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M?FTrans: Modality-Masked Fusion Transformer
for Incomplete Multi-Modality Brain
Tumor Segmentation

Junjie Shi®, Li Yu
Kwang-Ting Cheng

Abstract—Brain tumor segmentation is a fundamen-
tal task and existing approaches usually rely on multi-
modality magnetic resonance imaging (MRI) images for
accurate segmentation. However, the common problem of
missing/incomplete modalities in clinical practice would
severely degrade their segmentation performance, and ex-
isting fusion strategies for incomplete multi-modality brain
tumor segmentation are far from ideal. In this work, we
propose a novel framework named M2FTrans to explore and
fuse cross-modality features through modality-masked fu-
sion transformers under various incomplete multi-modality
settings. Considering vanilla self-attention is sensitive to
missing tokens/inputs, both learnable fusion tokens and
masked self-attention are introduced to stably build long-
range dependency across modalities while being more flex-
ible to learn from incomplete modalities. In addition, to
avoid being biased toward certain dominant modalities,
modality-specific features are further re-weighted through
spatial weight attention and channel-wise fusion trans-
formers for feature redundancy reduction and modality re-
balancing. In this way, the fusion strategy in M2>FTrans is
more robust to missing modalities. Experimental results
on the widely-used BraTS2018, BraTS2020, and BraTS2021
datasets demonstrate the effectiveness of M2FTrans, out-
performing the state-of-the-art approaches with large mar-
gins under various incomplete modalities for brain tumor
segmentation.

Index Terms—Incomplete multi-modality segmentation,
transformer, fusion token, masked self-attention.
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[. INTRODUCTION

CCURATE brain tumor segmentation is crucial for quanti-
A tative assessment of tumor progression and surgery treat-
ment planning. Magnetic resonance imaging (MRI) provides
various tissue contrast views and spatial resolutions for brain ex-
amination, making it possible to quantitatively categorize brain
tumor regions into heterogeneous subregions by comparing MRI
modalities with different contrast levels (i.e., T1, Tlc, T2, and
Flair) [1], [2], [3], [4], [5]. Thus, multi-modality MRI imaging
becomes a standard routine as different modalities complement
each other in understanding brain structure and physiopathology.
However, in clinical practice, MRI sequences may be incomplete
due to image degradation, patient motion-related artifacts, incor-
rect acquisition settings, short scan times, etc. Insufficient brain
information will be the bottleneck of brain tumor segmentation.
How to reconstruct complete brain information given incomplete
modalities is of great clinical value, which is formulated as
incomplete multi-modality brain tumor segmentation.

Existing approaches mainly differ in fusion strategies as il-
lustrated in Fig. 1. One typical way is to calculate the mean
and variance of each accessible modality and fuse the corre-
sponding features with equal importance, which may fail to
effectively aggregate features with missing modalities. Another
solution is to directly fuse modality features through convolution
followed by a modality re-weighting mechanism based on the
relative weights across modalities or between tumor regions
and different modalities, but such a convolution-based fusion
strategy may be insufficient to incorporate global information.
It is due to the inductive bias of locality and weight sharing
of convolutional operations. Comparatively, transformer, as a
sequence-to-sequence framework, builds pair-wise dependency
for each pair of tokens/patches. By dividing an input image into
patches/tokens, the features of each patch can be re-weighted and
refined based on the interactions with all other patches through
transformers. In this way, global information and long-range
dependency are well captured. Therefore, introducing a trans-
former [6], [7] module to complement global information is a
straightforward solution, but it struggles to minimize the impact
of missing values brought by incomplete modalities in attention
calculation. How to construct a more compatible transformer-
style fusion strategy under the existence of incomplete/missing
modalities is demanding yet under-explored.

Inspired by the class tokens in vision transformers (ViT) [7]
and masked attention [8], we propose M2FTrans to exploit
transformers for feature fusion under incomplete multi-modal
settings. Specifically, M2FTrans first consists of four encoders
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Fig. 1. Representative fusion strategies for incomplete multi-modality brain tumor segmentation. Given modality-specific features from different

modalities, HeMIS [27] shares statistical indicators but is less effective, RFNet [30] adopts convolution but suffers from insufficient global information,
mmFormer [9] introduces vanilla self-attention to enrich global information but struggles to well deal with missing modalities, and our M?FTrans
introduces learnable fusion tokens and calculate masked self-attention for better cross-modality interaction and is more robust to missing modalities.
Here, PoE is short for Products of Experts developed in HeMIS-like approaches, corresponding to the Abstraction Layer in the original HeMIS.

and one shared decoder to extract modality-specific features
from the four modalities separately. To minimize the negative
influence of missing modalities, instead of direct inter-modality
feature fusion through cross-attention like mmFormer [9], we
introduce learnable fusion tokens to a modality-masked fu-
sion transformer (MMFT) to adaptively incorporate accessible
cross-modality features. As modalities contribute differently
to tumor regions, both spatial weight attention (SWA) and
channel-wise fusion transformers (CFT) are jointly adopted
to re-weight modalities during fusion from different perspec-
tives. In this way, fusion features are less likely to be domi-
nated by certain modalities, being more robust to various in-
complete multi-modality scenarios especially when dominant
modalities are missing. Experimental results on the widely-used
BraTS2018 and BraTS2020 datasets demonstrate the superiority
of M?FTrans against the state-of-the-art approaches for brain
tumor segmentation under various settings (i.e., complete and in-
complete modalities). The main contributions are summarized as
follows:

e A transformer-style fusion strategy to deal with incom-
plete multi-modality scenarios for brain tumor segmenta-
tion with richer global information.

® Modality-masked fusion transformers with learnable fu-
sion tokens for effective feature fusion while minimizing
the negative influence of missing modalities.

e Spatial weight attention and channel-wise fusion trans-
formers to adaptively re-weight modalities to avoid dom-
inant modalities given the incomplete/missing modality
problem.

The rest of this article is organized as follows. Section II
reviews related works on brain tumor segmentation with incom-
plete/missing modalities and Section III describes the proposed
M?2FTrans in detail. We present a thorough evaluation against
the state-of-the-art methods in Section IV and ablation studies
in Section V. Section VI concludes this article.

Il. RELATED WORK

A. Multi-Modality Brain Tumor Segmentation

Brain tumor segmentation is a fundamental task in medical
image analysis, and related works can be roughly categorized as
follows:

1) Complete Multi-Modality: Brain tumor segmentation with
complete/full modalities follows the same pipeline of medical
image segmentation, where both convolutional neural networks
(CNN) [11, [21], [4], [10], [11], [12], [13] and transformers [3],
[14], [15], [16], [17] have been extensively studied. More re-
cently, SF-Net [37] introduced pixel-level image fusion as an
auxiliary task to regularize feature learning while both deep
semantics and edge information are jointly fused in [38]. Seg-
TransVAE [39] exploited transformers with a variational au-
toencoder (VAE) branch to reconstruct the input images jointly
with segmentation. TbraTS [40] quantified the voxel-wise un-
certainty for brain tumor segmentation by introducing the confi-
dence level for image segmentation to disease diagnosis. UMM-
Net [41] developed an uncertainty-aware multi-dimensional mu-
tual learning framework to learn different dimensional networks
simultaneously, providing useful soft labels as supervision to the
others for improving model generalizability. The main challenge
is how to balance modalities rather than being biased toward
certain modalities. As these frameworks are trained by full
modalities, they would encounter severe performance degrada-
tion when dealing with incomplete/missing modalities, making
them less attractive in clinical practice.

