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Abstract

Video Anomaly Detection (VAD) aims to identify abnormal frames from discrete
events within video sequences. Existing VAD methods suffer from heavy an-
notation burdens in fully-supervised paradigm, insensitivity to subtle anomalies
in semi-supervised paradigm, and vulnerability to noise in weakly-supervised
paradigm. To address these limitations, we propose a novel paradigm: Single-
Frame supervised VAD (SF-VAD), which uses a single annotated abnormal frame
per abnormal video. SF-VAD ensures annotation efficiency while offering precise
anomaly reference, facilitating robust anomaly modeling, and enhancing the detec-
tion of subtle anomalies in complex visual contexts. To validate its effectiveness, we
construct three SF-VAD benchmarks by manually re-annotating the ShanghaiTech,
UCF-Crime, and XD-Violence datasets in a practical procedure. Further, we devise
Frame-guided Progressive Learning (FPL), to generalize sparse frame supervision
to event-level anomaly understanding. FPL first leverages evidential learning to
estimate anomaly relevance guided by annotated frames. Then it extends anomaly
supervision by mining discrete abnormal events based on anomaly relevance and
feature similarity. Meanwhile, FPL decouples normal patterns by isolating distinct
normal frames outside abnormal events, reducing false alarms. Extensive exper-
iments show SF-VAD achieves state-of-the-art detection results while offering a
favorable trade-off between performance and annotation cost. The benchmarks and
code are available at https://github.com/Junxi-Chen/SF-VAD.

1 Introduction

Video Anomaly Detection (VAD) aims to identify abnormal frames within video sequences, which
attracts substantial research attention due to its broad applicability in critical areas, e.g., public secu-
rity [34], traffic surveillance [23], malicious content moderation [11]. However, precisely identifying
anomalies remains challenging. First, anomalies inherently span across multiple temporally disjoint
events, hindering the learning of a unified and robust anomaly pattern. Second, abnormal events may
exhibit low salience, blending with context, thus complicating their discrimination from visual noise.

To tackle the challenges, existing methods employ three primary VAD paradigms, as illustrated
in Figure 1a: fully-supervised, semi-supervised, and weakly-supervised VAD. Fully-supervised
VAD (Fully-VAD) approaches [20, 16] require dense frame-level annotations. However, the inherent
ambiguity of anomaly boundaries leads to inconsistent labeling, which impairs the learning of
coherent decision boundaries. The burden of extensive annotations also limits its generalizability.
Semi-supervised VAD (Semi-VAD) methods [26, 31, 61, 60] assume access only to normalcy, and
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Figure 1: (a) Video Anomaly Detection (VAD) paradigms. The proposed Single-Frame supervised
VAD (SF-VAD) paradigm offers fine-grained anomaly guidance by a single abnormal frame anno-
tation, while ensuring annotation efficiency. (b) Frame-guided Progressive Learning (FPL). FPL
initially estimates the anomaly relevance to the annotated frames in Stage I. It then generalizes
anomaly supervision from one frame to intact intervals and disentangles normal context by exploiting
anomaly relevance and feature similarity in Stage II. (c) Performance versus annotation time on
UCF-Crime. SF-VAD demonstrates an ideal trade-off between performance and annotation efficiency.

identify anomalies as deviation from learned normal patterns. However, it may fail to capture trivial
anomalies that exhibit low visual salience and closely resemble normal behaviors, resulting in limited
robustness. Alternatively,Weakly-supervised VAD (Weakly-VAD) [57, 5, 47, 58] utilizes video-level
annotations to model distinctive cues to anomalies by separating prominent features of normal and
abnormal videos, which delivers a superior detection precision. Even so, due to disruptive normal
context, and lack of precise anomaly reference, such paradigm struggles to model noise-free anomaly
patterns and suffers from severe false alarms, leading to a bottleneck for advances in VAD.

To expand the frontier of VAD, we propose an annotation-efficient paradigm: Single-Frame su-
pervised VAD (SF-VAD), which is annotation-efficient, leveraging abnormal videos with single
abnormal frame labels, as illustrated in Figure 1a. Correspondingly, to evaluate its effectiveness in
real-world scenarios, we construct three SF-VAD benchmarks by manually re-annotating existing
VAD datasets [21, 34, 46] in practical procedure. For annotation efficiency, annotators are allowed
to freely navigate within videos to label a random abnormal frame per abnormal video, thereby
alleviating the need for full video review and exhaustive temporal localization. Moreover, single-
frame supervision offers fine-grained anomaly guidance. On the one hand, SF-VAD provides explicit
references to various abnormal behaviors, not only facilitating noise-robust anomaly modeling but
also accentuating subtle anomalies from its context, e.g., shoplifting and abuse, which are temporally
brief and visually inconspicuous. On the other hand, frame supervision can act as a contrastive anchor
to distinguish normal context, reducing false alarms by suppressing pseudo anomalies that contradict
annotated behaviours. Nevertheless, the effective application of single-frame supervision to VAD
involves two main challenges: (1) bridging the gap between sparse single frames and temporally
extended abnormal events across multiple intervals; (2) disentangling normal contextual patterns
from truly anomalous behaviors within the anomaly domain.

To this end, we propose a novel framework named Frame-guided Progressive Learning (FPL), which
(1) progressively generalizes sparse single-frame anomaly supervision to discrete temporal intervals
of abnormal events; and (2) effectively disentangles distinct normal patterns from abnormal video
segments, as illustrated in Figure 1b. Concretely, FPL consists of two stages: In stage I, we devise
frame-guided anomaly relevance estimation, which leverages the theory of evidence [14, 32] to
quantify the relevance of each frame to the annotated abnormal frames. This relevance estimation
serves as a foundation for bridging the gap between sparse frame-level supervision and holistic event-
level anomaly localization. In stage II, FPL performs relevance-aware pattern decoupling, aiming
to disentangle heterogeneous patterns within and outside abnormal events. For anomaly modeling,
we tailor an anomaly event mining algorithm that identifies temporally discrete abnormal intervals
by jointly considering anomaly relevance scores and frame-wise feature similarities. To decouple
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normal patterns embedded in abnormal videos, FPL isolates normalcy from two key sources: (1) the
pre-event interval, which typically manifests undisturbed contextual normal cues before the onset of
anomalies; and (2) frames with the lowest anomaly probability in the post-event interval, which often
reflect unique normal characteristics within the anomaly domain, signaling a re-stabilization state
following the abnormal episode. Through this two-stage process, FPL fully leverages sparse single-
frame supervision to enable comprehensive event-level anomaly understanding, while reducing false
alarms via disentanglement of normal frames beyond anomalous intervals. Extensive experiments
manifest that the proposed SF-VAD paradigm reveals a favorable trade-off between performance and
annotation cost, as depicted in Figure 1c.

Our main contributions are as follows:

• We propose a novel and annotation-efficient single-Frame supervised VAD paradigm, which
provides fine-grained guidance for modeling anomalous behavior. To facilitate future
research, we construct and release three SF-VAD datasets.

• We devise a frame-guided progressive learning framework, which first estimates the anomaly
relevance, then progressively generalizes anomaly supervision from single frames to multiple
abnormal events, and meanwhile decouples distinct normal patterns.

• Extensive results show our SF-VAD method achieves state-of-the-art performance, including
a higher AUC and a lower false alarm rate.

