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Abstract

Rise of Multimodal Large Language Models (MLLMs) marks a paradigm shift in
healthcare, with the potential to revolutionize diagnostics, personalized medicine,
and predictive analytics. Yet, the transformative power of MLLMs cannot be real-
ized in isolation. In this position paper, we argue that clinical impact of Al hinges
not only on the models themselves but on an integrated ecosystem of enabling
technologies that ensures bio-safety and governance. These include high-fidelity
data curation pipelines, multimodal data lakes, model monitoring and audit tools,
secure API infrastructures, workflow orchestration layers, and seamless connectors
to Electronic Health Record and Picture Archiving and Communication System
platforms. Far from being peripheral, these adjacent technologies are forming a
critical foundation for scalable, safe, and trustworthy clinical deployment. As this
ecosystem rapidly matures into a distinct sector within digital health, strategic
investment and cross-disciplinary collaboration will be essential for healthcare
systems and technology vendors aiming to harness the full value of MLLMs in
real-world settings.

1 Introduction

Multimodal Large Language Models (MLLMs) represent a pivotal advancement in artificial intelli-
gence, particularly within clinical domains, as they combine the reasoning strengths of traditional
LLMs with the capacity to process diverse modalities [26} |65]. These models can ingest and in-
terpret heterogeneous inputs, including clinical notes, research literature, medical images (X-rays,
MRIs, pathology slides), time-series data from wearables or EHRs, audio (heart/lung sounds, patient
interviews), and video from neurological or surgical contexts [47, |67]. Owing to this versatility,
MLLMs are increasingly regarded as Foundation Models that underpin a broad spectrum of healthcare
applications [47,167]]. Their clinical potential is wide-ranging [46], enabling integrated diagnostics,
such as differentiating asthma, COPD, and pneumonia by combining history, imaging, and biometrics
[53]], and supporting personalized oncology treatments informed by genomic, dietary, and lifestyle
factors [53, 22]. MLLMs also advance predictive healthcare by enabling early disease detection,
patient deterioration forecasting, and outbreak monitoring through multimodal fusion of EHRs, mete-
orological, and sentiment data [S3]]. Emerging systems such as XMedGPT exemplify this paradigm,
attaining state-of-the-art performance in high-stakes tasks like cancer recurrence prediction while
improving interpretability with multimodal explanations [66].

Despite their impressive capabilities, real-world deployment of MLLMs in clinical practice remains
fraught with challenges, as general-purpose models often lack the transparency, domain customiza-
tion, and explainability required in high-risk healthcare [40]]. Their inherent opacity, functioning
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Figure 1: Emerging Ecosystem of Clinical MLLMs with Biosafety-Critical Adjacent Technolo-
gies: Pillars, Current Situation, and Recommendations.

as black boxes, undermines clinician trust and regulatory acceptance [9} [53]], since without clear
reasoning, professionals hesitate to rely on outputs for diagnosis or treatment despite high reported
accuracy [9]. This trust gap is further compounded by accountability concerns, as opaque errors
obscure responsibility and raise significant ethical and legal issues [4]. Consequently, innovation
and investment are shifting from model development alone toward workflow integration supported
by robust, interoperable infrastructures [34]]. Such infrastructures require reliable data acquisition
and curation, secure and scalable deployment environments, continuous monitoring, and regulatory
alignment [51]]. We argue that enabling technologies, multimodal data lakes, workflow middleware,
secure API gateways, monitoring tools, and connectors to EHR and PACS systems, constitute a new
industry segment, the Clinical MLLM Adjacent. This sector is rapidly emerging, driven by strategic
investments from major healthcare players such as Bayer, Medtronic, and AstraZeneca, who are
embedding Al across clinical and operational infrastructures [170.

In this position paper, we argue that as MLLMs become increasingly commodified with the rise
of accessible models such as GPT-40 and Gemini [[12]], the locus of clinical innovation will shift
toward the surrounding ecosystem. Building resilient, interoperable, secure, and biosafety-aligned
infrastructures for Al deployment will be the key differentiator determining which organizations can
scale these technologies effectively [21]. We reframe the discussion on MLLMs in clinical settings
by emphasizing the strategic role of adjacent technologies (Figure[T). Future success in healthcare Al
will hinge on proactive investment, human-centered design, cross-sector collaboration, and regulatory
alignment. By delineating this emerging ecosystem, we outline a roadmap for stakeholders to enable
safe, equitable, and scalable clinical MLLM deployment.

2 Background: Pillars of the Clinical MLLM Ecosystem

Successful deployment of MLLMs in healthcare is enabled by a synergistic suite of adjacent technolo-
gies (Table[3), which collectively form the decisive infrastructure for delivering accurate, reliable, and
ethically sound clinical outcomes. A comprehensive analysis of these emerging enablers is presented
in Appendix B}

H Specialized Data Curation Tools. Data curation is a foundational pillar for clinical MLLM:s,
converting heterogeneous sources, EHRs, imaging, literature, and trial data, into high-quality, re-
producible datasets through de-identification, expert annotation, and advanced techniques such as
instruction augmentation and chain-of-thought labeling([28, 4T1]). Well-curated datasets reduce
hallucinations, enhance factual accuracy, support clinical plausibility, and mitigate algorithmic bias,
yet curation remains resource-intensive, with annotation bottlenecks, privacy-utility trade-offs, and
the risk of obsolescence as standards evolve[52, (69, 53 51]]. Industrial platforms such as Shaip and



Elucidata’s Polly exemplify scalable, compliant pipelines for multimodal data ingestion, annotation,
and harmonization, collectively forming evolving infrastructures that are essential enablers of MLLM
accuracy, trust, and long-term clinical utility[62} [19].