2) Incomplete  Multi-Modality: Solutions  to  missing/
incomplete modalities include knowledge distillation (KD) [18],
[19], [20], [21], [22], [23], generative adversarial networks
(GAN) [24], [25], [26], and shared representation learning [9],
[27], [28], [29], [30]. In terms of KD-based approaches,
ACN [21] and SMU-Net [23] are the most representative ones,
where ACN trained a teacher-student framework for each
missing situation and SMU-Net proposed a style matching
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mechanism to reconstruct missing information from the
full-modality network. Both of the two approaches are of
high complexity, as they trained a separate model for each
multi-modality setting (i.e., 15 models in total) to deal
with missing modalities. Despite the efficiency, KD-based
approaches may encounter instabilities in training during
knowledge transfer. RA-HVED [24] is the most recent
GAN-based approach using a region-of-interest attentive
discriminator to learn segmentation-relevant shared latent
representations. One limitation of GAN-based approaches
lies in unstable training, often resulting in less competitive
performance.

Given the limitations of knowledge distillation and generative
adversarial learning in feature fusion especially when dominant
modalities are missing, shared representation learning, to com-
plement missing information by sharing a spatial mapping across
modalities, becomes mainstream in incomplete multi-modality
brain tumor segmentation. Specifically, HeMIS [27] computed
variance statistics (i.e., mean and variance) to construct a uni-
form representation for segmentation, and U-HVED [28] em-
ployed a multi-modal variational auto-encoder (MVAE) [31]
to embed all observed modalities. RobustMseg [29] performed
fusion by feature disentanglement and modality re-weighting
via a gating strategy, and RFNet [30] performed region-aware
fusion using attention gating modules by exploring each modal-
ity’s contribution to different tumor regions. Unfortunately, all
these approaches fail to build global/remote dependencies across
modalities. In addition, MAML [42] used multiple U-Net ar-
chitectures with the same structure to extract the features of
different modalities, and in the final stage fused the extracted
modality-specific features by convolutional weighting. It further
introduced a modality-aware mutual learning strategy to make
its architecture robust to incomplete/missing modality scenarios.
U-Net-MFI [43] introduced graph convolution networks for
incomplete brain tumor segmentation. It treated modalities as
graph nodes and indicated the presence or absence of each
modality through the introduced multi-modal code, which in
turn guided the model to adaptively fuse complementary modal-
ities” features in different incomplete/missing modality scenar-
ios. M?AE [45] designed a two-stage architecture including
self-supervised pre-training and self-distillation to reduce the
parameters of convolutional neural networks for brain tumor
segmentation against missing modalities. mmFormer [9] is the
first work to introduce transformers to exploit both intra- and
inter-modality dependence for feature fusion. However, adopt-
ing vanilla mutual attention computation in mmFormer would
encounter difficulties with missing modality features.

B. Masked Attention in Transformers

Despite the remarkable success of pair-wise self-attention
in transformers, its computation-extensive nature, and alterna-
tive solutions using masked attention have been proposed to
make self-attention more focused on specific regions/features.
Mask2Former [8] effectively constrains cross-attention to local-
ized regions, thereby enabling the Transformer to efficiently pro-
cess high-dimensional output. Zorro [32] approach has demon-
strated impressive performance in audio classification tasks by
employing a meticulously designed mask transformer. They
strategically divide the information flow into uni-modal and
multi-modal streams, subsequently generating corresponding
outputs through comparative analysis and supervised guidance.
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Fig. 2. Overview of M?FTrans with incomplete modalities for brain
tumor segmentation. The encoders Eri., Er1, and Epo share the
same architectures with Ep; ;.

The idea of these methods motivates us to design a missing-
modality-based mask transformer to achieve robust multi-modal
feature fusion for brain tumor segmentation tasks with incom-
plete modalities.

[ll. METHODOLOGY

The complete framework of M?FTrans is presented in Fig. 2.
The key idea is to re-weight independent modalities from both
the spatial and channel dimensions, realized by spatial weight at-
tention (SWA) and channel-wise fusion transformers (CFT), and
introduce learnable fusion tokens for cross-modality interaction
realized by modality-masked fusion transformers (MMFT). In
the following, we detail each component of M?FTrans.

A. Modality-Specific Feature Extraction

Let M={Flair, Tlc, T1, T2} denote the complete set of
modalities. Given any 3D input modality path z,,, of each modal-
ity m € M and the ground-true annotation y, an independent
modality-specific encoder E,, following 3D U-Net is trained to
extract modality-specific features F),, € R*hxwxd,

In typical multi-modality frameworks, features of different
modalities are directly fused and fed to a decoder for seg-
mentation. The decoder tends to select the most discriminative
modality as the main modality for brain tumor segmentation,
which would suffer from severe performance degradation espe-
cially when the main modality is missing. To avoid modality
bias and balance different modalities, a shared decoder D). is
introduced for regularization as illustrated in Fig. 2. In this way,
modality-specific features are projected to a shared latent space,
and each modality is trained separately for segmentation so as
to reduce the negative influence of missing modalities. The four
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Attention mechanisms in M2FTrans for modality fusion and re-weighting, including modality-masked fusion transformers for cross-modality

feature fusion of accessible modalities, spatial weight attention for re-weighting modality-specific features, and channel-wise fusion transformers for
cross-modality feature fusion along the channel dimension among accessible modalities.

encoders and the shared decoder are trained by

Ereg = Z EDz'ce(Dreg(Em(xm))yy)

meM
+LWCE(Dreg(Em(xm))ay); (1)

where L p;.. and Ly ¢ g denote the Dice loss and the weighted
cross-entropy loss respectively.

B. Modality-Masked Fusion Transformer

Despite the effectiveness of transformers in capturing long-
range dependency for inter-modality feature exploration, di-
rectly concatenating and projecting the features of different
modalities into queries (@), keys (K), and values (V') for self-
attention calculation is quite sensitive to missing modalities [7],
[9]. Inspired by the learnable class tokens in ViT [7] to generate
output embedding vectors by interacting with input tokens for
classification, we introduce learnable fusion tokens for inter-
modality feature fusion and propose a modality-masked fusion
transformer (MMFT) to deal with missing modalities as shown
in Fig. 3.

Given the modality-specific features F},, € Re*"*®*d of each
modality m € M produced by the corresponding encoder E,,,,
we reshape it into F},, € RV*¢ where N = h x w x d, and in-
troduce learnable fusion tokens F'rygion € RN*¢ Then, F,, and
Ftysion are concatenated into F,, 4 € R5N e After combined
with learnable positional embeddings PE € R5V*¢, the feature
embeddings 7, written as

Zo = Fruei + PE, @)

would be fed to MMFT.

