t (s) for some s ∈ S, then

Qπ
t (s, πt(s)) < max

a∈A
Q̂∗

t (s, a) = Q̂∗
t (s, πt(s)).

By assumption this means π must explore some new state-action pair at or after timestep t, since it takes an action a
satisfying Qπ

t (s, a) < Q̂∗
t (s, a).

Finally, suppose that for some t ∈ [T ], we know that for any s ∈ S, V π
t+1(s) < V̂ ∗

t+1(s) implies that π must explore some
new state-action pair at or after timestep t+ 1 starting in s. Suppose for some (s, a) ∈ S × A that Qπ

t (s, a) < Q̂∗
t (s, a).

Then
R(s, a) + V π

t+1(f(s, a)) < R̂(s, a) + V π
t+1(f̂(s, a))

which implies that either R(s, a) < R̂(s, a) or V π
t+1(f(s, a)) < V π

t+1(f̂(s, a)). In the first case, (s, a) must be unexplored.
In the second case, either (s, a) is unexplored, or

V π
t+1(f(s, a)) < V π

t+1(f(s, a)).

In any of these cases, π must explore a new state-action pair either in this timestep or in the future starting from (s, a).

Inductively, this shows that V π
1 (s1) < V̂ ∗

1 (s1) implies that π must reach a previously unseen state-action pair. We will show
that this property implies that R-MAX must return an optimal policy.

In particular, note that after the jth loop iteration in R-MAX, it must either have an optimal policy or have explored at least j
of the state-action pairs in the MDP. This is a simple consequence of the above property: at each iteration, either the policy
used by R-MAX must be optimal or it must explore at least one additional state-action pair. This means that after all the SA
loop iterations, R-MAX will either have an optimal policy or have explored all the state-action pairs, in which case it will
also have an optimal policy. ■

E.2. Covering length

The covering length of an MDP was originally proposed by Even-Dar & Mansour (2003) and later used by Liu & Brunskill
(2019) to prove sample complexity bounds on RL algorithms which use random exploration. Liu & Brunskill (2019) show
various bounds on the covering length using graph-theoretic notions. While they focus on discounted infinite-horizon MDPs,
we use a version of covering length adapted to finite-horizon MDPs, similar to that used by Dann et al. (2022).
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Definition E.2 (Covering length). The covering length L of an MDP under an exploration policy πexpl is the number of
episodes needed until all state-action pairs have been visited with probability at least 1/2.

One can easily show sample complexity bounds based on the covering length.

Theorem E.3 (Covering length sample complexity bound). There is an RL algorithm which can solve any MDP with sample
complexity TL given an exploration policy πexpl, where L is the covering length of πexpl.

Proof. Consider the following RL algorithm:
1: procedure COVERINGLENGTHRL(πexpl, L)
2: collect a dataset of L episodes, sampling actions according to πexpl

3: record R̂(s, a) and f̂(s, a) for all state-action pairs seen in the dataset
4: define R̂(s, a) and f̂(s, a) arbitrarily for state-action pairs not seen in the dataset
5: run value iteration using R̂ and f̂ to obtain a policy π
6: return π
7: end procedure

By the definition of covering length, with probability at least 1/2 the algorithm should produce R̂(s, a) = R(s, a) and
f̂(s, a) = f(s, a) for all (s, a) ∈ S ×A. In this case, π will be an optimal policy. Thus, COVERINGLENGTHRL returns
an optimal policy with probability at least 1/2 while interacting with the environment for TL timesteps. This means the
sample complexity of COVERINGLENGTHRL is at most TL. ■

To bound the covering length for MDPs in the BRIDGE dataset, we make use of the following result.

Lemma E.4 (Bounds on the covering length). Define the occupancy measure µ of πexpl as

µt(s, a) = Pπexpl(st = s ∧ at = a).

Suppose that for every state-action pair (s, a), there is some timestep t when µt(s, a) > 0. Then

log(2)

2min(s,a)∈S×A
∑

t∈[T ] µt(s, a)
≤ L ≤

⌈
log(2SA)

min(s,a)∈S×A maxt∈[T ] µt(s, a)

⌉
.

We calculate µmin = min(s,a)∈S×A maxt∈[T ] µt(s, a) for each MDP in BRIDGE and use the upper bound from Lemma E.4
to obtain a sample complexity bound of T log(2SAT )/µmin. Since

∑
t∈[T ] µt(s, a) ≤ T maxt∈[T ] µt(s, a) the upper and

lower bounds in Lemma E.4 agree up to a factor of T log(2SA)/ log(2), so this is reasonably tight. In fact, in 123 of the
155 MDPs in BRIDGE, min(s,a)∈S×A

∑
t∈[T ] µt(s, a) = min(s,a)∈S×A maxt∈[T ] µt(s, a), making the upper and lower

bounds tight up to only logarithmic factors.

Proof. Let Pm be a probability measure corresponding to sampling m episodes following πexpl. Let Ejt (s, a) denote the
event that the jth episode has (st, at) = (s, a). Let Et(s, a) be the event that Ejt (s, a) occurs in at least one one of those
episodes, i.e.

Et(s, a) :=
m∨
j=1

Ejt (s, a).

Finally, let C be the event defined by

C :=
∧

(s,a)∈S×A

∨
t∈[T ]

Et(s, a).

That is, C is when every state-action pair has been seen at some timestep in at least one episode. We can thus equivalently
define L = min{m | Pm(C) ≥ 1/2}.
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We will now start by showing the upper bound of L ≤ ⌈log(2SA)/p⌉. Let m = ⌈log(2SA)/p⌉. We can write

Pm(¬C) = Pm

(
∃(s, a) ∈ S ×A : ∀t ∈ [T ], j ∈ [m] ¬Ejt (s, a)

)
≤

∑
(s,a)∈S×A

Pm

(
∀t ∈ [T ], j ∈ [m] ¬Ejt (s, a)

)
≤

∑
(s,a)∈S×A

min
t∈[T ]

Pm

(
∀j ∈ [m] ¬Ejt (s, a)

)
=

∑
(s,a)∈S×A

(
1−max

t∈[T ]
Pm(E1t (s, a))

)m
≤

∑
(s,a)∈S×A

(
1− min

(s′,a′)∈S×A
max
t∈[T ]

Pm(E1t (s′, a′))
)m

≤
∑

(s,a)∈S×A

(
1− min

(s′,a′)∈S×A
max
t∈[T ]

µt(s
′, a′)

)m
≤

∑
(s,a)∈S×A

exp

(
−m min

(s′,a′)∈S×A
max
t∈[T ]

µt(s
′, a′)

)
≤

∑
(s,a)∈S×A

1

2SA

=
1

2
,

which proves the upper bound.

To show the lower bound, take any (s, a) ∈ argmin(s,a)∈S×A
∑

t∈[T ] µt(s, a). First, suppose that
∑

t∈[T ] µt(s, a) ≥
log(2). Then the lower bound in the lemma must be at most 1/2, which is clearly true. Thus, we may subsequently assume∑

t∈[T ] µt(s, a) < log(2).

Suppose m < C/
∑

t∈[T ] .µt(s, a) Then

Pm(¬C) = Pm

(
∃(s′, a′) ∈ S ×A : ∀t ∈ [T ], j ∈ [m] ¬Ejt (s′, a′)

)
≥ Pm

(
∀t ∈ [T ], j ∈ [m] ¬Ejt (s, a)

)
=
(
1− Pm

(
∃t ∈ [T ] E1t (s, a)

) )m
≥

1−
∑
t∈[T ]

Pm

(
E1t (s, a)

)m

=

1−
∑
t∈[T ]

µt(s, a)

m

(i)
≥ exp

−2m ∑
t∈[T ]

µt(s, a)


>

1

2
,

where (i) uses the fact that 1− x ≥ exp(−2x) for x ∈ [0, log(2)]. This shows that with probability greater than 1/2, not all
state-action pairs will be seen in m episodes, and thus establishes that L > m, which is the desired bound. ■

E.3. Effective planning window (EPW)

Perhaps the closest existing concepts to our effective horizon are various notions of “effective planning window.” This
generally refers to tree-based planning algorithms which only consider action sequences of some length W from the current
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state, rather than considering action sequences all the way until the end of the MDP. For instance, Kearns et al. (2002) show
that in discounted MDPs, one need only plan to some ϵ-horizon to obtain an ϵ-optimal policy. Jiang et al. (2015) build on
this and show that one may want to use a different discount factor for planning than the one that is used for evaluation.
Malik et al. (2021) also introduce a notion of effective planning window based on the number of timesteps one must look
ahead in an MDP to avoid terminal states.

We do not directly apply any of these previous results to our setting. Since we are concerned primarily with finite-horizon
undiscounted MDPs, it does not make much sense to apply a discount factor as in Kearns et al. (2002) and Jiang et al. (2015).
We find that the assumptions in Malik et al. (2021) are quite unusual and do not really hold in any of the environments in
BRIDGE. In particular, the analysis in Malik et al. (2021) requires that a trajectory through an MDP is either optimal or ends
early in a terminal state.

Instead of directly using these results, we define a notion of effective planning window based on the length of action
sequences one must consider in an MDP while ignoring any rewards after the sequence.

Definition E.5 (Effective planning window). Define Q1
t (s, a) = R(s, a) for all (t, s, a) ∈ [T ] × S × A and let Qi =

QVI(Qi−1) for i = 2, . . . , T . The effective planning window of an MDP is the minimum W ∈ [T ] such that all policies in
Π(QW ) are optimal.

Note that the effective planning window bears significant similarity to the k-QVI-solvability property from Definition 5.1.
However, Q1 is defined as equal to the reward function for the EPW, while in Definition 5.1 it is equal to Qπexpl

.

The EPW also results in sample complexity bounds of T 2AW very similar to those of T 2AH for the effective horizon.
However, we find empirically that H < W in 75% of the MDPs in BRIDGE, making the effective horizon-based bounds
generally tighter.

Theorem E.6. For any MDP with effective planning window W , there is an RL algorithm whose sample complexity is at
most T 2AW .

Proof. We will use the following algorithm:
1: procedure PLANOVERWINDOW(W )
2: for i = 1, . . . , T do
3: for ai:i+W−1 ∈ Ak do
4: Sample an episode following π1, . . . , πi−1, then actions ai:i+W−1, and then arbitrary actions.
5: R̂i(si, ai:i+W−1)←

∑i+W−1
t=i R(st, at).

6: end for
7: πi(si)← argmaxai∈A maxai+1:i+W−1∈Ak−1 R̂i(si, ai:i+W−1).
8: end for
9: return π

10: end procedure

Again, this algorithm is quite similar to GORP (Algorithm 1) except that it only samples a single episode per action
sequence and it ignores rewards beyond the planning window. Clearly, PLANOVERWINDOW will take T 2AW steps in the
environment. Thus, to bound the sample complexity, we only need to show it returns an optimal policy with probability at
least 1/2.

To prove this, we will show that

max
ai+1:i+W−1∈Ak−1

R̂i(si, ai:i+W−1) = QW
i (si, ai). (25)

Based on line 7 of the algorithm, this is enough to show that π ∈ Π(QW ), and thus that π must be optimal by Definition E.5.