B Multimodal Data Lakes.Multimodal data lakes provide the essential infrastructure for clinical
MLLMs by unifying heterogeneous datasets, including EHRs, imaging, omics, and clinical notes,
within secure, scalable repositories while enabling parallel processing and regulatory compliance
via HITRUST and HIPAA standards[19]. Traditional warehouses or siloed systems are insufficient
for the cross-modal demands of MLLMs, making purpose-built data lakes critical for harmonizing
disparate data points into clinically meaningful representations[45]]. Leading platforms exemplify
practical implementation: AWS for Health offers HealthOmics and HealthImaging alongside partner
solutions and HealthLake services that convert legacy records into FHIR-compliant formats[61} 601,
while Snowflake’s Al Data Cloud integrates unstructured and structured data for real-time insights
and secure collaboration[30]. Notwithstanding these advances, ongoing challenges in interoperability,
standardization, and governance remain, underscoring the centrality of multimodal data lakes as the
backbone for safe, scalable, and clinically actionable MLLM deployment.

B Robust Model Monitoring Platforms.Robust model monitoring platforms are critical for the
safe deployment of clinical MLLMs, providing continuous oversight of performance, reliability, and
safety, including detection of data drift, distribution shifts, model degradation, and anomalies while
delivering actionable insights for rapid issue resolution[3]]. Monitoring is particularly essential for
managing hallucinations, where MLLMs generate medically implausible outputs, and for mitigating
bias from imbalanced training data to ensure equitable model behavior[69, [52]]. Explainable Al
(XAI) underpins these efforts by making black box decisions interpretable through techniques
like SHAP, saliency maps, and example-based explanations, fostering clinician trust, safety, and
regulatory compliance[9, |1]. Leading solutions, including Fiddler AI, Evidently Al, and Cognome’s
ExplainerAI™, integrate monitoring, drift detection, bias assessment, and compliance features,
collectively forming an indispensable safeguard for clinical accuracy, patient safety, and adherence to
evolving ethical and regulatory standards[3, [2, |15].

B Secure API Gateways.Secure API gateways are essential for MLLM deployment in healthcare,
providing controlled, scalable access to Al services while safeguarding sensitive patient data through
zero-trust security, authentication, and authorization mechanisms|[ 14, 63]]. These gateways optimize
performance and cost via traffic management, policy enforcement, and semantic caching, yet their
configuration for heterogeneous workloads and diverse modalities presents operational and gover-
nance challenges[13]]. Functioning as critical trust boundaries, they enforce encryption, role-based
access, de-identification of PHI, and comprehensive logging to maintain compliance and mitigate
risks[37, [13]. Leading platforms such as Google Cloud Healthcare API, Apigee, and KrakenD
illustrate how robust security frameworks combined with Al-specific management enable reliable,
auditable, and ethically aligned MLLM integration[14} 37].

B Workflow Integration Middleware.Workflow integration middleware is essential for clinical
MLLM adoption, enabling secure, seamless data exchange between EHRs, PACS, medical devices,
and cloud-based systems while supporting incremental IT modernization[50]. It facilitates Al-driven
automation of repetitive tasks such as scheduling, billing, and documentation, thereby reducing
administrative burden, improving resource utilization, and mitigating clinician burnout[l64, 49].
Beyond integration, middleware orchestrates cohesive Al-managed workflows by coordinating tasks,
monitoring performance, and routing outputs based on real-time data, allowing MLLM predictions
to trigger downstream actions[8]]. Leading platforms such as Core Mobile PCSIP, Orases, NextGen
Mirth, and Cflow illustrate these capabilities, yet their effectiveness relies on sustained governance,
interoperability, and alignment with institutional workflows[29] 150} 24].

Bl Specialized EHR/PACS ConnectorsSpecialized EHR/PACS connectors form the clinical data
backbone for MLLMs, enabling standardized, real-time access to electronic health records and high-
resolution medical imaging while integrating DICOM, HL7, and FHIR-compliant data to prevent
workflow disruptions[27, 143l 56]. Notwithstanding these advantages, heterogeneity across vendor
systems and evolving standards presents interoperability challenges requiring continuous updates
and governance[27,[16]. Beyond integration, connectors empower Al-driven workflows by enabling
MLLMs to generate structured reports, highlight critical findings, and automate administrative tasks
while preserving clinician oversight[44]. Leading implementations, including Medicai, Purview, and
Dataloop HL7 FHIR Model V1, demonstrate how standardized connectors facilitate bidirectional



data flow, yet their effectiveness depends on robust governance, adherence to evolving standards, and
careful alignment with clinical workflows[43} 154} [18]].

3 Emerging Clinical MLLM Adjacent Industry Sector

Colelctive growth and strategic significance of these technologies highlight the emergence of a
distinct Clinical MLLM Adjacent sector with unique market dynamics and adoption challenges.

v'v' Market Dynamics and Investment Trends. Healthcare Al market is experiencing substantial
growth, projected to increase from USD 21.66 billion in 2025 to USD 110.61 billion by 2030,
reflecting a robust CAGR of 38.6% [25]. Broader estimates place the 2024 market at approximately
USD 29.2 billion, with projections exceeding USD 500 billion over the next decade [6]. This trajectory
is driven by significant public and private investments, accelerated Al adoption, and advancements in
human-aware Al systems [25]].

Specific segments exhibit notable activity (Table[I)): Al-based clinical trials solutions are valued at
USD 2.88 billion in 2025, growing to USD 17.40 billion by 2034 at a CAGR of 22.13% [58]]; Al
in diagnostics is projected to grow from USD 1.97 billion in 2025 to USD 5.44 billion by 2030 at
22.46% CAGR [48]. Al clinical care market is estimated at USD 11.35 billion in 2025 and expected
to reach USD 95.15 billion by 2034 at 26.65% CAGR [23]. The global healthcare API market is
forecasted to grow from USD 1.38 billion in 2025 to USD 1.92 billion by 2033 (CAGR 4.2%) [59],
with alternative estimates placing it at USD 343.8 million by 2033 (CAGR 3.7%) [57]. The healthcare
middleware market is projected from USD 3.0 billion in 2023 to USD 7.06 billion by 2032 at 9.97%
CAGR [31]], while the PACS systems market is expected to expand from USD 5.41 billion in 2024 to
USD 7.601 billion by 2033, with departmental PACS growing from USD 2.86 billion to USD 4.71
billion over the same period [32}33].