The core component of MMFT is modality-masked atten-
tion to make modality-specific tokens focus only on interact-
ing within each modality and the fusion tokens interact with

all accessible modality-specific tokens through self-attention
for inter-modality feature fusion. Specifically, given Zj, it is
projected to @), K, and V following vanilla self-attention. To
deal with missing modalities, we build a binary attention mask
M € {0,1} V5N corresponding to the pair-wise dependen-
cies across tokens in Zj. Given any position (¢, j) in M, M, ; is
to determine whether filter out the relationship between ¢; € @
and k; € K is determined according to:

e If g; and k; belong to the same existing modality, M; ;=1
is set to refine the modality-specific features.

e If g; belongs to the fusion tokens F'tysion and k; comes
from an existing/accessible modality, M, ; = 1 is set to
fuse modality-specific features by cross-attention.

e Ifeither g; or k; comes from missing modalities, M; ; = 0
is set to avoid building impossible inter-modality depen-
dency.

According to M;_;, modality-masked attention (MA) is writ-
ten as

i(kj r
M jexp (q o ) 5
Z i exp —qi(kj’)T ’
WM =1 \/c/iH

where H is the number of heads in multi-head modality-
masked attention (MHMA) implemented by concatenation just
like vanilla self-attention in ViT [7]. Through a feed-forward
network (FFN), the original feature embeddings Z after one
MMEFT layer are written as

MA(Q, K,i,j) =

Zy < MA(Q, K) -V,
Zy <+ FEN (LN (Z1)) + Z4, “)
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where LN is layer normalization. Through L; MMFT layers,
the learnable fusion tokens Fyysion € RN>C are updated and

reshaped to F 'fusion € R hxwxd possessing cross-modality in-
formation, and the modality-specific feature tokens F},, € RY*¢

are updated and reshaped to F),, € Re*m*%*d containing more
global features within each modality.

C. Spatial Weight Attention

In modality-masked attention, tokens of different modalities
are treated with equal importance, where each row correspond-
ing to each fusion token of the attention matrix (i.e., the last rows
of the modality-masked attention matrix as illustrated in Fig. 3)
model the relationship/similarity between the fusion token and
tokens from existing modalities. However, modalities, as well
as tokens belonging to the same modality, can contribute dif-
ferently to feature fusion. Including all modality-specific tokens
equally to update the fusion tokens can be counter-productive.
Therefore, it is necessary to re-weight tokens from accessible
modalities for better feature fusion. As discussed in [33], given
a self-attention matrix, the column vectors can somewhat reflect
the importance of individual tokens. Inspired by this, we propose
spatial weight attention for weighted cross-attention between
fusion tokens and modality-specific tokens and gradually exploit
important tokens in each modality along the spatial dimension
as illustrated in Fig. 3.

Specifically, given L modality-masked fusion layers as de-
scribed above, the modality-masked attention matrix of the first
layer is used for token importance modeling. It is based on the
observation that self-attention matrices are more likely to be uni-
form in deep layers [34]. Given the computed modality-masked
attention matrix MA, the weight of each token j is calculated
by summing over the column vectors, namely

5N
Col(j)=>" > MA(i,j).j € [LAN], (5
H i=4N+1

where H is the number of modality-masked attention heads.
After calculating Col € R'*¥ for all modalities, token weights
of each modality m € M are obtained via slicing, i.e., Col,, =
Split(Col) € RN Then, Col,, is reshaped to the same size
as F), to indicate spatial importance I,, € RY*P*w=d ang
modality-specific features E,, are re-weighted and updated to
F,, = Fm ® I, where © is element-wise multiplication. Not-
ing that, for missing modalities, I, is set to zero and spatial
weight attention is applied to the skip connections of all stages
by upsampling.

D. Channel-Wise Fusion Transformer

Though spatial redundancy among tokens is alleviated
through spatial weight attention, there may exist redundancy
along the channel dimension, i.e., across feature maps of each
token. To address this, channel-wise fusion transformers (CFT)
are constructed between fusion tokens and modality-specific
tokens as described in Fig. 3. Specifically, given the enhanced
modality-specific features F),, € R"*w*d of each modality
m € M after both MMFT and SWA, they are first reshaped

along the spatial dimension to Z§* € R and concatenated
as Zy = Concat(Z",m € M) € R**N Then, Zj is projected
into K and V for self-attention calculation. Similarly, the fusion

features Fysion € RO @*d after MMFT are reshaped into

Zo € RN and projected into Q. As attention is channel-wisely
computed and the original spatial information will be lost if
performing a fully connected layer along the spatial dimension
for projection, we adopt convolutional locally-connected projec-
tion grouped by each modality in the channel dimension. The
projection process is formulated as

QR=Y, (Zo) ;
K = Concat <\I/ZL (26”) ,m € M) ,
V' = Concat (@T (26") ,m € M) , (6)

where W (g x,0) 1S expressed as:

lI/oze{q,k,v} () = Pa ('(/}a (Soa ())) ) @)

where ¢, and ¢, correspond to point-wise convolution with a
convolution kernel size of 1 to map each token to a corresponding
feature preview, and 1),, corresponds to depth-wise convolution
with a convolution kernel size of 3 to map each token to a local
interval.

Similar to modality-masked attention, we introduce a binary
attention mask G € {0,1}4¢ along the channel dimension,
when performing channel-wise attention calculation. Given any
position (7, 7), G;, j € G corresponds to the relationship between
¢; and k; in () and K respectively. If k; corresponds to a missing
modality, then G; ; is set to 0. Otherwise, G; ; is set to 1. Based
on this, channel-wise masked attention (CMA) is calculated by

(k)T
G;,jexp (7(1 Eﬁf\,) )

)
Z ex ‘h(kj’)T
319,y =1 P\ TUN

where N = h x w x d. Following CMA, ¥, with the same
structure as W cqq 1,0} 1s adopted for projection, namely

CMA(Q, K, i,j) =

Zo + ¥, (CMA(Q, K) - V) + Zy. )

In terms of feed-forward, we add a convolutional kernel of group
convolution of size 3 between two fully connected layers in the
channel dimension to obtain richer local feature information and
update the original fusion features Z; into Z; through one CFT
layer, namely

7 eﬁﬁﬁ(zo) + 2, (10)

where flE_N/ is the feed-forward network. After Lo CFT layers,
the fusion features F'fysion € R4 are further enhanced

into ﬁfumm € Rexhxwxd haged on the spatially and channel-
wisely re-weighted modality-specific features.

