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Abstract

Even though changing it is fairly easy, the Smalltalk syntax has remained essentially stable
for many decades. The reason is that people are cautious about side effects that could mess
up something provably good. This doesn’t mean that there aren’t variations one might
propose, but that the real task is to identify a coherent, non-distorting, set of extensions
that increase the expressiveness of the language in favor of new possibilities related to areas
such as interoperability, formal reasoning and mathematics.

1 Introduction

Modifications to the traditional Smalltalk syntax not only involve touching the scanner and the parser, they
also require adapting the tools and, sometimes, adding or modifying base classes or even the vm. For instance,
Unicode support [cf. Berman (2022), Vuletich et al. (2022)] for Smalltalk (as for any other system) not
only requires going beyond byte strings, it also calls for convenient ways of typing characters that aren’t
present in the keyboard. And it is not just that. As soon as we allow for, say, Unicode selectors, we will be
asking ourselves new questions. Wouldn’t it be nice if we were able to define1

··· aNumber
ˆself * aNumber and Number � 2

ˆself · self

Because then, we would likely want to allow subscripted variables as in

x: t
ˆx0 + (v0 · t) + (a / 2 · t 2)

etc., in a race whose end is not easy to anticipate.

And this is not just about mathematics. What if we wanted to inject a Json literal such as

json := {
"x" : 3,
"y" : 4

}

or had the aspiration to promote the current IR, which displays bytecodes in human readable form, into a
low-level (sub)language of Smalltalk? It could be useful to bring primitive methods into the image such as

SmallInteger � highBit
<IL>
load R with high bit

1Methods and code snippets in LATEX have been automatically generated from Smalltalk.
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for the sake of performance or expressiveness, for testing new ideas without having to go through long
processes involving other tools.

In what follows we will discuss these kinds of questions and will consider some possible extensions to the
Smalltalk syntax, all of which have been used for years by a group of professional software makers. The
prevalent idea behind these extensions is aligned with the need to let Smalltalk include features that would
otherwise belong in external files or tools that affect the configuration management of complex systems,
something we want to avoid as much as possible.

Our main contribution is a new method for the harmonic integration of foreign code into Smalltalk [Sections
§ 4.1 and § 4.2]. In contrast to the existing use of Strings for the representation of foreign structures, this
method will check the syntax we intend to conform to and let us know of any defect at compilation time
[Sections § 5.1 & § 7.8]. The foreign code will benefit from formatting and pretty-printing, which wouldn’t
be accessible using the String representation [Section § 7.8]. In addition, we propose the extension of the
Smalltalk syntax to allow for prefixed unary selectors [Section § 3.2] as well as unary symbols [Section § 3.3]
and add flexibility to curly braces so that they can also be used to represent Json objects [Section § 3.1].
Finally, we will illustrate the usefulness of these capabilities when applied to self-hosted runtimes [Section
§ 5.3] and symbolic solvers implemented by the Z3 library [Section § 7].

2 Compilation

Before going into further details, let’s sketch the compilation process that we are assuming:2

1. The scanner consumes source code characters and produces tokens.
2. The parser consumes tokens and produces nodes.
3. The semantic analyzer visits the node-binding variables.
4. The generator consumes nodes and produces bytecodes.
5. The compiler builds the method with all the information obtained above.
6. The nativizer consumes bytecodes and produces machine code.

3 Low Hanging Fruits

In this section we introduce some extensions to the Smalltalk syntax, which despite being (relatively) easy
to implement, effectively expand the expressiveness of the traditional unary-binary-keyword triad.

3.1 The Json trick

To get started with the spirit of our work, let’s consider a familiar code snippet example such as

json : = {'x' -> 3. 'y' -> 4} asDictionary

which we might honestly consider acceptable, but hardly elegant. A better possibility would have been

json := {
'x' : 3,
'y' : 4

}

The interesting remark is that this is valid syntax on any Smalltalk dialect, whose evaluation would create
an Array with only one element given by the meaningless (compound) message

(('x' : 3) , 'y') : 4

2There are also optimizers involved but they aren’t relevant for the discussions that follow.
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Can we alter this interpretation into something useful for our purposes?

Firstly, we need to make sure that colon is a valid selector. While this is not ANSI Smalltalk, enabling this
extension is not a problem (as some dialects have already done [cf. Vuletich et al. (2022)]). Therefore, we can
assume that the expression is correctly formed. Hence, we only need to tweak the standard meaning of the
expression above so as to produce the intended Json object we are trying to express. Undoubtedly, we want
to accomplish this without sacrificing the traditional notation for creating arrays with curly braces. But this
is doable. After all, what’s inside the curly braces is easily identifiable: a sequence of binary messages whose
selectors alternate between colon and comma, where the receiver is either a literal string or a message of the
same kind.

Since the curly brace notation already forces the parser to do something special, we could in fact tweak such
behavior and let the parser decide whether the content of the BraceNode isn’t better interpreted as a Json
object. Otherwise, if what’s inside the curly braces doesn’t conform to the Json pattern, we would obtain
the expected Array. In other words, we need a way to decide what’s inside a BraceNode. Something on the
lines of

hasJsonFormat
ˆJsonAssociationVisitor new visit: self

which will let the compiler decide whether it should interpret the BraceNode as an Array or a JsonObject.
We implemented the parse tree visitor subclass and it only required writing visit methods for Block, Literal,
BraceNode, Identifier and Message, where the last one is in charge of checking for the alternating pattern.
More importantly, our experience showed that the trick wasn’t a bad idea since its benefits outweighed the
affordable cost of implementing it; especially because it supports the use of variables and unary messages in
the values of the associations, and does it for free. Here is a real-life example:

addMember: aMember as: aRole
ˆself requester

post: 'team'
withJson: {

'member' : aMember id,
'role' : aRole id

}

Note also that the nesting of BraceNodes perfectly aligns with the nesting required by Json structures.

This trick, however, is open to a valid critique, which is its lack of generality. In fact, the trick is specific to
the Json syntax and depends on its contingent proximity to the Smalltalk language. We will address both
issues below. But before that let’s see what other simple things we can do to expand the Smalltalk syntax
in useful, and natural, ways.