2 Related Work

Weakly-supervised Video Anomaly Detection Given the close relation between SF-VAD and
Weakly-VAD, we review mainstream methods under the weak supervision setting. Most Weakly-VAD
methods employ MIL, whose objective can be denoted as:

LMIL = − log(
1

k

∑
i∈ top-k

ŷ+i )− log
(
1−max

(
ŷ−)) , (1)

where ŷ+i indicates the anomaly score of the i-th frame in abnormal videos and ŷ− refers to the
anomaly scores of normal videos. However, the reliance on top-k sampling in MIL often introduces
noisy samples, which can destabilize training and couple opposite patterns. To alleviate the problem,
some works [6, 64, 37] explore feature decoupling mechanisms. Tian et al. [37] improve the feature
disparity by feature magnitude, and sample hard normal instances to highlight abnormal features
contrastively. Chen et al. [6] further propose a scene-adaptive magnitude contrastive mechanism
that promotes intra-class feature similarity while enlarging inter-class separation. While other works
[18, 57] explore a more stable training process to alleviate the impact of noise. Li et al. [18] propose a
two-stage self-training framework to model the temporal continuity of abnormal events by sequence-
aware pseudo labels. Later, Zhang et al. [57] further exploit the event completeness and prediction
uncertainty in self-training framework to capture intact abnormal patterns, while alleviating the
impact of noise. Motivated by the success of multi-modal approaches [17, 55, 39, 8, 38], some recent
works [5, 49, 47] also explore video anomaly detection leveraging multi-modal cues.

Inexact Supervision in Computer Vision Single-frame supervision falls under the category of
inexact supervision, which delivers an ideal performance-cost trade-off in a variety of computer vision
tasks [51, 62, 56] by learning from imprecisely labeled data. In semantic segmentation, Bearman et al.
[2] first introduce point supervision, which incorporates a generic objectness prior to reveal objects
from the background and delivers promising performance. Later, Mettes et al. [25] extend the idea to
frame supervision in video spatio-temporal action localization. Ma et al. [24] further introduce frame
supervision to temporal action localization, and a corresponding SF-Net, which models actionness
by annotated frames and a background mining algorithm to decouple irrelevant frames. Li et al.
[19] propose a frame-supervised temporal action segmentation method that leverages all frames
with a confidence loss based on the distance to the annotated frame. Cui et al. [9] introduce frame-
level supervision into language-driven moment retrieval by modeling the probability distribution of
foreground action behaviors using a Gaussian distribution centered on the annotated frame. Recently,
Zhang et al. [59] introduced multi-frame supervision to the VAD task, demonstrating the effectiveness
of frame-level supervision. However, it suffers from a heavy annotation burden due to the need for
full video review. Detailed discussion are provided in the Appendix K.
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Figure 2: Overview of Frame-guided Progressive Learning framework. First, unified representations
are extracted by frozen motion and appearance encoder, followed by a transformer based temporal
modeling module. In stage I, Frame-guided Anomaly Relevance Estimation is performed by evidential
learning to ensure a reliable anomaly probing. In Stage II, we conduct Relevance-aware Cross-interval
Pattern Decoupling, where abnormal events are mined and learned based on anomaly relevance and
feature similarity to the annotated frame, while opposite normal patterns are subsequently separated
to disentangle the abnormal and normal patterns.

3 Method

3.1 Problem Formulation

Single-Frame supervised VAD (SF-VAD) leverages videos with single-frame annotations to learn
anomalies and predicts frame-level anomaly scores to identify abnormal frames. Specifically, during
training, an abnormal sample is defined as {v+, t}, where v+ denotes an abnormal video containing
at least one abnormal frame, and t ∈ R refers to the index of the annotated abnormal frame.
Correspondingly, a normal sample is {v−, 0}, where label 0 indicates video v− containing only
normal frames. During inference, given a video v with L frames, the goal is to predict fine-grained
anomaly scores ŷ ∈ RL to align with the ground-truth y ∈ {0, 1}L, where yi = 1 indicates that the
i-th frame is abnormal and yi = 0 indicates that the i-th frame is normal.

3.2 Method Overview

As depicted in Figure 2, the proposed frame-guided progressive learning framework comprises two
stages that gradually generalize single frame guidance for abnormal event modeling and normalcy
decoupling in more complete temporal scope. As in Section 3.3, stage I, termed frame-guided
anomaly relevance estimation, aims to establish reliable reference to guide the subsequent temporal
abnormal event analysis. Specifically, it employs evidential learning, grounded in the theory of
evidence [14, 32], to estimate both anomaly probability and uncertainty of prediction. In stage I,
the anomaly learning is exclusively optimized by annotated abnormal frames, thus the predicted
frame-wise uncertainty reflects the degree of deviation from the learned noise-free abnormal patterns,
thereby quantifying the anomaly relevance. Subsequently, as in Section 3.4, we perform relevance-
aware pattern decoupling in stage II, which extends single frame supervision across multiple disjoint
abnormal events guided by estimated anomaly relevance and frame-wise similarity, while constantly
decoupling normal context features outside abnormal events.

Concretely, given a video v, it is split into N non-overlapping clips to mitigate temporal redundancy
present in video media. Then, the model encodes its motion and appearance features into a uni-
fied representation, denoted as x ∈ RN×Dm , where Dm represents the feature dimension, taking
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advantage of pre-trained encoders [30, 3]. Following well-established temporal modeling architec-
tures [64, 29, 47], we employ a Transformer-based Temporal Modeling module to capture anomalies’
multi-scale temporal regularities z ∈ RN×Dm . Building upon the temporal features, multi-layer
convolutional networks are employed as evidence encoder and anomaly detector to predict evidence
for relevance estimation in Stage I and infer the final anomaly scores in Stage II.

3.3 Frame-guided Anomaly Relevance Estimation

In stage I, we strive to measure the anomaly relevance to annotated abnormal frames, which functions
as reliable reference for subsequent abnormal event mining. We observe that annotated frames mani-
fest the high visual consistency with their surrounding context, which undermines the discriminability
of feature similarity in short temporal scope. To overcome the limitation, we propose Frame-guided
Anomaly Relevance Estimation (FARE) by formulating evidential learning [32] and multi-instance
learning [34]’s training scheme for SF-VAD. Specifically, the model incorporates an evidence encoder
that learns abnormal evidence exclusively from annotated abnormal frames. Since this evidence is
distilled directly from precise abnormal cues, it preserves the noise-free and core characteristics of the
anomalous event. Consequently, the evidence can be utilized to quantify the relevance to anomalies.

Regarding VAD as a binary frame classification problem, the objective of evidential learning is
to estimate the classification probability p = [p+,p−] for a given video v, where p+,p− ∈ RN

indicate the abnormal and normal probability respectively. In this formulation, p follows Bernoulli
distribution, with p+ + p− = 1. Evidential learning models the Beta distribution, the conjugate
prior of the Bernoulli probability p, to quantify the amount of evidence supporting each prediction,
enabling the model to express varying degrees of confidence in its outputs. The parameters of the Beta
distribution α ∈ RN×2 are derived from the evidence learned by the model. A dedicated evidence
encoder network, g(v | θ), with parameters θ, is designed to predict the evidence e ∈ RN×2 that
supports the inference for each class. These evidence values are directly related to the parameters of
the Beta distribution by α = e+ 1. The total evidence, also known as the Beta strength, for each
frame is represented by S ∈ RN , calculated as the sum of the Beta parameters:

S =
∑

e∈{e+,e−}

(e+ 1), (2)

where e+, e− denote evidence for anomaly and normality respectively. Under these circumstances, a
greater value of S signifies more accumulated evidence supporting the prediction, thereby indicating
a lesser prediction uncertainty. The expected anomaly probability p̂+ ∈ RN can be calculated by
evidence and total evidence:

p̂+ =
e+ + 1

S
. (3)