E. Decoding With Deep Supervision

For decoding and segmentation, a five-stage decoder D fy,50n
with a similar structure as D,.., is adopted, consisting of multi-
ple convolutional blocks stacked together. The main difference
between D fyi0n and D,..4 lies in the skip connections where
features from the encoders would go through spatial weight at-
tention and channel-wise masked attention before concatenation
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in D tysion as shown in Fig. 3. Specifically, given the modality-
specific features from encoders, modality-masked fusion trans-
formers (MMFT), spatial weight attention, and channel-wise
fusion transformers are sequentially applied to learn high-quality
fusion features, namely F}usion and F'fysion. Then, the fused
features are concatenated, upsampled, and fed to channel-wise
fusion transformers to interact with the re-weighted skip connec-
tion features from encoders according to spatial weight attention.
Starting from the bottom two layers, the fused features would be
upsampled and concatenated with the re-weighted skip connec-
tion features progressively till the final output layer. D ty,5i0n is
trained by a segmentation loss,

Eseg - ﬁDice (Dfusion (Concat(Em (xm)))a y)

+ L‘WCE (Dfusion (COHC&t(Em (-rm>))a y) . (1 1)

To stabilize the training process and regularize the fusion
features, deep supervision is adopted and trained by

5

Las = Z ‘cDice(UpZ“1 (F}usion)a y)
=1

+‘CWCE(UPQZ’1 (F]l"usion)7y)a (12)
where Ups:-1 represents 2/~! x upsampling and E }usi(m denotes
the fusion features from the [-th stage of D fys;0n.

F. Overall Loss

The overall loss includes the segmentation regularization loss
L4 for modality-specific feature extraction, the deep supervi-
sion loss L4, and the final segmentation loss L4, written as

L= Eseg + ‘Creg + Eds' (13)

[V. EVALUATION

A. Experimental Setup

1) Datasets: Two datasets from the Multimodal Brain Tu-
mor Segmentation Challenge (BRATS) [35] are adopted for
evaluation, namely BRATS2018 and BRATS2020, both of
which contain data from four MRI modalities including Flair,
Tlc, T1, and T2. Following [28], [29], [30], we excised the black
background regions outside the brain and normalized each MRI
modality to zero mean and unit variance. For a fair comparison
on the BRATS2018 dataset consisting of 285 training samples,
we used the same data split lists in [28], [30] and split the data
into 199, 29, and 57 subjects for training, validation, and test
respectively. In terms of the BRATS2020 dataset containing 369
training samples, we split the data into the same 219, 50, and
100 subjects for training, validation, and test respectively by
strictly following [30]. For both datasets, the Dice similarity
coefficient (DSC) and the Hausdorff distance (HD) are utilized
for evaluation.

2) Implementation Details: The framework was imple-
mented in Pytorch and trained using an AdamW [36] optimizer
with an initial learning rate of 2e-4, a weight decay of le-4, and
abatch size of 2 on two 24 G NVIDIA Geforce RTX 3090 GPUs
for 1000 epochs. Specifically, we adopted a warm-up learning
rate adjustment strategy and a poly decay strategy with p = 0.9
during training. Following [28], [29], [30], modality masks were

introduced to discard modalities and simulate various missing-
modality cases. For training, each volume was randomly cropped
to 80x80x 80 pixels and augmented by random rotation, inten-
sity change, and mirror flip.

For the positional embedding in M2FTrans, we follow the use
of learnable positional embeddings in mmFormer’s Inter-modal
Transformers, which are also added for the learnable fusion
tokens just like a larger-size class token in ViT.

B. Comparison With SOTA Approaches

Based on the availability of source codes and data splits,
five state-of-the-art approaches, adopting the same publicly-
available data splits for incomplete multi-modality brain tumor
segmentation, are included for comparison, including CNN-
based (i.e., HeMIS [27], U-HVED [28], RobustMSeg [29], and
RFNet [30]) and transformer-based (i.e., mmFormer [9]).

1) Quantitative Comparison: Quantitative comparison re-
sults under all fifteen multi-modality combinations on the
BraTS2018 dataset are summarized in Table I. Among the
comparison approaches, RFNet achieves the best overall seg-
mentation performance for WT, TC, and ET, outperforming
mmFormer under 40 out of 45 modality settings and achieving
an average increase of 0.66%, 1.48%, and 0.85% in DSC re-
spectively. Comparatively, M?FTrans consistently outperforms
both RFNet and mmFormer under all 45 modality settings for
WT, TC, and ET respectively, leading to an average increase of
0.94%, 1.38%, and 4.58% in DSC compared to RFNet and an
average increase of 1.60%, 2.86%, and 5.43% in DSC compared
to mmFormer.

Similar observations are found on the BraTS2020 dataset as
summarized in Table II. Among the comparison approaches,
RFNet achieves better segmentation performance across all three
tumor types compared to mmFormer, leading to an average
increase of 0.83%, 0.50%, and 0.48% in DSC respectively.
M?2FTrans consistently outperforms other approaches under all
45 modality settings (i.e., 15 for each tumor type) with an average
increase of 1.02%, 1.18%, and 4.98% in DSC compared to
RFNet and 1.85%, 1.68%, and 5.46% against mmFormer for
WT, TC, and ET respectively.

One interesting observation across both datasets is that the
more difficult the tumor type is to segment (e.g., WT < TC<ET),
the more performance gains M?FTrans achieves. It further val-
idates the effectiveness of M2FTrans in exploiting richer cross-
modality information which is more beneficial for challenging
cases. In addition, as summarized in Tables I and I, M2FTrans
achieves statistically significant (i.e. all p-value scores being
lower than 0.05) performance improvements against other ap-
proaches on both datasets, validating its stability under various
modality settings.

In addition to the Dice coefficient, Hausdorff distance is
included for shape evaluation on both datasets as summarized
in Table III. Compared to other approaches, M2FTrans achieves
the best performance on shape preservation, which is crucial in
clinical diagnosis. Statistical analysis indicates that the perfor-
mance improvements of M2FTrans are statistically significant
(i.e., all p-value scores being lower than 0.05).

2) Qualitative Comparison: Qualitative results of mm-
Former, RFNet, and M2FTrans under different modality com-
binations are illustrated in Fig. 4. Given only one modality,
though all three approaches encounter performance degradation,
M?2FTrans achieves better segmentation performance, especially
for ET. It validates the robustness of M2FTrans in exploring
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TABLE |
QUANTITATIVE COMPARISON RESULTS MEASURED IN DSC (%) ON BRATS2018