3.2 Prefixed Unary Selectors

Imagine you are teaching Boolean propositions and need to write the following method:

deMorgan
ˆp not & q not == (p | q) not

The question is, what has to be done to enable the implementation that best resonates with your intention:

deMorgan
ˆ¬ p ∧ ¬ q ≡ ¬ (p ∨ q)

There are two issues here: (1) the Unicode characters ¬, ∧, ≡, ∨ and (2) the fact that ¬ should act as a
prefixed unary selector.3

3Even though Unicode wasn’t defined with Mathematics in mind, other useful prefixed selectors are: ∂,
∫
,
∑

, ∀, ∃ etc.
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A convenient (and proved) way to input Unicode characters is to adopt the LATEX notation: let the program-
mer write the corresponding command, v.g., \equiv . Then, as soon as they press the spacebar (or any
punctuation mark for that matter), the command changes to the intended Unicode character, namely ¬, ∧,
≡, ∨ etc.

The second question requires tweaking the SmalltalkParser. Note that the scanner will read ‘¬’ much as it
does with any binary token. Therefore, the production we have to modify is the primary one, as it is there
that the receiving expression is built. While this is dialect-dependent, our method should change on the
lines of

primary

token isNameToken ifTrue: [ˆself step asIdentifier].
token isLiteral ifTrue: [ˆself step].
(token is: $[) ifTrue: [ˆself block].
(token is: $() ifTrue: [ˆself parenthesizedExpression].
(token is: #'#(') ifTrue: [ˆself literalArray].
(token is: ${) ifTrue: [ˆself bracedArray].
(token is: #'#[') ifTrue: [ˆself literalByteArray].
(token is: #'-') ifTrue: [ˆself negativeNumber].
ˆnil

primary
• (compiler isPrefixSelector: token)

ifTrue: [ˆself prefixedPrimary].
token isNameToken ifTrue: [ˆself step asIdentifier].
token isLiteral ifTrue: [ˆself step].
(token is: $[) ifTrue: [ˆself block].
(token is: $() ifTrue: [ˆself parenthesizedExpression].
(token is: #'#(') ifTrue: [ˆself literalArray].
(token is: ${) ifTrue: [ˆself bracedArray].
(token is: #'#[') ifTrue: [ˆself literalByteArray].
(token is: #'-') ifTrue: [ˆself negativeNumber].
ˆnil

Note the role played by the Compiler who will decide whether our token can be considered as a prefixed
unary selector. This allows us to control which classes will configure the compiler to support prefixed unary
selectors:

configureCompiler: aCompiler
aCompiler prefixedSelectors: '¬'

Let’s remark here that the change doesn’t require any modification in the vm because the parser will create
a regular method with unary selector ¬.

3.3 Unary Symbols

An example Smalltalkers usually give when first introducing message sends to others consists in debugging
factorial:

Integer � factorial
self > 1 ifTrue: [ˆ(self - 1) factorial * self].
self < 0 ifTrue: [ˆself error: 'not valid for negative numbers'].
ˆ1

Well, wouldn’t it be more natural if we were allowed to write, say 5! rather than 5 factorial? Of course, we
would like to enable this possibility without changing the Smalltalk grammar. In other words, we want to
give classes the freedom to decide if a given binary symbol will represent a binary or a unary selector.

For instance, we could use the very same symbol ‘!’ to signal Exceptions and even have both versions, unary
and binary, coexisting in the same method:

Number � !
ˆself > 1

ifTrue: [(self - 1) ! ∗ self]
ifFalse: [self ≥ 0

ifTrue: [1]
ifFalse: [Error ! 'not valid for negative numbers']]

4
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where we have used the Unicode characters ‘∗’ (typed \ast ) and ‘≥’, (\ge ). For another typical example
consider

Number � %
ˆself ∗ 0.01

which allows us to write

vat
ˆself price ∗ 10 %

The key observation is that there is no ambiguity in the sender, which in Smalltalk decides the arity of
every message. For instance, an expression such as

5 ! + 2 %

presents no vagueness: both ‘!’ and ‘%’ act as unary messages while ‘+’ acts as binary, even though the
three symbols are binary. In other words, the parser can easily decide when a binary symbol corresponds to
a binary or a unary message. Basically, this happens when the binary token ends the expression, i.e., it is
the last one, it is followed by one of #($. $; $] $) $}) etc.4

With this syntax, it is the sender who knows whether the symbol represents a unary or a binary selector.
Thus, sometimes parentheses must be used to enforce the desired interpretation. For instance, if we define

Number � o

ˆself degreesToRadians

then the expression 180 o is valid, and we must write (180 o) sin to prevent the message from being interpreted
as binary with argument sin.5

Note however that this change in the parser may require a change in the bytecode generator. The reason is
that binary symbols might represent unary messages in some cases and binary in others (this is the proposal
we stated). Therefore, if the vm assumes that every binary selector has arity 1, then the parser should push
a dummy argument such as nil to compensate for the imbalance caused on the stack.

No additional push bytecode would be necessary if the vm computed the arity as 1 when the message is a
binary send or as 0 in the case of regular sends. Note, by the way, how not having direct access to the vm
prevents simple tweaks from being implemented. The very fact of feeling compelled to clarify whether the
implementation of a new idea involves modifying the vm or not should be considered a sign of attention: why
the distinction? hadn’t we agreed that Smalltalk is utterly expressive? This is why self-hosted runtimes
are better suited for innovation. We will get back to this issue later.

A similar side effect happens with the DNU mechanism. By the time the vm has to reify the message not
understood it will need to decide whether the send was binary or unary as we just indicated. Note however
that this can be remedied in the vi with the addition of a fixArguments message that will analyze thisContext
to decided the arity of the binary selector:

doesNotUnderstand: aMessage
aMessage fixArguments.
ˆMessageNotUnderstood message: aMessage receiver: self

Again, none of this is needed when the runtime is self-hosted.

Digression. As we have seen and will further illustrate in § 7, the ability to combine Unicode characters with prefixed
unary selectors and unary symbols allows the programmer to express in Smalltalk language used in Mathematics
and Logic as well as in other disciplines such as Physics etc.

4As usual, especial care might be necessary when the next token is a negative number.
5Other examples: A* for A adjoint once the matrix multiplication selector is ‘·’, A T for A transpose etc.
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3.4 Functional Syntax

The missing piece to better support mathematical formulas stems from the inability of ANSI Smalltalk to
parse functional expressions like f(x), where both f and x are variables denoting objects with f being evaluable,
i.e., responsive to the value: message.

Fortunately, we can take advantage of the fact that the Smalltalk grammar doesn’t include any production
for this kind of syntax [cf. § 4.3]. Once again, with no change in the scanner, the parser can be enhanced to
cope with the new situation. All we need to do is include this possibility as a new kind of message:

expression
| primary expression |
(token isNameToken and: [self peek isAssignment]) ifTrue: [ˆself assignment].
primary := self primary ifNil: [ˆself missingExpression].