Venture capital underscores the sector’s growing importance: digital health funding hit $6.4 billion in
H1 2025, with Al startups receiving 62% ($3.95 billion), raising $34.4 million per round versus $18.8
million for non-Al firms [39]. Mega deals exceeding $100 million increasingly target AI companies,
reflecting investor confidence, while tech giants like Google, Microsoft, IBM, and NVIDIA invest
heavily in healthcare Al models and deployment infrastructure [6]]. This funding pattern highlights
that value lies not only in AI models but also in supporting infrastructure, data curation, multimodal
data lakes, secure API gateways, and workflow integration, which enables scalable, compliant
deployment, creating a distinct market segment. Economically, integrating Al via this infrastructure
enhances diagnostic accuracy, personalizes treatment, improves operational efficiency, and reduces
costs by preventing complications, optimizing resource use, and automating administrative tasks,
freeing clinicians for patient care [35] 49].

v v Regulatory Landscape and Governance Imperatives. Regulatory landscape for Al in health-
care (Table 2)) is rapidly evolving to accommodate adaptive technologies, with the FDA regulating Al
software as a Medical Device (SaMD) and introducing Predetermined Change Control Plans (PCCPs)
to streamline post-market modifications while ensuring rigorous oversight [4,|11]. Compliance with
data privacy laws such as HIPAA and GDPR, alongside global ethical guidance from bodies like
WHO, mandates robust protections for PHI, bias mitigation, and cybersecurity safeguards [4} 51].
Notwithstanding these requirements, comprehensive governance frameworks throughout the MLLM
lifecycle enhance data quality, transparency, and explainability, reducing breaches and fostering trust
in clinical AI outputs [31]. Consequently, evolving regulations do not merely impose constraints
but actively shape the clinical MLLM adjacent ecosystem by driving demand for monitoring, secure
integration, and data provenance technologies, thereby converting compliance into a strategic ad-
vantage. Yet, organizations must balance regulatory adherence with operational flexibility, as overly
rigid implementations could impede innovation and model agility.

v'v Challenges and Opportunities for Widespread Adoption. Despite substantial investment,
the adoption of clinical MLLMs and adjacent technologies is constrained by technical, human, and
organizational challenges, including limited interoperability across EHRs and PACS, diverse data
formats, high IT upgrade costs, and persistent data quality and security concerns [27,[10]. Human
factors further complicate implementation, as clinician resistance, poor UX, and opaque Al outputs
can hinder trust and adoption, with over 63% of Al projects reportedly failing due to these issues
[34,110]. Moreover, workforce impacts necessitate retraining to manage Al outputs effectively, while
ethical considerations, such as patient privacy, consent, and liability, demand robust governance [5} 4].
Consequently, achieving human-Al symbiosis through human-centered design, explainable Al, and



seamless workflow integration is essential to ensure that MLLMs augment clinical care, foster trust,
and catalyze sustainable cultural transformation [34,15]].

4 Solutions and Recommendations

To fully realize the potential of clinical MLLMs, a multi-faceted strategy emphasizing integrated
infrastructure, human-centered design, collaboration, and robust governance is essential. A concise
overview is presented here, while a more detailed discussion is available in Appendix

¢ Strategic Investment in Integrated Infrastructure. Organizations should prioritize investments
across the entire MLLM adjacent ecosystem, recognizing that isolated MLLMs provide limited value
without robust support. Market trends highlight an infrastructure premium, with Al-enabled solutions
and data infrastructure attracting the majority of digital health funding [39]. Investments should
span specialized data curation tools for high-quality, unbiased, de-identified datasets, multimodal
data lakes for scalable clinical data access [52]], and secure API gateways for compliant and efficient
data flow [[14]. Public-private partnerships and cloud-based solutions further enhance scalability,
cost-efficiency, and computational capacity [25].

4 Prioritizing Human-Centered AI Design and Explainability. All adjacent technologies inter-
acting with clinicians must emphasize usability, trust, and explainability, as human factors often
determine adoption success [34]. Transparent, intuitive interfaces integrated into existing workflows
reduce disruption, while explainable AI (XAI) ensures clinicians understand MLLM outputs, sup-
porting patient safety and regulatory compliance [9]]. Early clinician engagement, silent trials, and
embedding XAI within monitoring platforms help secure buy-in and map workflow pain points [10].

4 Cross-Stakeholder Collaboration and Standardization. Widespread adoption requires collabo-
rative ecosystems linking providers, vendors, regulators, and researchers to advance interoperability
standards [27]]. Standardized protocols such as DICOM, HL7, and FHIR, along with vendor-neutral
archives (VNAs), are critical for seamless data exchange and reducing vendor lock-in [43]]. Collabo-
rative data curation aligned with clinical needs and clinician-led Al stewardship committees ensure
practical applicability and smooth change management [10].

¢ Developing Robust Governance and Regulatory Compliance Frameworks. Comprehensive
governance frameworks embedding ethics, privacy, and regulatory compliance are essential for
mitigating risks such as bias, hallucinations, and data breaches [4} 152]]. Continuous monitoring,
validation, and predetermined change control plans support safe deployment under FDA and global
regulatory guidance [20, 3]. Clear legal accountability and workforce training on safe Al use, HIPAA
compliance, and MLLM limitations further strengthen adoption, trust, and operational reliability
(631 4].

¢ Embedding Safety-by-Design Principles. Safety must be a first-class design objective across all
adjacent technologies, encompassing biosafety safeguards, fail-safe defaults, redundancy mechanisms,
and real-time alerting for unsafe outputs. Proactive hazard analysis and resilience engineering
approaches ensure that safety considerations are integrated from development through deployment
[20].

4 Establishing Continuous Clinical Safety Monitoring. Beyond technical validation, clini-
cal MLLMs require continuous post-deployment safety surveillance, including incident reporting
pipelines, safety audits, and clinician-in-the-loop feedback systems. Such monitoring reduces patient
harm risks, ensures rapid error correction, and aligns with pharmacovigilance-style oversight models
increasingly adopted in digital health [3} 4]].