Flair o o o ° o) o) ° o) ° ° ° ° o °
I o o ° 0 o ° ° o o ° ° o ° °
Type Tle o ° o o ° ° o o o ° ° o ° ° o | Ave | pralue
™ ° o o o ° o o ° ° o o ° ° ° °
FeMIS | 7831 5582 3323 75.16 8062 6328 S04 8030 83.13 8224 8377 8482 85.00 §1.83 8585 | 7698 | <0.001
U-HVED | 80.11 6141 57.03 7730 8292 6682 8259 8206 8542 8407 8564 8619 8737 8336 87.68 | 79.33 | <0.001
wr | RobustMSeg | 8343 7066 6791 8020 8556 7455 8575 8521 8776 8643 8873 826 8833 8596 8865 | 8307 | <0.001
RFNet 84.68 7633 76.16 85.69 86.69 79.54 88.05 86.60 8820 83.35 88.76 89.01 89.19 87.17 89.46 | 85.59 | <0.001
mmFormer | 8428 7524 7336 8501 8610 78.60 87.39 8600 8800 88.11 8851 8849 89.01 8661 89.19 | 8493 | <0.001
M2FTrans | 8692 7778 7721 8715 88.07 8106 8837 8745 89.24 8885 8895 89.39 8978 88.00 89.73 | 86.53 -
FeMIS | 5668 6249 33.18 4625 7495 6628 5190 5873 5021 7360 7531 6034 7L.11 7593 7745 | 6329 | <0.001
U-HVED | 5883 6779 41.68 4366 7626 7077 5188 6089 6089 7523 7630 6226 77.95 7699 7837 | 6532 | <0.001
e | RobustMSe | 6586 7743 5561 5573 8391 8072 6837 7045 7051 8Ll 8226 7239 8270 8402 8318 | 7428 | <0.001
RFNet | 69.60 8188 6592 68.14 8402 8236 7392 7254 73.06 8287 8389 7468 83.69 84.77 8448 | 7773 | 0016

mmFormer | 67.97 7901 6206 6480 8226 8137 7272 7138 7193 8204 8342 7409 8323 8343 84.00 | 7625 | <0.001
M2FTrans | 7237 8260 6624 69.89 8523 8345 7408 7445 7540 8478 8526 7648 8529 8546 85.67 | 79.11 -
HeMIS 3006 5708 660 2063 6396 50.17 1483 2088 3148 6562 6816 2074 6466 6482 6660 | 44.80 | <0.001
U-HVED | 3085 5949 13.18 1340 64.66 64.18 1898 3298 3273 6429 66.56 3184 66.60 6721 6846 | 4636 | <0.001
RobustMSeg | 37.13 6399 2630 2892 6693 6724 3624 4054 4026 6692 67.90 4238 6570 68.87 69.36 | 52.58 | 0.001
RFNet 38.01 7447 3626 3698 7672 7349 39.84 4209 42.85 77.65 7826 4452 7455 7684 76.65 | 5929 | 0.006
mmFormer | 37.19 7537 3245 3159 7447 7630 3876 4026 41.09 7683 7953 4301 77.17 7488 77.69 | 5844 | 0.002
M2FTrans | 4641 7892 3724 3798 8093 80.77 4348 47.23 49.12 8205 8219 49.79 80.56 80.82 80.61 | 63.87 -

The best and second-best results under each modality setting are marked in bold and underlined.

TABLE Il
QUANTITATIVE COMPARISON RESULTS MEASURED IN DSC (%) ON THE BRATS2020 DATASET

ET

Flair o o o ° o) o) ° o ° ° ° ° o °
T o o ° o o ° ° ° o o ° ° o ° ° .
Type Tlc o ° o o ° ° o o o ° ° o ° ° o | Ave | prvalue
T ° o o o ° o o ° ° o o ° ° ° °
HeMIS 7607 5826 5123 7952 8069 6460 8374 7946 84.63 8356 8555 8507 8726 82.35 $8.00 | 78.07 | <0.001

U-HVED 80.02 6231 55.13 79.88 8230 64.74 8305 81.59 86.63 84.73 8580 87.16 87.78 82.77 83.06 | 79.46 | <0.001
RobustMSeg | 83.00 71.61 67.73 8242 86.10 7631 87.19 8564 8834 8775 88.69 89.02 89.28 8649 89.57 | 83.94 | <0.001

wT RFNet 86.55 7674 76.82 8697 88.16 80.50 89.37 87.97 89.63 8943 90.24 9042 90.38 88.54 90.89 | 86.84 | <0.001

mmFormer | 8537 74.86 7491 8627 8735 79.61 8891 87.19 89.04 89.03 89.61 8996 89.82 87.85 9031 | 86.01 | <0.001
M2FTrans | 87.20 78.80 79.15 8870 88.67 8240 90.30 8834 9056 9038 91.00 9091 91.16 89.01 91.36 | 87.86 -

HeMIS 5671 6635 3481 5331 7634 7049 6029 59.60 6382 73.87 7563 6510 77.79 7141 7834 | 6508 | <0.001

U-HVED | 6235 69.70 4357 5192 7868 7350 58.17 6510 6531 7605 7793 6689 80.04 79.68 8049 | 68.62 | <0.001

tc | RobustMSeg | 6387 7795 5329 5728 8355 8151 6701 6965 6935 8193 8247 7064 8317 8438 8339 | 7396 | <0.00I

RFNet 69.85 8172 6478 68.82 8475 8242 7338 7203 7370 8546 84.62 7415 8547 8410 85.09 | 78.02 | 0018

mmFormer | 7021 8074 6424 6780 8430 8200 71.83 72.61 7282 8444 8459 7390 84.63 8428 8449 | 7752 | <0.001
M2FTrans | 7231 81.85 6675 7220 84.62 8370 7444 7356 7542 8554 8582 7614 8527 8490 8543 | 79.20 -

HeMIS 3052 6170 1247 2625 6860 6540 2957 3266 3587 6756 68.16 3673 6821 7001 69.39 | 49.54 | <0.001

U-HVED | 3730 6577 1995 1932 69.56 67.70 28.84 3879 3818 68.03 7021 39.07 7094 70.11 7241 | 51.74 | <0.001

5T | RobustMSeg | 40.14 7416 2542 3267 7480 7398 3861 4221 4241 7562 7699 4510 7339 7468 7442 | 57.64 | <0.001

RFNet 4775  75.65 3485 4040 76.02 78.18 44.62 4782 4796 7517 7842 48.86 7638 7827 76.50 | 61.79 | <0.001
mmFormer 46.12 7645 3478 3839 7529 77.12 41.17 48.07 4798 77.22 77.13 4877 7636 76.69 78.11 | 61.31 | <0.001
MZ2FTrans 51.50 8257 40.87 4339 8235 8381 47.04 4990 5387 83.07 84.12 5333 8123 8236 82.17 | 66.77 -

The best and second-best results under each modality setting are marked in bold and underlined.

Modalities mmFormer RFNet M>FTrans Ground Truth Modalities mmFormer RFNet M?FTrans Ground Truth

Flair

WT: 90.44
TC:86.34
ET:64.55

WT: 91.02 \
TC \
ET:84.29 J

Flair+T1c+T2

WT: 94.79
TC : 95.06
ET:90.36

Flair+T1c+T1+T2 1 2 Flair+T1c+T1+T2 | FlairtT1e+T1+T2
WT: 86.00 ‘ 1 95.32 WT: 96.46

TC:89.18 b \ d 195,78 TC 4 TC : 95.99
ET:8483 o : ET :90.99 % ET:91.76

Lo

BraTS2018 BraTS2020

Fig. 4. Qualitative results of mmFormer [9], RFNet [30], and the proposed M2FTrans on BraTS2018 and BraTS2020. Detailed regions are zoomed
in for better visualization and comparison. In addition, the DSC scores of the three tumor types in each image are provided.
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Flair+T1

Flair+Tlc FlairtT1+Tlc Flair+T1+T2

Flair+T1c+T2 T1c+T1+T2 Flair+T1c+T1+T2 | Ground Truth

BraTS2018

Fig. 5.