• expression := self function: primary.
expression := self unarySequence: expression.
expression := self binarySequence: expression.
expression := self keywordSequence: expression.
expression == primary

ifFalse: [expression := self cascadeSequence: expression].
token endsExpression ifFalse: [self errorIn: primary].
ˆexpression

where

function: aParseNode
(token is: $() ifFalse: [ˆaParseNode].
ˆcompiler functionNode

position: aParseNode position;
receiver: aParseNode;
arguments: {self parenthesizedExpression};
end: token position

which requires the addition of FunctionNode, a new subclass of MessageNode whose hidden selector is value:.
Note that the spirit of Smalltalk, which consists in making the most of message sends, is preserved: in f(x)
both variables denote objects and the semantics is exactly f value: x. Only the notation changes to enhance
the natural expression of mathematical formulas.

For instance, should the user promote the sin message to a function object, they could write sin(30 o) rather
than sin value: 30 degressToRadians, which requires a mental parsing and translation to reveal its actual
meaning. Combining this syntax with Unicode selectors, we can express the inverse function f -1(x), where
the unary message ‘-1’ stands for the inverse of f. Note that the feature is not restricted to variables; also
valid are (f+ g)(x), f ◦ g(x), f(x+ y) as well as f(A) and f -1(B) for sets.6

4 From Tricks to Capabilities

For some people the expressiveness of Smalltalk is so extraordinary that they would see no point in sup-
porting the compilation of a foreign language. Why would someone choose to do that given the elegance of
its unique syntax? We concur with that opinion and don’t think that sometimes a different language would
have provided better results. At the same time, we also think that there are other interpretations for this
question which indicate that foreign code may still have a useful role to play in terms of expressiveness.

Even if we were to focus exclusively on Json (we aren’t), what if we wanted to express a more complex Json
object? What if its definition were readily available on the web for us to copy and paste? Well, we would
need to replace double with single quotes before saving the expression in a method, because our trick cannot
digest double quotes.

6Surprisingly enough [cf. Gamma function] with this capability Γ(n) = (n-1)! becomes a valid Smalltalk expression.
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Wouldn’t it be nicer if we were allowed to compile our Smalltalk method with the structure copied as it is,
without further editing?

Such a situation may occur when dealing with Json schemas, as is the case with the following method. Here
the <json> pragma indicates that the code that follows obeys a specific syntax:

def
<json>
{

"type": "object",
"properties": {

"firstBatch": {
"type": "array",
"items": {"$ref": "MongoDocument"}

},
"nextBatch": {

"type": "array",
"items": {"$ref": "MongoDocument"}

},
"partialResultsReturned": {"type": "boolean"},
"ns": {"type": "string"},
"id": {"type": "integer"}

}
}

What this method really does when executed is a different decision. It might answer with the Json string
or the associated Json dictionary—a circumstance that the programmer can easily resolve by querying (or
inspecting) the CompiledMethod. In either case, the method would bring the benefit of parsing, formatting
and pretty-printing its foreign section. So, let’s focus on these relevant aspects.

The parsing part is relevant because, as soon as we try to accept (save) the method, it will check the syntax
we intend to conform to. This will readily let us know of any defect at compilation time. Formatting
and coloring are also nice: had we had a literal String instead, the method would have looked meager, less
revealing and even exotic. The visual connection with its meaning would have poorly resembled the Json
format. This is of uttermost importance in the case of Smalltalk, whose practitioners are used to dealing
with objects, not text.

So, what’s our proposal? Is it about having or not a Json parser? Of course not. The proposal is not even
about combining Smalltalk and Json in the same method. The possibility we want to consider seriously is
why and how we should combine Smalltalk with any foreign source code, or any DSL for that matter.

4.1 Scanning

Following the style of <pragma> notations, one naturally arrives at tagged nodes, i.e., sections of the source
code enclosed between tags, say <pas>· · ·</pas> for Pascal, <js>· · ·</js> for Javascript etc. More
specifically, let’s ask ourselves how the following code should be parsed:

error
| pi json |

• pi := <json>
{

"x": 355,
"y": 113.0

}
</json>.
json := JsonObject fromString: pi.
ˆjson x / json y - Number pi

7
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Well, when the SmalltalkScanner encounters the character ‘<’ that comes after pi := it will create a binary
token in the same way it would do when this character acts as a binary selector. At this point, this very
token will be examined by the SmalltalkParser in an attempt to build a primary node for the expression that
should follow the assign. Thus, the new syntax has no impact on the SmalltalkScanner, which may remain
unchanged. As we will see below, the scanner will have a role to play though.

Remark. As an implementation detail, in the case where the method consists of a single tag, say <json>,
followed by the entire body of foreign language [cf. § 4], instead of considering the tag as a proper pragma
[cf. Ducasse et al. (2016)] one might assume at parsing time that the closing tag is implicit.

4.2 Parsing

As pointed out above, by the time the SmalltalkParser reaches the first assign token := it will try to detect
the corresponding right-hand-side expression. Well, it is at this point where an interesting condition takes
place. Since the token it encounters is the symbol <, which should not happen here in the traditional syntax,
under normal circumstances we would get a CompilerError. This gives us the chance to modify that behavior.
In other words, the fact that < cannot follow the assign symbol is the hook we needed to chain the new
syntax. Let’s see how.

Firstly, we need to introduce a new subclass of LiteralNode, namely TaggedNode. While the particular details
of this addition depend on the Smalltalk dialect, a few observations would clarify the idea and show its
feasibility.

Secondly, this new node will need to keep two pieces of information, the tag and the string surrounded by
the tag/untag pair, an ivar of TaggedNode we will call value.

Thus, a service the SmalltalkScanner can provide is the production of the nextTaggedNode, which will answer
with an instance of TaggedNode. Note however that it is up to the SmalltalkParser to decide when the
nextTaggedNode should be produced, because it is the one who knows when the next primary node is expected
to come. While this is dialect-dependent, the following implementation may serve the purpose of conveying
the idea:

primary
token isNameToken ifTrue: [ˆself step asIdentifier].
token isLiteral ifTrue: [ˆself step].
(token is: $[) ifTrue: [ˆself block].
(token is: $() ifTrue: [ˆself parenthesizedExpression].
(token is: #'#(') ifTrue: [ˆself literalArray].
(token is: ${) ifTrue: [ˆself bracedArray].
(token is: #'#[') ifTrue: [ˆself literalByteArray].
(token is: #'-') ifTrue: [ˆself negativeNumber].