To prove (25), we will first show by induction that Qj
t (st, at) = maxat+1:t+j−1∈Aj−1

∑t+j−1
t′=t R(st′ , at′), where st′+1 =

f(st′ , at′) for t′ = i, . . . , i+W − 2. The base case when j = 1 is by definition: Q1
t (st, at) = R(st, at). For the inductive
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step, assume the formula holds for j and note that

Qj+1
t (st, at) = QVI(Qj

t )(st, at)

= R(st, at) + max
at+1∈A

Qj
t+1(f(st, at), at+1)

= R(st, at) + max
at+1∈A

max
at+2:t+j∈Aj−1

t+j∑
t′=t+1

R(st′ , at′)

= max
at+1:t+j∈Aj

t+j∑
t′=t

R(st′ , at′).

Next, note that by the way R̂ is constructed, R̂(si, ai:i+W−1) =
∑i+W−1

t=i R(st, at), where st+1 = f(st, at) for t =
i, . . . , i + W − 2. Thus combining this with the formula proved by induction, (25) clearly holds and the proof is
complete. ■

E.4. Other bounds

One other work that derives sample complexity bounds for RL with random exploration is Dann et al. (2022). They define
an algorithm which maintains at all times a current best policy π, and acts according to this policy but with some exploration
noise, e.g., via an ϵ-greedy policy explϵ(π). They introduce the notion of a “myopic exploration gap,” which is defined as

α = sup
π′,c≥1

1√
c
(J(π′)− J(π))

such that for all (t, s, a) ∈ [T ]× S ×A

µπ′

t ≤ cµ
explϵ(π)
t (s, a)

µπ
t ≤ cµ

explϵ(π)
t (s, a).

This gap is shown to generalize the notion of covering length as well as various others from the literature. However, we find
that it is not so useful in many environments in BRIDGE.

The problem we find is illustrated in the MDP below:

s1

s2

R = 1

. . .
0

s2

0

. . .

R = 1

. . .

0

. . .

0

. . .

0

sT

R = 1

sT

0

sT

0

sT

T − 1

In this MDP, one need simply follow the actions which give rewards of 1 to achieve the optimal return of T . One can show
H = W = 1 in this MDP, which give identical sample complexities of T 2A.

However, the difficulty with the myopic exploration gap is that the analysis in Dann et al. (2022) cannot rule out the policy
π which takes all actions to the right (achieving return T − 1) from being chosen at some point while running their RL
algorithm. If this happens, then the only way to find a better policy is to completely switch to the policy π′ which takes
all left actions (achieving return T ). This implies that α is maximized when c = AT , leading to α = (1/A)T/2. Since the
sample complexity bounds in Dann et al. (2022) are O(1/α2), this gives a bound proportional to AT , which is no better
than the worst case.

Thus, whenever there are “distracting” rewards, no matter how distant, as in this case, the theory from Dann et al. (2022)
cannot give good sample complexity bounds. There is also no easy way calculate α directly for an arbitrary environment.
For these reasons, we do not include their bounds in our experiments.
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F. Dataset details
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Figure 4. Our BRIDGE dataset consists of 155 deterministic MDPs with full tabular representations. We include MDPs
from three popular RL benchmarks which cover a range of state space sizes, action state sizes, and horizons.

In this appendix, we give a detailed explanation of how we chose the MDPs in BRIDGE and how we constructed their tabular
representations. See Figure 4 for an overview of BRIDGE.

F.1. Environments

We limited the horizon of environments for BRIDGE to some T ∈ {10, 15, 20, 30, 50, 70, 100, 200}, depending on the
environment, in order to avoid the state space becoming intractably large. We use subscripts to denote the horizon to which
an environment is limited. For instance, PONG50 refers to the Atari game Pong limited to 50 timesteps.

Frameskip We carefully used frameskip for each environment. Frameskip is a standard practice in Atari (Braylan et al.,
2015) in which each action taken in the environment is played for a certain number of frames; the agent only receives
the next state after all these frames have completed. We use unusually high frameskips in order to capture episodes with
longer wall-clock times in a small number of environment timesteps. The frameskip values we use are listed in Table 3. For
most Atari games, we use a frameskip of 30, corresponding to taking 2 actions per second. The frameskips for Procgen
environments vary; we chose ones that tended to align with how long it took the agent to perform various low-level tasks in
the environment like moving one space. We did not use frameskip for Minigrid.
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Environment Frameskip

MONTEZUMAREVENGE 24
All other Atari games 30

BIGFISH 8
CHASER 2
CLIMBER 6
COINRUN 8
DODGEBALL 8
FRUITBOT 8
HEIST 2
JUMPER 8
LEAPER 6
MAZE 1
MINER 1
NINJA 8
PLUNDER 8
STARPILOT 8

All Minigrid gridworlds 1

Table 3: Frameskip values used for the MDPs in BRIDGE.

Atari games For each of the 57 Atari games in the Arcade Learning Environment (ALE) benchmark (Bellemare et al.,
2013), we attempted to construct tabular representations for each horizon T ∈ {10, 20, 30, 50, 70, 100, 200}. However, we
excluded environments once the state space exceeded 100 million states. We kept multiple horizon-limited versions of
games, i.e., BRIDGE contains PONG10, PONG20, PONG30, etc. For some games, even T = 10 produced too many states, so
we did not include these at all. We use the minimal action sets for each MDP rather than all 18 possible Atari actions.

We made one exception to these procedures for Montezuma’s Revenge, as it is an environment well-known for being difficult
to explore, so we wanted to make sure to include it in BRIDGE. We found that with T = 10, there was not enough time to
get any reward, and with T = 20 there were too many states. We found that using T = 15 and a frameskip of 24 did allow
an agent to receive reward, so we used this version in BRIDGE.

We made a couple other modifications to the standard Atari setup. First, we limited agents to one life: as soon as a life is
lost, the episode ends. Second, in SKIING10, we added an additional 200 frames of NOOP actions after the 10 timesteps
(= 300 frames) in each episode. This is necessary to correctly reflect the reward incentives in SKIING with longer horizons.

Finally, we scaled the rewards for many Atari games to make the reward scale more uniform across different games. Often,
when deep RL is applied to Atari, rewards are clipped to [−1, 1] to avoid instability. However, the MDP with clipped
rewards may have a different optimal policy than the unclipped MDP. Thus, instead of clipping, we use scaling. We generally
choose the scale factor based on the multiples of points received in the game: for instance, in ATLANTIS, rewards are always
received in multiples of 100 so we scale by 1/100. Table 4 lists the reward scaling factors for all games where we apply
scaling.



Bridging RL Theory and Practice with the Effective Horizon

Game Reward scaling factor

ALIEN 1/10
AMIDAR 1/10
ASSAULT 1/21
ASTERIX 1/50
ASTEROIDS 1/10
ATLANTIS 1/100
BANKHEIST 1/10
BATTLEZONE 1/1000
BEAMRIDER 1/44
CENTIPEDE 1/100
CHOPPERCOMMAND 1/100
CRAZYCLIMBER 1/100
DEMONATTACK 1/10
FROSTBITE 1/10
GOPHER 1/20
HERO 1/25
KANGAROO 1/100
MONTEZUMAREVENGE 1/100
MSPACMAN 1/10
NAMETHISGAME 1/10
PHOENIX 1/20
PRIVATEEYE 1/100
QBERT 1/25
ROADRUNNER 1/100
QEAQUEST 1/20
SKIING 1/100
SPACEINVADERS 1/5
TIMEPILOT 1/100
VIDEOPINBALL 1/100
WIZARDOFWOR 1/100

Table 4: Factors by which Atari games rewards are scaled by in BRIDGE, for those where we apply reward scaling.

Procgen levels The Procgen benchmark (Cobbe et al., 2020) consists of 16 games. For each game, one can generate an
arbitrary number of random levels, each of which is identified by a seed. Furthermore, each game has an “easy” and “hard”
difficulty, each with different levels, and some have an additional “exploration” level which presents a particularly difficult
exploration challenge.

While the benchmark is designed to measure generalization of RL agents trained on some number of levels to unseen levels,
we use each level as a separate MDP. For each game, we attempted to construct an MDP for the easy levels with seeds 0, 1,
and 2, the hard level with seed 0, and the exploration level if it exists for that environment. We denote MAZEE1

30 to be the
easy level with seed 1 for the MAZE game limited to T = 30 timesteps; MAZEH0

30 is the analogous hard level with seed 0
and MAZEEX

30 is the exploration level.

We generally increased the horizon for each game to the highest value in {10, 20, 30, 40, 50, 70, 100, 200} before the number
of states was greater than 100 million. The horizon values we ultimately chose can be seen in the table in Appendix H.5.

Minigrid gridworlds Minigrid (Chevalier-Boisvert et al., 2018) is an extensible framework for building gridworlds. We
considered all the pre-built gridworlds included in Minigrid for inclusion in BRIDGE except for those requiring natural
language observations for specifying the task to be completed. We also excluded gridworlds with more than 1 million states,
since for technical reasons we were unable to parallelize the construction of tabular MDPs for Minigrid. For gridworlds with
randomized start states, we chose the start state with seed 0. We use T = 100 for all the gridworlds.
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F.2. Constructing tabular representations

For each of the environments described above, we wrote a program to compute a full tabular representation of the transition
function f and reward function R. Our program uses a search procedure to iteratively explore every state-action pair. We
keep a queue of states that need to be explored, which at first is just the initial state. In parallel, a number of worker threads
take states from this queue. After popping a state, a worker thread sets the environment to that state and then takes a
previously unexplored action, storing the resulting next state and reward. If there are still unexplored actions in the current
state, it adds it back to the queue. If the next state is not terminal and has not had all its actions, it can continue this process.

While the search procedure for exhaustively enumerating states is conceptually simple, we experienced difficulties imple-
menting it efficiently due to the massive scale of some of the MDPs in BRIDGE. For instance, the full state of the Atari
simulator used in the ALE is about 10-12 KB of data. Storing 100 million states by themselves would thus require over one
terabye of memory! We avoided this problem by aggressively compressing state data using dictionary compression. Other
challenges included efficiently parallelizing the data structures we used to store the queue of states, the transition function,
and the reward function. Our final implementation is able to explore more than 20,000 state-action pairs per second in PONG
while running on 64 cores.

Once we have enumerated all states and actions that can be reached in the given horizon, we also apply a consolidation step
to reduce the number of states. Often, the internal representation of states in the Atari and Procgen environments includes
extra or superfluous data, which leads to duplicate states in our tabular representation. We repeatedly consolidate states that
(a) have the same screen, (b) have the same rewards for each action, and (c) lead to the same next states for each action.
When no more states can be consolidated, we store the resulting transition and reward functions.

We excluded any MDPs for which every sequence of actions results in the same total reward, since these are uninteresting
from an RL perspective.

F.3. Reward shaping

For each Minigrid environment, we constructed one or more versions with shaped rewards for our experiments on the effects
of reward shaping. We used three potential functions for shaping:

1. Φdist(s): the negative distance from the state to the nearest goal. Distance is measured as the minimum number of
moves needed to reach the goal, assuming there are no obstacles in the way.

