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Abstract
Hallucinations in large language models pose a
critical challenge for applications requiring fac-
tual reliability, particularly in high-stakes domains
such as finance. This work presents an effective
approach for detecting and editing factually incor-
rect content in model-generated responses based
on the provided context. Given a user-defined
domain-specific error taxonomy, we construct a
synthetic dataset by inserting tagged errors into
financial question-answering corpora and then
fine-tune four language models, Phi-4, Phi-4-mini,
Qwen3-4B, and Qwen3-14B, to detect and edit
these factual inaccuracies. Our best-performing
model, fine-tuned Phi-4, achieves an 8% improve-
ment in binary F1 score and a 30% gain in over-
all detection performance compared to OpenAI-
o3. Notably, our fine-tuned Phi-4-mini model,
despite having only 4 billion parameters, main-
tains competitive performance with just a 2%
drop in binary detection and a 0.1% decline in
overall detection compared to OpenAI-o3. Our
work provides a practical solution for detecting
and editing factual inconsistencies in financial
text generation while introducing a generalizable
framework that can enhance the trustworthiness
and alignment of large language models across di-
verse applications beyond finance. Our code and
data are available at https://github.com/
pegasi-ai/fine-grained-editting.

1. Introduction
Large Language Models (LLMs) such as GPT-4 and PaLM
have demonstrated impressive capabilities across a wide
range of natural language processing (NLP) tasks. How-
ever, a persistent challenge remains: these models often
generate hallucinations—plausible-sounding but factually
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incorrect content that is not grounded in the provided in-
put or external knowledge sources (Ji et al., 2023; Mishra
et al., 2024). To address hallucination in language models,
Retrieval-Augmented Generation (RAG) (Lewis et al., 2020)
has emerged as a widely adopted framework. By grounding
responses in relevant evidence, RAG reduces—but does not
eliminate—the occurrence of factual errors. Consequently,
it becomes essential to develop methods that can assess the
factual consistency of generated text with respect to the re-
trieved context (i.e., hallucination detection) and propose
appropriate corrections when inconsistencies are found (i.e.,
hallucination editing).

Hallucination detection has been explored through a range
of techniques. One line of work focuses on fine-tuning
encoder-based models, as demonstrated in LUNA (Belyi
et al., 2024) and LettuceDetect (Kovács & Recski, 2025).
Another approach leverages LLM-as-a-judge strategies,
where LLMs are used to directly assess factual consistency,
as in DeepEval (Ip & Vongthongsri, 2025) and Glider (Desh-
pande et al., 2024). More recent methods aim to quantify
the model’s reliance on retrieved evidence, such as RE-
FIND (Lee & Yu, 2025) and ReDeEP (Sun et al., 2024).
Meanwhile, hallucination editing has recently gained at-
tention as a complementary task to hallucination detection.
GENAUDIT (Krishna et al., 2024) identifies unsupported
spans in LLM outputs and suggests evidence-grounded ed-
its, while FAVA (Min et al., 2023) and PFME (Deng et al.,
2024) perform fine-grained correction by leveraging span-
level annotations to classify and revise erroneous content.

In this work, we introduce a novel framework for detecting
and editing factual inaccuracies in model-generated answers
with respect to a retrieved context in financial RAG systems.
To this end, we make the following contributions:

• Domain-specific Error Taxonomy: We define a taxon-
omy of factual error types in the financial domain, in-
formed by linguistic patterns and reasoning errors ob-
served in financial question answering tasks. This tax-
onomy includes categories such as numerical miscalcu-
lations, incorrect entity references, temporal inconsisten-
cies, and relation mismatches.

• Synthetic Dataset Construction: Leveraging this tax-
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onomy, we introduce tagged hallucinations into answers
from FinQA (Chen et al., 2021) and TAT-QA (Zhu et al.,
2021) - two benchmark datasets requiring multi-step nu-
merical reasoning over financial tables and text. Errors are
inserted via controlled perturbations, enabling supervised
training of hallucination-aware models.

• End-to-End Hallucination Editing: Our fine-tuned
small language models (SLMs) perform span-level hal-
lucination detection and correction, identifying incorrect
phrases and replacing them with contextually grounded
edits. This setup enables interpretable and traceable cor-
rections suitable for finance-specific applications.