TABLE Il
QUANTITATIVE COMPARISON RESULTS MEASURED IN AVERAGE HAUSDORFF
DISTANCE (AvG. HD) oN BRATS2018 AND BRATS2020

BraTS2018 BraTS2020

Type Method Avg.  p-value Avg.  p-value

HeMIS 26.72 <0.001 | 27.32 <0.001

U-HVED 25.10  <0.001 28.00 <0.001

WT RobustMSeg | 11.37  <0.001 13.05 <0.001

RFNet 7.24 <0.001 8.42 <0.001

mmFormer 7.30 0.002 7.71 <0.001
MZ2FTrans 6.38 - 5.68 -

HeMIS 27.99  <0.001 25.27 <0.001

U-HVED 25.18 <0.001 | 23.77 <0.001

TC RobustMSeg | 11.74 <0.001 | 12.70  <0.001

RFNet 8.29 0.004 8.72 <0.001

mmFormer 8.42 <0.001 8.09 <0.001
M2FTrans 6.60 - 6.49 -

HeMIS 1548  <0.001 16.70  <0.001

U-HVED 13.48  <0.001 14.86  <0.001

ET RobustMSeg 8.28 0.012 9.04 <0.001

RFNet 7.13 0.032 6.66 0.006

mmFormer 7.31 0.003 6.11 0.014
MZ2FTrans 5.95 - 5.02 -

The best results are marked in bold.

intra-modality information for segmentation. With the intro-
duction of more modalities, all approaches would benefit from
additional information, among which MZ2FTrans achieves the
best performance with better shape preservation, validating its
effectiveness.

We further visualize the segmentation results of M?FTrans
under all fifteen modality settings as shown in Fig. 5. Given
only one modality, T1c is the most informative modality for the
segmentation of ET, while Flair seems more suitable for WT
and TC. Under two-modality combinations, all segmentation
results have been effectively improved, of which Flair and T1lc
obtain slightly better results. With the introduction of more
modalities, segmentation results become more similar and stable
under various modality combinations. The above results validate
the effectiveness of M?FTrans on cross-modality feature fusion.

Flair+T1

Flair+T14Tlc

Ground Truth

Flair+T1c+T1+T2

BraTS2020

Qualitative segmentation results of M2FTrans on BraTS2018 and BraTS2020 under all fifteen multi-modality settings.

V. ABLATION STUDY
A. On Components of M? FTrans

For a more comprehensive evaluation, we conduct component
-wise ablation studies as summarized in Table IV. Given only
the encoders and decoder without additional regularization, the
segmentation performance across three tumor types is far from
satisfactory, worse than both RFNet and mmFormer accord-
ing to the quantitative results in Table II. Through a shared
decoder for regularization, intra-modality features are learned
independently, which somewhat makes the decoder less biased
to certain dominant modalities and improves the overall seg-
mentation performance. With the introduction of MMFT for
cross-modality feature fusion, significant performance gains are
achieved especially for ET, validating its effectiveness. Coupling
either SWA or CFT with MMFT for modality re-weighting is
helpful, as it would better balance feature fusion in dealing
with missing/incomplete modalities. After all, jointly utilizing
all components achieves the best segmentation performance,
leading to an average increase of 2.49%, 3.53%, and 6.99% in
DSC for WT, TC, and ET respectively compared to the baseline.
According to the component-wise complexity as summarized in
Table IV, the backbone networks contribute most model param-
eters and GFLOPs. Of different components, MMFT owns the
most model parameters and the highest GFLOPs. Therefore,
adopting a lightweight backbone is expected to significantly
improve the model efficiency of M2FTrans, which is not the
main focus of this work and will be explored in future work.

In M2FTrans, spatial weight attention is applied to all skip
connections for re-weighting, while channel-wise fusion trans-
formers are just introduced to the bottom two layers. To figure
out how CFT works on different levels of skip connections, we
conduct additional ablation studies as summarized in Table V.
Compared to the baseline, only applying SWA is slightly helpful,
leading to an average increase of 0.35% in Avg. DSC, while
jointly introducing one CFT to the bottom layer achieves much
better results, leading to an average increase of 0.82% in Avg.
DSC. When applying CFT to the bottom two layers, the overall
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TABLE IV
COMPONENT-WISE ABLATION STUDY OF M2FTRANS ON BRATS2020
Components Avg. DSC (%) Complexity

Reg MMFT CFT SWA WT TC ET Avg. Params ~ GFLOPs

X X X X 85.37 75.67 59.78  73.61 29.00 197.818

v X X X 86.16 77.68 61.85 75.23 +0.00 +0.000

v v X X 87.15 78,50 6424 76.63 | +10.44 +7.851

v v v X 87.38 78.63 6553 77.18 | +13.87  +11.750

v v X v 87.45 7895 6455 7698 | +10.44 +7.856

v v v v 87.86 79.20 66.77 7794 | +13.87 +11.754

Model complexity during inference is evaluated by Params (i.e., the number of parameters measured in millions) and
GFLOPS (i.e., the number of floating-point operations per second measured in billions). For comparison, the increase
in model complexity of each component combination against the baseline is reported separately.

TABLE V
ABLATION STUDY ON WHERE TO USE CFT IN M2FTRANS ON BRATS2020
Avg. DSC (%) Complexity

Stage | SWA g6 BT  Avg | Params  GFLOPs
0 X 87.15 7850 6424 76.63 | 39.44 205.670
0 v 87.45 7895 6455 7698 | +0.00 +0.005
1 v 87.62 7888 6586 7745 | +2.63 +1.151
2 v 87.86 79.20 66.77 7794 | +3.43 +3.903
3 v 87.60 7899 6539 77.33 | +3.69 +11.241
4 v 87.39 7854 66.11 77.35 | +3.79 +33.253
5 v 87.32 78.72 66.14  77.39 +3.83 +106.621

Stage indicates how many stages/skip connections are combined with CFT (from
bottom to top skip connections of the encoders in fig. 2). model complexity during
inference is evaluated by params (i.e., the number of parameters measured in millions)
and GFLOPS (i.e., the number of floating-point operations per second measured in
billions). For comparison, the increase in model complexity of each setting against the
baseline is reported separately.

The best segmentation results under each evaluation metric are marked in bold.