2. Φdoors(s): the number of doors that are open.

3. Φpickup(s): the number of objects that have been picked up at least once.

For one or more potential functions Φ, we augment each reward R(s, a) with Φ(f(s, a))− Φ(s). The potential functions
are chosen to incentivize useful behavior in the environments: moving towards goals, picking up objects like keys that could
be helpful, and opening doors to reach more parts of the gridworld.

For each Minigrid MDP, we use all potential functions that apply to that MDP. For instance, if an MDP does not have any
doors, we do not use Φdoors. We also apply the combination of Φdoors and Φpickup if both are applicable to an MDP.

When analysing the reward shaping results, we only include MDPs for which PPO/DQN converged on both the unshaped
and shaped versions.

F.4. Datasheet for BRIDGE

We provide a datasheet, as proposed by Gebru et al. (2021), for the BRIDGE dataset.

F.4.1. MOTIVATION

For what purpose was the dataset created? We have described the purpose extensively in the paper: we aim to bridge
the theory-practice gap in RL. BRIDGE allows this by providing tabular representations of popular deep RL benchmarks
such that instance-dependent bounds can be calculated and compared to empirical RL performance.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution,
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organization)? Not specified for the double-blind reviewing process.

Who funded the creation of the dataset? Also not specified for the double-blind reviewing process.

Any other comments? No.

F.4.2. COMPOSITION

What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? The
instances are Markov Decision Processes (MDPs).

How many instances are there in total (of each type, if appropriate)? There are 155 MDPs in BRIDGE. They include
67 MDPs based on Atari games from the Arcade Learning Environment (Bellemare et al., 2013), 55 MDPs based on Procgen
games (Cobbe et al., 2020), and 33 MDPs based on MiniGrid gridworlds (Chevalier-Boisvert et al., 2018).

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger
set? The MDPs in BRIDGE are based on a small subset of the many environments that are used for empirically evaluating
RL algorithms. We aimed to cover a range of the most popular environments. To make our analysis possible, we excluded
environments that were not deterministic or did not have discrete action spaces. We also reduced the horizon of many of the
environments to make it tractable to compute their tabular representations.

What data does each instance consist of? For each MDP, we provide the following data:

• A transition function and a reward function, which are represented as a matrix with an entry for each state-action pair
in the MDP.

• A corresponding gym environment (Brockman et al., 2016) that can be used to train policies for the MDP with various
RL algorithms.

• Properties of the MDP that are calculated from its tabular representation, including the effective planning window,
bounds on the effective horizon, bounds on the covering length, etc.

• Results of running RL algorithms (PPO, DQN, and GORP) on the MDP. This includes the empirical sample complexity
as well as various metrics logged during training.

• For MiniGrid MDPs, there are additional versions of the MDP with shaped reward functions (see Appendix F.3) which
also include all of the above data.

• For Atari and Procgen MDPs, there is additionally a non-uniform exploration policy (see Appendix G.1). For Atari
games, this is trained via behavior cloning from the Atari-HEAD (Zhang et al., 2019) dataset; for Procgen games, it is
trained on other Procgen levels. We include the above data recalculated using the non-uniform exploration policy in
place of the uniformly random exploration policy.

Is there a label or target associated with each instance? In this paper, we aim to bound and/or estimate the empirical
sample complexity of RL algorithms, so these could be considered targets for each instance.

Is any information missing from individual instances? There is no information missing.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? No.

Are there recommended data splits (e.g., training, development/validation, testing)? No.

Are there any errors, sources of noise, or redundancies in the dataset? We do not believe there are errors or sources
of noise in the dataset. The tabular representations of the MDPs have been carefully tested for correspondence with the
environments they are based on. There is some redundancy, as many Atari games are represented more than once with
varying horizons.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other
datasets)? The dataset is mostly self-contained, except that the gym environments rely on external libraries. There are
archival versions of these available through package managers like PyPI.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or
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by doctor– patient confidentiality, data that includes the content of individuals’ non-public communications)? No.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise
cause anxiety? No.

F.4.3. COLLECTION PROCESS

How was the data associated with each instance acquired? The data was collected using open-source implementations
of each environment.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual human
curation, software programs, software APIs)? As described in Appendix F.2, we developed a software tool to construct
the tabular representations of the MDPs in BRIDGE. We validated the correctness of the tabular MDPs through extensive
testing to ensure they corresponded exactly with the gym implementations of the environments.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with
specific sampling probabilities)? The MDPs in BRIDGE were selected from three collections of commonly used RL
environments: the Arcade Learning Environment, ProcGen, and MiniGrid. We chose these three collections to represent a
broad set of deterministic environments with discrete action spaces. Within each collection, the environments were further
filtered based on the criteria described in Appendix F.1.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they
compensated (e.g., how much were crowdworkers paid)? Only the authors were involved in the data collection process.

Over what timeframe was the data collected? The dataset was assembled between February 2022 and January 2023.
The RL environments from which the MDPs in BRIDGE were constructed were created prior to this; see the cited works for
each collection of environments for more details.

Were any ethical review processes conducted (e.g., by an institutional review board)? No.

F.4.4. PREPROCESSING/CLEANING/LABELING

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-
of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? Yes, various
preprocessing and analysis was done. See Appendix F.2 for details.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future
uses)? Yes, this is included with the dataset.

Is the software that was used to preprocess/clean/label the data available? Yes, this is available with the rest of our
code.

Any other comments? No.

F.4.5. USES

Has the dataset been used for any tasks already? The dataset has thus far only been used to validate our theory of the
effective horizon in this paper.

Is there a repository that links to any or all papers or systems that use the dataset? There is not. However, we will
require that any uses of the dataset cite this paper, allowing one to use tools like Semantic Scholar or Google Scholar to find
other papers which use the BRIDGE dataset.

What (other) tasks could the dataset be used for? We hope that the BRIDGE dataset is used for further efforts to bridge
the theory-practice gap in RL. The dataset could be used to identify other properties or assumptions that hold in common
environments, or to calculate instance-dependent sample complexity bounds and compare them to the empirical sample
complexity of RL algorithms.

Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled
that might impact future uses? As we have already mentioned, BRIDGE is restricted to deterministic MDPs with
discrete action spaces and relatively short horizons. This could mean that analyses of the dataset like ours do not generalize
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to the broader space of RL environments that may have continuous action spaces, stochastic transitions, and/or long horizons.
We have included some experiments, like those in Appendix H.1, to show that our theory of the effective horizon generalizes
beyond the MDPs in BRIDGE. We encourage others to do the same and we hope to address some of these limitations in the
future with extensions to BRIDGE.

Are there tasks for which the dataset should not be used? We do not foresee any particular tasks for which the dataset
should not be used.

Any other comments? No.

F.4.6. DISTRIBUTION

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf
of which the dataset was created? Yes, we will distribute the dataset publicly.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? We are still finalizing the method
through which the dataset will be distributed.

When will the dataset be distributed? We plan to make the dataset public in May or June 2023.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable
terms of use (ToU)? It will be distributed under CC-BY-4.0.

Have any third parties imposed IP-based or other restrictions on the data associated with the instances? The
Atari ROMs used to construct the Atari MDPs in BRIDGE are copyrighted by the original creators of the games. However,
they are widely used throughout the reinforcement learning literature and to our knowledge the copyright holders have not
complained about this. Since we are not legal experts, we do not know if releasing our dataset violates their copyright,
but we do not believe that we are harming them since the tabular representations in BRIDGE are only useful for research
purposes and cannot be used to play the games in any meaningful way.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? No.

Any other comments? No.

F.4.7. MAINTENANCE

Who will be supporting/hosting/maintaining the dataset? We (the authors) will support and maintain the dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Redacted for double-blind
review.

Is there an erratum? We will record reports of any errors in the dataset and release new versions with descriptions of
what was fixed as necessary.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? We will release
new versions of the dataset to correct any reported errors as described above. We may also expand the dataset in the
future with more MDPs or new kinds of MDPs, such as stochastic or continuous-action-space MDPs. Any updates will be
communicated through the service we use to host the dataset (TBD).

If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances
(e.g., were the individuals in question told that their data would be retained for a fixed period of time and then
deleted)? No.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not,
please describe how its obsolescence will be communicated to dataset consumers. We hope to find a host for the
dataset that will retain older versions of the dataset. We only plan to maintain the latest version of the dataset, however. We
will note this policy in the dataset’s description.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? There
is no predefined mechanism to contribute to the dataset, but we will consider external contributions on a case-by-case basis.
We encourage others to extend and build on the dataset.
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Any other comments? No.

G. Experiment details
In this appendix, we describe details of the experiments from Section 6. In particular, we describe how we calculate the
empirical sample complexity of PPO and DQN.

We use the implementations of PPO and DQN from RLlib (Liang et al., 2018). For the network archictures, we use
convolutional neural nets for Atari and Procgen and a fully-connected network for Minigrid. The convolutional networks for
Atari take an input of shape (84, 84, 3) and have 3 layers: 16 8× 8 filters with stride 4, 32 4× 4 filters with stride 2, and
then 256 11× 11 filters with stride 1, followed by a final fully connected layer. For Procgen, the last convolutional layer has
256 filters of size 8× 8 to deal with the smaller inputs of shape (64, 64, 3). The fully connected networks for Minigrid have
two hidden layers of 256 units each.

PPO We use the following hyperparameters for PPO:

Hyperparameter Value

Training timesteps 5,000,000
Batch size {103, 104, 105}
SGD minibatch size 1,000
SGD epochs per iteration 10
Optimizer Adam
Learning rate 2× 10−4

Gradient clipping None
Discount rate (γ) 1
GAE coefficient (λ) 1.0
Entropy coefficient 0
KL target 0.01
Clipping parameter (ϵ) 0.3

Table 5: Hyperparameters we use for PPO.

For each environment, we try batch sizes of 103, 104, and 105, as we find this is the most sensitive hyperparameter to tune.

DQN We use DQN with four of the improvements included in Rainbow (Hessel et al., 2017): dueling networks (Wang
et al., 2016), double Q-learning (Van Hasselt et al., 2016), prioritized experience replay (Schaul et al., 2016), and multistep
returns (Sutton, 1988). The hyperparameters are given below.
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Hyperparameter Value

Training timesteps 5,000,000
Timesteps before learning starts 0
Replay buffer size 1,000,000
α for prioritized replay 0.5
Target network update frequency 8,000
Final ϵ 0.01
n-step returns 3
SGD minibatch size 1,000
SGD epochs per iteration 6
Optimizer Adam
Learning rate 10−3

Gradient clipping None
Discount rate (γ) 1

Table 6: Hyperparameters we use for DQN.

We try decaying the ϵ value for ϵ-greedy over the course of either 500 thousand or 5 million timesteps, as we found this was
the most sensitive hyperparameter to tune for DQN.