In the absence of fine-grained frame-level labels, our SF-VAD method adopts the same multi-instance
learning training scheme, which is widely adopted in weakly-VAD methods [34, 6, 64]. To guarantee
a noise-free anomaly relevance estimation, the anomaly representations are learned by annotated
abnormal frames exclusively in stage I. Instance vi is sampled from frame set Ω, which comprises
only annotated abnormal frames and the prominent normal frames:

Ω = {v+i , v
−
j |i = ϕ(t), j = argmin(p̂+)}, (4)

where ϕ refers to the map function from annotation to video clip index. The evidential learning target
of instance vi can be denoted as:

Li
EL(θ) = yi(ψ(Si)− ψ(e+i + 1)) + (1− yi)(ψ(Si)− ψ(e−i + 1)), (5)

where ψ refers to the digamma function. To prevent the overconfidence of prediction and better
encourage uncertainty learning, a regularization term is further introduced. The leading evidence
from predicted Beta distribution parameters is removed, yielding α̃ ∈ RN :

α̃ = y + (1− y)⊙α, (6)

where y denotes the one-hot encoded ground-truth label. Then the regularization constraint encour-
ages B (p | α̃) to follow the uniform Beta distribution. For instance vi, the regularization constraint
can be denoted as:
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Li
KL(θ) = DKL [B (pi | α̃i) ∥B (pi | 1)]

= log

(
Γ(
∑

α̃i∈{α̃+
i ,α̃−

i } α̃i)∏
α̃i∈{α̃+

i ,α̃−
i } Γ (α̃i)

)
+

∑
α̃i∈{α̃+

i ,α̃−
i }

(α̃i − 1)

ψ (α̃i)− ψ(
∑

α̃j∈{α̃+
j ,α̃−

j }

α̃j)

 , (7)

where B represents Beta distribution, Γ(·) is the gamma function and DKL indicates Kullback-Leibler
divergence. The overall optimization target LFARE in stage I can be expressed as follows:

LFARE =

N∑
i=1

Li
EL(θ) + λn

N∑
i=1

Li
KL(θ), (8)

where λn is the annealing coefficient corresponding to training epoch n. Lastly, the anomaly relevance
R ∈ RN can be quantified as:

R = 1− 2

S
. (9)

This formulation establishes an aligned relationship between beta strength and relevance, where
greater total evidence corresponds to higher relevance. Since Stage I exclusively models abnormal
patterns based on annotated frames, a higher anomaly relevance indicates a stronger association with
the annotated abnormal distribution.

3.4 Relevance-aware Pattern Decoupling

Algorithm 1 Abnormal Event Mining
Input: Frame annotation t, Feature similarity C, Anomaly Relevance R, Thresholds θ
Output: Set of abnormal frame numbers δ+

1: δ+ = {}, ζ = {ϕ(t)}
2: if var(C) > θ1 then
3: ζ ← ζ ∪ {i | Ci > θ2, |i− j| > θ3N}
4: end if
5: for each i ∈ ζ do
6: if Ci < Θ, where Pr[C > Θ] ≤ 0.1 then
7: l = max{i | 1 ≤ i ≤ t, S[i] > S[i+ 1]}
8: r = min{i | t ≤ i ≤ N,S[i] < S[i+ 1]}
9: δ+ ← δ+ ∪ {i | l ≤ i ≤ r}

10: else
11: δ+ ← δ+ ∪ {i}
12: end if
13: end for
14: return δ+

In stage II, we perform relevance-aware pattern decoupling to expand anomaly supervision from one
frame to multiple anomalous events by estimated anomaly relevance and frame-wise similarity, while
decoupling disruptive normal context. The frame-wise cosine similarity C ∈ RN with respect to the
annotated abnormal clip is computed as follows:

C =

[
xϕ(t) · xi∥∥xϕ(t)

∥∥
2
∥xi∥2

]
i∈[1,N ]

, (10)

where ∥ · ∥2 refers to L2 Norm. On the one hand, feature similarity is limited for interval mining due
to strong temporal coherence within local neighborhoods. However, high similarity across temporally
distant frames often reveals recurring abnormal patterns, making it a reliable cue for key frame
discovery. On the other hand, the estimated anomaly relevance captures continuous temporal cues
within abnormal events. As in Figure 2, high relevance emerges within abnormal events which are
strongly aligned with the learned distribution of annotated anomalies. Conversely, frames near event
boundaries tend to exhibit transitional patterns that deviate from both distinct normal and abnormal
distributions modeled in StageI, leading to lower relevance. By leveraging these relevance dynamics,
FPL anchors on key frames and progressively expands to the full temporal extent of abnormal events.
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Harnessing their complementary strengths, we devise an abnormal interval mining algorithm that first
probes key frames located in multiple abnormal events via feature similarity, and then expands such
key frames to abnormal event intervals inferred by anomaly relevance, as depicted in Algorithm 1.
Concretely, by measurement of variance of the similarity, the similarity magnitude, and the distance
to annotated frame, we gain the key abnormal frame set ζ. Then we generally expand the abnormal
frames in ζ to entire frames in abnormal events δ+ by concave interval of anomaly relevance.

Furthermore, FPL decouples disruptive normal context patterns outside abnormal events. An abnormal
video typically encompasses three temporal phases: pre-event phase (the period preceding the
anomalous event), event phase (during the occurrence of the anomaly), and post-event phase (the
aftermath following the event). One the one hand, FPL uniformly samples frames from pre-event
phase, which reveals distinct normal contextual cues unaffected by anomalies. On the other hand, the
content in post-event phase contains unique normal characteristics within anomaly domain, reflecting
a re-stabilized state following abnormal events. Yet, such phase contains visually noisy frames that
may still bear traces of anomaly, e.g., the smoke and flame after "explosion", the chaos after "riot", the
stasis after "car accident". Thereby, we sampled frames with the lowest anomaly scores in post-event
phase, which contributes valuable negative examples to the anomaly learning process by identifying
the most pronounced normal-like characteristics in potentially noisy regions. Hence, the normal
frames set δ− in abnormal video, from which we decouple normal patterns, can be denoted as:

δ− = {⌊i⌉, j | i ∼ U(1,min(δ+)), j = argmin
k>max(δ+)

(ŷk)}, (11)

where U indicates uniform distribution.

A multi-layer convolutional network is applied as anomaly detector to predict anomaly scores ŷ ∈ RN

by temporal features z. Leveraging both abnormal frame set δ+ and normal frame set δ−, the final
LMIL is computed by cross-entropy:

LMIL =
∑
i∈δ+

log ŷ+i +
∑
i∈δ−

log
(
1− ŷ+i

)
+ λ log(1−max(ŷ−)), (12)

where ŷ+, ŷ− denote anomaly scores for abnormal and normal videos respectively and λ corresponds
to balancing coefficient.

4 Experiments

4.1 Dataset Construction

Figure 3: Visualization of dataset statistic.

To validate the effectiveness of proposed
paradigm, we construct three high-quality,
human-annotated SF-VAD datasets based on the
public benchmarks: ShanghaiTech [21], UCF-
Crime [34], and XD-Violence [46]. Annotations
are obtained via a crowdsourcing platform fol-
lowing a practical and efficient labeling protocol
where annotators are asked to label the first ab-
normal frame they identify in each abnormal
video. To simulate natural viewing behaviors,
they are allowed to freely navigate the video,
including skipping segments or adjusting play-
back speed, without being required to review
full video. This protocol maximizes annotation efficiency and accounts for the inherent randomness
in which abnormal events first attract attention, while avoiding bias introduced by artificial constraints.
As a result, it provides a more faithful assessment of single-frame supervision in realistic settings.
Details are provided in the Appendix B.