• (token is: #'<') ifTrue: [ˆself taggedNode].
ˆnil

The method taggedNode only needs to send scanner nextTaggedNode and then advance (a.k.a. step). As usual,
every potential parsing error (in this case the otherwise upcoming missing primary) offers an opportunity
to extend the syntax of the programming language.

This is all we need in order to incorporate tagged nodes into our repertoire of parse nodes. Note the generality
of the approach: it is not restricted to any particular tag/untag pair. Of course, so far our TaggedNode is
only able to capture the String value enclosed between tags, which is already useful, but not quite. Hence,
some more work is in order.

Remarks

i) Our extension to the primary production enables tagged nodes to occur not only in assignments but also as
message arguments and return expressions (there are examples in the sections below).

8



Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

ii) The def method given in § 4 illustrates how the SmalltalkParser generates an implicit ReturnNode whose
expression is the entire foreign code. As a result, the programmer is freed from the need to explicitly add
the return symbol ˆ and closing the <json> tag, which would have overloaded the body of the method.

iii) Our implementation of <tag>· · ·</tag> pairs turns the context-free grammar of Smalltalk into a context-
sensitive one. The main side effects of this change are (a) tagged nodes cannot be nested, and (b) the
substring </tag> cannot occur inside the tagged node.7 One way to keep the grammar context-free is to
use </> as the closing tag instead.8

4.3 Grammar Holes

In order to be able to extend the Smalltalk grammar to allow for Prefixed Unary Selectors and TaggedNodes,
we need to make sure that we still allow to write everything that we were able to before the extension. A
way to achieve this is by using Grammar Holes, i.e., combinations of words and symbols that the current
grammar does not support and produce CompilerErrors. Both extensions presented rely on modifying the
behavior when a binary selector is encountered. In the original grammar (Goldberg & Robson, 1983), these
selectors appear only in two rules,

binary expression binary object description binary selector unary object description

cascaded msg expression msg expression ; unary selector

binary selector

keyword

unary object description

binary object description

The semantic interpretation of these two rules is clear: both the left- and right-hand sides should be parsed
to objects. As long as we preserve this property, we are allowed to extend the Smalltalk grammar. And
that is exactly what we do in Sections § 3.3 and § 4.2.

Prefixed Unary Selectors were implemented by ending the expression just after the binary selector, i.e.,
without the unary object description, and similarly TaggedNode was implemented by considering a binary
selector placed without a preceding binary object description (or ‘;’).

primary variable name

literal

block

expression

tagged node

( )

tagged node tag free code9 </>

tag node < variable name >

7For instance, </xml> would become forbidden in the XML body.
8This distinction becomes irrelevant for languages like Assembly where, say, </asm> doesn’t happen.
9A free code is any combination of characters excluding </>.

9
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5 Foreign Nodes

One piece of information that is needed to map tags with foreign languages is easily achieved by means of
a registry known to the Compiler. Every foreign parser (or compiler) that we happen to support will be
available to programmers as soon as the association tag → parser is entered into the registry. If a given
tag has been registered, a ForeignNode will be created with its parser ivar initialized to the corresponding
DSL parser. This is a new kind of ParseNode whose responsibility is to compile the value of the associated
TaggedNode.

TaggedNode � body: aString
• value := self compiler nodeForTag: tag.

value value: aString.
• value ast isNil ifTrue: [value := self compiler stringNode value: aString].

value
position: stretch start + tag size;
end: stretch start + tag size + aString size - 1

The ForeignNode is created in the first line. The parsing of the foreign code happens in the second, i.e., as
a result of sending the message value:.

If the tag is not registered, we simply create an agnostic StringNode. We could have signaled a Compilation-
Error instead, but the default behavior chosen acts as a placeholder calling for an appropriate resolution that
the programmer may have decided to defer, which is more intention revealing than any comment that might
be attached to the String. This also happens if the DSL parser fails to produce an abstract syntax tree from
the string provided. It is at this point where the Smalltalk programmer will know that the foreign code
doesn’t conform to the specified syntax.

ForeignNode � value: aString
ast := parser parse: aString

5.1 Other Target Languages

Let’s see a few examples of the new capability in contexts where we’ve actually operated with them. Some
rely on PetitParser [cf. Kurs et al. (2013)], others in ad hoc parsers suitable for the foreign language.

There are also examples for C, Intel 64/32, XML, CSS, Html, and others. In all cases, foreign languages can
occupy the entire body of the method, provided the appropriate pragma, or they can be injected as literals
enclosed in TaggedNodes.

Javascript. This language is so ubiquitous that its inclusion doesn’t require much justification. We use it
to support the rendering part of web applications served by Smalltalk.

passwordError
<js>
$scope.passwordError = function(form) {

if (!shouldValidate(form, "password"))
return null;

if (form['password'].$error.required)
return "The password is required";

return null
}

Pascal. Although not very popular these days, Pascal is used by Inno Setup, the free installer for Windows
applications.

10
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iniSectionsFromInf
<pas>
procedure iniSectionsFromInf(sections: TStrings);

var
all: TStringList;
i: Integer;
section: String;

begin
all := TStringList.Create;
sectionsFromInf(all);
for i := 0 to all.Count - 1 do

begin
section := all.Strings[i];
if isIniSection(section) then sections.Append(section);

end;
all.Free

end;

5.2 Dynamic Passing of Arguments

In our experience, there are cases where parametric foreign code simplifies the generation of the desired
output:

varsDeclaration: url
version: version
product: product
client: client

<js>
$scope.baseUri = #url;
$scope.selectedRelease = #version;
$scope.selectedProduct = #product;
$scope.selectedCompany = #client;

The example illustrates the declaration of Javascript variables, where the same foreign method can be used
for the production of foreign code based on the formal arguments provided by the Smalltalk signature.

Note that in the body of the method its arguments are distinguished by means of the pound prefix ‘#’.
In this case the method uses an instance of ParametricString, which models the body of the foreign code
annotated with occurrences of symbolic arguments. These arguments are replaced dynamically every time
the method is invoked. This possibility prevents the proliferation of methods that only differ in parameters
easily obtained at runtime.

Remark. The support of method arguments as parameters to foreign code is general. What’s not general is the
choice of a universal prefix or delimiter because that is language-dependent. Thus, it is up to the programmer to
decide which one to use (taking advantage of grammar holes in the target language). For instance, in C we used $
as a prefix. In our implementation this decision can be materialized in the method configureCompiler: by setting up
the parametricDelimiters option [cf. § 5.5]. Even though we have only enabled this capability for methods where the
entire body is foreign, in § 5.4 we show another way to achieve the same in the case of foreign code injection.