Calculating the empirical sample complexity In order to compute the empirical sample complexities of PPO and DQN,
throughout training we run evaluation episodes and see if the algorithms have discovered an optimal policy yet. During the
evaluation, PPO policies take actions according to the argmax over the probabilities they assign to each action, rather than
sampling as during training episodes. DQN takes actions greedily with respect to its current Q-function (i.e., with ϵ = 0).
If the total episode reward during the evaluation is the optimal return, then we terminate the training run and record the
total number of timesteps interacted with the environment as the empirical sample complexity. We take the median sample
complexity over 5 random seeds and then the minimum over all hyperparameter settings to get the final empirical sample
complexity.

We found that in some environments PPO achieved optimal reward during almost all the training episodes but none of the
evaluation episodes. This can happen if a policy does not assign the highest probability to an optimal action in some states
but can make up for this by being very likely overall to obtain the highest possible total reward. Thus, if more than half of
the training episodes during an iteration achieve the optimal return, we also count this as converging to an optimal policy for
the purposes of calculating the empirical sample complexity.

G.1. Exploration policies

For the experiments in Section 6 we needed pre-trained policies to initialize PPO with; here, we describe the details of how
we trained them. We used two different training methods: one for Atari environments and one for Procgen environments.

In the Atari environments, we trained policies via behavior cloning (BC), i.e., supervised learning, from human data in
the Atari-HEAD dataset (Zhang et al., 2019). We resampled the actions and processed the screen images from the dataset
to align with the frameskip and observation preprocessing of our Atari environments. We trained a BC policy on each
environment for 400 batches of 500 timesteps each. We used Adam with a learning rate of 10−3. We also added an entropy
bonus to the loss function with a weight of 0.1 to avoid the BC policy assigning very little weight to some actions. Our
theoretical results in Section B.1 suggest that this should improve the sample complexity. Since not all Atari games are
included in Atari-HEAD, we only used a subset for the experiments in Section 6.

In the Procgen environments, we pre-trained policies on a set of levels not included in BRIDGE. In particular, we trained
a policy with PPO on 500 easy levels for 25 million timesteps, which in very similar to the methodology in Cobbe et al.
(2020). We also use an entropy bonus in PPO with weight 0.1 for the same reason as above.

Once we have the pre-trained policies, we compute tabular representations of them on the corresponding MDPs in BRIDGE.
To do so, we feed the observations for every state in the MDP through the pre-trained policy network and record the
resulting action distribution. This allows us to compute Qπexpl

and thus obtain bounds on the effective horizon when using
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the pre-trained exploration policy.

G.2. Computational resources

For deep RL experiments, we used a mix of A100, A4000, and A6000 GPUs from Nvidia. We ran the algorithms either on
separate GPUs or sometimes we ran multiple random seeds simultaneously on the same hardware. We used 30 CPU threads
to run the RL environments. Using this setup, PPO and DQN generally took 2-8 hours to complete 5 million timesteps of
training. We used early stopping when the algorithms found an optimal policy before 5 million timesteps, so the amount of
compute per experiment was often less than this.

For constructing and analyzing the tabular MDPs in BRIDGE, we used up to 128 CPU threads and 500 GB of memory. The
amount of time necessary to construct and analyze the MDPs ranged from less than a minute to around 5 days.

H. Additional experiment results
Here, we present additional results from the experiments in Section 6.

H.1. GORP vs. deep RL algorithms over longer horizons

To show that GORP is not just effective over short horizons, we ran additional experiments comparing GORP, PPO, and
DQN in more typical Atari benchmark environments with frameskip 4 and a horizon of T = 27, 000 (corresponding to a
maximum of 30 minutes of gameplay). Note that the environments are still deterministic. The hyperparameters for PPO and
DQN are identical to those given in Tables 5 and 6 except for the following changes: we train for 50 million timesteps; we
use a discount rate of γ = 0.99; and, we set an entropy coefficient of 0.01 for PPO.

We use a training batch size of 104 for PPO and decay ϵ for DQN over the course of the first 5 million timesteps. For GORP,
we use k = 1 and tune m for each environment.

We find that GORP is competitive with deep RL algorithms over longer horizons. In two of the seven games from Mnih
et al. (2013), GORP performs better than both PPO and DQN after 50 million timesteps. In three others, it performs better
than at least one of the two; only in Pong and Enduro does GORP perform worse than both PPO and DQN. These results
suggest that GORP and the effective horizon are a useful lens for understanding deep RL even in long-horizon MDPs.
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Figure 5. Learning curves for PPO, DQN, and GORP on full-horizon Atari games. We use 5 random seeds for all algorithms.
The solid line shows the median return throughout training while the shaded region shows the range of returns over random
seeds.
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H.2. Example of the effective horizon failing to predict generalization

As we described in the discussion, the effective horizon cannot model generalization across different states. For instance, in
PONG-30 (Pong limited to 30 timesteps/15 seconds), the effective horizon gives a sample complexity of roughly 5 billion
timesteps and empirically GORP takes over 80 million timesteps to converge to an optimal policy (Appendix H.5). However,
both PPO and DQN converge in under 500,000 environment steps. We hypothesize this is because they are able to generalize
the skill of hitting the ball across the multiple rounds of the Pong game, which the effective horizon cannot capture because
it considers learning separately at every timestep.

H.3. Results from reward shaping and exploration policy experiments

PPO DQN
Bound Correl. Ratio Correl. Ratio

EPW 0.10 196 0.49 89
Effective horizon 0.41 3.8 0.30 3.7
Other bounds 0.00 2.4 0.00 1.5

Other algorithm 0.13 1.7 0.13 1.7
GORP empirical 0.47 3.7 0.15 3.0

Table 7: The effective horizon can capture the effect of reward shaping by correctly predicting its effect on the empirical
sample complexity of PPO and DQN. Correlation and median ratio are measured between the predicted change in sample
complexity and the empirical change. The bottom two rows compare PPO and DQN to each other and to GORP empirically,
as in Table 2. See Section 6 for further discussion.

PPO
Bound Correl. Median ratio

Covering length (TL) -0.02 7.7× 107

Effective horizon (T 2AH ) 0.46 3.0
Other bounds 0.00 3.1

GORP empirical 0.48 2.8

Table 8: The effective horizon accurately predicts the effect of initializing PPO with a policy trained on human data or
transferred from similar environments. The comparison uses the same metrics as in Table 7; see Section 6 for further
discussion.
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H.4. Additional plots
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Figure 6. The distribution of the minimum values of k for which the MDPs in BRIDGE are k-QVI solvable. About two
thirds are 1-QVI-solvable, meaning they can be solved by simply acting greedily with respect to the Q-function of the
random policy. The MDPs are split into those which PPO can and cannot solve in 5 million steps; among those that can be
solved efficiently, the values of k are even lower.
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Figure 7. A comparison of sample complexity bounds and the empirical sample complexities of PPO and DQN across the
MDPs in BRIDGE. In each plot, every dot represents one MDP and its color indicates which benchmark it comes from. Our
effective horizon-based bound most closely correlates with empirical sample complexity. See Table 2 for a quantitative
comparison of the bounds.
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Figure 8. A comparison between the empirical change in sample complexity and the change predicted by sample complexity
bounds due to reward shaping. See Table 7 for a quantitative comparison.
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H.5. List of MDPs in BRIDGE with statistics

The following table lists all the MDPs in BRIDGE, along with various properties: the number of states S, number of actions
A, horizon T , minimum k for which the MDP is k-QVI-solvable, a bound on the effective horizon using the techniques in
Appendix C, a bound on the covering length L using Lemma E.4, and the effective planning window W .

MDP S A T Min k Bound on H Bound on L W

ALIEN10 7.97× 105 18 10 1 3.5 2.27× 1012 6
AMIDAR20 1.00× 105 10 20 4 12 4.03× 1011 12
ASSAULT10 7.21× 105 7 10 3 9.8 4.56× 109 8
ASTERIX10 9.03× 104 9 10 1 3.5 4.99× 1010 3
ASTEROIDS10 5.11× 106 14 10 7 10 2.72× 1012 9
ATLANTIS10 49 4 10 1 1.5 6.12× 103 3
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ATLANTIS20 471 4 20 1 4.7 5.53× 108 3
ATLANTIS30 4.56× 103 4 30 19 23 2.89× 1012 23
ATLANTIS40 2.06× 104 4 40 5 27.7 9.62× 1014 9
ATLANTIS50 5.63× 104 4 50 12 43 4.27× 1018 38
ATLANTIS70 1.41× 105 4 70 47 62 5.11× 1024 50
BANKHEIST10 4.24× 106 18 10 1 3.5 6.73× 1013 9
BATTLEZONE10 7.01× 104 18 10 1 2.3 5.01× 108 4
BEAMRIDER20 2.39× 104 9 20 1 3.3 1.10× 1013 10
BOWLING30 2.50× 105 6 30 2 18.5 1.73× 1016 28
BREAKOUT10 238 4 10 1 4.1 7.92× 106 5
BREAKOUT20 1.27× 103 4 20 1 5.4 1.01× 1013 13
BREAKOUT30 2.80× 103 4 30 4 13 1.15× 1019 29
BREAKOUT40 6.12× 103 4 40 4 15.7 1.31× 1025 29
BREAKOUT50 1.62× 104 4 50 3 17.3 1.49× 1031 20
BREAKOUT70 7.83× 104 4 70 40 48.5 1.86× 1043 61
BREAKOUT100 1.31× 105 4 100 74 87.0 2.23× 1061 75
BREAKOUT200 1.39× 105 4 200 105 114.9 3.60× 10121 108
CENTIPEDE10 1.32× 107 18 10 7 10 7.13× 1013 7
CHOPPERCOMMAND10 1.39× 106 18 10 1 3.9 1.95× 1011 7
CRAZYCLIMBER20 1.77× 103 9 20 1 3.1 4.02× 109 8
CRAZYCLIMBER30 4.63× 105 9 30 1 3.9 2.15× 1019 18
DEMONATTACK10 6.32× 104 6 10 5 9 8.19× 108 9
ENDURO10 2.54× 107 9 10 7 10 6.95× 1010 9
FISHINGDERBY10 2.80× 105 18 10 6 9 3.60× 1012 9
FREEWAY10 198 3 10 1 4.3 1.39× 105 6
FREEWAY20 3.16× 103 3 20 1 7.4 1.14× 1010 13
FREEWAY30 1.02× 104 3 30 1 7.8 1.26× 1014 26
FREEWAY40 2.08× 104 3 40 1 7.9 2.64× 1017 35
FREEWAY50 3.40× 104 3 50 1 8.1 5.95× 1021 44
FREEWAY70 7.02× 104 3 70 1 9.1 3.89× 1029 66
FREEWAY100 1.51× 105 3 100 39 55.4 2.82× 1041 67
FREEWAY200 6.33× 105 3 200 3 30.3 1.26× 1078 150
FROSTBITE10 5.73× 104 18 10 1 2.9 8.01× 1010 3
GOPHER30 795 8 30 1 1.9 7.64× 1010 5
GOPHER40 8.24× 103 8 40 5 9.7 4.86× 1012 13
HERO10 4.89× 103 18 10 1 1 1.85× 109 3
ICEHOCKEY10 2.53× 106 18 10 1 3.2 1.01× 1011 5
KANGAROO20 1.30× 105 18 20 1 3.7 2.40× 1017 11
KANGAROO30 5.84× 106 18 30 21 24 1.07× 1030 23
MONTEZUMAREVENGE15 8.47× 103 18 15 1 8.2 1.08× 1015 15
MSPACMAN20 1.85× 106 9 20 11 11 8.15× 1011 11
NAMETHISGAME20 6.02× 103 6 20 2 8 9.40× 106 5
PHOENIX10 4.64× 104 8 10 5 10 1.45× 1010 8
PONG20 255 6 20 1 3.2 5.60× 1010 5
PONG30 2.01× 103 6 30 6 14.9 4.15× 1015 18
PONG40 1.60× 104 6 40 6 14.3 2.96× 1020 23
PONG50 1.25× 105 6 50 13 19.6 2.04× 1025 25
PONG70 2.89× 106 6 70 20 28.1 8.69× 1034 25
PONG100 3.46× 107 6 100 42 70.1 2.05× 1049 25
PRIVATEEYE10 1.29× 104 18 10 1 4.1 8.64× 108 8
QBERT10 289 6 10 5 5 3.80× 105 5
QBERT20 3.75× 106 6 20 5 14.6 1.18× 1014 9
ROADRUNNER10 2.37× 107 18 10 3 9.9 7.34× 1013 9
SEAQUEST10 5.46× 103 18 10 1 1.2 4.15× 108 5
SKIING10 1.75× 104 3 10 8 10 6.83× 105 10
SPACEINVADERS10 994 6 10 1 3.0 4.38× 105 3
TENNIS10 3.79× 105 18 10 3 8.2 2.29× 1011 6
TIMEPILOT10 5.03× 103 10 10 1 3.9 5.76× 106 6
TUTANKHAM10 1.66× 104 8 10 3 7.7 1.68× 109 9
VIDEOPINBALL10 1.25× 105 9 10 2 9.5 5.10× 1010 8
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WIZARDOFWOR20 8.92× 103 10 20 7 13 1.89× 1013 13

