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Abstract

We introduce a novel contrastive representation learning objective and a training scheme for
clinical time series. Specifically, we project high dimensional E.H.R. data to a closed unit
ball of low dimension, encoding geometric priors so that the origin represents an idealized
perfect health state and the Euclidean norm is associated with the patient’s mortality risk.
Moreover, using septic patients as an example, we show how we could learn to associate
the angle between two vectors with the different organ system failures, thereby, learning a
compact representation which is indicative of both mortality risk and specific organ failure.
We show how the learned embedding can be used for online patient monitoring, supplement
clinicians and improve performance of downstream machine learning tasks. This work was
partially motivated from the desire and the need to introduce a systematic way of defining
intermediate rewards for Reinforcement Learning in critical care medicine. Hence, we also
show how such a design in terms of the learned embedding can result in qualitatively different
policies and value distributions, as compared with using only terminal rewards.

Introduction

Recently contrastive methods, usually framed as self-supervised learning problems have enjoyed tremendous
popularity and success across various domains He et al. (2020); Chen et al. (2020a); Xiao et al. (2021), but
their applications for electronic health record data have been limited Yèche et al. (2021). Whilst this can be
explained by complexity and noise in medical time series and the difficulty to create medically meaningful
augmented versions of the patient states, there is an underlying regularity and structure amongst critically
ill patients which we believe can be exploited, to produce a representation using simple geometric priors,
working in the semi-supervised 1 setting instead of the fully self-supervised or supervised settings. For this
purpose, we introduce a new optimization criteria, using which we embed high dimensional patient states to a
lower dimensional unit ball. The embedding has the property that the mortality risk can be associated with
the level sphere the embedded vector belongs to, and it can distinguish between variations and similarities
between patients states subjected to the same mortality risk, using minimal supervision.

We evaluate our method on a large cohort of septic patients from the MIMIC-III Pollard (2016); Johnson
et al. (2016) database. Since our experiments are focused on septic patients, we encode similarly using
major systems of organ failure. However, we note that the method can be easily adopted for any subset of
patients who exhibit a few major, loosely defined physiological classes of criticality, and can approach higher
mortality risks in different ways. By leveraging such basic medical knowledge, our method avoids the need
to compute data augmentations to create similar pairs. Unlike in images, augmentations may not produce
realistic patient states, due to the high complexity and correlations amongst the data dimensions, and the
invariances amongst patient states are less clear. Therefore we define similarities across two dimensions, a)
Mortality Risk. b) Major organ system failures (Or a similar notion of similarity), and use a triplet based
learning scheme, leveraging local stochastic gradient optimization and only using a single straightforward
feed-forward neural network. 2

1Throughout, we use semi-supervised learning to mean learning with some form of partial supervision. We acknowledge that
this use may be different from how it may be defined in other work.

2We use the data processed for Nanayakkara et al. (2022) so the state is augmented with GRU based hidden representations,
and thus is aware of some temporal dependencies, our method is also easily adaptable for any neural network architecture.
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The underlying assumptions and geometry which we encode in our training scheme are as follows:

• Each septic3 patient faces mortality risk, and whilst the underlying physiological causes and infections
may be different we can still define a form of similarity using the mortality risk a patient faces. Whilst
this can be approached using probabilistic methods, we avoid complications in framing the problem
in a probabilistic manner by using semi-supervision. In particular, we require a level set of the unit
n-hyperball to consist of the equivalence class of all patient states facing the same risk of death.

• As two patients with the same mortality risk can have two fundamentally physiological causes (for
example different organ failures), these embeddings should be on the same level sphere, but on
different parts of the sphere.

To achieve these goals, we have to project the embedding into the unit closed ball, in contrast to previous
methods, where the embedding is constrained to the sphere. Further, we do not have a strict disjoint set
of classes, so we cannot use any class based losses such as Deng et al. (2019); Liu et al. (2017). Instead, in
addition to similarity in terms of survival, as we stated above we use a softer notion of similarity such as
organ failure, noting that it can be possible for a given patient to have multiple organ failures. We also use a
triplet based optimization scheme as opposed to using more recent developments in contrastive representation
learning such as Van den Oord et al. (2018).

We show several benefits of the proposed method, for both assisting clinicians and for downstream machine
learning tasks. For example, the learned embeddings can be used to identify possible new organ failures in
advance, and provide early warning signs via the angle of the embeddings and identify increased mortality
risk using the norm. The later being considerably better than SOFA score as a predictor for mortality risk
for septic patients.