TABLE VI
ABLATION STUDY ON THE NUMBER OF MMFT LAYERS (I.E., L1) IN
M2FTRANS ON BRATS2020

I Avg. DSC (%) Complexity
L ITWT TC ET  Avg. | Params GFLOPs
0 86.16 77.68 61.85 7523 29.00 197.818
1 87.69 79.11 6535 77.38 +9.14 +5.851
2 87.77 7920 6634 77.77 | +11.50 +8.803
3 87.86 79.20 66.77 77.94 | +13.87 +11.754

Model complexity during inference is evaluated by Params (i.e., the number of
parameters measured in millions) and GFLOPS (i.e., the number of floating-
point operations per second measured in billions). For comparison, the increase
in model complexity of each setting against the baseline is reported separately
The best segmentation results under each evaluation metric are marked in bold.

segmentation performance is further improved. However, pro-
gressively adding CFT to more skip connection layers would
degrade the segmentation performance. It is because the features
from the upper layers are less discriminative, making it difficult
to re-weight feature maps along the channel dimension which in
turn affects the fusion features. In terms of model complexity,
SWA would barely bring additional computation burdens. When
introducing CFT to more stages, model parameters would in-
crease relatively slower while the increase of GFLOPs is much
faster as summarized in Table V. This is because computation
on higher-resolution feature maps is far more complicated and
will increase in a non-linear manner when introducing CFT to
more stages.

B. On Hyper-Parameters of M? FTrans

To further evaluate the performance of modality-masked
fusion transformers (MMEFT), we conduct additional ablation
studies by using different numbers of MMFT for comparison

TABLE VII
ABLATION STUDY ON THE NUMBER OF CFT LAYERS (I.E., L2) IN M2FTRANS
ON BRATS2020

I Avg. DSC (%) Complexity
2 TWT TC ET  Avg. | Params GFLOPs
0 | 8745 7895 6455 7698 | 3944  205.674
1 | 8758 79.05 6593 7752 | -0.01 +0.076
2 | 87.86 7920 6677 77.94 | +343  +3.899
3 | 8768 7920 66.10 77.66 | +6.86  +7.721
4 | 87.64 7924 6565 7751 | +10.30  +11.544

Model complexity during inference is evaluated by Params (i.e., the number of
parameters measured in millions) and GFLOPS (i.e., the number of floating-
point operations per second measured in billions). For comparison, the increase
in model complexity of each setting against the baseline is reported separately
The best segmentation results under each evaluation metric are marked in bold.

on the BraTS2020 dataset as summarized in Table VI. Intro-
ducing a one-layer MMFT effectively outperforms the baseline
with a large margin, leading to an average increase of 2.15%
in Avg. DSC. One interesting observation is that introducing
more MMFT layers would not necessarily bring significant
performance gains. It is because training transformers is data-
intensive and stacking more MMFT layers may not be helpful
as deep layers can be uniform as discussed in [34]. In terms
of model complexity, it is a natural observation that using more
MMEFT layers would introduce additional model parameters and
GFLOPs as summarized in Table VI. It should be noted that
compared to the baseline networks, model complexity brought
by MMFT layers is relatively limited.

Another important hyper-parameter is the number of channel-
wise fusion transformers, Lo. To figure out how it matters, we
conduct ablation studies on Lo as summarized in Table VII.
As discussed in Section III.D, the main motivation of CFT is
to reduce additional redundancy along the channel dimension
by re-weighting feature maps. Therefore, gradually introducing
more CFT layers is helpful to learn more compact modality-
specific features for fusion. However, using too many CFT layers
is harmful. It is because adding more CFT layers will continu-
ously re-weight feature maps along the channel dimension and
is more likely to lose spatial information.

Similar to MMFT layers, adopting more CFT layers would
gradually increase both model complexity and GFLOPs as
summarized in Table VII. One interesting observation is that
adopting a one-layer CFT module is even more lightweight
than the baseline. It is because we followed the use of skip
connections in mmFormer for the stages without CFT. The
decrease in Params indicates that using a one-layer CFT module
at the bottom stage needs fewer parameters than mmFormer’s
convolutional skip connection.
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TABLE VIl
QUANTITATIVE COMPARISON WITH DEDICATED APPROACHES ON BRATS2018 MEASURED IN AVG. DSC (%)

Flair O ©) O [ O O ([ ] (@] [ ] [ ] [ ] (] [ ] (@] [ ]
Type T1 O (@) [ ] O O [ J [ ] [ ] O O [ ] ([ ] O [ ] [ Ave.
Tlc O ([ ] O O [ [ O (@] (@] [ ] [ ] O [ ] [ ] [ ]
T2 [ ©) O O [ O ©) [ J [ ] o O [ [ J [ ] [ ]
ACN 854 798 787 873 849 796 86.0 844 869 878 884 874 872 86.6 89.1 | 853
WT SMU-Net 857 803 786 875 8.1 803 873 856 879 884 82 883 882 865 889 | 859
M>FTrans | 835 789 78.0 877 863 825 889 860 887 894 895 892 896 87.1 89.6 | 863
ACN 66.8 833 709 664 832 839 704 728 707 829 833 677 829 832 848 | 76.8
TC SMU-Net 672 8.1 695 718 850 844 712 735 712 841 842 679 825 844 873 | 779
M?FTrans | 70.8 877 71.0 708 882 884 754 746 737 883 885 758 832 88.6 884 | 813
ACN 417 780 418 422 749 753 425 465 443 775 751 428 738 759 782 | 60.7
ET SMU-Net 431 783 428 461 757 751 440 4777 460 773 762 431 754 762 793 | 61.8
M2FTrans | 47.5 79.0 397 328 794 798 410 48.6 484 792 795 49.1 794 79.6 794 | 62.8

M 2 ftrans adopts an input size of 128x128x128 pixels while ACN [21] and SMU-Net [23] use the same input size of 160x192x128 pixels. The best results under

each modality setting are marked in bold.

C. Vs. Dedicated Approaches

In Section IV, we mainly focus on the state-of-the-art single-
model-based approaches for comparison, especially against the
most-advanced approach RFNet [30]. As discussed in Section II,
the most representative KD-based approaches, ACN [21] and
SMU-Net [23], trained a separate model for each modality
setting (i.e., 15 models in total) and achieved good segmentation
performance. For a more comprehensive evaluation, we further
compare M2FTrans against ACN and SMU-Net. It should be
noted that ACN and SMU-Net adopt a much larger input size of
160 x 192 x 128 pixels while M?FTrans uses a smaller input
size of 80 x 80 x 80 pixels in Section IV (the same as RFNet).
For a fair comparison, we increase the input size of M2FTrans to
128 x 128 x 128 pixels (limited by GPU memories) and conduct
a comparison against ACN and SMU-Net. As both data splits
and evaluation methods of ACN and SMU-Net are different from
those in Section IV.A, we strictly follow the data splits and
source code of SMU-Net to re-run M2FTrans for comparison as
summarized in Table VIII. It should be noted that the quantitative
results of both ACN and SMU-Net are from [23].

Despite using a smaller input size (i.e. 128 x 128 x 128 vs.
160 x 192 x 128 pixels), M?FTrans stably outperforms both
ACN and SMU-Net. Specifically, M?FTrans achieves better
segmentation performance under 39 out of 45 modality settings
compared to ACN and under 38 out of 45 modality settings
against SMU-Net, leading to an average increase of 1.0%, 4.5%,
and 2.1% for ACN and 0.4%, 3.4%, and 1.0% for SMU-Net in
the segmentation of WT, TC, and ET respectively. It should be
noted that we can expect more performance improvements given
an even larger input size for M2FTrans. The above comparison
results further validate the effectiveness of M?FTrans in exploit-
ing richer cross-modality features and being robust to various
incomplete multi-modality scenarios.