5.3 Assembly

The use of Assembly in Smalltalk methods deserves special attention. In systems that have Dynamic
(or Live) Metacircular Runtimes, where the vm is self-hosted, i.e., implemented inside the very same vi
it runs, there is the need to produce Assembly code on the fly from within the vi. This process, called
nativization, dynamically compiles (target) machine code from bytecodes. And since this requires the
implementation of a corresponding InstructionEncoder, some more work along the same ideas results in its
reciprocal InstructionDecoder.

11
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Given the limited number of bytecodes, fragments of the machine code generated repeat a lot. For that
reason it makes no sense to go through the complete nativization process: it is enough to use Assembly
templates, i.e., pre-compiled versions of meaningful fragments of the required machine code. For instance,

saveCallerFrame
self assemble: <x64>

000: push rbp
001: mov rbp, rsp

</>

injects the literal #[85 72 137 229] as the argument of assemble:, as revealed by the IL:

#saveCallerFrame
push literal #[85 72 137 229]
send selector #assemble:
return self

Of course, the alternative would have been to provide the ByteArray instead. However, compare the expres-
siveness of

convertAtoSmallInteger
self assemble: #[72 209 226 72 255 194]

with

convertAtoSmallInteger
self assemble: <x64>

000: sal rdx, 1
003: inc rdx

</>

Without this capability the programmer is forced to resort to an external tool to find each of the intended
ByteArrays. More work for the writer, less clarity for the reader; a silly loss-loss situation. Note also that
targeting Intel 32 instead only entails replacing the tag x64 with x86. The simple comparison between
both versions of the method addresses the question of why we should take the trouble to inject foreign code
in Smalltalk: to make the most of its expressiveness. As we will see next, there are still more reasons.

5.4 Parametric Assembly

In some cases the dynamic injection of parameters is useful for producing machine code templates:

loadRwithAindex: index
| offset |

• index = 1 ifTrue: [ˆself assemble: <x64>mov rax, qword ptr [rdx]</>].
offset := index - 1 * wordSize.
(-128 <= offset and: [offset < 128])

ifTrue: [ˆself
• assemble: <x64>mov rax, qword ptr [rdx + imm8]</>

imm8: offset].
(-0x80000000 <= offset and: [offset < 0x80000000])

ifTrue: [ˆself
• assemble: <x64>mov rax, qword ptr [rdx + imm32]</>

imm32: offset].

where we use the symbolic parameters imm8 and imm32 to let the template inject the actual values at
runtime, when offset is realized.

12
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It is pertinent here to note the clarity contributed by the Assembly code and the pretty-print of the method
that conveys meaning to otherwise cryptic ByteArrays. These properties encourage the implementation of
more precise logic that takes advantage of the possibilities offered by the target Assembly. When there
is no need of any immediate displacement, the shortest version of the instruction is used, and the same
goes for the other two bit-lengths of signed byte and double word. Ponder also the pedagogical value of
programming/browsing with this kind of aid.

Another aspect to underline has to do with ease of reproduction. Should the user need to program a similar
template for a different pair of registers, the modification would have required looking at an external tool
for the new bytes, a task that is boring and error prone. Here, in contrast, those changes are trivial and
immediate, and are also verified by the underlying parser. For instance, to implement loadEwithFPindex: the
programmer would have only to replace rax with rsi and rdx with rbp. Of course, registers could have been
parametric too, but the conclusion remains the same.

5.5 Intermediate Language

Special mention deserves the support for adding a low-level language that uses the syntax of the
Intermediate Representation (a.k.a. IR) of bytecodes. The same method we saw in § 3.2, that classes
implement when they need to set specific options to the compiler, can be used here to override the default
SmalltalkCompiler. For instance,

configureCompiler: aCompiler
aCompiler optionAt: #compilerClass put: IntermediateLanguageCompiler

allows every class to choose the actual compiler that will be used for its methods. The default class is
SmalltalkCompiler (every dialect uses a different name for it) and the example shows how to modify this
value. In this case, IntermediateLanguageCompiler allows the programmer to skip the step of using the
Smalltalk syntax to produce a CompiledMethod.

Most Smalltalk dialects make use of bytecodes. The examples that follow correspond to the case where
bytecodes make use of registers [cf. Wirfs-Brock & Caudill (1999)]. Since bytecodes are instances of ByteArray,
a human-readable version is usually available for inspection. For instance, the bytecodes of the method above
may look on the lines of

configureCompiler: aCompiler
1 load R with argument aCompiler
2 push literal #compilerClass
3 push assoc #IntermediateLanguageCompiler -> IntermediateLanguageCompiler
4 send selector #optionAt:put:
5 return self

The interesting thing to notice here is that we can use our capability for injecting foreign code to promote
this intermediate representation into an actual intermediate language or IL. In fact, the very same parser
used for displaying IR can be used for programming new methods. For instance, the method above could as
well have been written as

configureCompiler: aCompiler
<IL>
load R with argument aCompiler
push literal #compilerClass
push assoc IntermediateLanguageCompiler
send selector #optionAt:put:
return self

producing a CompiledMethod with the corresponding bytecodes and whose literal frame consists of the global
association for the class IntermediateLanguageCompiler and the symbols compilerClass and optionAt:put:.
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Of course, this is an artificial example, because the method is much better expressed in Smalltalk code.
However, every dialect includes primitives whose logic cannot be expressed in Smalltalk, or which might
but incurring in a significant performance penalty or some other inconvenience.

An example of this latter circumstance is the method SmallInteger� highBit that returns the largest position
of 1 occurring in the binary representation of the receiver:

SmallInteger � highBit
self < 256 ifTrue: [
ˆ#[

0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8]

at: self + 1].
self < 512 ifTrue: [ˆ9].
ˆself highDigit highBit + (self sizeInBytes - 1 * 8)

Compare with the IL version of the same method:

SmallInteger � highBit
<IL>
load R with high bit

which is shorter and inexprensive, as shown by its Intel 64 assembly translation

SmallInteger � #highBit
• 000: bsr rax, rax ; compute highBit

004: sal rax, 0x1 ; tag as integer
007: inc rax
00A: mov rsi, qword ptr [rbp - 0x8] ; restore caller frame
00E: mov rbx, qword ptr [rbp - 0x10]
012: ret

It is worth remarking that the same capability can be used to access object header fields, namely hash, size,
flags and behavior (or class, as is the case in most dialects).

The intermediate language also allows us to access Process fields such as framePointer and stackPointer,
which are needed for stack manipulation, debugging and continuation support. These are indications of the
benefits of self-hosted runtimes, where new bytecodes can be added following a relatively simple procedure
and become immediately available for testing and further experimentation.