Our work was partially motivated by the desire to introduce a systematic criteria of defining rewards for
Offline Reinforcement Learning (RL) applications in medicine. There has been a lot of interest recently in
leveraging RL for critical care applications Komorowski et al. (2018); Raghu et al. (2017); Liu et al. (2020).
However, there are significant challenges at all levels: a most crucial challenge being a lack of an obvious
notion of rewards. Some previous applications of RL for sepsis have for example, have used just terminal
rewards Komorowski et al. (2018) (i.e. a reward for the final time point of a patient stay depending on release
or death) whilst others have used intermediate rewards based on clinical knowledge and organ failure scores
Raghu et al. (2017). Given the limited number of trajectories and the vast heterogeneity amongst critically
ill patients, we hypothesize that terminal rewards do not suffice by themselves to learn the desired policies.
Indeed, our experiments show that policies and value functions are qualitatively different and more consistent
with medical knowledge when we use intermediate rewards. Research in RL has also shown performance and
convergence can be improved when the agent is presented a denser reward signal Laud & DeJong (2003).
Therefore, we show how a reward can be defined systematically using the learned embeddings, and explore
the differences in the policies and value distributions. However, we do keep the RL discussion deliberately
brief, and defer a further analysis for future work.

In summary, our major contributions are as follows :

• We propose a novel learning framework where high dimensional EHR data can be encoded in a closed
unit ball so that level spheres represent (equivalence classes of) patients with same mortality risk
and patients with different physiological causes are embedded in different parts of the sphere.

• We introduce a loss to encode the desired geometry in the unit ball, since the standard losses in
metric learning and contrastive learning were ill-suited for this purpose. Further, we describe a
simple sampling scheme suited for this method, and show how the sampling scheme and basic domain
knowledge can obviate the need to construct data augmentations.

• We experiment using a diverse sepsis patient cohort, and show how the method can identify mortality
risk in advance, as well as identify changes in physiological dynamics in advance.

3As we mentioned earlier, we illustrate our method on the specific example of septic patients, but the method is readily
applicable with minor modifications for any critically ill patient distribution.
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• We show how this learned embedding can be used to systematically define rewards for RL applications.
Such a definition changes the value functions and the policies considerably, when compared with
using only terminal rewards.

Related Work

Contrastive Learning & Representation Learning for Clinical Time Series

Self supervised learning and contrastive methods have enjoyed increased popularity and success in recent
years, particularly in computer vision and natural language applications Chen et al. (2020a); He et al. (2020);
Chen et al. (2020b); Deng et al. (2019); Liu et al. (2017); Hoffer & Ailon (2015). However, as we stated
previously the only similar application to EHR time series we are aware of is Yèche et al. (2021). They
propose supervised and self-supervised contrastive learning schemes for EHR data, using a neighborhood
criteria for the supervised version.

Our work differs from this in several ways. First, our method does not require artificial augmentations to
define similarity. However we do use very basic medical knowledge about critically ill patients. In that
sense, our method belongs to the class of semi-supervised learning rather than self-supervised learning, where
most previous contrastive methods were used, with notable exceptions being supervised contrastive learning
Khosla et al. (2020) for images, and some recent work on semi-supervised contrastive learning for automatic
speech recognition Xiao et al. (2021). This work also significantly differs with respect to the optimization
and sampling scheme from all of the previous contrastive methods. Further, unlike most applications of
contrastive learning we embed the states in the closed unit ball, instead of the unit sphere. Doing so, we
associate mortality risk of a patient state with the euclidean norm of the embedded vector.

As noted in Yèche et al. (2021), there have been research on using deep representation learning for EHR data
both in isolation Lyu et al. (2018), and in the context of Reinforcement Learning Killian et al. (2020); Li
et al. (2019); Nanayakkara et al. (2022).

Reinforcement Learning for Medicine

As mentioned previously there has been considerable interest in leveraging RL for medical applications
Komorowski et al. (2018); Raghu et al. (2017); Killian et al. (2020); Liu et al. (2020); Raghu et al. (2017);
Nanayakkara et al. (2022); Prasad et al. (2020). There have also been guidelines and discussions on challenges
associated Gottesman et al. (2019). However, for the best of our knowledge the only other work which deals
with systematically defining rewards is Prasad et al. (2020). There, the authors define a class of reward
functions for which high-confidence policy improvement is possible. They define a space of reward functions
that yield policies that are consistent in performance with the observed data, and the method is general for
all Offline RL problems. In comparison our method presented here is a simple by product of the learned
embedding and has a simple clinical interpretation for critically ill , where reduced mortality is the primary
goal.

Deep Normed Embeddings : Learning and Optimization

We now motivate our training scheme and optimization criteria, before providing the mathematical formulation.
Figure 1 illustrates the geometry we encode on the unit ball, using a 2-dimensional ball as an example. Our
optimization algorithm is based on a triplet sampling scheme.

In each triplet the anchor is a terminal state, either a death state or a release (survival) state. The remaining
two states are sampled such that, one is a survivor state and the other is a non-survivor state : both in the
last t hours of the corresponding stay. (With t being a hyper-parameter, which should be interpreted as being
sufficiently close to death or release. We used t = 12, 24, 48, 72 in our experiments). The state which has
the same outcome as the anchor is labeled as positive, the other is labeled as negative. (For example, if the
anchor is a death state, then the non-survivor state is labeled as positive and the survivor state as negative.
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Figure 1: The proposed training scheme : We use a triplet based sampling scheme, where 3 patient states are
sampled. One of them, the anchor, is always a terminal state (corresponding to death or release), and the others
include a near death and a near release state. Our loss function is then defined in terms of the end result of the anchor
state as shown in the figure.