D. On Model Efficiency

Model efficiency of different approaches is visualized in
Fig. 6. Compared to the best transformer-based method mm-
Former, M2FTrans achieves better performance with fewer
model parameters and similar GFLOPs. Compared to the best
CNN-based approach MAML, M?FTrans is of more model
parameters but lower GFLOPs, due to the inherent property
of transformers involving more model parameters. It should be
noted that model efficiency is not the main focus of M?FTrans
and can be further improved through lightweight designs.

M2FTrans
84
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U-Net-MFI © HeMIS
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78 RFNet ‘
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RobustMseg
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” mmFormer
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© M?FTrans

64
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Method | HeMIS | U-HVED | RobustMSeg | RFNet [ MAML | mmFormer [ RA-HVED | U-Net-MFI [ M*AE | M?FTrans

Params. 1.17 3.79 37.58 8.40 2271 57.61 5.89 3091 4.70 42.87

GFLOPs | 77.88 284.37 846.54 204.57 | 375.92 206.83 32843 999.04 296.11 209.57

Fig. 6. Comparison of different approaches on model efficiency. The
size of each circle indicates the number of model parameters (i.e.,
Params) measured in millions. GFLOPs is the abbreviation of floating-
point operations per second measured in billions.

E. Cross-Training Evaluation

For a more comprehensive evaluation on model generaliz-
ability, we have conducted cross-training validation by directly
applying models trained on BraTS2018 to BraTS2020. As
BraTS2020 is a superset of BraTS2018, all BraTS2018 samples
in BraTS2020 are excluded for generalizability evaluation and
performance comparison as summarized in Table IX. Com-
pared to all comparison approaches, M2FTrans achieves the best
overall performance across all tumor types. More importantly,
compared to previous comparisons conducted on each dataset
separately, the performance gap between M?FTrans and other
approaches becomes more significant on model generalizability,
demonstrating the robustness of M2FTrans on unseen data.

F. Vs. More SOTA Approaches on BraTS2021

For a more comprehensive evaluation, we have conducted
additional experiments on the latest BraT'S2021 dataset and
introduced more SOTA approaches for comparison, including
MAML [42], RA-HVED [44], U-Net-MFI [43], and M3 AE [45]
as summarized in Table X. Among comparison methods, RFNet
achieves the best performance on the segmentation of WT while
MAML outperforms others on the segmentation of TC and ET.
In terms of shape preservation measured in HD as summarized
in Table X, M®AE outperforms other comparison approaches.
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TABLE IX
CROSS VALIDATION OF DIFFERENT APPROACHES WHEN APPLYING THE
MODELS TRAINED ON BRATS2018 DIRECTLY TO BRATS2020

feature extraction of dominant modalities and in turn affect the
performance given more modalities. In addition, as discussed
in Section V.F, model efficiency is not a major concern of
MZ2FTrans, which shall be carefully studied in our future work.

Type Method DSC (%)  p-value | HD (mm) p-value
HeMIS 8189  <0.001 | 2355  <0.001 According to the design of M?FTrans, we believe it is widely
U-HVED 8312 <0001 20.01 <001 extendible to a more general feature fusion task in both com-
wr | RobustMSeg | 8643 <0001 10.04  <0.001 ) k . : X
RFNet 88.63  <0.001 5.90 <0.001 plete and incomplete multi-modality scenarios. For instance,
1‘\“4‘2“11:;"““ 23-3‘3) <0.001 i;i <0.001 M?Z?FTrans can be applied to text-image learning tasks by re-
rans . - - - . . . .
TIeMIS 103 <000l T 3538 <0.001 placing one encoder for text inputs. Qne main cha.llenge is how
U-HVED 7338 <0.001 1947 <0.001 to balance the feature/token dimensions across different types
RobustMSeg | 78.12  <0.001 9.87 <0.001 e : : 2 :
TC RENet 305 <0001 o <0001 of modalities, which will be explored based on M“FTrans in our
mmFormer 82.64  <0.001 630 <0.001 future work.
MZ2FTrans 84.82 - 4.67 -
HeMIS 5967 <0001 | 1608  <0.001
U-HVED 6215  <0.001 1053 <0.001
g | RobustMSeg | 6654 <0.001 689  <0.001 VI. CONCLUSION
RFNet 7213 <0.001 5.10 0.018 L
mmFormer 7115 <0001 592 0,002 In this article, we present a novel framework named M2FTrans
M?FTrans 73.61 - 4.28 - for incomplete multi-modality brain tumor segmentation. For

The best segmentation results under each evaluation metric are marked in bold. Cross—modality feature fllSiOIl, a modality-masked fusion trans-

former is designed to explore long-range dependency across
modalities while minimizing the negative influence of missing
modalities via masked self-attention. To reduce redundancy in
modality-specific features, in addition to the regularization from

TABLE X
QUANTITATIVE COMPARISON RESULTS MEASURED IN DSC (%) AND HD
(MMm) ON BRATS2021

Type Method DSC (%) p-value | HD (mm) p-value a shared decoder, both spatial weight attention and channel-wise
HeMIS 7875 <0001 4 2462 <0.001 fusion transformer are proposed to re-weight each modality and
U-HVED 80.75  <0.001 24.54 <0.001 . . . .
RobustMSeg | 83.64 <0001 | 2217 <0001 its intra-modality features/tokens. In this way, the weights of
RFNet 87.16 <0.001 9.64 <0.001 modalities are more balanced, making MZ2FTrans more robust
WT MAML 8651 <0001 ) 1163 <0.001 to missing/incomplete modalities. Extensive experiments on
mmFormer 87.13 <0.001 7.51 <0.001 . .. 2
RA-HVED 8433 <0001 906 20.001 widely-used datasets demonstrate the superiority of M“FTrans
U-Net-MFI 86.01 <0.001 8.86 <0.001 against the state-of-the-art approaches under various incomplete
M?AE 8640 <0.001 714 <0.001 multi-modality settings.
M>FTrans 88.33 - 6.37 -
HeMIS 66.05  <0.001 23.62 <0.001
U-HVED 7050 <0.001 24.62 <0.001
RobustMSeg | 7425  <0.001 12.54 <0.001 ACKNOWLEDGMENT
RFNet 80.56  <0.001 7.50 <0.001 o )
e MAML 8149  <0.001 7.29 <0.001 The computation is completed in the HPC Platform of
mmFormer 80.90 <0.001 6.84 <0.001 : : :
RAHVED 2460 0,001 930 20001 Huazhong University of Science and Technology.
U-Net-MFI 79.18  <0.001 8.13 <0.001
M3AE 7975 <0.001 6.62 <0.001
M2FTrans 83.20 - 5.38 - REFERENCES
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