BIGFISHE0
10 2.31× 104 9 10 5 9 2.26× 1010 8

BIGFISHE1
10 2.74× 104 9 10 1 2.8 4.57× 1010 4

BIGFISHE2
10 1.96× 105 9 10 9 10 5.26× 1010 10

BIGFISHH0
10 9.26× 103 9 10 1 4.3 4.19× 1010 7

CHASERE0
20 8.13× 105 9 20 2 12.1 1.16× 1017 15

CHASERE1
20 3.98× 105 9 20 1 4.4 1.62× 1017 9

CHASERE2
20 5.03× 105 9 20 5 15.2 1.34× 1017 10

CHASERH0
20 8.75× 105 9 20 18 20 1.04× 1017 19

CLIMBERE0
10 2.42× 105 9 10 1 3.4 2.67× 1010 7

CLIMBERE1
10 1.18× 105 9 10 1 4.0 8.46× 109 9

CLIMBERE2
10 1.12× 105 9 10 1 2.8 8.43× 109 6

CLIMBERH0
10 2.33× 105 9 10 1 6.6 2.66× 1010 10

COINRUNE0
10 2.23× 105 9 10 1 4.2 1.77× 1010 8

COINRUNE1
10 6.23× 104 9 10 1 3.6 4.05× 109 7

COINRUNE2
10 1.74× 105 9 10 1 5.0 1.30× 1010 9

COINRUNH0
10 2.72× 105 9 10 1 2.3 1.34× 1010 7

DODGEBALLE0
10 1.19× 105 10 10 1 4.2 1.47× 1011 7

DODGEBALLE1
10 1.95× 104 10 10 2 9.1 1.29× 1011 10

DODGEBALLE2
10 3.42× 104 10 10 1 3.7 1.34× 1011 6

DODGEBALLH0
10 7.24× 104 10 10 7 10 1.42× 1011 8

FRUITBOTE0
40 230 9 40 13 18.6 2.32× 107 10

FRUITBOTE1
40 379 9 40 18 24.1 6.00× 1011 18

FRUITBOTE2
40 161 9 40 1 3.1 1.12× 105 2

FRUITBOTH0
40 620 9 40 6 18.7 6.56× 1013 24

HEISTE1
10 8.28× 104 9 10 1 6.3 4.96× 1010 10

JUMPERH0
10 1.30× 105 9 10 1 8.5 5.11× 1010 10

JUMPERE0
20 1.20× 105 9 20 1 1 8.86× 1019 1

JUMPERE1
20 8.29× 105 9 20 1 1.3 2.01× 1020 2

JUMPERE2
20 1.38× 106 9 20 1 2.4 1.29× 1019 5

JUMPEREX
20 3.40× 106 9 20 1 13.1 1.09× 1020 17

LEAPERE1
20 1.05× 104 9 20 1 11.2 1.48× 1020 16

LEAPERE2
20 2.20× 105 9 20 1 4.3 1.85× 1020 8

LEAPERH0
20 1.71× 104 9 20 1 13.1 1.54× 1020 15

LEAPEREX
20 3.31× 104 9 20 1 12.8 1.62× 1020 16

MAZEE0
30 244 9 30 1 1.3 1.65× 105 1

MAZEE1
30 1.46× 103 9 30 1 14.2 9.02× 1022 23

MAZEE2
30 655 9 30 1 1.3 4.48× 107 3

MAZEH0
30 1.75× 103 9 30 1 7.9 8.26× 1023 15

MAZEEX
100 3.72× 104 9 100 1 40.3 4.27× 1063 76

MINERE0
10 5.96× 104 9 10 1 3.8 4.84× 1010 8

MINERE1
10 6.86× 104 9 10 1 5.2 4.89× 1010 9

MINERE2
10 5.56× 104 9 10 1 1.3 4.82× 1010 3

MINERH0
10 1.04× 105 9 10 1 3.4 5.04× 1010 7

NINJAE0
10 2.02× 105 13 10 1 4.4 2.67× 1011 9

NINJAE1
10 4.87× 105 13 10 1 3.9 2.82× 1011 8

NINJAE2
10 2.11× 105 13 10 1 7.0 2.67× 1011 9

NINJAH0
10 6.61× 104 13 10 1 6.8 2.47× 1011 10

PLUNDERE0
10 1.55× 104 10 10 1 1.3 1.26× 1011 5

PLUNDERE1
10 2.06× 104 10 10 1 1 1.29× 1011 3

PLUNDERE2
10 9.99× 103 10 10 1 3.3 1.22× 1011 7

PLUNDERH0
10 8.28× 103 10 10 1 1.3 1.20× 1011 5

STARPILOTE0
10 3.24× 105 11 10 2 8.0 4.09× 1011 9

STARPILOTE1
10 1.76× 105 11 10 1 3.7 3.93× 1011 8

STARPILOTE2
10 9.50× 104 11 10 7 9 3.77× 1011 7

STARPILOTH0
10 2.46× 105 11 10 4 9.2 4.02× 1011 8

EMPTY-5X5 37 3 100 1 1.6 1.76× 103 5
EMPTY-6X6 65 3 100 1 2.3 3.47× 103 7



Bridging RL Theory and Practice with the Effective Horizon

EMPTY-8X8 145 3 100 1 3 9.28× 103 11
EMPTY-16X16 785 3 100 1 7.9 1.22× 106 27
DOORKEY-5X5 261 6 100 1 3.4 2.53× 107 10
DOORKEY-6X6 1.08× 103 6 100 1 3.4 2.36× 109 9
DOORKEY-8X8 6.99× 103 6 100 1 3.9 6.02× 1013 12
DOORKEY-16X16 2.64× 105 6 100 1 15.7 4.32× 1057 32
MULTIROOM-N2-S4 37 6 100 1 2 5.13× 103 5
MULTIROOM-N4-S5 721 6 100 1 6.7 2.23× 1016 19
MULTIROOM-N6 2.05× 104 6 100 1 21.6 1.73× 1072 43
KEYCORRIDORS3R1 158 6 100 1 4.1 2.08× 107 15
KEYCORRIDORS3R2 4.69× 103 6 100 1 6.3 8.57× 1018 19
KEYCORRIDORS3R3 1.05× 105 6 100 1 9.3 4.30× 1030 22
KEYCORRIDORS4R3 5.98× 105 6 100 1 23.7 3.22× 1077 44
UNLOCK 1.02× 103 6 100 1 3.8 2.54× 106 10
UNLOCKPICKUP 1.72× 104 6 100 1 6.4 4.06× 1018 18
BLOCKEDUNLOCKPICKUP 5.08× 105 6 100 1 9.7 1.26× 1041 22
OBSTRUCTEDMAZE-1DL 8.84× 103 6 100 1 5.1 1.01× 1016 15
OBSTRUCTEDMAZE-1DLH 4.41× 103 6 100 1 5.5 7.25× 1010 15
OBSTRUCTEDMAZE-1DLHB 6.73× 104 6 100 1 9.1 6.05× 1016 21
FOURROOMS 1.04× 103 6 100 1 5.8 1.07× 1013 19
LAVACROSSINGS9N1 149 6 100 1 4.0 1.36× 105 14
LAVACROSSINGS9N2 133 6 100 1 5.0 1.19× 106 14
LAVACROSSINGS9N3 101 6 100 1 5.9 5.61× 106 15
LAVACROSSINGS11N5 101 6 100 1 9.5 3.30× 108 21
SIMPLECROSSINGS9N1 149 6 100 1 3.7 5.99× 104 14
SIMPLECROSSINGS9N2 133 6 100 1 4.5 2.68× 105 14
SIMPLECROSSINGS9N3 101 6 100 1 4.7 3.73× 105 15
SIMPLECROSSINGS11N5 101 6 100 1 6.9 2.38× 107 21
LAVAGAPS5 29 6 100 1 1.9 6.74× 103 5
LAVAGAPS6 53 6 100 1 2.8 2.33× 105 9
LAVAGAPS7 85 6 100 1 3.4 8.73× 105 11

H.6. Table of bounds and empirical sample complexities

This table lists all the sample complexity bounds we calculate for each MDP in BRIDGE along with the empirical sample
complexities of PPO, DQN, and GORP.