Note that here, the word positive denotes the similarity to the anchor and not the desirability of the given
state.)

The triplet of states is then sent through a neural network parameterized by θ, with fθ(x) being the lower
dimensional embedding of an input x to the network. The optimization scheme learns the neural network
parameters such that similar states are mapped to proximity while distance between dissimilar states is
maximized, and simultaneously the anchor death states are mapped to the boundary and the anchor release
states are mapped to near 4 the origin. The positive and negative states, are also mapped near the boundary
or the origin, depending their end outcome.

In addition to dissimilarity between survival vs non-survival states, we use additional level of dissimilarity
among non-survival states that occur due to different organ failure modes. As we mentioned previously, in
most intensive care applications the patients can face mortality risk in various different ways. For example,
septic patients display enormous heterogeneity in the underlying infection and the primary organ failure.
Therefore, we require our embedding to identify similarity among the patient states using partial supervision.
In our example of septic patients, we use four major organ system scores : i) Cardiovascular ii) Central
Nervous System (CNS) iii) Liver and iv) Renal, and pick the organ system with the worst (highest) score
as the worst organ system. Each non-survivor state in the triplet is then annotated with the worse organ
system. When the anchor state is a death state, we use a cosine embedding loss, between the two embedded
non survivor states. Informally, the goal is to maximize the angle of the embedding of states corresponding

4The releases states should no be mapped exactly to the origin as even survivors have some risk of mortality, and research has
shown there is a substantial readmission risk and a shortened life time for septic patients, even when they survive the ICU stay.

4



Under review as submission to TMLR

to different organ failures and minimizing the angle between two states corresponding to the same organ
system failure.

When the anchor is a release state, instead of the cosine embedding loss we use the triplet loss, between
anchor, positive and negative. This enables the patient states to be spread across the hyper-ball, and the
high mortality risk states to be differentiated from less risky states.

Formally, we optimize the loss function

loss(x; θ) = β(lossterminal(x; θ)) + (1 − β)(losscontrastive(x; θ)) + lossintermediate(x; θ) (1)

Here θ denotes the neural network parameters we are optimizing, and x a triplet of the form (xa, xp, xn)
(The implementation uses batches of triplets which is the norm in Deep Learning). The loss function in (1)
consists of three components: the terminal (or anchor) loss, the contrastive loss, and the intermediate loss for
non terminal states. The first two losses are the most important, and are balanced by a hyper-parameter
β ∈ [0, 1].

We now describe each component separately. For ease of notation we will use d(x) for ||fθ(x)||22, where ||x||2
denotes the l2 euclidean norm on the embedding space. (We use the square of the norm instead of the norm
itself purely for the ease of optimization.)

The terminal loss,

lossterminal(x, θ) = I{xa=death}((d(xa) − 1)2) + λ1I{xa=release}(d(xa)) (2)

essentially distributes the terminal states to the correct part of the ball. (with respect to the embedded
norm). I.e. the death states are embedded on the boundary and the release states near the origin. As we
explained previously we want to be more generous on release states mapped away from the origin, since
survivors could exhibit non-trivial mortality risk for critically ill patients. Thus we discount the release term
with λ ≤ 1 to encourage the network to learn these patterns automatically.

The contrastive loss,

losscontrastive(x, θ) = I{xa=release}tripletloss(xa, xp, xn) + I{xa=death}cosineloss(xa, xp, yap) (3)

is responsible for determining the separation of states. As described previously, this loss depends on whether
the chosen anchor is a dead state or a release state. Triplet loss is the standard loss as introduced in Schroff
et al. (2015). Note that this term has a margin hyperparamter which we have suppressed for simplicity. We
used 0.2 for the triplet loss margin. The cosine embedding loss is only considered when the anchor is a death
state. This term depends on the similarity of the two non-survivor states yap, where yap = 1 if both the states
belong to the same class and 0 otherwise. We experimented with two options for the cosine embedding loss:

(i) The standard cosine embedding loss used in metric learning defined as :

cosineloss(xa, xp, yap) =
{

1 − cos(xa, yp) yap = 1
max(0, cos(xa, xp) − margin) yap = 0

(ii) Cosine loss based on inner product <, >:

cosineloss(xa, xp, yap) = I{yap=0} < xa, xp >

Since < xa, xp >= cos(xa, xp)√< xa, xa >
√

< xp, xp >, we expect formula (ii) to be similar to (i) near death
states, where √

< xa, xa > ≈ 1 ≈ √
< xp, xp >.5 Our results in the next sections used the first version with a

margin close to 0. Using the second version was more stable in training, but the separation of different organ
systems were more clear when the first version was used.