4.2 Dataset Statistic

We analyze the temporal distribution of annotated frames in the SF-VAD benchmarks, as illustrated
in Figure 3. The y-axis represents the count of annotations, while the x-axis indicates the relative
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Table 1: Performance comparison with state-of-the-art methods.
Supervision Methods Text Feature XD(%) SH(%) UCF(%)
Fully-. ARG MM ’19 [20] - NLN - - 82.0
Supervised Our Baseline - I3D RGB - - 85.52

Semi-
SVM Baseline - I3D+VGGish 50.78 - -

Supervised
SCR MM ’20 [35] - - - 74.70 72.7

Conv-AE CVPR ’16 [12] - I3D+VGGish 30.77 - 50.60
LANP ECCV ’24 [33] - I3D RGB - 88.32 80.02
MGEnet MM ’24 [48] - Video Swin - 86.9 -

AED-MAE CVPR ’24 [31] - - - 79.1 -
MULDE [26] CVPR ’24 - Hiera-L - 81.3 78.50

Weakly-

MIL-Rank [34] CVPR ’18 - C3D RGB 73.20 86.30 75.41

Supervised

CA-VAD TMM ’21 [4] - I3D RGB 76.90 92.25 84.62
RTFM ICCV ’21 [37] - I3D RGB 77.81 97.21 84.30
CRFD TIP ’21 [44] - I3D RGB 75.90 97.48 84.89
MSL AAAI ’22 [18] - VideoSwin 78.59 97.32 85.62
S3R ECCV ’22 [43] - I3D RGB 80.26 97.48 85.99

CMA-LA ICCECE ’22 [28] - I3D+VGGish 83.54 - -
MACIL-SD MM ’22 [53] - I3D+VGGish 83.40 - -

MGFN AAAI ’23 [6] - VideoSwin 80.11 - 86.67
UR-DMU AAAI ’23 [64] - I3D RGB 81.66 - 86.97
CU-Net CVPR ’23 [57] - I3D+VGGish 81.43 - 86.22

CoMo CVPR ’23 [7] - I3D RGB 81.30 97.60 86.10
PEL4VAD TIP ’24 [29] ✓ I3D RGB 85.59 98.14 86.36
VadCLIP AAAI ’24 [47] ✓ CLIP 84.51 - 88.02
HLGAtt CVPR ’24 [11] - I3D+VGGish 86.34 - -
TPWNG CVPR ’24 [49] ✓ CLIP 83.68 - 87.79

RTFM∗
ICCV 21’ [37] - I3D RGB 77.37 94.32 82.80

MGFN∗
AAAI 23’ [6] - I3D RGB 76.10 88.67 83.21

UR-DMU∗
AAAI 23’ [64] - I3D RGB 82.58 90.51 86.38

Frame-

RTFM∗
ICCV 21’ [37] - I3D RGB 82.31 97.69 85.60

Supervised

MGFN∗
AAAI 23’ [6] - I3D RGB 81.27 94.52 85.23

UR-DMU∗
AAAI 23’ [64] - I3D RGB 86.30 95.38 88.17

Ours - I3D RGB 88.09 98.41(+0.81) 89.86
Ours - I3D+CLIP 89.56(+3.22) 98.32 90.23(+3.26)

The symbol ”*” denote these methods are reproduced by the official codes on weakly-supervised and
frame-supervised setting, respectively.

position of annotated frames with respect to abnormal video or within abnormal interval, enabled
by frame-level annotation from Liu and Ma [20]. For ShanghaiTech, the distribution exhibits a
Gaussian-like pattern with peak near the center. For UCF-Crime and XD-Violence, the distribution
exhibits a clear tendency for annotations to concentrate towards the former part of abnormal videos.
The concentration of annotations in the early part of videos indicates that anomaly cues often emerge
early, eliminating the need for full video review and thereby validating the efficiency of our SF-VAD
annotation protocol.

4.3 Evaluation Metrics

Following existing works [34, 57, 46], we employ the Area Under the Curve (AUC) as the primary
evaluation metric for ShanghaiTech and UCF-Crime, and Average Precision (AP) for XD-Violence.
Furthermore, False Alarm Rate (FAR) with a threshold value of 0.5 is assessed, following previous
works [34, 64]. A lower FAR signifies a reduced occurrence of false positives, which is essential for
practical applications as it directly contributes to the trustworthiness of detection results.

4.4 Performance Comparisons

We conduct comprehensive performance comparisons against state-of-the-art Semi-VAD [35, 12, 26]
and Weakly-VAD [34, 10, 27, 29, 11, 50] methods, including recent text-enhanced approaches [29, 47,
49]. As depicted in Table 1, our proposed method consistently achieves state-of-the-art performance,
notably maintaining its effectiveness even when using only I3D [3] features. On the large-scale
XD-Violence, our method achieves a superior AP of 89.56%, representing a substantial 3.22% abso-
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Table 2: FAR comparison with state-of-the-art methods.
Supervision Methods Text Feature XD(%)SH(%)UCF(%)
Semi- Conv-AE CVPR ’16 [12] - - - - 27.2
Supervised GODS ICCV ’19 [42] - BoW+TCN - - 2.10

Weakly-

MIL-Rank CVPR ’18 [34] - C3D RGB - 0.15 1.90

Supervised

GCN CVPR ’19 [63] - TSN RGB - - 0.10
AR-Net ICME ’20 [41] - I3D RGB - 0.10 -
MIST CVPR ’21 [10] - I3D RGB - 0.05 0.13
CRFD TIP ’21 [45] - I3D RGB - - 0.72

UR-DMU AAAI ’23 [64] - I3D RGB 0.65 - -
PEL4VAD TIP ’24 [29] ✓ I3D RGB 0.75 0.00 0.43

Frame- Ours - I3D RGB 0.35 0.00 0.01
Supervised Ours - I3D+CLIP 0.37 0.00 0.01

A lower FAR indicates more reliable anomaly detection.

lute improvement over the best non-text Weakly-VAD methods and outperforming text-augmented
approaches. Similarly, on the challenging UCF-Crime dataset with diverse real-world anomaly
scenarios, we achieve an AUC of 90.23%, a 3.26% absolute gain over prior SOTA methods. The per-
formance improvement demonstrates the effectiveness of FPL which enables reliable generalization
of single frame annotation to intact abnormal temporal scope. As further illustrated in Figure 4, our
method outperforms existing approaches [22, 37, 7] across various abnormal classes, especially on
visually subtle anomaly types such as Arson, Assault, and Shooting. This improvement is attributed
to the precise anomaly reference by SF-VAD, which effectively accentuates abnormal events in their
context. In addition, we compare the False Alarm Rate (FAR) of our method with state-of-the-art
Semi-VAD [12, 42] and Weakly-VAD [34, 10, 64] baselines, as in Table 2. Our method reduces FAR
significantly across multiple datasets, demonstrating its superior ability to suppress pseudo anomalies
and distinguish normal patterns within abnormal videos via relevance-aware pattern decoupling,
ultimately leading to more reliable anomaly detection.

Figure 4: AUC w.r.t. classes on UCF-Crime.