Sample complexity bounds Empirical sample complexities
MDP Worst-case Covering length EPW UCB Effective horizon

(T⌈AT /2⌉) (TL) (T2AW ) (SAT ) (T2AH ) PPO DQN GORP

ALIEN10 1.79 × 1013 2.27 × 1013 3.40 × 109 1.43 × 108 2.78 × 106 2.78 × 106 2.78 × 106 2.78 × 106

AMIDAR20 1.00 × 1021 8.06 × 1012 4.00 × 1014 2.01 × 107 4.00 × 1014 > 5 × 106 > 5 × 106 > 108

ASSAULT10 1.41 × 109 4.56 × 1010 5.76 × 108 5.04 × 107 1.95 × 1010 1.95 × 1010 1.95 × 1010 1.95 × 1010

ASTERIX10 1.74 × 1010 4.99 × 1011 7.29 × 104 8.13 × 106 2.20 × 105 2.20 × 105 2.20 × 105 2.20 × 105

ASTEROIDS10 1.45 × 1012 2.72 × 1013 2.07 × 1012 7.16 × 108 2.89 × 1013 > 5 × 106 > 5 × 106 > 108

ATLANTIS10 5.24 × 106 6.11 × 104 6.40 × 103 1.96 × 103 800 800 800 800

ATLANTIS20 1.10 × 1013 1.11 × 1010 2.56 × 104 3.77 × 104 2.80 × 105 2.80 × 105 2.80 × 105 2.80 × 105

ATLANTIS30 1.73 × 1019 8.66 × 1013 6.33 × 1016 5.48 × 105 6.33 × 1016 > 5 × 106 > 5 × 106 > 108

ATLANTIS40 2.42 × 1025 3.85 × 1016 4.19 × 108 3.29 × 106 3.14 × 1011 3.14 × 1011 > 5 × 106 3.14 × 1011

ATLANTIS50 3.17 × 1031 2.13 × 1020 1.89 × 1026 1.13 × 107 1.93 × 1029 > 5 × 106 > 5 × 106 > 108

ATLANTIS70 4.88 × 1043 3.58 × 1026 6.21 × 1033 3.96 × 107 1.04 × 1041 > 5 × 106 > 5 × 106 > 108

BANKHEIST10 1.79 × 1013 6.73 × 1014 1.98 × 1013 7.63 × 108 2.16 × 106 2.16 × 106 2.16 × 106 2.16 × 106

BATTLEZONE10 1.79 × 1013 5.01 × 109 1.05 × 107 1.26 × 107 6.84 × 104 6.84 × 104 6.84 × 104 6.84 × 104

BEAMRIDER20 1.22 × 1020 2.20 × 1014 1.39 × 1012 4.30 × 106 5.22 × 105 5.22 × 105 5.22 × 105 5.22 × 105

BOWLING30 3.32 × 1024 5.18 × 1017 5.53 × 1024 4.51 × 107 9.72 × 106 9.72 × 106 9.72 × 106 9.72 × 106

BREAKOUT10 5.24 × 106 7.92 × 107 1.02 × 105 9.52 × 103 2.24 × 104 2.24 × 104 2.24 × 104 2.24 × 104

BREAKOUT20 1.10 × 1013 2.03 × 1014 2.68 × 1010 1.02 × 105 6.83 × 105 6.83 × 105 6.83 × 105 6.83 × 105

BREAKOUT30 1.73 × 1019 3.46 × 1020 2.59 × 1020 3.36 × 105 6.04 × 1010 > 5 × 106 > 5 × 106 6.04 × 1010

BREAKOUT40 2.42 × 1025 5.22 × 1026 4.61 × 1020 9.80 × 105 4.35 × 1012 > 5 × 106 > 5 × 106 4.35 × 1012

BREAKOUT50 3.17 × 1031 7.46 × 1032 2.75 × 1015 3.24 × 106 1.58 × 1011 > 5 × 106 > 5 × 106 1.58 × 1011

BREAKOUT70 4.88 × 1043 1.30 × 1045 2.61 × 1040 2.19 × 107 7.87 × 1032 > 5 × 106 > 5 × 106 > 108

BREAKOUT100 8.03 × 1061 2.23 × 1063 1.43 × 1049 5.25 × 107 2.33 × 1056 > 5 × 106 > 5 × 106 > 108

BREAKOUT200 2.58 × 10122 7.19 × 10123 4.21 × 1069 1.12 × 108 6.26 × 1073 > 5 × 106 > 5 × 106 > 108

CENTIPEDE10 1.79 × 1013 7.13 × 1014 6.12 × 1010 2.38 × 109 3.57 × 1014 > 5 × 106 > 5 × 106 > 108

CHOPPERCOMMAND10 1.79 × 1013 1.95 × 1012 6.12 × 1010 2.49 × 108 8.87 × 106 8.87 × 106 8.87 × 106 8.87 × 106

CRAZYCLIMBER20 1.22 × 1020 8.03 × 1010 1.72 × 1010 3.19 × 105 3.35 × 105 3.35 × 105 3.35 × 105 3.35 × 105

CRAZYCLIMBER30 6.36 × 1029 6.46 × 1020 1.35 × 1020 1.25 × 108 5.11 × 106 5.11 × 106 5.11 × 106 5.11 × 106
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DEMONATTACK10 3.02 × 108 8.19 × 109 1.01 × 109 3.79 × 106 1.01 × 109 1.01 × 109 1.01 × 109 1.01 × 109

ENDURO10 1.74 × 1010 6.95 × 1011 3.87 × 1010 2.29 × 109 3.49 × 1011 3.49 × 1011 3.49 × 1011 3.49 × 1011

FISHINGDERBY10 1.79 × 1013 3.60 × 1013 1.98 × 1013 5.04 × 107 1.98 × 1013 > 5 × 106 1.98 × 1013 1.98 × 1013

FREEWAY10 2.95 × 105 1.39 × 106 7.29 × 104 5.94 × 103 1.11 × 104 1.11 × 104 1.11 × 104 1.11 × 104

FREEWAY20 3.49 × 1010 2.29 × 1011 6.38 × 108 1.89 × 105 1.40 × 106 1.40 × 106 1.40 × 106 1.40 × 106

FREEWAY30 3.09 × 1015 3.78 × 1015 2.29 × 1015 9.21 × 105 4.87 × 106 4.87 × 106 4.87 × 106 4.87 × 106

FREEWAY40 2.43 × 1020 1.06 × 1019 8.01 × 1019 2.50 × 106 9.36 × 106 9.36 × 106 9.36 × 106 9.36 × 106

FREEWAY50 1.79 × 1025 2.97 × 1023 2.46 × 1024 5.10 × 106 1.81 × 107 1.81 × 107 1.81 × 107 1.81 × 107

FREEWAY70 8.76 × 1034 2.73 × 1031 1.51 × 1035 1.47 × 107 1.11 × 108 1.11 × 108 1.11 × 108 1.11 × 108

FREEWAY100 2.58 × 1049 2.82 × 1043 9.27 × 1035 4.54 × 107 2.71 × 1030 > 5 × 106 > 5 × 106 > 108

FREEWAY200 2.66 × 1097 2.52 × 1080 1.48 × 1076 3.80 × 108 2.00 × 1012 > 5 × 106 2.00 × 1012 > 108

FROSTBITE10 1.79 × 1013 8.01 × 1011 5.83 × 105 1.03 × 107 3.89 × 105 3.89 × 105 3.89 × 105 3.89 × 105

GOPHER30 1.86 × 1028 2.29 × 1012 2.95 × 107 1.91 × 105 4.32 × 104 4.32 × 104 4.32 × 104 4.32 × 104

GOPHER40 2.66 × 1037 1.95 × 1014 8.80 × 1014 2.64 × 106 8.30 × 1011 > 5 × 106 > 5 × 106 8.30 × 1011

HERO10 1.79 × 1013 1.85 × 1010 5.83 × 105 8.80 × 105 1.80 × 103 1.80 × 103 1.80 × 103 1.80 × 103

ICEHOCKEY10 1.79 × 1013 1.01 × 1012 1.89 × 108 4.56 × 108 1.18 × 106 1.18 × 106 1.18 × 106 1.18 × 106

KANGAROO20 1.27 × 1026 4.80 × 1018 2.57 × 1016 4.69 × 107 1.57 × 107 1.57 × 107 1.57 × 107 1.57 × 107

KANGAROO30 6.83 × 1038 3.21 × 1031 6.69 × 1031 3.16 × 109 1.20 × 1033 > 5 × 106 > 5 × 106 > 108

MONTEZUMAREVENGE15 5.06 × 1019 1.62 × 1016 1.52 × 1021 2.29 × 106 4.22 × 1012 > 5 × 106 > 5 × 106 > 108

MSPACMAN20 1.22 × 1020 1.63 × 1013 1.26 × 1013 3.32 × 108 1.26 × 1013 > 5 × 106 > 5 × 106 > 108

NAMETHISGAME20 3.66 × 1016 1.88 × 108 3.11 × 106 7.23 × 105 3.80 × 107 3.80 × 107 3.80 × 107 3.80 × 107

PHOENIX10 5.37 × 109 1.45 × 1011 1.68 × 109 3.72 × 106 1.07 × 1011 1.07 × 1011 1.07 × 1011 1.07 × 1011

PONG20 3.66 × 1016 1.12 × 1012 3.11 × 106 3.06 × 104 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104