5Note that is this formulation we only use similarity as a loss when the organ failures are different. In either case. the anchor
state is a death state.
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The intermediate loss is intended to help the network by mapping near death states near the boundary
and near release states near the origin. We note that there are a few hyperparameters in this loss, but our
experiments show that the method is quite robust for most reasonable hyperparameter choices.

(4)lossintermediate(x, θ)
= λ2(I{d(xp)>1}d(xp) + I{d(xn)>1}d(xn)) + λ3(I{xa=Death}e−αd(xp) + I{xa=release}e−αd(xn))

+ λ4(I{xa=death}d(xn) + I{xa=release}d(xa))

This loss comprises of three components. The first term ensures that the embeddings are constrained to
the closed unit ball by penalizing if the squared norm of the embedding is greater than one. We noticed
that such an implicit regularization is more effective than explicitly constraining the output of the network.
The second and third terms help the learning process, by mapping the intermediate (positive and negative)
terms close to the boundary or the origin. We use an exponentially decaying loss for the non-survivor states,
so the loss only large, if the norm is close to zero. α is a hyper-parameter which chooses the desired decay.
Similarly the last term ensures the near release survivor states are mapped close to the origin in general.
However we choose λ4 to be much smaller than λ1 and λ3, so that the network can still identify high risk
states. We used β = 0.6, λ1 = 0.7, λ2 = 10.0, α = 3, λ3 = 0.2, λ4 = 0.05 for our main network. We note that
it is also important to use an orthogonal weight initialization Hu et al. (2020) in order to learn a distributed
representation on the ball and to prevent dimensionality collapse Jing et al. (2021).

Results

Patient Representation on the Unit Ball

For ease of visualization, we present most results using representations embedded in the 3d unit ball, however,
the method works for embedding into any dimension.

Figures 2a and 2b show histograms of squared norms of the embeddings for all survivor and non survivor
patient states (across all time points) in the validation cohort. As the figures clearly demonstrate, the learned
embedding associates the norm (or alternatively, the level set Sk of the form Sk = {x : ||fθ(x)||2= k}) of the
embedded vector with mortality risk, with survivor states in general belonging to the lower level sets, and
the non-survivor states belonging to the higher level sets. We later show how the norm can be used as an
indicator of patient mortality risk, compared with the existing scores such as the SOFA score.

Figure 2c presents a randomly selected sample of non-survivor patient states, embedded into the 3-dimensional
closed unit ball. The colors mark the worst organ system for each state. There is a clear separation amongst
different organ failures. We envision, such a presentation can be used to provide real-time visualization to
assist clinicians at the ICU. For example, the embedding can be used to identify a patient trajectory heading
towards a new organ failure. The embedding being continuous is naturally more granular than the discretized,
organ failure scores which were used as an guidance to the network to distinguish different organ failure
scores. Indeed, an example of such a patient trajectory is given in Figure 3.

Here, two embedded patient trajectories are plotted in the 3d-unit ball. We focus on the trajectory of patient
ID: 265037, which is colored in black and green. We focus on the final 50 hrs of this patient’s stay. The
patient’s organ failure scores change at 36 hrs. At this point the patient’s the cardiovascular score changes
from 4 to 3 and then to 1 at 37 hrs. To show how the embedding predicts this change in the underlying
physiology before the organ scores reflect it, we color the lines of first 36 hours of the trajectory in black and
the last 14 in green. For the first 36 hours the labeled worst organ system is cardiovascular (although, we note
for this patient renal and CNS scores were equal to the cardiovascular score.) and hence marked in blue stars.
As the cardiovascular score decrease the worst organ system was labeled as CNS and is marked in purple for
last 14 hrs. We can notice that the trajectory approaches its final points, even when the organ failure scores
do not indicate the increase in cardiovascular scores. Indeed the black lines take the trajectory very close to
its end set of points. This is an example of how this learned representation can warn clinicians on changes in
patient dynamics. As we can see from this example, the representation can identify these patterns from the
data and is not constrained by the supervision signal (in this case the organ failure scores) it was given.
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a b

c

Figure 2: a :Norm2 of validation cohort non-survivors, b :Norm2 of validation cohort survivors, c : A sample of
non-survivor patient states, marked by the worst organ system

The other trajectory is presented for comparison. This is the final 15 hours of another non-survivor. As we
can see this patient approaches a different part of the boundary as they become closer to death.
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Figure 3: Embedded trajectories for two non-survivors: One patient is labeled with star markers and black/green
trajectory, the second with triangle markers and orange trajectory. The marker color indicates the system with the
highest organ failure score: Cardio (blue), Renal (Maroon) CNS (Purple). The first trajectory is 50 hrs long, black for
the first 36 hrs, green for the last 14. The highest severity organ failure changes from cardio to CNS at 36 hrs. The
embedding trajectory approaches the cluster a few hours before the organ scores indicate the change (see detail).