Table 3: Ablation studies on UCF-Crime.
Baseline SF FARE AEM ND AUC(%) FAR (%)

✓ - - - - 83.67 0.62
✓ ✓ - - - 84.36 0.59
✓ ✓ ✓ ✓ - 88.63 0.41
✓ ✓ ✓ ✓ ✓ 90.23 0.01

4.5 Ablation Studies

To validate the effectiveness of the proposed modules, we conduct comprehensive ablation studies on
the UCF-Crime dataset, as summarized in Table 3. The baseline model adopts a Multiple Instance
Learning (MIL) strategy under weak supervision. By introducing single-frame supervision into
the MIL framework, the model benefits from clearer training signals, resulting in more accurate
anomaly detection. Building on this foundation, the integration of FARE and AEM further enhances
performance by extending the limited single-frame supervision to a broader temporal scope, allowing
the model to capture abnormal patterns more comprehensively. Notably, incorporating the Normal
Decoupling (ND) procedure in Stage II leads to substantial performance gains. ND explicitly
separates normal contexts from abnormal ones, which significantly reduces the false alarms and
further improves the precision and reliability of detection. Additionally, we perform ablation studies
on abnormal videos with varying numbers of abnormal events, as in Figure 5. The results show that
our method consistently outperforms the baseline, demonstrating the generalization ability of the
proposed FPL framework in extending single-frame supervision to discrete abnormal events.
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In addition, we conduct ablation studies on the abnormal event mining module and the normal
behavior decoupling strategy to further investigate the contribution of each component, as sum-
marized in Table 4. The results show that incorporating key frame selection improves anomaly
modeling effectively by extracting more representative frames, while interval mining generally en-
hances performance by providing richer temporal context. Moreover, decoupling normal behavior
from pre-event and post-event contexts offers additional gains, where each part contributes modest
improvements and their combination achieves the best overall performance, 90.23% AUC, suggesting
their complementary effects in reducing pseudo anomalies and enhancing feature discrimination.

Table 4: Ablation study of the abnormal event mining algorithm and normal decoupling strategy.
Abnormal Event Mining UCF(%) Normal Decoupling UCF(%)Key Frame Interval Mining Pre-event Post-event

- - 85.13 - - 88.63
✓ - 86.69 ✓ - 89.83
- ✓ 88.82 - ✓ 89.05
✓ ✓ 90.23 ✓ ✓ 90.23

4.6 Qualitative Results

To substantiate the effect of our method intuitively, the predicted anomaly scores of hard cases are
visualized on the challenging UCF-Crime, compared to SOTA methods [6, 64, 29]. As illustrated
in Figure 6a, our method can accurately detect varied-length abnormal intervals while precisely
distinguishing the subtle normal intervals lying between abnormal intervals. To exhibit the capability
of the proposed method in separating abnormal and normal features for precise anomaly detection,
we visualize the feature distribution of intermediate features. As depicted in Figure 6b, abnormal
and normal features exhibit a clear separation, with higher anomaly relevance values predominantly
associated with abnormal instances. This distinct margin highlights the effectiveness of our frame-
guided anomaly relevance estimation and relevance-aware pattern decoupling in isolating abnormal
cues from normal contexts. Additional qualitative results are presented in the Appendix J.

Figure 5: Ablations w.r.t. number
of abnormal events.

(a) Anomaly Scores. (b) Feature distribution.

Figure 6: Qualitative results on UCF-Crime.

5 Conclusion

In conclusion, we introduce single-frame supervised VAD, a novel paradigm that offers favorable
annotation efficiency and precise anomaly reference by a single annotated abnormal frame per abnor-
mal video. Correspondingly, the proposed frame-guided progressive learning effectively generalizes
sparse supervision toward robust event-level anomaly understanding. Extensive experiments on the
proposed SF-VAD benchmarks demonstrate that our method consistently achieves superior detection
performance across varying numbers of anomaly events and diverse anomaly types. These results
validate SF-VAD’s capability to accurately detect complex and subtle anomalies, paving the way for
more practical and scalable video anomaly detection paradigms.
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A Table of Contents

The appendix is organized as follows:

• Section B describes the construction process of the single-frame supervised VAD datasets.
• Section C provides additional dataset statistics.
• Section D provides annotation time estimation of different VAD paradigms.
• Section E provides detailed descriptions of the datasets.
• Section F outlines the baseline architecture.
• Section G presents the implementation details.
• Section H provides further ablation studies.
• Section I provides hyperparameter analysis.
• Section J showcases additional qualitative results.
• Section K discusses the difference between our method and related works.
• Section L discusses the limitation and further work.

B Dataset Construction

Figure 7: Illustration of single frame annotation procedure.

To adapt single-frame supervision for video anomaly detection (VAD), one of the primary challenges
is the absence of appropriate datasets annotated with fine-grained frame-level labels. Most existing
VAD benchmarks are formulated into semi-supervised and weakly-supervised settings, where only
video-level ground-truth is provided, which falls short of the granularity required for frame-level
supervision. Although Liu and Ma [20] offer frame-level annotations for the training set of UCF-
Crime [34], the quality of annotation is sub-optimal, with omission of abnormal events and inexact
localization of event boundaries, limiting the effectiveness for sampling frame-supervision from full
annotations, as is commonly done in tasks, e.g., moment retrieval [9].

To address this limitation, we construct three high-quality, human-annotated Single-Frame supervised
VAD (SF-VAD) datasets based on publicly available VAD benchmarks: ShanghaiTech Campus [21],
UCF-Crime [34], and XD-Violence [46]. To maximize annotation efficiency while ensuring labeling
accuracy, our SF-VAD datasets follow a practical single-frame annotation protocol that reflects how
annotators behave in realistic labeling scenarios. Thereby, the constructed datasets not only enable the
study of SF-VAD under realistic supervision constraints, but also reveal genuine human annotation
preferences, offering valuable insights for developing methods that adapt to such real-world biases.
Moreover, the protocol provides a scalable and cost-effective foundation for constructing large-scale
SF-VAD benchmarks in the future.

Specifically, these SF-VAD datasets are annotated through a carefully designed crowdsourced an-
notation process where twelve human annotators participate. Before starting, annotators had to
familiarize themselves with the definitions of various abnormal behaviors, such as abuse, riot, and
shoplifting, and then pass a preliminary annotation test to ensure the annotation accuracy. Each
annotator works independently, and cross-validation is conducted to ensure the consistency and
quality of the annotations. As depicted in Figure 7, to streamline the annotation process and ensure
high accuracy, we provide annotators with the following guidelines: 1) Annotators are permitted to
freely navigate the video timeline (e.g., via fast-forwarding or skipping) to identify potential abnormal
events efficiently. 2) Annotators shall label exactly one frame per video, selected only when they
are fully confident that the frame corresponds to an abnormal event. Once all individual annotations
are complete, a cross-verification process is performed to identify inconsistencies. Discrepancies
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between annotations are reviewed and corrected, ensuring the final annotations accurately reflect the
frames where abnormal events occur.

C Dataset Statistics

Figure 8: Violin plot of relative po-
sition of annotated frames. UCF-
CrimeInterval refers to relative posi-
tion within abnormal events, while
other entries indicate relative posi-
tion w.r.t abnormal videos.

Figure 9: Box plot of the relative position of annotated single
frames in UCF-Crime w.r.t different anomaly classes.

(a) ShanghaiTech. (b) XD-Violence. (c) UCF-Crime.

Figure 10: Proportion of total abnormal video duration accounted for each abnormal category across
three VAD datasets.