PONG30 3.32 × 1024 1.25 × 1017 9.14 × 1016 3.61 × 105 4.66 × 109 4.66 × 109 4.66 × 109 4.66 × 109

PONG40 2.67 × 1032 1.18 × 1022 1.26 × 1021 3.85 × 106 2.31 × 1013 > 5 × 106 2.31 × 1013 2.31 × 1013

PONG50 2.02 × 1040 1.02 × 1027 7.11 × 1022 3.76 × 107 4.71 × 1018 > 5 × 106 4.71 × 1018 > 108

PONG70 1.03 × 1056 6.08 × 1036 1.39 × 1023 1.21 × 109 3.66 × 1025 > 5 × 106 > 5 × 106 > 108

PONG100 3.27 × 1079 2.05 × 1051 2.84 × 1023 2.08 × 1010 3.60 × 1058 > 5 × 106 > 5 × 106 > 108

PRIVATEEYE10 1.79 × 1013 8.64 × 109 1.10 × 1012 2.32 × 106 1.39 × 107 1.39 × 107 1.39 × 107 1.39 × 107

QBERT10 3.02 × 108 3.80 × 106 7.78 × 105 1.73 × 104 7.78 × 105 7.78 × 105 7.78 × 105 7.78 × 105

QBERT20 3.66 × 1016 2.36 × 1015 4.03 × 109 4.51 × 108 4.99 × 1013 4.99 × 1013 4.99 × 1013 4.99 × 1013

ROADRUNNER10 1.79 × 1013 7.34 × 1014 1.98 × 1013 4.26 × 109 2.52 × 1014 2.52 × 1014 2.52 × 1014 2.52 × 1014

SEAQUEST10 1.79 × 1013 4.15 × 109 1.89 × 108 9.84 × 105 3.60 × 103 3.60 × 103 3.60 × 103 3.60 × 103

SKIING10 2.95 × 105 6.83 × 106 5.90 × 106 5.25 × 105 5.90 × 106 > 5 × 106 > 5 × 106 5.90 × 106

SPACEINVADERS10 3.02 × 108 4.38 × 106 2.16 × 104 5.96 × 104 2.28 × 104 2.28 × 104 2.28 × 104 2.28 × 104

TENNIS10 1.79 × 1013 2.29 × 1012 3.40 × 109 6.82 × 107 1.01 × 108 > 5 × 106 1.01 × 108 1.01 × 108

TIMEPILOT10 5.00 × 1010 5.76 × 107 1.00 × 108 5.03 × 105 8.83 × 105 8.83 × 105 8.83 × 105 8.83 × 105

TUTANKHAM10 5.37 × 109 1.68 × 1010 1.34 × 1010 1.33 × 106 8.45 × 108 8.45 × 108 8.45 × 108 8.45 × 108

VIDEOPINBALL10 1.74 × 1010 5.10 × 1011 4.30 × 109 1.13 × 107 1.38 × 108 > 5 × 106 1.38 × 108 1.38 × 108

WIZARDOFWOR20 1.00 × 1021 3.78 × 1014 4.00 × 1015 1.78 × 106 4.00 × 1015 > 5 × 106 > 5 × 106 > 108

BIGFISHE0
10 1.74 × 1010 2.26 × 1011 4.30 × 109 2.08 × 106 3.87 × 1010 3.87 × 1010 3.87 × 1010 3.87 × 1010

BIGFISHE1
10 1.74 × 1010 4.57 × 1011 6.56 × 105 2.47 × 106 4.68 × 104 4.68 × 104 4.68 × 104 4.68 × 104

BIGFISHE2
10 1.74 × 1010 5.26 × 1011 3.49 × 1011 1.76 × 107 3.49 × 1011 > 5 × 106 3.49 × 1011 > 108

BIGFISHH0
10 1.74 × 1010 4.19 × 1011 4.78 × 108 8.33 × 105 1.30 × 106 1.30 × 106 1.30 × 106 1.30 × 106

CHASERE0
20 1.22 × 1020 2.32 × 1018 8.24 × 1016 1.46 × 108 8.89 × 109 8.89 × 109 8.89 × 109 8.89 × 109

CHASERE1
20 1.22 × 1020 3.23 × 1018 1.55 × 1011 7.16 × 107 6.27 × 106 6.27 × 106 6.27 × 106 6.27 × 106

CHASERE2
20 1.22 × 1020 2.67 × 1018 1.39 × 1012 9.05 × 107 4.95 × 1014 4.95 × 1014 4.95 × 1014 4.95 × 1014

CHASERH0
20 1.22 × 1020 2.07 × 1018 5.40 × 1020 1.58 × 108 4.86 × 1021 4.86 × 1021 > 5 × 106 > 108

CLIMBERE0
10 1.74 × 1010 2.67 × 1011 4.78 × 108 2.18 × 107 1.59 × 105 1.59 × 105 1.59 × 105 1.59 × 105

CLIMBERE1
10 1.74 × 1010 8.46 × 1010 3.87 × 1010 1.06 × 107 5.89 × 105 5.89 × 105 5.89 × 105 5.89 × 105

CLIMBERE2
10 1.74 × 1010 8.43 × 1010 5.31 × 107 1.01 × 107 5.04 × 104 5.04 × 104 5.04 × 104 5.04 × 104

CLIMBERH0
10 1.74 × 1010 2.66 × 1011 3.49 × 1011 2.09 × 107 2.09 × 108 > 5 × 106 > 5 × 106 2.09 × 108

COINRUNE0
10 1.74 × 1010 1.77 × 1011 4.30 × 109 2.01 × 107 9.33 × 105 9.33 × 105 9.33 × 105 9.33 × 105

COINRUNE1
10 1.74 × 1010 4.05 × 1010 4.78 × 108 5.61 × 106 2.88 × 105 2.88 × 105 > 5 × 106 2.88 × 105

COINRUNE2
10 1.74 × 1010 1.30 × 1011 3.87 × 1010 1.57 × 107 5.88 × 106 5.88 × 106 > 5 × 106 5.88 × 106

COINRUNH0
10 1.74 × 1010 1.34 × 1011 4.78 × 108 2.45 × 107 1.44 × 104 1.44 × 104 1.44 × 104 1.44 × 104

DODGEBALLE0
10 5.00 × 1010 1.47 × 1012 1.00 × 109 1.19 × 107 1.51 × 106 1.51 × 106 1.51 × 106 1.51 × 106

DODGEBALLE1
10 5.00 × 1010 1.29 × 1012 1.00 × 1012 1.95 × 106 2.99 × 107 2.99 × 107 2.99 × 107 2.99 × 107

DODGEBALLE2
10 5.00 × 1010 1.34 × 1012 1.00 × 108 3.42 × 106 4.98 × 105 4.98 × 105 4.98 × 105 4.98 × 105

DODGEBALLH0
10 5.00 × 1010 1.42 × 1012 1.00 × 1010 7.24 × 106 1.00 × 1012 > 5 × 106 > 5 × 106 1.00 × 1012

FRUITBOTE0
40 2.96 × 1039 9.28 × 108 5.58 × 1012 8.28 × 104 9.80 × 1020 > 5 × 106 9.80 × 1020 9.80 × 1020

FRUITBOTE1
40 2.96 × 1039 2.40 × 1013 2.40 × 1020 1.36 × 105 1.74 × 1026 > 5 × 106 1.74 × 1026 > 108

FRUITBOTE2
40 2.96 × 1039 4.47 × 106 1.30 × 105 5.80 × 104 1.43 × 106 1.43 × 106 1.43 × 106 1.43 × 106

FRUITBOTH0
40 2.96 × 1039 2.62 × 1015 1.28 × 1026 2.23 × 105 1.21 × 1020 > 5 × 106 1.21 × 1020 > 108

HEISTE1
10 1.74 × 1010 4.96 × 1011 3.49 × 1011 7.45 × 106 1.06 × 108 > 5 × 106 > 5 × 106 1.06 × 108

JUMPERH0
10 1.74 × 1010 5.11 × 1011 3.49 × 1011 1.17 × 107 1.41 × 1010 > 5 × 106 > 5 × 106 > 108

JUMPERE0
20 1.22 × 1020 1.77 × 1021 3.60 × 103 2.15 × 107 3.60 × 103 3.60 × 103 3.60 × 103 3.60 × 103

JUMPERE1
20 1.22 × 1020 4.02 × 1021 3.24 × 104 1.49 × 108 7.20 × 103 7.20 × 103 7.20 × 103 7.20 × 103

JUMPERE2
20 1.22 × 1020 2.59 × 1020 2.36 × 107 2.48 × 108 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104

JUMPEREX
20 1.22 × 1020 2.18 × 1021 6.67 × 1018 6.13 × 108 1.24 × 1015 > 5 × 106 > 5 × 106 > 108

LEAPERE1
20 1.22 × 1020 2.96 × 1021 7.41 × 1017 1.90 × 106 2.16 × 1013 > 5 × 106 > 5 × 106 > 108

LEAPERE2
20 1.22 × 1020 3.69 × 1021 1.72 × 1010 3.97 × 107 4.90 × 106 4.90 × 106 4.90 × 106 4.90 × 106

LEAPERH0
20 1.22 × 1020 3.07 × 1021 8.24 × 1016 3.08 × 106 1.27 × 1015 > 5 × 106 > 5 × 106 > 108

LEAPEREX
20 1.22 × 1020 3.23 × 1021 7.41 × 1017 5.96 × 106 7.04 × 1014 > 5 × 106 > 5 × 106 > 108

MAZEE0
30 6.36 × 1029 4.95 × 106 8.10 × 103 6.59 × 104 1.62 × 104 1.62 × 104 1.62 × 104 1.62 × 104

MAZEE1
30 6.36 × 1029 2.71 × 1024 7.98 × 1024 3.95 × 105 3.44 × 1016 > 5 × 106 > 5 × 106 > 108

MAZEE2
30 6.36 × 1029 1.35 × 109 6.56 × 105 1.77 × 105 1.62 × 104 1.62 × 104 1.62 × 104 1.62 × 104

MAZEH0
30 6.36 × 1029 2.48 × 1025 1.85 × 1017 4.73 × 105 3.01 × 1010 > 5 × 106 > 5 × 106 > 108

MAZEEX
100 1.33 × 1097 4.27 × 1065 3.33 × 1076 3.34 × 107 2.67 × 1042 > 5 × 106 > 5 × 106 > 108

MINERE0
10 1.74 × 1010 4.84 × 1011 4.30 × 109 5.37 × 106 4.58 × 105 4.58 × 105 4.58 × 105 4.58 × 105

MINERE1
10 1.74 × 1010 4.89 × 1011 3.87 × 1010 6.17 × 106 9.34 × 106 9.34 × 106 9.34 × 106 9.34 × 106
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MINERE2
10 1.74 × 1010 4.82 × 1011 7.29 × 104 5.00 × 106 1.80 × 103 1.80 × 103 1.80 × 103 1.80 × 103