Norm as a Predictor of Mortality Risk and Representation Learning for Downstream Machine Learning
Tasks

In order to investigate how the embedded norm can be used as a predictor of mortality risk, we created
auxiliary tasks of predicting if a state is within 12, 24, 48, 72, or 120 hours of death. Then, we calculated the
area under the ROC (AUROC), using the norm as the score associated with each state, for each task. For
comparison we followed the same steps with the SOFA score, since SOFA is used as a predictor of mortality
for septic patients Ferreira et al. (2001). The results are presented in the first three columns of Table 1. We
can notice that the AUROC with respect to the SOFA score is very similar for each task, therefore we also
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Task (t) SOFA SOFA(4) Norm3d Norm10d LR RF(old) KNN(3d) RF(10d emb) RF(old+emb)
12 hrs 0.693 0.712 0.844 0.855 0.882 0.891 0.879 0.888 0.894
24 hrs 0.692 0.702 0.814 0.823 0.846 0.856 0.844 0.851 0.865
48 hrs 0.690 0.693 0.786 0.793 0.811 0.830 0.813 0.820 0.838
72 hrs 0.690 0.691 0.775 0.782 0.795 0.816 0.800 0.806 0.824
120 hrs 0.690 0.688 0.767 0.772 0.7816 0.803 0.786 0.795 0.812

Table 1: AUROC for predicting if a state is t hours from death for various t. The statistics are presented
first using the full SOFA score, SOFA score just using 4 systems (cardio,cns,liver, renal) (SOFA (4)) ,3d embedding
and 10d embedding as the score. columns 4:8 presents AUROC for different models trained for the specific tasks.
Logistic Regression (LR), Random Forest using the previous 41 dimensional state (RF(old)), a KNN on 3d embedded
space (KNN(3d)), Random Forest on the 10d embedded space (RF(10d emb)) and a Random Forest on both the
previous state and the 10 embedding (RF(old+emb))

computed the AUROC using a SOFA type, aggregate score of just 4 organ systems : cardiovascular, CNS,
liver and renal. 6 These results are also included in Table 1.

We do note that the SOFA score is an aggregation of different organ failure scores, and a patient can face
mortality risk from just a few organ failures. Therefore it is not a perfect score to measure mortality risk.
However, it is still used regularly at the ICU to predict mortality risk and it is encouraging that the learned
embedding has shown a significant improvement in AUROC. The benefit of our method is that it can indicate
the risk and the organ failures (or physiological causes in general) responsible. This would not have been
possible if the method was approached from probabilistic methods for example. However, we experimented
using standard Machine Learning classifiers such as random forests and logistic regression for the above tasks.
The full results are shown in last 5 columns of 1.These include a logistic regression model, and a random
forest trained on the 41 dimensional patient state, which includes learned dynamic representations described
in Nanayakkara et al. (2022). Then, we trained a K-nearest neighbor model on the 3d embedding and a
random forest on the 10d embedding. Further we experimented by training a random forest on the previous
state augmented with the learned embedding.

As the results show, whilst the norm did not outperform these models when they were trained specifically
for the given task, the AUROC was competitive, especially for higher times from death. However, we could
outperform the logistic regression model and almost match the performance of the random forest, when we
trained simple models (K-nearest neighbors, and random forest) on the learned embedding. Further, we
noticed that when the state is augmented with learned embedding (both 3d and 10d) the AUROC of the
random forest, trained on this augmented state improves. The embedded vectors were also among the most
important features (measured by random forest feature importance) as shown in Table 2. We hypothesize
that the embeddings can be even more useful for downstream Deep Learning tasks. A particular example for
Deep Reinforcement Learning is presented in the next section.

Feature Importance Score
Embedding 10d dim 8 0.048

SOFA 0.044
Embedding 10d dim 7 0.039

Table 2: Top 3 most important features : Out of 51 for a random forest trained to predict if a state is 120 hours from
death

Reinforcement Learning : Rewards and Representation

In this section, we discuss how the learned embeddings can be leveraged for RL. To be consistent with
previous work Nanayakkara et al. (2022), we use Deep Distributional Reinforcement Learning using the
categorical c51 algorithm Bellemare et al. (2017), which approximates the return distribution with a discrete

6Whereas the full SOFA score uses 6 organ systems
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distribution with fixed support. The state and action spaces are also identical to that work (except when
using the embedded vector for state augmentation). We keep the RL methods simple. For example for the
results presented here, we do not re-weight the patient distribution when sampling as in Nanayakkara et al.
(2022), and we assume actions are taken with respect to the expected value of each value distribution.