5 Concluding Remarks

The transformative potential of clinical Multimodal Large Language Models (MLLMs) resides
not solely in their computational sophistication or cross-modal reasoning, but in the surrounding
ecosystem that enables safe, reliable, and scalable deployment [[12] 21]]. In this position paper, we
have systematically highlighted the strategic role of adjacent technologies, including specialized data
curation pipelines, multimodal data lakes, secure API gateways, workflow integration middleware,
continuous model monitoring platforms, and EHR/PACS connectors, as safety-critical enablers
rather than peripheral tools. By integrating these components, organizations can construct resilient,



interoperable, secure, and auditable infrastructures that prioritize biosafety and patient safety, while
mitigating risks such as data breaches, model hallucinations, and biased outputs [3} 27]. Furthermore,
we have emphasized human-centered design, explainability, and clinician engagement as critical
levers for trust, adoption, and workflow integration, thereby aligning technological capabilities with
safe and responsible clinical practice [34]]. Our analysis positions the Clinical MLLM Adjacent
ecosystem as a distinct, rapidly evolving sector, underscoring the infrastructure premium in healthcare
Al and the necessity for safety-driven strategic investment and collaborative development [39].

Looking forward, realizing the full diagnostic, therapeutic, and operational potential of MLLMs
requires a systems-level approach that combines integrated infrastructure, governance, and workforce
preparedness [4} 163]]. Continuous model monitoring, robust regulatory alignment, and cross-sector
standardization will ensure ethical, compliant, and scalable deployment, while fostering clinician
confidence in Al-driven decision support. Importantly, the adoption of these adjacent technologies
facilitates not only technical feasibility but also cultural transformation within healthcare organiza-
tions, enabling human-Al symbiosis and sustainable integration [34.|5]. By delineating this roadmap,
we provide a structured framework for stakeholders to strategically invest, implement, and govern
clinical MLLMs, thereby transforming these models from isolated innovations into operationally
integrated, high-impact tools at the point of care. Collectively, this position reinforces the argument
that the future of clinical AI hinges on the intelligent orchestration of MLLMs and their enabling
ecosystem, setting the stage for equitable, precise, and scalable healthcare delivery.
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A Supplementary Material

Table 1: Market Size and Growth Projections for Key Clinical Al Infrastructure Segments (2024—
2034)

Market Segment 2024/2025 Mar- | Projected 2030-2032- | CAGR (%)
ket Size ($B) 2034 Market Size ($B)
Al in Healthcare (Overall) $21.66 (2025) $110.61 (2030) 38.6%
Al in Clinical Trials $2.88 (2025) $17.40 (2034) 22.13%
Al in Diagnostics $1.97 (2025) $5.44 (2030) 22.46%
Al Clinical Care $11.35 (2025) $95.15 (2034) 26.65%
Healthcare API Market $1.38 (2025) $1.92 (2033) 4.2%
Healthcare Middleware Market | $4.52 (2024) $8.68 (2032) 7.52%
PACS Systems Market $5.41 (2024) $7.601 (2033) 3.8%
Healthcare Data Monetization | $0.62 (2025) $1.19 (2030) 14.10%
Market

Table 2: Key Regulatory and Ethical Considerations for Clinical MLLM Deployment

principles, EU AT Act

Consideration Area | Key Regulations/ | Impact on MLLM Deployment Adjacent Technology Role
Guidelines
Data Privacy and Se- | HIPAA, GDPR, | Risk of data breaches, unauthorized | Secure API Gateways, Data Curation (de-
curity WHO Ethics Guid- | access, misuse of PHI. identification), Multimodal Data Lakes (se-
ance cure storage)
Algorithmic Bias and | WHO Ethics Guid- | Exacerbating health disparities, un- | Data Curation (diverse datasets), Model
Fairness ance, FDA SaMD | fair treatment, loss of public trust. Monitoring (bias detection), Explainable

Al (fairness analysis)

Transparency and Ex-
plainability

EU GDPR (right to
explanation), FDA
SaMD principles, EU
AT Act

Lack of clinician trust, difficulty
in validating decisions, unclear ac-
countability.

Model Monitoring (XAI platforms, saliency
maps, SHAP values), Workflow Integration
Middleware (context-aware alerts)

Safety and Effective-
ness Monitoring

FDA  SaMD/PCCP,
ISO 13485

Potential for patient harm (e.g., hal-
lucinations), model degradation over
time, need for continuous validation.

Model Monitoring (drift detection, halluci-
nation detection, performance monitoring),
Data Curation (ground truth updates)

Medical Liability

Evolving legal frame-
works

Unclear accountability for Al-driven
errors, increased legal risk for
providers/developers.

Secure API Gateways (audit logging), Data
Governance (provenance, clear policies),
Model Monitoring (performance logs)

Continuous  Learn-
ing/Adaptive Al

FDA Predetermined
Change Control Plans
(PCCP)

Challenges with post-market modifi-
cations, ensuring ongoing safety and
effectiveness, regulatory approval

Model Monitoring (re-training practices,
performance evaluation protocols), Data
Curation (high-quality SFT datasets)

for updates.

B More Details on Pillars of the Clinical MLLM Ecosystem

The effective integration of MLLM:s into clinical practice is contingent upon a coordinated ecosystem of adjacent
technologies (Table 3), encompassing data lakes, workflow middleware, secure API gateways, monitoring
frameworks, and interoperable connectors to EHR and PACS systems. Together, these pillars constitute the
infrastructural backbone that enables MLLMs to generate clinically accurate, reliable, and ethically compliant
outputs, while supporting real-time deployment, continuous model monitoring, and adherence to regulatory
and privacy standards. By embedding these technologies into end-to-end healthcare workflows, organizations
can bridge the gap between model capabilities and actionable clinical decision-making, ensuring that the
transformative potential of MLLMs translates into tangible patient benefit.

B.1 Specialized Data Curation Tools

Data curation stands as a foundational pillar in the healthcare Al ecosystem, particularly in the development and
deployment of Multimodal Large Language Models (MLLMs). Given the sheer volume and heterogeneity of data
originating from patient records, clinical trials, imaging archives, and biomedical literature, ensuring data quality,
consistency, and integrity is essential [28]]. The process of data curation not only eliminates errors, duplicates,
and inconsistencies but also upholds data provenance, crucial for ensuring transparency, reproducibility, and
accountability throughout the MLLM lifecycle [28].