This section provides a more detailed analysis of the SF-VAD dataset statistics, offering insights into
the characteristics of the annotated frames. First, we illustrated the relative position of annotated
frames within abnormal intervals and videos in Figure 8. The distribution of annotated frames within
the ShanghaiTech dataset exhibits a near-Gaussian distribution, with its peak centered around the
middle of the video. This suggests that abnormal videos in ShanghaiTech tend to comprise clear
pre-event, abnormal event, and post-event stages, with the abnormal events typically unfolding near
the temporal center of the videos. For both UCF-Crime and XD-Violence datasets, the annotated
frames are predominantly concentrated towards the earlier segments of the videos. This bias implies
that initial frames in these datasets often contain critical cues indicative of an impending or ongoing
anomaly, which also potentially leads to significant reductions in annotation time.

Furthermore, we visualize the relative position of annotated frames within anomalous events for
various anomaly classes in the UCF-Crime dataset, as depicted in Figure 9. Generally, the majority
of annotated frames across all anomaly classes are indeed skewed towards the beginning of the video.
Notably, for classes such as ’Abuse,’ ’Assault,’ and ’Fighting,’ which typically involve rapid and
drastic movements, the variance in the relative position of annotated frames is remarkably small.
This concentrated annotation suggests that the critical distinguishing features for these events are
often visually salient and emerge early in the temporal sequence. This observation also substantiates
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SF-VAD’s efficiency, as it can direct annotators to these crucial early frames, thereby streamlining
the annotation process without full video review.

Beyond the temporal distribution, we also analyze the proportion of total abnormal video duration
accounted for by each abnormal category within the training sets of each dataset. As shown in
Figure 10, for UCF-Crime, certain anomaly classes, e.g., ’Vandalism’ and ’Shooting’, constitute
a relatively minor proportion of the overall training data. Despite this limited representation, our
SF-VAD method achieves refined detection results for these underrepresented classes, as shown in
Section 4.4. This remarkable performance on ’trivial’ or low-shot classes underscores the effectiveness
of SF-VAD in providing fine-grained guidance to highlight subtle anomalies from the context. By
leveraging the limited yet informative cues, SF-VAD demonstrates its capability to learn robust
representations even from sparse data, which is a significant advantage in real-world anomaly
detection scenarios where certain anomalies are inherently rare.

D Annotation Time Estimation

In practice, data annotation is a highly intricate process that encompasses not only the explicit
time required for watching videos and assigning labels, but also a significant amount of additional
effort that is often overlooked. This includes reviewing and replaying video segments to identify
specific frames, verifying the temporal boundaries of anomalous events, rechecking annotations
for consistency, conducting cross-validation, resolving annotation conflicts, and training annotators.
Given the diverse and layered nature of these activities, accurately measuring the true annotation
time becomes exceedingly difficult. Therefore, in this work, we estimate the annotation cost using a
theoretical lower bound based on a set of practical assumptions. The annotation time versus detection
performance is depicted in Figure1c in the main paper.

Fully-supervised VAD utilizes frame-level labels, which requires annotators to watch all videos
from beginning to end at least once. Accordingly, the theoretical lower bound of annotation time
is equivalent to the total duration of the dataset. In practice, however, the actual annotation cost is
significantly higher due to the exhaustive temporal localization of abnormal event boundaries, which
often necessitates frequent playback, meticulous inspection, and multiple rounds of verification to
ensure temporal accuracy and consistency.

Semi-supervised VAD leverage normal videos only, however, the annotators need to watch the entire
video snippets to make sure that the videos do not contain anomalies of any form. Therefore, the
lower bound of annotation time equals the total duration of the normal videos in the dataset.

Weakly-supervised VAD uses video-level binary labels. For videos in the test set, the estimated
annotation time is equivalent to the total duration of the test videos. For normal videos in the train set,
the estimated annotation time equals the total duration as well, since the annotators need to watch the
entire video to make sure it is a normal one. For abnormal videos in the training set, the estimated
annotation time is estimated as the sum of time an annotator spends observing an abnormal frame
within an abnormal video.

Single-Frame supervised VAD leverages single-frame annotation. Assuming that we elaborately
devise an annotation platform, that enables the annotators to label the abnormal frame as soon as they
identify one and let annotation proceed, the low bound annotation time is equal to weakly-supervised
VAD. Notably, in piratical scenarios, the annotation time of single frame supervised VAD is slightly
larger than weakly-supervised VAD, since single frame annotations involve playback from short
anomalies and extra cross validation time to handle the conflict of annotations.

E Dataset Description

In this work, we construct SF-VAD benchmarks based on three widely-applied VAD datasets,
ShanghaiTech Campus [21], UCF-Crime [34], XD-Violence [46], which cover broad range of
abnormal behaviors, scene types, lengths and frequencies of abnormal events, and varying camera
perspectives, as depicted in Table 5. The examples of annotated abnormal frames across various
anomaly classes is depicted in Figure 11.

ShanghaiTech Campus [21] comprises 437 videos from 13 fixed-view campus surveillance cameras.
The abnormal types are cycling, chasing, cart, fighting, skateboarding, vehicle, running, jumping,
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Figure 11: Illustrative examples of annotated abnormal frames across various anomaly classes.

wandering, lifting, robbery, climbing over, throwing. The background of the frames is rather steady
and contains less noise, which highlights the behaviors within the frames.

UCF-Crime [34] comprises 1900 videos collected from a variety of sources including videos from
surveillance cameras and social media with a total duration of 128 hours. The dataset covers 13
real-world anomalies of crimes including abuse, arrest, arson, assault, burglary, explosion, fighting,
road accident, shooting, shoplifting, stealing, vandalism and robbery. The representations of the
anomalies are varied and differentiated which increases the challenge of the detection by requiring a
more thorough understanding of the anomaly semantics.

XD-Violence [46] is the largest and most challenging multi-modal VAD dataset containing 4754
untrimmed videos with a total duration of 217 hours. The dataset contains videos from various
sources such as movies, social media, car cameras, surveillance, and games where exist extensive
artistic expressions such as changing perspective, view zooming, dynamic lighting, and rapid camera
movements. The above characteristics of the datasets draw non-negligible difficulty to anomaly
detection models. It covers anomalies of 7 types including abuse, car accidents, explosions, fighting,
riots, robbery and shooting.

Table 5: Comparison of video anomaly detection datasets.

Dataset Domin #Videos #Train
Abn.

#Train
Nor.

#Test
Abn.

#Test
Nor.

#Abn.
Types Resolution

ShanghaiTech [21] Campus 437 63 175 44 155 13 856×480
UCF-Crime [34] Crime 1900 810 800 140 150 13 Multiple

XD-Violence [46] Violence 4754 1905 2049 500 300 7 640×360

F Baseline

The architecture of the overall framework is depicted in Figure2 in the main paper. Concretely, given
an untrimmed video, pertained feature encoders [30, 3] are employed to obtain multi-modal features.
Subsequently, the features are passed through the Transformer-based Temporal Modeling (TTM)
module and detector to predict frame-level anomaly scores. Building upon the temporal features,
multi-layer convolutional networks are employed as evidence encoder and anomaly detector to predict
evidence for relevance estimation and the final anomaly scores.

Considering the trade-off of computational overhead and detection performance, the input videos
are split into 16-frame non-overlapping clips. Pre-trained frozen encoders are utilized to extract
embedding features, formulating clip feature sequences. Embedding features are denoted as x ∈
RN×Dm where N equals the number of the clips and Dm is the dimension of the features.