As mentioned previously, our intention is purely to illustrate how the proposed low-dimensional embedding
can be used to define rewards, aid in state augmentation, and how such a choice affects the recommended
policies. Evaluating RL agents in the offline setting is an open problem and an active research area, and the
current off-policy evaluations (OPE) are particularly ill-suited for critical care applications Gottesman et al.
(2018). Even when OPE methods can be used they are defined in terms of a fixed reward specification, making
it impossible to use them for comparison of RL algorithms learned under different reward functions. Therefore,
we do not claim the methods proposed here are superior than the existing methods for RL. However, our
results show qualitative differences in values and policies that meet clinical intuition, hinting towards the
benefit of this formulation.

We experimented with two formulations of intermediate rewards. In each case we used terminal rewards
of −15 for terminal death states. For terminal survivor states, (release states) we use 15(1 − d(s)) as the
terminal reward. This was done to acknowledge that not all survivors are the same and there could be
patients with higher mortality risk even amongst survivors. Indeed medical research have claimed that the
life expectancy reduces significantly even for sepsis survivors. Cuthbertson et al. (2013); Gritte et al. (2021).
The scale of 15 was chosen to be consistent with previous work, for example Raghu et al. (2017).

In our first formulation we define, intermediate rewards of the form:

r1(s, a, s′) = 0.375(d(s) − d(s′)) (5)
7 where s, a are the current state and action and s′ is the next state. Here we use d(s) to denote the square
of the norm of the embedded vector of the state s. (i.e. (||fθ(s)||)2). We have used the current notation
for simplicity, noting the slight abuse of notation. This choice has a natural interpretation of minimizing
the cumulative increases of risks between consecutive time steps. However, we noticed (by comparing the
outputs of bootstrapped networks) that the variance of the learned norm can be high, so (d(s) − d(s′)) can
only be considered as a noisy estimate of the difference in risk. However, using the boostrapped networks, it
is straightforward to include a form of confidence in this estimate, and then consider a regularized reward to
reflect parametric uncertainty. We do not do that here do keep our RL presentation brief.

In our second formulation, we defined intermediate rewards using the norm in the same spirit as how SOFA
score was used as an intermediate reward in previous work such as Raghu et al. (2017). More specifically, in
that work there were two components of intermediate rewards depending on the next state’s SOFA score : (i)
A change in SOFA score (SOFA score increasing resulting in a negative reward, and decreasing a positive
reward) (ii) A negative reward for when the SOFA score does not improve. Further, a 15 or −15 terminal
reward was given for release or death, respectively.

Therefore, we define intermediate rewards of the form:

r2(s, a, s′) = 3.75(d(s) − d(s′)) − 0.25I{d(s′)>0.5}d(s′) (6)

where s, a are the current state and action and s′ is the next state. Here we use d(s) to denote the square of
the norm of the embedded vector of the state s. (i.e. (||fθ(s)||)2). We have used the current notation for
simplicity, noting the slight abuse of notation.

Notice that in expression of r2 the first term is positive if and only if the norm of the next embedded state is
less than the current norm. The second term is a penalty included to discourage keeping a patient at a risky
state. For our RL experiments, we used a 10d embedding, and further for the norm calculation we averaged
the norms of 10 bootstrapped networks. Both of these choices, were intended to reduce the variance of the
estimate. Further, we experimented with augmenting the state representation, with the embedded vector.

Now, we will discuss the changes in the policies. We noticed that when we only use terminal rewards, the
percentage of states with no recommended treatment is much higher than with intermediate rewards. This

7More generally we can define intermediate rewards of the form r2(s, a, s′) = α(d(s) − d(s′)) where α>0
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phenomena has been observed in previous research Komorowski et al. (2018). We present a summary of these
results in Table 3. Since, there is variability among the treatment recommendations, we present averaged
results. The averaging was done using different versions of the function approximating neural network :
5 networks learned independently using bootstrapped patients and weights of the last 3 epochs when the
network was trained on the whole training dataset. In addition to averaging the actions recommended by
each, we also present results where we average the value functions first and then recommend actions according
to the averaged value function. In each, case we can notice that using terminal rewards only causes the action
with no recommended treatment more frequently. The breakdown of the full treatment percentages under all
3 reward formulations are presented in the supplementary information.

Method % states with no treatment
Clinician 27.78

Terminal Rewards-Averaged Actions 52.68
Int. Rewards 1 (r1)- Averaged Actions 18.33
Int. Rewards 2 (r2)- Averaged Actions 28.61

Terminal Rewards-Averaged Value Functions 65.00
Int. Rewards 1 (r1) -Averaged Value Functions 26.40
Int. Rewards 2 (r2) -Averaged Value Functions 32.16

Table 3: Percentages of states with no treatment

We will discuss some properties of the value distributions and present the full action distribution in the
supplementary material.