At the core of effective curation are sophisticated capabilities for de-identification and annotation. These tools
are essential for transforming raw data into usable, privacy-compliant training resources. De-identification
systems must rigorously anonymize Protected Health Information (PHI) across both textual and visual modalities,
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Table 3: Core Functions of Clinical MLLM Adjacent Technologies

Technology Cate-
gory

Key Functions

Role in MLLM Success

Example Ven-

dors/Standards

Specialized Data
Curation Tools

Data quality, integrity, provenance, de-
identification, annotation, bias mitigation.

Fuels accurate, unbiased MLLM train-
ing; ensures ethical data use.

Shaip, Elucidata Polly

Multimodal Data
Lakes

Unification of diverse structured, unstruc-
tured, and streaming data; scalable storage,
querying.

Enables holistic patient insights for
MLLMs; supports complex multimodal
reasoning.

AWS
Snowflake

HealthLake,

Robust  Model
Monitoring Plat-
forms

Detects data drift, model degradation,
anomalies; identifies and mitigates hallu-
cination and bias; provides Explainable Al
(XAI).

Ensures continuous performance, safety,
and trustworthiness of MLLMs in pro-
duction.

Fiddler AL Evidently Al,
Cognome ExplainerAI™

Secure API Gate-
ways

Authentication, authorization, traffic man-
agement, cost control, prompt validation,
policy enforcement.

Provides secure, compliant, and scal-
able access to MLLMs and sensitive
data.

Google Cloud Healthcare
API, Apigee, KrakenD

Workflow Integra-
tion Middleware

Bridges legacy systems with modern Al
automates tasks, optimizes operational effi-
ciency, reduces cognitive load; orchestrates
processes.

Seamlessly embeds MLLMs into ex-
isting clinical and administrative work-
flows; enhances clinician adoption.

Core Mobile PCSIP,
NextGen Mirth, Cflow,
Lionbridge Aurora AI

Specialized
EHR/PACS Con-
nectors

Facilitates real-time, standardized access to
electronic health records and medical im-
ages; enables Al-driven structured report-
ing.

Provides the comprehensive clinical
data backbone for MLLM training and
inference; transforms clinical documen-
tation.

DICOM, HL7, FHIR,
Medicai, Purview

ensuring compliance with healthcare regulations such as HIPAA while retaining the clinical utility of the data
[621163]. In parallel, high-quality annotation, often performed by medical experts, enables the construction of
structured, labeled datasets that are critical for supervised learning and fine-tuning. Recent advancements also
incorporate instruction augmentation and chain-of-thought annotations that enrich multimodal datasets, boosting
the domain-specific reasoning and cross-modal integration capacity of MLLMs [41]]. The influence of curated
datasets on MLLM performance cannot be overstated. High-fidelity, well-annotated data is indispensable for
model training, fine-tuning, and post-deployment refinement. It plays a direct role in reducing hallucinations,
improving factual accuracy, and enhancing clinical plausibility in Al-generated outputs [52, 69]]. Critically,
data curation also functions as a primary mechanism for addressing algorithmic bias. Biased training data
can perpetuate systemic health disparities, especially when models are deployed across diverse populations.
Through careful dataset construction, including the selection of balanced and representative samples, data
curation mitigates this risk and aligns with broader ethical imperatives in Al development [53}152].

Thus, data curation is far more than a backend process, it is a strategic endeavor that transforms fragmented and
often siloed medical data into an ethically compliant, clinically relevant, and Al-ready asset. This transformation
is pivotal in enabling MLLMs to operate safely and effectively in healthcare environments, where the cost of
error can be profound. The ongoing nature of curation ensures that datasets evolve alongside clinical standards
and regulatory requirements, reinforcing the trustworthiness and long-term utility of MLLMs [51]]. Several
industry leaders exemplify the state of the art in this space. Shaip, for instance, offers extensive pre-processed
datasets, expert annotation and labeling services, and robust de-identification solutions for multimodal medical
data [62]. Elucidata’s Polly platform provides an end-to-end solution, including centralized data ingestion,
metadata harmonization, and scalable annotation engines, all within a secure and compliant framework [19]].
These platforms illustrate how specialized data curation tools are becoming critical enablers of MLLM accuracy,
trust, and clinical applicability.

B.2 Multimodal Data Lakes

Multimodal data lakes form the critical architectural backbone for MLLMs in healthcare, designed to unify
and manage the vast and heterogeneous datasets that characterize clinical practice. These platforms seamlessly
integrate structured data such as Electronic Health Records (EHRs) and laboratory results with unstructured and
streaming data, including medical images, clinical notes, audio recordings, video feeds, and omics datasets, all
within a secure and compliant environment [7]]. This unified approach facilitates a holistic, longitudinal view
of an individual’s health, moving beyond fragmented information silos to generate richer insights that span
from research settings to bedside care [61]. By aggregating diverse sources, ranging from diagnostic imaging
and wearable sensor data to genetic profiles and patient-reported outcomes, multimodal data lakes empower
MLLMs to achieve deeper, context-aware understanding [45]]. This capability mirrors the integrative reasoning
clinicians employ when diagnosing and treating patients, enabling models to correlate findings across modalities:
for example, linking CT scan results with pathology reports, combining audio from telehealth sessions with
clinical documentation, or merging continuous sensor streams from smartwatches or glucose monitors with EHR
data [7]]. Such integration is essential for advancing personalized medicine and refining predictive analytics,
ultimately supporting more precise treatment planning and earlier disease detection [53]].
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Scalability and Security: Foundations for Clinical Use. The scalability and secure storage capabilities
of multimodal data lakes are paramount to their success. Leading cloud-based platforms such as AWS and
Snowflake provide robust infrastructure to store multi-terabyte datasets in centralized repositories, significantly
reducing data silos and enabling near real-time access to cross-modal information [19]. These platforms offer
elastic computational resources that can support parallel processing of extensive omics and clinical datasets
while ensuring compliance with healthcare regulations through certifications such as HITRUST and adherence
to HIPAA standards [19]. More than mere storage solutions, multimodal data lakes are the essential foundation
that allows MLLMs to realize their full multimodal potential. Traditional data warehouses or disconnected
siloed systems are ill-equipped to meet the dynamic and complex data demands of these models. Data lakes
are purpose-built to harmonize and interconnect disparate data points, creating a unified, intelligent view of
patient information that closely parallels clinical decision-making processes [45]. This capability extends beyond
data availability to encompass data interoperability and accessibility, critical enablers for sophisticated Al
analysis. The concept of any-to-any MLLMs, capable of ingesting and generating outputs across all modalities,
fundamentally depends on data lakes’ ability to ingest, harmonize, and present diverse data types in an Al-
consumable format. Consequently, data readiness emerges as a primary bottleneck in MLLM deployment, often
outweighing challenges related to model architecture or training.