6 Consequences

This work is antipodal to replacing Smalltalk with other languages. It has to do with embracing Smalltalk
and taking it to new territories that would otherwise have imposed external files and tools, cluttering the
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configuration management of the system [cf. SEI]. Having inclusive proximity in the Smalltalk IDE to every
DSL we need to work with is paramount to the principle of uniform metaphor [cf. Ingalls (1981)]. It is not
only a question of expression and representation but also of beauty and harmony in a endless effort aimed
at removing sources of impedance.

Reasoning. As discussed in the bibliography [cf. Cadar & Sen (2013)], literal injection techniques are better
suited when they conform to the following criteria: Responsibility, Expansion Typing, Context Dependence,
Segmentation, Segment Typing and Capture. It is easy to see that our proposal clearly meets them. For
example, Responsibility follows from the fact that tags are declared in the Compiler registry [Section § 5],
Expansion Typing [Section § 4], Capture from the capability to inject parameters [Sections § 5.2 and § 5.4]
etc.

Metaprogramming. The advantage of having objects rather than strings or bytes is that this enables the
implementation of features by means of metaprogramming. One example is the automatic generation of
Smalltalk code for classes representing C structures. Consider for instance HTTP_RESPONSE_INFO. This is
represented by a Smalltalk class with the same name that implements (class side) its definition

def
<C>

typedef struct {
HTTP_RESPONSE_INFO_TYPE Type; // 0
ULONG Length; // 4
PVOID pInfo; // 8

} HTTP_RESPONSE_INFO, *PHTTP_RESPONSE_INFO; // sizeInBytes = 16

which the programmer pasted from some .h file. The system not only compiled and pretty-printed the foreign
language, it also computed the offsets and annotated them as comments. Apart from that, it generated a
local pool dictionary with the symbols Type, Length, pInfo and sizeInBytes associated to the offsets they
represent, and used them to compile all getters and setters required by the external structure. For instance,

info
ˆString

fromMemory: self pInfo
length: self Length

pInfo
ˆself addressAtOffset: pInfo

Length
ˆself uLongAtOffset: Length

show how the programmer takes advantage of automatically generated lower-level getters to produce their
method of interest, namely info. This kind of metaprogramming gets rid of tedious work which would also
have been error prone.

Synergy. While the ability to support external DSLs for the sake of knowledge capture, literal injection etc.
has many applications, care must be taken not to load on the shoulders of the user additional tasks related to
updating, maintenance and scalability. This is why it is so important to analyze what else Smalltalk has to
offer to better integrate scientific languages as internal (a.k.a. embedded) DSLs by means of supporting logical
and mathematical symbols, notations and formulas. General features aimed at integrating mathematical
expressions with Smalltalk code will allow more users to build elaborated scientific models without the
need to rely on any exogenous DSL, enforcing that way a sound strategy of long-term synergy.
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7 Application to Symbolic Computation

While advanced tools for automatic reasoning that produce formal proofs and derive solutions to logical and
algebraic problems have become critical to some areas of the software industry, their adoption as a part of
development methodologies still has a long way to go. In the next few sections we present a case study that,
taking advantage of the capabilities discussed above, sheds light on the significance of the paradigm shift
that results from a more systematic appropriation of these technologies. Although the topic has interest in
itself, we present it here as a way to validate the syntactic extensions discussed in the previous sections.

7.1 Scenario

Within the realm of vm development the authors have experience in metacircular ones, which are written
in the very IDE they are destined to run. These vms model the entire computational space in user (i.e.,
programmer) code and connect to the ‘bare metal’ by compiling virtual objects (e.g., bytecodes) into native
code, or transpiling it into an ubiquitous language such as C or Javascript. Of course, nativization should
not have defects; otherwise the entire construction will collapse. This places this part of the vm in an ideal
position to be studied with the help of formal (a.k.a. symbolic) verifiers.

7.2 Approach

The approach commonly recommended by experts in automatic solvers (v.g., Z3) consists in transforming
sections of the source code into a format more palatable to these tools. This has two consequences: (1) the
code to be analyzed is first simplified, and (2) the verification is deferred to a different computational
space. These characteristics create spatial and temporal separations between the exercise of development
and the execution of formal analysis, which go against the immediacy pursued by agile practices. Our
idea, in contrast, is to incorporate a broad range of Z3 [cf. Moura & Bjørner (2008)] capabilities into the
Smalltalk IDE, exploring how far we can reach in the effortless and natural transition from concrete to
symbolic execution.

7.3 The Problem

Regardless of the fact that it is completely expressed in the target language, the implementation of live
metacircular runtimes recognizes the existence of three main abstraction layers: user code, intermediate
representation (IR) and native code.

Transformations from one layer to the next are core runtime tasks and require careful testing. In consequence,
they constitute excellent candidates for formal verification. This goal, while highly ambitious, is nevertheless
the right one for producing a truly reliable vm. The question arises: where could we start?

From the two opportunities at our disposal: proving the validity of IR behavior and of the target native
code, the latter works better as an experimental first step because it has the advantage of being more basic.

In sum, the problem we are about to address consists in providing, within the same IDE, a seamless way to
let the runtime programmer express and prove theorems referred to the model of a real cpu.

7.4 Model

The definition of our problem requires modeling a cpu. The relevant classes are
CPU
Operand

ProgramStream

RAM

where CPU stands for an abstract class with subclasses specific to concrete architectures such as X86, X64,
or virtually any other. The class Operand is abstract with concrete subclasses

Operand
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Mem
Reg

Flags10

Immediate operands are held in existing classes such as Byte, ExternalInt16, ExternalInt32 etc.

7.5 Execution

The model allows the programmer to seamlessly debug the program in the virtual cpu, reasoning about
the behavior of every component for the sake of testing and understanding. As an example, consider the
following test. The crucial part happens when each of the three assembly instructions is executed. What’s
interesting to examine here is the program flow triggered by assemble: and step:.

testAdd
cpu

assemble: <x86>
000: mov al, 0x71
002: mov dl, 0xf
004: add al, dl

</>;
step: 3.

self
assert: cpu al equals: 0x80;
assert: cpu carry equals: 0;
assert: cpu overflow equals: 1

Details about the implementation of these messages can be found in Appendixes A and A.1.

7.6 Symbolic Execution

Now let’s reflect on how we can write unit tests for our model. The test testAdd introduced above serves
the noble and desirable goal of providing coverage to the implementors of mov and add. In this regard, we
would normally observe that additional coverage is needed for other registers, memory operands etc. But
what about adding more numerical examples? Since there are two operands at play, we would need to cover
the range of 256× 256 possibilities. And what about 32- or 64-bit operands? Would the idea of testing all
the possibilities cross our mind? Of course not. At best we would test border cases and then write some
assertions for randomly generated operands.