Discussions and Conclusions

In this work, we introduced a novel contrastive representation learning scheme suitable for EHR data. One of
the key differences between our method and other constrastive methods, across all application domains, is
that our method works in the semi-supervised setting rather than purely self-supervised setting. We believe
self-supervision using augmentations could be challenging for medical time series, and unfortunately most
state of the art constrastive methods depend on heavy augmentations. However, there is enough regularity
and domain knowledge which can be exploited, although we do not have strict classes as for example the
image domain. Hence, we had to work in the semi-supervised setting rather than a fully supervised setting.
Indeed, one of our main aims of this work was to show how minimal and loosely defined supervision and
benefit in contrastive learning for clinical applications, and we expect this work to be adapted to reflect
different goals in machine learning applications for healthcare.

We have shown that our method has learned to identify mortality risk and changes in patient dynamics
in advance in terms of the underlying physiology (via organ failure). We believe such an application can
strongly supplement human clinicians at the ICU. The supervision given for this work is minimal and stronger
supervision signals about the underlying physiological mechanisms could result in a better and a more
interpretable representation. However, this would require more granular data than what is routinely collected
at the ICU. Indeed, one of the key challenges in medical time series is that we do not have access to the same
quantity or the quality of data as for example natural language.

There has been recent interest in exploring the geometry of deep learning Bronstein et al. (2021). In this
work, we use simple geometrical priors using the norm and inner products of a lower dimensional hyper-ball
to encode the desired behavior. However, in future work, we plan to explore ways of using stronger geometric
priors to encode medical knowledge. We believe such a scheme could also improve interpretability of the
representations, as well as improve performance of various machine learning tasks. It is also a potential way
to leverage well established mathematical theories of differential geometry and topology (amongst others).
However, such a use is far from trivial and would require more research.

We also note that, our method could be improved for task-specific applications through hyperparameter
optimization and using different neural network architectures. Our aim was to emphasize on the method
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and the associated geometric intuitions, and thus we did not focus on finding the optimal hyper-parameters.
Similarly, we note that the performance could be improved by using recent advances in contrastive learning
such as what is introduced in Chen et al. (2020a); He et al. (2020).

Finally, we showed how the learned embedding can be used to define rewards for RL and how as a result
the distribution of values and the policies change considerably. Whilst we have only used the norm of the
embedding for RL results presented here, we anticipate this method can be used in other ways for RL and
control. For example, the organ system changes can be considered if we can define rewards in terms of the
inner product of two consecutive vectors. However it is not immediate how this should be done, so we defer
this to future work. We may also interpret the lower dimensional embedding as an action induced patient
trajectory and a simplified dynamic patient model (where the action conditioned dynamics will have to be
estimated). This should allow us to use model based control methods, and the low dimension could enable
us to use more traditional control methods. However this too, would require more research and is another
direction we want to explore. Unfortunately, all RL methods in medicine are subjected to challenges at all
levels, including evaluation. Therefore, we do not make any claims about the performance of the learned
RL policies, rather we emphasize the method and how it can be used to set up the RL framework, more
systematically compared to previous work.

Methods

Data sources and preprocessing

For our experiments, we used the exact same data which was used for RL in Nanayakkara et al. (2022). In
particular, this includes the representation learning described in that work, resulting in a 41 dimensional state
space. This state was used as input for learning the embedding and then for RL (Expect for the experiments
where we augmented the state with the learned embedding).

More specifically the state consisted of :

• Demographics: Age, Gender, Weight.

• Vitals: Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Arterial Blood Pressure,
Temperature, SpO2, Respiratory Rate.

• Scores: 24 hour based scores of, SOFA, Liver, Renal, CNS, Cardiovascular

• Labs: Anion Gap, Bicarbonate, Creatinine, Chloride, Glucose, Hematocrit, Hemoglobin, Platelet,
Potassium, Sodium, BUN, WBC.

• Latent States: (see Nanayakkara et al. (2022)) Cardiovascular states and 10 dimensional lab history
representation.

For completeness, we briefly mention the cohort details and preprocessing steps again here. Our cohort
consisted of adult patients (≥ 17) who satisfied the Sepsis 3 Johnson et al. (2018) criteria from the Multi-
parameter Intelligent Monitoring in Intensive Care (MIMIC-III v1.4) database Johnson et al. (2016), Pollard
(2016).

Patients who got discharged from the ICU but ended up dying a few days or weeks later at the hospital, and
patients with more than 25% missing values after creating hourly trajectories were excluded. Missing vitals
and lab values were imputed using a last value carried forward scheme, as long as missingness remained less
than 25% of values.

We standardized all features before inputting them to the neural-networks.

For RL, we selected the treatment (actions) by considering hourly total volume of fluids (adjusted for tonicity),
and norepinephrine equivalent hourly dose (mcg/kg) for vasopressors. We used a 9 dimensional discrete
action space, with a time step of one hour. A separate 0 action for each was added to denote no treatment.
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Architectures and Implementation

For contrastive representation learning, we used a straightforward feed forward neural network with 12, 512
dimensional hidden layers, with ELU activations in between. Further, the final output was send through a
tanh function. As noted previously we noticed that using an orthogonal weight initialization was important
to prevent a collapse of the embedded space.