Key providers in this space include AWS for Health, which offers specialized services like AWS HealthOmics
for genomic data and AWS HealthImaging for medical imaging, complemented by an ecosystem of partner
solutions designed to unify and analyze multimodal healthcare data [61]. Additionally, AWS HealthLake
partners facilitate the transformation of legacy healthcare data into standardized formats such as Fast Healthcare
Interoperability Resources (FHIR), while providing tools for efficient health record navigation and visualization
[60]. Snowflake’s Al Data Cloud similarly delivers a unified platform capable of handling unstructured, semi-
structured, and structured data, enabling real-time patient insights and secure collaboration across healthcare
networks [30]. Together, these multimodal data lakes lay the indispensable groundwork for clinical MLLMs,
supporting their integration into healthcare workflows and unlocking new horizons in precision medicine.

B.3 Robust Model Monitoring Platforms

Robust model monitoring platforms are essential for the safe and effective clinical deployment of MLLMs.
Continuous tracking of model performance and behavior in production ensures sustained accuracy, reliability,
and safety over time [3]]. Key functionalities include detecting data drift, shifts in input distributions, model
degradation, and anomalies that may impair performance [3]]. These platforms provide actionable insights that
allow developers to diagnose issues promptly and maintain optimal model functioning [3].

A critical focus of MLLM monitoring in healthcare is managing hallucinations and bias. MLLMs have a known
tendency for hallucinations, producing medically implausible or inaccurate outputs that risk patient safety
by leading to misdiagnoses or inappropriate treatments [69]. Monitoring platforms assess these risks using
expert-validated case scenarios and systematic annotation methods that categorize hallucinations by anatomical
and pathological types [69]. Additionally, they help detect and mitigate bias arising from training data imbalances
or fine-tuning, ensuring equitable model behavior across diverse patient populations [52].

Explainability and Safety as Core Monitoring Pillars. Explainable Al (XAI) plays an integral role in
effective monitoring by unraveling the black box nature of complex MLLMs, making their decisions interpretable
and trustworthy to clinicians [9]]. Techniques such as feature attribution methods (e.g., SHAP values, saliency
maps) and example-based explanations facilitate clinician understanding and confidence in Al outputs [9]]. This
transparency is crucial for patient safety, regulatory compliance, such as the EU GDPR right to explanation,
and fostering robust human-AlI collaboration [9]]. While some advocate prioritizing accuracy over explainability
in urgent clinical scenarios, the consensus for MLLMs emphasizes transparency to build and sustain trust [1].
Beyond traditional performance metrics like accuracy and precision, clinical MLLM monitoring prioritizes
patient safety outcomes. Monitoring must detect specific instances of anatomical and pathological hallucinations,
quantifying their potential harm to patients [[69]. This elevates monitoring from a technical exercise to a vital
component of clinical governance, risk management, and ethical Al deployment [9]. The increasing regulatory
focus on XAI and bias mitigation further underscores this transformation [9].

Leading solutions in this space include Fiddler AI’s Observability platform, offering performance monitoring,
drift detection, quality assurance, custom alerts, and specialized NLP and computer vision monitoring [3]].
Evidently Al provides an open-source library supporting issue detection, root cause, and behavioral analysis for
ML models [2]. Cognome’s ExplainerAI™ specializes in healthcare Al transparency, integrating with EHRs to
assist in bias detection and regulatory compliance [[15]. Additionally, platforms like MLM-Labs and Biologit
address healthcare-specific needs by enabling real-time monitoring of clinical trial data and medical literature
for safety surveillance [38]. Together, these model monitoring platforms form an indispensable safeguard that
ensures MLLMs maintain clinical performance, uphold patient safety, and comply with evolving ethical and
regulatory standards.
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B.4 Secure API Gateways

Secure API gateways are foundational to the integration and deployment of MLLMs in healthcare, acting as
specialized control layers for Al workloads. They provide secure, scalable, and manageable access to MLLMs
and related Al services, an imperative in an industry handling highly sensitive patient data [14]. These gateways
enforce zero-trust security principles, manage authentication and authorization, and serve as critical checkpoints
for all MLLM interactions, safeguarding sensitive data throughout [63]. These platforms deliver a comprehensive
suite of features to enhance security, scalability, and governance. They facilitate seamless Al agent integration by
offering robust authentication, traffic management, detailed analytics, and policy enforcement [14]. Additionally,
API gateways can intelligently route requests to the most appropriate MLLM based on task requirements,
optimize response times through semantic caching, and enforce granular usage limits to control inference costs
[14].

Compliance with stringent healthcare data security standards, such as HIPAA in the U.S., is non-negotiable. API
gateways play a pivotal role in maintaining compliance by implementing strong encryption for data at rest and in
transit, enforcing strict role-based access controls (RBAC), and maintaining exhaustive logs of all interactions
[63]. They also support de-identification of Protected Health Information (PHI), creating a secure, auditable
layer that exposes sensitive ePHI to patient and provider applications while mitigating the risk of breaches and
unauthorized access [13].