This recognizable train of thought, that may look adequate for practical purposes, is actually a barrier to
more rigorous approaches. It trades coverage for generality, sparse cases for abstractions, examples for formal
proofs. An interesting question arises: can we do better?

Let’s examine in more detail how we could use the Z3 library. Firstly we simply ask our model to useZ3.
There are three classes needed to connect with Z3: CPU, Reg and RAM. Here is all we need to do:

CPU � useZ3
z3 := Z3.Context default.
registers do: [:reg | reg useZ3].
self initializeDecoder

RAM � useZ3
"ArraySort of BitVectorSort"
contents := cpu z3 Memory: 'RAM' wordSize: cpu wordSize

10Although some architectures do not have a flags register, the class exists for the ones that do.
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Reg � useZ3
contents := cpu z3 BitVecConst: name size: self wordSize * 8

After sending the message cpu useZ3 all cpu registers and memory will become Z3 objects polymorphic
with their Smalltalk counterparts. Let’s now see the significance of this change from the programmer’s
viewpoint. Firstly, the programmer may add this message to their tests. For instance,

testAdd
cpu

• useZ3;
assemble: <x86>

000: mov al, 0x71
002: mov dl, 0xf
004: add al, dl

</>;
step: 3.

self
assert: cpu al equals: 0x80;
assert: cpu carry equals: 0;
assert: cpu overflow equals: 1

7.7 Generality

Let’s analyze the possibilities created by having connected our model to Z3. Since now the registers are Z3
bit-vectors, there is no need to assign constant values to them such as 0x71 or 0x0f. In other words, we are
now entitled to predicate general assertions. After this realization a new horizon of possibilities opens up
before us. Consider this fragment:

cpu
useZ3;
assemble: <x86>

000: mov bl, al
002: add al, cl

</>;
step: 2

It saves register al into bl and then replaces al with al + cl. Note the generality of the code: no particular
value is involved.

Here it is important to understand that Z3 does not exhaust all the possibilities. Instead, it reasons formally
following the logic of our implementation. In particular, the same verification would happen had we tested
with 64-bit registers with add rax, rcx.

The next sections explore some of the possibilities enabled by this kind of symbolic testing.

7.7.1 Theorems

We can now consider what-if assertions such as

cpu cl ≡ 0 =⇒ (cpu overflow ≡ 0)

which become actual theorems for Z3 to prove or disprove. To add more expressiveness to our framework we
can extend the assert: family of methods as follows:
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assert: aBoolean
| boolean |
boolean := aBoolean isBoolean

ifTrue: [aBoolean]
ifFalse: [aBoolean isTautology].

super assert: boolean

Z3.Bool � isTautology
ˆ(¬ self) isSatisfiable not

isSatisfiable
| solver result |
solver := context makeSolver.
result := solver assert: self; check.
solver release.
ˆresult == true

which expresses the fact that the expression has at least one model.

Equipped with this capability we can easily attach theorems to our test and assert their satisfiability:

testZ3Add
| thm1 thm2 |
cpu

useZ3;
assemble: <x86>

000: mov bl, al
002: add al, cl

</>;
step: 2.

thm1 := cpu cl ≡ 0 =⇒ (cpu overflow ≡ 0).
self assert: thm1.
thm2 := (cpu bl < 0) ∧ (cpu cl < 0) ∧ (cpu al ≥ 0) =⇒ (cpu overflow ≡ 1).
self assert: thm2

Note that Boolean expressions such as the ones illustrated by the test constitute actual theorems because of
their complete generality.11 It is also worth remarking how Unicode selectors elegantly clarify the meaning
of logical expressions in comparison with ANSI Smalltalk and C:

Unicode Smalltalk ANSI Smalltalk C

¬ p p not Z3_mk_not(c,p)
p ≡ q p === q Z3_mk_eq(c,p,q)
p =⇒ q p ==> q Z3_mk_implies(c,p,q)

7.7.2 Remarks

We can take advantage of the same capability to add remarks such as

testZ3AddRem
| rem1 rem2 |
cpu

useZ3;
assemble: <x86>

000: mov bl, al
002: add al, cl

</>;
step: 2.

rem1 := cpu carry ≡ 0.
self deny: rem1 isTautology.
rem2 := cpu carry ≡ 1.
self deny: rem2 isTautology

which means that the carry flag will eventually take both values 0 and 1 after an addition.
11Even though our examples use registers, tests can predicate on memory operands too.
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7.7.3 Counterexamples

We can also ask Z3 to find counterexamples to theorems that our assembly program doesn’t imply. This is
accomplished by asking a model from the negation of the invalid theorem.

testZ3Add3
| thm model cl bl al cy ov |
cpu

useZ3;
assemble: <x86>

000: mov bl, al
002: mov cl, byte ptr [edi]
004: add al, cl

</>;
step: 3.

"false theorem"
thm := cpu bl < 0 ∧ (cpu cl < 0) =⇒ (cpu al < 0).
model := (¬ thm) model.
"real counterexample"
cl := model evaluate: cpu cl.
bl := model evaluate: cpu bl.
al := model evaluate: cpu al.
cy := model evaluate: cpu carry.
ov := model evaluate: cpu overflow.
"check sum & flags"
self

assert: cl + bl equals: al;
assert: cy equals: 1;
assert: ov equals: 1

If a theorem is known to be true and its assertion fails, we can use the feature demonstrated in the listing
above to find a counterexample and use it as a starting point for debugging the defective implementation.

7.7.4 Proofs

Although beyond the scope of this exposition, let’s mention that we can ask Z3 to produce formal proofs of
our theorems. In this way, Z3 becomes the mathematician that will give certainty about the theorems we
happen to state in our tests, or that will exhibit a counterexample for us to debug.

7.8 Implications

The main insight of this work has been the realization that, while enhanced literal-injection techniques sup-
ported by DSLs offer a bridge between Smalltalk and other programming languages [cf. Helvetia, Renggli
et al. (2010; 2009)], it is the combination with its other capabilities that expands the (already outstanding)
expressiveness of the Smalltalk syntax to scientific notations used in Mathematics, Logic, Physics and pre-
sumably others. This is important because Smalltalk has shown to be inherently appropriate for capturing
and producing scientific knowledge [cf. Notarfrancesco (2022), also Shingarov (2019) and Shingarov (2022)].
The implementation of self-hosted systems is facilitated by the possibilities enabled by Assembly [Section
§ 5.3] and IL [Section § 5.5]. Underlying this work is the realization of how much simpler it is to try exten-
sions to the ANSI syntax when the Smalltalk compilation process is clearly structured and coded [Section
§ 2].