We used standard, mini-batch stochastic gradient based optimization using Adam Kingma & Ba (2014) with
a batch size of 256 and a learning rate of 10−5. In sampling batches, we first sampled a number of patients
equal to the batch size and their respective terminal states were taken as the anchor states. Then for each
patient, a non-survivor state and a survivor state (in the last t hours) from two different patients were drawn
randomly and depending on the end outcome of the anchor state, these states were labeled as positive or
negative. The worst organ scores corresponding to each state, were also noted.

We further used a weighted sampling scheme, where non-survivors were sampled more frequently (as the
anchor). However, this was purely due to the heavily imbalanced nature of our cohort where around 90% of
the patients were survivors.

We did notice that sometimes the training was prone to instability among epochs. However, this will be
indicated easily by the training and validation losses.

For RL, we used the c51 distributional algorithm Bellemare et al. (2017), with a 51 dimensional support,
using batch sizes of 100 and Adam as the optimizer.
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Supplementary Information

A More RL & Control : Results and Discussions

In this section, we briefly discuss some additional results of leveraging our method for RL and control.

For better comparison, we present a table (Table 4) with the percentages of all actions across the whole cohort
under the 3 reward schemes. The results presented here are derived from the averaged value distributions,
using bootstrapped ensembles.

Table 4: Percentage of recommended actions under different schemes and the clinician

Action Terminal Rewards. Int. Rewards 1 (r1). Int. Rewards 2 (r2) Clinician
Vaso 0 Fluids 0 65 26.4 32.2 27.8
Vaso 0 Fluids 1 19 11.7 0.03 23.7
Vaso 0 Fluids 2 9 18.3 58.2 31.8
Vaso 1 Fluids 0 2.8 7.6 0.9 1.2
Vaso 1 Fluids 1 3.3 23.5 1.1 3.2
Vaso 1 Fluids 2 0 0.2 0.1 4.0
Vaso 1 Fluids 0 0.04 12 7 1.2
Vaso 2 Fluids 1 0.02 0.03 0.2 2.5
Vaso 2 Fluids 2 0.02 0 0.01 4.4

We note that there is a considerable difference between recommendations among the reward schemes.
Evaluating between different policies using historical data is one of the hardest challenges faced by any
application of RL or control to medicine. Therefore, we don’t claim any specific scheme is necessarily better
at this point.

However as we mentioned previously the first formulation does have a natural meaning for critically ill patients,
and its increased vasopressor recommendation is consistent with previous RL work for sepsis Nanayakkara
et al. (2022), and recent medical research Shi et al. (2020). We suspect the reasons for the second reward
choice to recommend less vasopressors could be that the clinicians usually prescribe vasopressors for high risk
patients, thus there are less high risk patient states with no vasopressors administered in our observed data.
(r1 penalizes staying at a high risk state by −0.25d(s′)) This could potentially be addressed by using offline
RL methods for minimizing the effects of distribution shift, but such efforts are differed for future work.

Now, we will compare the optimal values under different formulations.

We will present our results using three different formulations: (i) using only terminal rewards, (ii) using only
terminal rewards but augmenting the state with the embedded vector, (iii) using intermediate rewards (No
embedded state augmentation). Each was trained using the same hyper-parameters for 8 epochs.

Since the value itself is defined in terms of the reward choice, we scaled all the values using a minimum,
maximum scaling scheme, so that for each formulation the values fall in the interval [0, 1]. We then, explored
the differences of values amongst survivors and non-survivors, expecting a noticeable difference at least when
the states are close (in time) to their eventual final outcome.

Due to the more pronounced difference, we will present results which use r2, first.

Figure 4 presents box plots of scaled optimal values of patient states. In this figure the intermediate rewards
use the formulation r2. An analogous figure, with r2 can be found in the supplementary material. For each,
we present the box plots for all survivor states, all non-survivor states, survivors states within 24 hours of
release, and non-survivor states within 24 hours of death. It is interesting to note that, the differences in
values are most perceptible when intermediate rewards are used. This makes more sense clinically, than
results when only terminal rewards were used, where the median non-survivor values are high even when they
are 24 hours from death. Moreover, there seem to be a slight increase in difference between survivor and
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Figure 4: Box plots of optimal values : The results are shown for different reward schemes and representations.

non-survivor quartiles, when the representation learning is used. This is especially noticeable in the last 24
hours of each set of patients.

Figure 5 presents box plots for optimal values for all 3 reward choices. We can notice that when r1 is used
instead of r2 the differences between survivor and non-survivor values are less pronounced. However, there
are still interesting differences when compared with terminal rewards. For example, variance and interquartile
range of survivors are much higher. (Recall that the values are scaled using a min-max scheme) In addition,
the values of survivors are no longer concentrated near 1.
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Figure 5: Box plots of optimal values : The results are shown for different reward schemes
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