API Gateways as Trust Boundaries. In healthcare’s highly regulated environment, API gateways function
not just as technical interfaces but as critical trust boundaries that enforce security, compliance, and ethical Al
use at every interaction point. This elevates MLLM access from a technical challenge to a governance imperative.
While APIs generally facilitate data exchange [[13]], an Al Gateway specifically adds a tailored control layer for
Al workloads, actively managing how MLLMs access and process sensitive PHI [37]. It enforces zero-trust
policies, prompt validation, and compliance checks, operationalizing the trust boundary concept [37]. By
enabling encryption, RBAC, and detailed audit logging, these gateways empower healthcare organizations to
transition from passive regulatory compliance to proactive risk mitigation at the integration layer [63].

Leading providers in this domain include Google Cloud Healthcare API, which supports industry-standard
protocols like DICOM, FHIR, and HL7v2 for ingesting, storing, and analyzing healthcare data. It is built on a
robust security framework featuring Identity and Access Management (IAM) and comprehensive auditability
via Cloud Logging, and is covered under Google Cloud’s HIPAA Business Associate Addendum (BAA) [13].
Additional examples of API gateways offering advanced Al safety features, latency optimization, cost control,
and governance for LLM interactions include Apigee (part of Google Cloud’s API Management) and KrakenD
[[14,137]. Together, secure API gateways constitute a critical infrastructure layer that enables the safe, compliant,
and efficient integration of MLLMs into healthcare environments, balancing performance demands with stringent
regulatory and ethical requirements.

B.5 Workflow Integration Middleware

Workflow integration middleware is vital for the practical adoption of MLLMSs in healthcare, serving as a
bridge that enables seamless and secure data exchange between diverse healthcare software systems. This
includes connecting MLLMs with existing EHRs, PACS, and medical devices [S0]. Such middleware supports
the incremental modernization of IT ecosystems, allowing providers to link legacy systems with cloud-based
services without costly infrastructure overhauls [S0]. A major advantage of middleware is its capacity to
automate tasks, optimize efficiency, and reduce cognitive burden on healthcare professionals. Al-driven
workflow automation is a priority for providers aiming to enhance operational efficiency and care quality [64].
Middleware enables MLLMs to automate repetitive, data-heavy tasks like appointment scheduling, billing, and
documentation, thereby alleviating administrative workload, improving resource use, and reducing clinician
burnout [64}49]. Many hospitals still rely on legacy systems incompatible with modern Al or cloud environments
[43]]. Middleware effectively bridges this gap by converting file types, managing data transfers, and handling
complex security protocols, minimizing disruptive full-system replacements [27]]. This ensures smooth data flow
and interoperability across clinical and administrative domains [S0].

From Integration to Orchestration. Workflow integration middleware transforms MLLMs from isolated
Al tools into components of cohesive, Al-orchestrated workflows, acting as the conductor that ensures seamless
data exchange, task automation, and proactive care delivery [8]. Beyond simple integration, middleware coordi-
nates tasks, monitors performance, and routes assignments based on real-time data and rules, enabling MLLM
outputs to trigger downstream actions [§8]]. This intelligent orchestration addresses operational inefficiencies
and clinician resistance, reduces documentation time, and directly mitigates physician burnout, key factors for
sustainable Al adoption [42} 34]. Leading providers include Core Mobile’s Patient Care Systems Integration
Platform (PCSIP), which unifies diverse patient records and enables department-specific LLM customization
[29]. Orases highlights API- and middleware-driven seamless data transfer within healthcare [S0]. NextGen’s
Mirth Integration Engine standardizes clinical data flow and offers advanced alerting for system monitoring [24].
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Additionally, platforms like Cflow and Lionbridge Aurora Al provide sophisticated workflow orchestration to
integrate Al tools for clinical and administrative automation [8].

B.6 Specialized EHR/PACS Connectors

Specialized EHR/PACS connectors serve as the vital clinical data backbone for MLLMs, enabling real-time,
standardized access to electronic health records and medical imaging. These connectors provide MLLMs with
immediate access to comprehensive patient data, including high-resolution medical images in DICOM format
and extensive clinical records in HL7 and FHIR standards [27]. This seamless integration prevents workflow
disruptions by allowing physicians to access imaging studies directly within patient records without navigating
separate systems [43]].

Interoperability. Interoperability remains a major challenge in healthcare IT, stemming from diverse vendor
systems and heterogeneous data formats [27]. EHR/PACS connectors address these issues by leveraging
established protocols: DICOM standardizes storage and transfer of medical images [27], HL7 governs exchange
of clinical and administrative data [27]], and FHIR, a modern, web-based standard with modular resources and
RESTful APIs, facilitates flexible, semantic data exchange critical for multimodal integration [S6]. Adoption of
these standards creates a common language for effective communication between imaging and EHR systems
[27]). Initiatives such as IHE integration profiles (e.g., AIW-I, AIR) further promote standardized Al interaction
with DICOM data, reflecting ongoing efforts toward interoperability [16].

Enabling Intelligent AI-Driven Clinical Workflows. By granting MLLMs integrated access to imaging
and clinical data, these connectors empower advanced applications like structured radiology reporting. This
automation analyzes imaging (e.g., MRI, X-ray) and populates structured templates, reducing manual entry
and error risk [44]. It enhances diagnostic accuracy by highlighting critical findings and supports clinicians
in informed decision-making, while preserving clinician oversight [44]. Additionally, MLLMs can utilize
this data to generate patient-friendly communications, improving engagement and understanding [44]]. The
evolution of EHR/PACS connectors marks a shift from passive repositories to active, intelligent participants
within MLLM workflows. They enable continuous data exchange, where MLLMs receive clinical data and feed
back Al-generated insights, such as reports, findings, and administrative elements like billing codes, directly into
EHR/PACS [44]. This bidirectional flow, powered by robust connectors adhering to standards like FHIR, forms
the foundation for truly Al-native clinical documentation and decision support. It transitions healthcare from
manual data entry and fragmented records toward automated, integrated, and intelligent patient data ecosystems.

Notable solutions include Medicai’s PACS integration connecting radiology and imaging departments with
EHR/RIS systems via DICOM and HL7, enabling instant access and workflow optimization [43]. Purview offers
EHR-PACS integration for seamless linkage between EHRs and medical images [54]. The Dataloop HL7 FHIR
Model V1 demonstrates how Al models can leverage these integrated data formats to recognize biomedical
entities in text, illustrating practical MLLM data utilization [18].