Owing to resounding success in natural language processing areas, Transformer [40] has been verified
as a highly effective architecture for capturing global dependencies. And it has been successfully
employed in temporal modeling [52, 1]. Therefore, we apply TTM module, following [29], to capture
multi-scale temporal cues for evidence and anomaly score prediction, as depicted in Figure 12.
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Figure 12: Architecture of Transformer-based Temporal Modeling module.

First, the attention mechanism’s similarity matrix m ∈ RN×N is computed with dynamic position
encoding E ∈ RN×N added to incorporate temporal position prior:

m = fq(x) · fk(x)⊤ + E ,
Ej,k = exp

(
−
∣∣γ(j − k)2 + β

∣∣) , (13)

where f(·) refers to linear layers and j, k ∈ [1, N ] indicate index of clips. γ and β represent learnable
weight and bias. Then, global attention feature f ∈ RN×Dh is computed based on the similarity
matrix and the linear projection of x. The process can be denoted as follows:

f = softmax

(
m√
Dh

)
· fv(x), (14)

where Dh indicates the hidden dimension. To highlight short-range temporal attention of events and
solve long-range noise, the similarity matrix is masked by a sliding window. The process can be
denoted as:

m̃ij =

{
mij , j ∈

[
max

(
0, i−

⌊
w
2

⌋)
,min

(
i+
⌊
w
2

⌋
, N
)]

−∞, otherwise
, (15)

where w refers to the window size and m̃ indicates local similarity matrix. Correspondingly, local
attention feature f̃ ∈ RL×Dh is computed by Equation 14. Then, global and local features are fused
by gate weight α. Subsequently, a residual connection is utilized followed by layer normalization to
derive temporal feature f t ∈ RL×Dm , which can be formulated as:

f t = fo

(
Norm

(
α · f + (1− α) · f̃

))
,

z = LayerNorm
(
x+ f t

)
,

(16)

where Norm(·) denotes a composite of power normalization [54] and L2 normalization. Eventually,
TTM acquires multi-scale temporal feature z ∈ RN×Dm . Eventually, multi-layer convolutional
networks are employed as evidence encoder and anomaly detector to predict evidence e ∈ RN×2 for
relevance estimation, which can be denoted as:

MLP = Dropout (GELU(Conv(·))),
e = LeakyReLU (ft (MLP (MLP (z)))) ,

(17)

where Conv(·) refers to one-dimension convolution followed by GELU [13] and ft(·) represents
causal convolutional layer. LeakyReLU corresponds to the activation function [? ]. Similarily, the
final anomaly scores ŷ ∈ RN can be predicted as:

ŷ = σ (ft (MLP (MLP (z)))) , (18)

where σ indicates the sigmoid activation function.

G Implementation Details

Feature Extraction. To extract video features, we follow existing methods [44, 29, 46]. We apply
the I3D [3] video encoder that is pre-trained on Kinetics [15] dataset, to acquire video motion
features. I3D processes each video frame and aggregates temporal context over a sequence of frames,
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enabling it to extract rich, motion-aware features from the video. Video features are extracted from
global_pool layer from the I3D encoder which is 1024 dimensions. To acquire video appearance
features, we utilize CLIP [30](ViT-B/16) image encoder. CLIP extracts visual semantic features
for each frame that generally focus on the overall appearance. The acquired appearance features
contain 512 dimensions. For the trade-off of detection performance and computational overhead,
each video is split into 16-frame non-overlapping clips. Notably, we employ a crop augmentation
strategy to enhance the generalization ability. For UCF-Crime and ShanghaiTech datasets, we apply a
ten-crop augmentation strategy, which includes crops from the center, four corners, and their mirrored
counterparts. For XD-Violence dataset, we employ a five-crop augmentation strategy, which includes
crops from the center and four corners.

Hyperparameter. The hidden dimension Dh of transformer-based temporal modeling module is set
to 128. The initial gate weight α of transformer-based temporal modeling module is set to 0.5. The
window size w is set to 5, 9, and 9 for ShanghaiTech, UCF-Crime, and XD-Violence, respectively.
The kernel size and stride of the one-dimensional convolutional layer ft are set to 3 and 1, respectively.
In abnormal event mining algorithm, the threshold θ1 that filters the total variance of similarity is set
to 0.1. The threshold θ2 that controls the prominence of similarity of key frames is set to 0.96. The
threshold θ3 that controls the gap of abnormal events is set to 0.2.

Training Details. All experiments are conducted on a single NVIDIA RTX 3090 GPU using PyTorch.
During training, the model parameters are initialized by Xavier initialization. The batch size is set to
128. The learning rate is 5× 10−4 initially and controlled by a cosine decay strategy. The parameters
are optimized using Adam optimizer. The number of training epochs is set to 50. For the balance
between computational overhead and detection performance, the maximum sampling sequence length
is set to 200 during the training phase.

H Further Ablation Studies

To further validate the effectiveness of our proposed framework, we conduct extensive ablation studies
on the UCF-Crime dataset. In Table 6, we study the impact of different supervision paradigms. While
the baseline under complete weak supervision only achieves 83.67% in terms of AUC. Gradually
increasing the ratio of single-frame supervised training video leads to substantial performance
improvements. The hybrid setting with 50% weakly-supervised and 50% single-frame annotations
achieves 87.79% AUC. Remarkably, the fully single-frame supervised version reaches 90.23% AUC,
demonstrating that concise but precise single-frame supervision is highly effective for anomaly
localization. These results suggest that, with comparable annotation cost to weak supervision, single-
frame supervision offers a more cost-effective solution by providing fine-grained anomaly cues that
substantially improve anomaly localization performance.

Table 6: Ablation study of the ratio of training data under different supervision paradigms.
Paradigm Weakly-supervised Single-frame supervised UCF

Weakly-supervised 100% 0% 83.67

Hybrid
75% 25% 85.36
50% 50% 87.79
25% 75% 88.51

Single-frame supervised 0% 100 % 90.23

I Hyperparameter Analysis

Effect of Threshold θ2. In UCF-Crime and XD-Violence, we conduct a hyperparameter analysis
to investigate the effect of the abnormal event mining threshold θ2, which controls the required
prominence of feature similarity among selected key frames. A larger θ2 enforces stricter similarity
constraints, leading to the selection of more confidently abnormal frames. Conversely, a smaller
θ2 allows for more diverse but potentially noisier frames to be included. As shown in Figure 13a,
performance initially improves as θ2 increases, benefiting from more precise supervision signals.
However, overly large values of θ2 may result in overly conservative frame selection, missing
important abnormal cues and leading to performance degradation. Empirically, θ2 = 0.95 achieves
the best performance, striking a good balance between precision and coverage in selected key frames.
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(a) θ2 (b) θ3

Figure 13: Hyperparameter analysis of θ2 and θ3 in abnormal event mining algorithm in XD-Violence
and UCF-Crime.

(a) (b)

(c) (d)

Figure 14: Visualization of anomaly scores in the UCF-Crime dataset. The Y-axis displays the
anomaly scores, with 1 indicating abnormal and 0 indicating normal, while the X-axis shows the
duration of the videos. The orange-shaded regions highlight the frames where anomalies occur. The
frames above are snapshots from the videos. From top to bottom, the anomaly scores are generated
by MGFN [6], UR-DMU [64], PEL4VAD [29], and Ours, respectively.