MINERH0
10 1.74 × 1010 5.04 × 1011 4.78 × 108 9.35 × 106 1.92 × 105 1.92 × 105 1.92 × 105 1.92 × 105

NINJAE0
10 6.89 × 1011 2.67 × 1012 1.06 × 1012 2.62 × 107 8.49 × 106 8.49 × 106 > 5 × 106 8.49 × 106

NINJAE1
10 6.89 × 1011 2.82 × 1012 8.16 × 1010 6.33 × 107 2.43 × 106 2.43 × 106 > 5 × 106 2.43 × 106

NINJAE2
10 6.89 × 1011 2.67 × 1012 1.06 × 1012 2.74 × 107 5.97 × 109 > 5 × 106 > 5 × 106 > 108

NINJAH0
10 6.89 × 1011 2.47 × 1012 1.38 × 1013 8.60 × 106 3.57 × 109 > 5 × 106 > 5 × 106 > 108

PLUNDERE0
10 5.00 × 1010 1.26 × 1012 1.00 × 107 1.55 × 106 2.00 × 103 2.00 × 103 2.00 × 103 2.00 × 103

PLUNDERE1
10 5.00 × 1010 1.29 × 1012 1.00 × 105 2.06 × 106 1000 1000 1000 1000

PLUNDERE2
10 5.00 × 1010 1.22 × 1012 1.00 × 109 9.99 × 105 1.96 × 105 1.96 × 105 1.96 × 105 1.96 × 105

PLUNDERH0
10 5.00 × 1010 1.20 × 1012 1.00 × 107 8.28 × 105 2.00 × 103 2.00 × 103 2.00 × 103 2.00 × 103

STARPILOTE0
10 1.30 × 1011 4.09 × 1012 2.36 × 1011 3.56 × 107 1.99 × 109 > 5 × 106 1.99 × 109 1.99 × 109

STARPILOTE1
10 1.30 × 1011 3.93 × 1012 2.14 × 1010 1.94 × 107 6.90 × 105 6.90 × 105 6.90 × 105 6.90 × 105

STARPILOTE2
10 1.30 × 1011 3.77 × 1012 1.95 × 109 1.05 × 107 2.36 × 1011 2.36 × 1011 2.36 × 1011 2.36 × 1011

STARPILOTH0
10 1.30 × 1011 4.02 × 1012 2.14 × 1010 2.71 × 107 1.04 × 1010 > 5 × 106 1.04 × 1010 1.04 × 1010

EMPTY-5X5 2.58 × 1049 1.76 × 105 2.43 × 106 1.11 × 104 6.00 × 104 6.00 × 104 6.00 × 104 6.00 × 104

EMPTY-6X6 2.58 × 1049 3.47 × 105 2.19 × 107 1.95 × 104 1.20 × 105 1.20 × 105 1.20 × 105 1.20 × 105

EMPTY-8X8 2.58 × 1049 9.28 × 105 1.77 × 109 4.35 × 104 2.70 × 105 2.70 × 105 2.70 × 105 2.70 × 105

EMPTY-16X16 2.58 × 1049 1.22 × 108 7.63 × 1016 2.35 × 105 5.93 × 107 5.93 × 107 > 5 × 106 5.93 × 107

DOORKEY-5X5 3.27 × 1079 2.53 × 109 6.05 × 1011 1.57 × 105 4.56 × 106 4.56 × 106 4.56 × 106 4.56 × 106

DOORKEY-6X6 3.27 × 1079 2.36 × 1011 1.01 × 1011 6.49 × 105 4.44 × 106 4.44 × 106 4.44 × 106 4.44 × 106

DOORKEY-8X8 3.27 × 1079 6.02 × 1015 2.18 × 1013 4.20 × 106 1.18 × 107 > 5 × 106 > 5 × 106 1.18 × 107

DOORKEY-16X16 3.27 × 1079 4.32 × 1059 7.96 × 1028 1.58 × 108 1.55 × 1016 > 5 × 106 > 5 × 106 > 108

MULTIROOM-N2-S4 3.27 × 1079 5.13 × 105 7.78 × 107 2.22 × 104 3.60 × 105 3.60 × 105 3.60 × 105 3.60 × 105

MULTIROOM-N4-S5 3.27 × 1079 2.23 × 1018 6.09 × 1018 4.33 × 105 1.53 × 109 > 5 × 106 > 5 × 106 > 108

MULTIROOM-N6 3.27 × 1079 1.73 × 1074 2.89 × 1037 1.23 × 107 6.81 × 1020 > 5 × 106 > 5 × 106 > 108

KEYCORRIDORS3R1 3.27 × 1079 2.08 × 109 4.70 × 1015 9.48 × 104 1.46 × 107 1.46 × 107 1.46 × 107 1.46 × 107

KEYCORRIDORS3R2 3.27 × 1079 8.57 × 1020 6.09 × 1018 2.81 × 106 7.80 × 108 7.80 × 108 7.80 × 108 > 108

KEYCORRIDORS3R3 3.27 × 1079 4.30 × 1032 1.32 × 1021 6.30 × 107 1.86 × 1011 > 5 × 106 > 5 × 106 > 108

KEYCORRIDORS4R3 3.27 × 1079 3.22 × 1079 1.73 × 1038 3.59 × 108 2.54 × 1022 > 5 × 106 > 5 × 106 > 108

UNLOCK 3.27 × 1079 2.54 × 108 6.05 × 1011 6.15 × 105 8.40 × 106 8.40 × 106 8.40 × 106 8.40 × 106

UNLOCKPICKUP 3.27 × 1079 4.06 × 1020 1.02 × 1018 1.03 × 107 9.04 × 108 9.04 × 108 > 5 × 106 > 108

BLOCKEDUNLOCKPICKUP 3.27 × 1079 1.26 × 1043 1.32 × 1021 3.05 × 108 3.33 × 1011 > 5 × 106 > 5 × 106 > 108

OBSTRUCTEDMAZE-1DL 3.27 × 1079 1.01 × 1018 4.70 × 1015 5.31 × 106 8.70 × 107 8.70 × 107 > 5 × 106 8.70 × 107

OBSTRUCTEDMAZE-1DLH 3.27 × 1079 7.25 × 1012 4.70 × 1015 2.65 × 106 1.80 × 108 > 5 × 106 > 5 × 106 1.80 × 108

OBSTRUCTEDMAZE-1DLHB 3.27 × 1079 6.05 × 1018 2.19 × 1020 4.04 × 107 1.28 × 1011 > 5 × 106 > 5 × 106 > 108

FOURROOMS 3.27 × 1079 1.07 × 1015 6.09 × 1018 6.22 × 105 3.33 × 108 3.33 × 108 > 5 × 106 3.33 × 108

LAVACROSSINGS9N1 3.27 × 1079 1.36 × 107 7.84 × 1014 8.94 × 104 1.24 × 107 1.24 × 107 1.24 × 107 1.24 × 107

LAVACROSSINGS9N2 3.27 × 1079 1.19 × 108 7.84 × 1014 7.98 × 104 8.17 × 107 8.17 × 107 8.17 × 107 8.17 × 107

LAVACROSSINGS9N3 3.27 × 1079 5.61 × 108 4.70 × 1015 6.06 × 104 3.70 × 108 3.70 × 108 > 5 × 106 3.70 × 108

LAVACROSSINGS11N5 3.27 × 1079 3.30 × 1010 2.19 × 1020 6.06 × 104 2.41 × 1011 > 5 × 106 > 5 × 106 > 108

SIMPLECROSSINGS9N1 3.27 × 1079 5.99 × 106 7.84 × 1014 8.94 × 104 7.80 × 106 7.80 × 106 7.80 × 106 7.80 × 106

SIMPLECROSSINGS9N2 3.27 × 1079 2.68 × 107 7.84 × 1014 7.98 × 104 3.22 × 107 3.22 × 107 3.22 × 107 3.22 × 107

SIMPLECROSSINGS9N3 3.27 × 1079 3.73 × 107 4.70 × 1015 6.06 × 104 4.71 × 107 4.71 × 107 4.71 × 107 4.71 × 107

SIMPLECROSSINGS11N5 3.27 × 1079 2.38 × 109 2.19 × 1020 6.06 × 104 2.18 × 109 > 5 × 106 > 5 × 106 > 108

LAVAGAPS5 3.27 × 1079 6.74 × 105 7.78 × 107 1.74 × 104 3.00 × 105 3.00 × 105 3.00 × 105 3.00 × 105

LAVAGAPS6 3.27 × 1079 2.33 × 107 1.01 × 1011 3.18 × 104 1.44 × 106 1.44 × 106 1.44 × 106 1.44 × 106

LAVAGAPS7 3.27 × 1079 8.73 × 107 3.63 × 1012 5.10 × 104 4.56 × 106 4.56 × 106 4.56 × 106 4.56 × 106

H.7. Table of bounds and empirical sample complexities

This table lists the returns for the random and optimal policies in each MDP as well as the final returns achieved by PPO,
DQN, and GORP.

Returns
MDP Random policy Optimal policy PPO DQN GORP

ALIEN10 74.7 160 160 160 160
AMIDAR20 6.8 109 68 68 68
ASSAULT10 8.7 126 126 126 126
ASTERIX10 99.2 400 400 400 400
ASTEROIDS10 15.1 320 170 190 220
ATLANTIS10 24.2 200 200 200 200
ATLANTIS20 124.2 1, 200 1, 200 1, 200 1, 200
ATLANTIS30 145.5 4, 300 1, 600 1, 600 4, 000
ATLANTIS40 146.7 5, 500 5, 500 5, 400 5, 500
ATLANTIS50 146.8 7, 800 7, 600 5, 500 7, 700
ATLANTIS70 146.9 11, 100 8, 900 8, 900 10, 900
BANKHEIST10 0.4 30 30 30 30
BATTLEZONE10 115.3 2, 000 2, 000 2, 000 2, 000
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BEAMRIDER20 23.8 132 132 132 132
BOWLING30 1.8 9 9 9 9
BREAKOUT10 0.1 2 2 2 2
BREAKOUT20 0.2 4 4 4 4
BREAKOUT30 0.2 9 4 7 9
BREAKOUT40 0.2 11 9 9 11
BREAKOUT50 0.2 13 10 10 13
BREAKOUT70 0.2 22 13 14 19
BREAKOUT100 0.2 44 14 14 19
BREAKOUT200 0.2 60 14 14 17
CENTIPEDE10 141.4 1, 923 922 1, 632 1, 621
CHOPPERCOMMAND10 117.3 600 600 600 600
CRAZYCLIMBER20 125.0 400 400 400 400
CRAZYCLIMBER30 248.2 900 900 900 900
DEMONATTACK10 8.3 50 50 50 50
ENDURO10 0.0 6 6 6 6
FISHINGDERBY10 0.2 8 6 8 8
FREEWAY10 0.0 1 1 1 1
FREEWAY20 0.0 2 2 2 2
FREEWAY30 0.1 4 4 4 4
FREEWAY40 0.1 5 5 5 5
FREEWAY50 0.1 6 6 6 6
FREEWAY70 0.2 9 9 9 9
FREEWAY100 0.3 13 12 12 12
FREEWAY200 0.7 25 24 25 20
FROSTBITE10 9.1 70 70 70 70
GOPHER30 1.4 20 20 20 20
GOPHER40 10.0 180 100 100 180
HERO10 8.2 75 75 75 75
ICEHOCKEY10 0.0 1 1 1 1
KANGAROO20 1.0 200 200 200 200
KANGAROO30 3.8 500 200 200 400
MONTEZUMAREVENGE15 0.0 100 0 0 0
MSPACMAN20 148.9 480 460 470 470
NAMETHISGAME20 11.2 180 180 180 180
PHOENIX10 23.4 260 260 260 260
PONG20 −2.7 −1 −1 −1 −1
PONG30 −4.2 −1 −1 −1 −1
PONG40 −6.0 0 −1 0 0
PONG50 −7.9 1 −1 1 0
PONG70 −11.5 2 −1 0 0
PONG100 −16.9 4 −1 −1 1
PRIVATEEYE10 0.1 100 100 100 100
QBERT10 51.0 425 425 425 425
QBERT20 87.2 675 675 675 675
ROADRUNNER10 0.1 600 600 600 600
SEAQUEST10 0.8 20 20 20 20
SKIING10 −12, 652.2 −7, 066 −8, 149 −7, 078 −7, 066
SPACEINVADERS10 3.5 40 40 40 40
TENNIS10 −0.7 1 0 1 1
TIMEPILOT10 8.2 200 200 200 200
TUTANKHAM10 0.1 23 23 23 23
VIDEOPINBALL10 109.0 4, 100 3, 000 4, 100 4, 100
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WIZARDOFWOR20 11.5 500 100 100 400

BIGFISHE0
10 0.4 4 4 4 4

BIGFISHE1
10 0.7 3 3 3 3

BIGFISHE2
10 3.0 8 7 8 7

BIGFISHH0
10 0.0 3 3 3 3

CHASERE0
20 0.4 0 0 0 1

CHASERE1
20 0.3 0 0 0 1

CHASERE2
20 0.4 0 0 0 1

CHASERH0
20 0.4 0 0 0 1

CLIMBERE0
10 0.1 2 2 2 2

CLIMBERE1
10 0.0 2 2 2 2

CLIMBERE2
10 0.0 11 11 11 11

CLIMBERH0
10 0.3 2 1 1 2

COINRUNE0
10 0.0 10 10 10 10
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H.8. Learning curves for BRIDGE MDPs
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Figure 10. Learning curves for PPO, DQN, and GORP on all the MDPs in BRIDGE. Solid lines show the median return
(over multiple random seeds) of the policies learned by each algorithm throughout training. We use 5 random seeds for PPO
and DQN and 101 random seeds for GORP. The shaded region shows the range of returns over all random seeds for PPO
and DQN, and shows the range from the 10th to 90th percentile over random seeds for GORP. The optimal return in each
environment is shown as the dashed black line.