The case study we have chosen illustrates the importance of having the possibility to extend the expressiveness
of Smalltalk by increasing the fluency of binary selectors [Sections § 3.2 and § 3.3], incorporating Unicode
symbols and characters in general to represent not just data but also message selectors [Section § 1], and
cradling foreign languages [Sections § 3.1, § 5 etc.].
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Although non-trivial, our study was simple enough as to give visibility to several aspects that are relevant to
programming and testing. Software development has become an after the fact activity, where practitioners
are more inclined to reflect on the emergent behavior of the program as opposed to anticipating all the
consequences derived from a thoughtful (static) analysis of the source code. This means that every effort
put into leveraging the expression of (dynamic) logical relationships has the potential to extend the reach of
inquire and reflection.

There is a paradigm shift from example-based testing to theorem formulation, formal proofs and automatic
counterexample production. Our experiment also seems to indicate that theorem statement is not as far
away from the standard developer idiosyncrasy as one might suspect at first glance. In fact, theorems are
nothing but Boolean expressions on variables running on some domain. In our experience, well-equipped
IDEs have the opportunity to extend the currently prevailing train of thought to new horizons. Under the
light of this paradigm shift, example-based testing looks too modest compared to the advanced possibilities
at our disposal, especially when the IDE elegantly galvanizes them as natural extensions of leading agile
methodologies. Not just because of the robustness of the software but by the changes produced in our way
of thinking.
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A Implementation Details

The source code used to implement our model of a CPU including each of its assembly instructions works with
or without attachment to the Z3 library [cf. Moura & Bjørner (2008)]. In other words, the code under testing
remains unchanged regardless of whether it will run with numbers or symbols. This is an essential remark;
otherwise we would not be testing actual source code, but an adapted version of it. As we already mentioned,
that would pose an obstacle to the adoption of the testing methodology proposed by the framework.

For instance, here is the Smalltalk code for the add instruction:

add: operand1 _: operand2
| op1 op2 add s n t u ov cy |
op1 := operand1 valueOn: cpu.
op2 := operand2 valueOn: cpu.
add := op1 + op2.
n := operand1 length.
s := op1 bitAt: n.
t := op2 bitAt: n.
u := add bitAt: n.
ov := s 6≡ 0 ∧ (t 6≡ 0) ∧ (u ≡ 0) ∨ (s ≡ 0 ∧ (t ≡ 0) ∧ (u ≡ 1)).
cy := s ≡ 1 ∧ (t ≡ 1) ∧ (u ≡ 1) ∨ (s ≡ 1 ∧ (t ≡ 1) ∧ (u ≡ 0))
∨ (s ≡ 0 ∧ (u ≡ 0) ∧ (t ≡ 1)).

cpu flags
carry: cy;
overflow: ov;
sign: u ≡ 1;
zero: add ≡ 0.

ˆadd

Since Z3 arithmetic aims at being general, it is not surprising that we have had to add special code for the
behavior of the flags register of the Intel cpu. The sub instruction is similar. Many others are much simpler
because they can be deferred to Z3, for example:

and: operand1 _: operand2
| op1 op2 and s |
op1 := operand1 valueOn: cpu.
op2 := operand2 valueOn: cpu.
and := op1 ∧ op2.
s := and bitAt: operand1 length.
cpu flags

carry: 0;
overflow: 0;
sign: s ≡ 1;
zero: and ≡ 0.

ˆand
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A.1 Execution

The methods involved in the symbolic execution of assembly code are:

assemble: aByteArray
ram dump: aByteArray at: ip

step: n
n timesRepeat: [

decoder offset: ip value - 1.
self execute: decoder next]

The former dumps the program on the cpu’s ram at the position indicated by the instruction pointer register
ip in an unsophisticated copy operation. The latter brings us to the execution method, where the developer
expresses the semantics of the instructions used by the runtime.

The canonical solution at this point consists in using the visitor pattern to produce the double dispatching
needed to take care of the particularities of each instruction. Another alternative, the one we chose, is to
abbreviate the intermediate indirection by means of a well-known metaprogramming technique that consists
in building the selector and then performing it:

execute: instruction
| selector n |
selector := instruction mnemonic.
n := instruction arity.
n > 0 ifTrue: [

selector := selector copyWith: $:.
n - 1 timesRepeat: [selector := selector , '_:']].

self
moveIp;
perform: selector asSymbol withArguments: instruction operands

For instance, the execution of a mov instruction would end up sending the message mov:_: to the cpu.
Similarly, add will send add:_: etc. Thus, in order to support an instruction, the framework requires the
implementation of the corresponding methods mov:_:, add:_: etc.

A.2 Limits

As the reader might presume, not everything can be formally stated and symbolically proven. To the
limitations that belong in the Z3 library one must add those derived from the target language. In the case
of Smalltalk there is an optimization that collides with one of the functions provided by Z3, namely, the
inlining of the ifTrue:ifFalse: family of selectors. As is well known, most dialects chose to save cpu cycles by
avoiding the creation of closures that would otherwise result from the arguments of these branching methods.
Instead they inline the code occurring in the blocks and use jump bytecodes to select the fragment that must
be executed. For instance, the method

max: aMagnitude
ˆself > aMagnitude ifTrue: [self] ifFalse: [aMagnitude]

which requires the receiver to be an instance of the class Boolean. Otherwise, the branching fails and the
Smalltalk process signals a NotABoolean exception. On the part of Z3 we have the FFI call Z3_mk_ite
that implements an if-then-else branching. And since its first argument must be of BoolSort it creates a
conflict with the Smalltalk optimization. Even though the Smalltalk optimization is optional, care must
be taken because its removal may impact the performance of the entire system. Modifying the vm so that
it can handle the non-Boolean case, much as MessageNotUnderstood does, is not trivial because by the time
the clash happens the closures for reifying the message are not available.

From the partial solutions at hand, one that can be readily implemented consists in retrying the exception
after deoptimizing the offending method. This is why the actual implementation of the step: method repeats
the following message the given number of times:
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step
| instruction |
decoder offset: ip value - 1.
instruction := [decoder next] on: NotABoolean do: [:ex |

ex method deoptimizeFor: ex receiver.
ex retry].

self execute: instruction

where deoptimizeFor: installs a deoptimized version of the method specific to the instance that received the
branching message. Better ways to overcome this issue would allow us to take symbolic computation in
Smalltalk substantially farther.
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