Effect of Threshold θ3. We further analyze the effect of threshold θ3, which controls the minimum
temporal distance between selected abnormal key frames, thereby encouraging diversity among
discovered abnormal events. A larger θ3 enforces broader temporal separation, promoting exploration
of distinct abnormal segments. As shown in Figure 13b, moderate values of θ3 improve performance
by preventing supervision collapse into a single event, while overly large values may overlook densely
occurring anomalies. As the results show, setting θ3 = 0.2 yields the best performance, effectively
balancing redundancy reduction and anomaly coverage.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Visualization of anomaly scores in the UCF-Crime dataset. The Y-axis displays the
anomaly scores, with 1 indicating abnormal and 0 indicating normal, while the X-axis shows the
duration of the videos. The orange-shaded regions highlight the frames where anomalies occur. The
frames above are snapshots from the videos. From top to bottom, the anomaly scores are generated
by MGFN [6], UR-DMU [64], PEL4VAD [29], and Ours, respectively.
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(a) (b)

Figure 16: Anomaly scores of normal videos. Smaller anomaly scores indicate fewer false alarms and
demonstrate a more reliable detection result. From top to bottom, the anomaly scores are generated
by MGFN [6], UR-DMU [64], PEL4VAD [29], and Ours, respectively.

J Qualitative Results

To illustrate the effectiveness of our method, we further visualize the anomaly scores of some hard
cases with background interference, noisy scenes, subtle abnormal behaviours, and varied anomaly
durations, compared with MGFN [6], UR-DMU [64], and PEL4VAD [29].

Figure 14a and Figure 14b visualize the detection results on videos with anomalous events occurring
at different temporal scales. Our dynamic anomaly event mining algorithm effectively captures
anomaly patterns across varying durations by jointly leveraging anomaly relevance and feature
similarity. As a result, it achieves robust detection performance across diverse temporal scopes and
produces clear and well-aligned event boundaries. Figure 14c and Figure 14d present detection
results on grayscale videos, where the anomalous behaviors are visually subtle and corrupted by
significant noise. In such challenging settings, our model still accurately identifies the anomaly
duration, attributed to the precise guidance provided by single-frame supervision. Unlike weakly-
supervised approaches that rely on coarse temporal labels, the fine-grained supervision facilitates
robust learning of discriminative features.

Compared with MGFN, UR-DMU, and PEL4VAD, our method demonstrates more precise temporal
localization, effectively capturing the onset and end of temporal episodic anomalies, such as car
accidents in Figure 15a and shootings in Figure 15b. These events typically occur and vanish rapidly,
making them challenging to detect with weak supervision. Our method successfully localizes them
without triggering excessive false alarms, benefiting from the proposed pre-event normal decoupling
strategy, which disentangles the contextual patterns preceding abnormal events. This decoupling
enables the model to distinguish normal fluctuations from truly anomalous changes. In Figure 15c, we
observe a well-localized prediction for a sparse anomaly, alongside effective suppression of pseudo
anomalies in unrelated regions. Figure 15d and Figure 15e show ideal detection results on longer
anomalous intervals, while Figure 15f demonstrates the ability to detect short anomalies embedded
within long abnormal periods. These results highlight our model’s ability to decouple fine-scale
anomalies from extended contextual sequences, significantly reducing false alarms.

Figure 16 shows detection results on normal videos with high visual similarity to anomalous cases,
such as cashier scenes (visually similar to robberies) and traffic scenarios (resembling accidents).
Our method yields nearly flat anomaly scores across the entire video, indicating strong confidence in
normality. This performance benefits from the proposed pattern decoupling strategy, which explicitly
separates abnormal patterns from high-frequency but non-anomalous behaviors. Unlike prior methods
that often confuse visually similar contexts, our model learns semantically meaningful representations
that generalize well to hard negatives, enabling accurate rejection of false positives in visually
ambiguous settings.
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K Discussion of Related Methods

This section discusses the difference between our method with related works, including the supervision
paradigm [59] and methods [65, 36].

Recently, Zhang et al. [59] study glance annotation in VAD, leveraging a frame annotation per
abnormal event. Since multiple abnormal events may be involved in an abnormal video, such glance
annotation typically requires multiple frame annotations per abnormal video, which imposes a high
demand on the comprehensiveness of the labeling. On the one hand, this labeling process is more
labor-intensive, as a full video review is necessary to ensure the completeness of the annotations.
On the other hand, glance annotation requires precise temporal localization of abnormal events, as
annotators must label each frame within distinct abnormal events, which necessitates validating both
the onset and the conclusion of these events. As a result, the theoretic low bound of annotation time
of glance supervision is close to that of fully supervision. In contrast, as depicted in Section C, our
single-frame supervised paradigm increases annotation efficiency dramatically compared to glance
annotation, as full video review and exhaustive temporal localization are not required in SF-VAD. As a
consequence, the theoretic annotation time of single frame supervision is closed to weak supervision.

From a methodological perspective, glanceVAD [59] integrates UR-DMU [64] framework with
temporal Gaussian splatting to identify static abnormal intervals, where the variance of Gaussian
distribution is static as hyperparameter setting. In contrast, our Frame-guided Progressive Learning
(FPL) takes anomaly relevance and feature similarity into consideration to dynamically prob the
abnormal event intervals in a reliable way. In addition, FPL decouples normal context in abnormal
videos to suppress false alarms, while significantly reducing the annotation burden.

Previous works [65, 36] employ evidential learning to solve VAD problems as well. Zhu et al.
[65] integrate evidential learning to select reliable snippets by evidential learning to solve open-set
VAD problems. Sun et al. [36] capture the deviation of normal samples as anomalies by evidential
learning in semi-supervised VAD paradigm. Fundamentally, our FPL differs from previous methods
in the following aspects. First, we leverage evidential learning to estimate anomaly relevance,
where only annotated frame is involved to ensure a noise-free anomaly evidence learning process,
replacing top-k sampling procedure that introduces noise and destabilizes the training. Second,
we leverage Beta distribution in evidential learning instead of Dirichlet distribution for VAD, as a
binary classification problem. Third, to encourage relevance learning and predominant evidence, we
incorporate regularization term LKL. As a result, we realize a reliable anomaly relevance estimation
by evidential learning.

L Limitation and Future Work

In the current approach, the extension from single-frame to multiple anomaly events relies primarily
on feature similarity for anomaly detection. While this method shows promising results in the
context of the experiments conducted, it places significant demands on the discriminative power
of the features. As the complexity of the scenarios increases, the challenge lies in extracting more
distinctive features that can effectively differentiate between various anomaly events. Moreover, the
ability to reliably explore dynamic, continuous multiple anomalies over time remains an open issue.
The model’s current formulation may not fully capture the temporal dependencies and interrelations
between anomalous segments. Therefore, future work will focus on enhancing feature extraction
techniques and developing more robust dynamic strategies to improve the model’s capability in
detecting multiple anomalies in a continuous sequence.

In addition, current inexact supervision primarily focuses on the temporal dimension, leveraging
frame-level annotations for anomaly detection. However, the spatial aspect remains relatively
unexplored. A promising direction for future work is to extend this supervision to the spatial domain,
where incorporating point-level supervision could highlight the anomalous objects or regions within
each frame. By doing so, the model could achieve more accurate spatiotemporal anomaly localization,
identifying both the occurrence and the specific spatial location of the anomaly. This would allow
for a more granular understanding of abnormal events, further enhancing the model’s capability to
detect and localize anomalies across both space and time. Therefore, future research will explore
methods to integrate spatial cues into the existing framework to improve the robustness and precision
of anomaly detection.
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