C More Details on Solutions and Recommendations

To navigate the complexities and fully realize the potential of clinical MLLMs, a multi-faceted strategic approach
is required, focusing on integrated infrastructure, human-centered design, collaboration, and robust governance.

C.1 Strategic Investment in Integrated Infrastructure

Healthcare organizations and technology providers must prioritize strategic investments in the entire MLLM ad-
Jjacent ecosystem, recognizing that isolated MLLMs offer limited value without robust supporting infrastructure.
The market trends clearly indicate a significant infrastructure premium in digital health funding, with Al-enabled
solutions and data infrastructure attracting the lion’s share of investment [39]. This investment should compre-
hensively span specialized data curation tools for building high-quality, unbiased, and de-identified datasets
essential for MLLM training and fine-tuning [S2]. It must also include multimodal data lakes for unified, scalable
access to diverse clinical data 28, and secure API gateways to ensure compliant and efficient data flow to and
from MLLMs [14]. Developing comprehensive Al adoption roadmaps that explicitly budget for these adjacent
technologies is crucial. Furthermore, fostering public-private partnerships can facilitate the co-development of
shared infrastructure components, accelerating progress and reducing individual organizational burden. Investing
heavily in cloud-based solutions is also recommended for their inherent scalability, cost-efficiency, and remote
access capabilities, which are vital for managing the vast data volumes and computational demands of MLLMs
[25].
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C.2 Prioritizing Human-Centered Al Design and Explainability

All adjacent technologies, particularly those interacting directly with clinicians and patients, must be designed
with a human-centered approach, emphasizing explainability, usability, and trust. Clinician resistance and
workflow disruption represent major impediments to Al adoption, often outweighing technical capabilities [34].
The success of Al in healthcare hinges on a positive human experience, necessitating transparent and intuitive
interfaces that seamlessly integrate into existing clinical workflows [34]. Explainable AI (XAlI) is critical
for clinicians to understand and trust MLLM recommendations, which is fundamental for patient safety and
adherence to regulatory mandates [[9]. To achieve this, human-centered design principles should be implemented
from the outset of development, ensuring that Al solutions augment, rather than complicate, clinical practice.
Integrating XAl features into model monitoring platforms and directly into MLLM outputs will provide the
necessary transparency. Furthermore, conducting silent trials and actively engaging clinicians early in the design
and implementation phases is vital for mapping existing workflows, identifying pain points, and securing crucial
buy-in from end-users [10].

C.3 Cross-Stakeholder Collaboration and Standardization

Driving widespread adoption of interoperability standards and fostering collaborative ecosystems involving
healthcare providers, technology vendors, regulators, and research institutions is essential. The lack of standard-
ized communication protocols between disparate systems, such as EHRs and PACS, remains a significant hurdle
to seamless MLLM integration [27]. Adopting standardized protocols like DICOM (for imaging), HL7 (for
clinical data exchange), and particularly FHIR (for modern, web-based interoperability) is crucial for seamless
data exchange and MLLM functionality [43].Encouraging the use of vendor-neutral archives (VNAs) can help
overcome vendor lock-in and promote broader data accessibility [43].Collaboration ensures that data curation
efforts align with real-world organizational needs and that Al solutions are developed with practical clinical
applicability.5 Establishing Al stewardship committees with rotating clinician leadership can effectively guide
implementation, manage change, and ensure that technological advancements are aligned with clinical realities
and needs [10].

C.4 Developing Robust Governance and Regulatory Compliance Frameworks

Establishing comprehensive Al data governance frameworks that embed ethical principles, privacy safeguards,
and regulatory compliance throughout the entire MLLM lifecycle is non-negotiable. The sensitive nature of
healthcare data and the adaptive, continuously learning nature of MLLMSs necessitate strong governance to miti-
gate risks such as algorithmic bias, hallucinations, and data breaches [4]]. Regulatory bodies, including the FDA,
are increasingly focusing on post-market monitoring and predetermined change control plans for Al-enabled
medical devices, underscoring the need for continuous oversight [20]. Implementing robust data governance
policies that cover data quality, privacy (e.g., encryption, role-based access controls, de-identification), and
ethical Al standards is paramount [52]]. Organizations must develop internal policies for continuous monitoring
and validation of MLLM performance in production environments to detect and address issues proactively [3]].
Ensuring that legal accountability is clearly defined for Al-driven decisions is also critical for building trust and
managing risk [4]. Finally, investing in comprehensive training programs for all staff on safe Al use, HIPAA
compliance, and the limitations and strengths of MLLMs will empower the workforce and foster responsible
adoption [63]].

C.5 Embedding Safety-by-Design Principles.

Safety should not be treated as an afterthought but embedded throughout the lifecycle of adjacent technologies.
This includes incorporating biosafety safeguards during data ingestion, implementing fail-safe defaults in
workflow integration middleware, and designing redundancy mechanisms to prevent single points of failure.
Real-time alerting for anomalous or unsafe outputs is critical for clinical environments where delays can cause
harm. Hazard analysis and resilience engineering approaches, such as Failure Mode and Effects Analysis
(FMEA), can be adapted to MLLM deployment pipelines to anticipate and mitigate risks proactively. Embedding
these principles ensures that infrastructures remain robust under uncertainty and maintain patient safety as a core
operational priority [20].

C.6 Establishing Continuous Clinical Safety Monitoring.

Clinical MLLMs require ongoing post-deployment safety surveillance that extends beyond technical validation.
This involves establishing structured incident reporting pipelines for clinicians, conducting routine safety
audits, and integrating clinician-in-the-loop feedback mechanisms within monitoring platforms. Borrowing
from pharmacovigilance, continuous surveillance should track not only model drift but also real-world safety
outcomes such as misdiagnoses, inappropriate recommendations, or workflow disruptions. Automated safety
dashboards, coupled with human oversight, provide rapid detection and remediation of risks. Such an approach
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ensures that clinical MLLMs evolve responsibly over time while minimizing patient harm and aligning with
emerging global regulatory expectations [3, 14].
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