2. Data Curation
We utilize two publicly available datasets, FinQA and TAT-
QA, both sourced from RagBench (Friel et al., 2024) to train
and evaluate our model. These datasets comprise financial
question-answering tasks that require multi-step numerical
reasoning over textual contexts. Each example includes a
document consisting of retrieved evidence, a question re-
lated to the document, and a corresponding response. We
retained only the examples in which the response contains
information that is grounded in the provided document. To
evaluate the model’s editing capability, we construct training
data comprising a passage with factual errors (obtained from
the original response) and its corrected version as the target
output. We define six types of factual errors - Temporal,
Numerical, Entity, Relation, Contradictory
and Unverifiable - specifically tailored to the kinds of
mistakes that may arise when answering questions based
on earnings calls. Detailed definitions of these error types
are provided in Appendix B. The data curation process
comprises multiple steps to generate the final target output.
Before detailing the procedure, we introduce the input, in-
termediate representations, and final outputs by defining key
terminologies and providing illustrative examples.

Original Passage: The original response from datasets.
Example: The annual interest expense for
entergy louisiana incurred from the
series first mortgage bonds due
September 2018 is $19.5 million.

Tagged Passage: An annotated version of the passage with
structured tags indicating factual errors. Editable errors
(e.g., Temporal, Numerical, Entity, Relation)
are annotated using <mark> and <delete> to highlight
the inserted error and the original span.
Example: The annual interest expense for
entergy louisiana incurred from the
series first mortgage bonds due
<temporal><delete>September 2018
</delete><mark>August 2008</mark>

</temporal> is $19.5 million.
<unverifiable>The bond proceeds were
primarily used to fund confidential
environmental initiatives.</unverifiable>

Erroneous Passage: The corrupted version of the passage,
obtained by removing all tags and retaining the inserted
errors.
Example: The annual interest expense for
entergy louisiana incurred from the
series first mortgage bonds due August
2008 is $19.5 million. The bond
proceeds were primarily used to fund
confidential environmental initiatives.

Target Output: The corrected version of the erroneous
passage with structured tags reintroduced to indicate errors
and provide corrections.
Example: The annual interest expense for
entergy louisiana incurred from the
series first mortgage bonds due
<temporal><mark>September 2018</mark>
<delete>August 2008</delete></temporal>
is $19.5 million. <unverifiable>
The bond proceeds were primarily used
to fund confidential environmental
initiatives.</unverifiable>

With the terminologies defined above, we follow a three-
stage pipeline to curate training data:

1. Error Insertion: We adopt the systematic error insertion
strategies outlined in Appendix C.2 to generate tagged
passage, ensuring controlled and diverse error generation
across different linguistic and factual dimensions.

2. Filtering and correction: Given that model-generated out-
puts are not guaranteed to be fully consistent or valid, we
perform a comprehensive quality check based on four cri-
teria introduced in Appendix C.1: Incorrect Type, Iden-
tical Text, Invalid Format, and Inconsistent Content.
Instances with unfixable issues (e.g., Invalid Format
or Inconsistent Content) are discarded, while fixable
issues (e.g., Incorrect Type or Identical Text) are pro-
grammatically corrected to ensure high-quality training
data.

3. Training Data Preparation: To construct training in-
stances, we need erroneous passage that is within the
structured prompts alongside reference context, and the
corresponding target output consisting of edited ver-
sions of these passages, reflecting corrections to the hal-
lucinated content. Both the erroneous passage and tar-
get output are derived via post-processing of the tagged
passsage, enabling the creation of aligned input-output
pairs for subsequent fine-tuning.
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A diagram representation of the procedures is given in Fig-
ure 1. We constructed two synthetic training datasets for
our experiments. The first dataset consists of 8K examples,
with 3K samples derived from FinQA and 5K from TATQA.
Additionally, we prepared a larger dataset comprising 36K
training examples, including 11K from FinQA and 25K
from TATQA. The distribution of error types in this 36K
dataset is presented in Table 1. We split each dataset into
training and validation sets using a 95:5 ratio. For evalu-
ation, we use a separate test set derived from FAVA and
FinQA+TATQA.

Table 1. Distribution of Error Types across FinQA and TATQA

Percentage (%)

Type FinQA TATQA Total

Hallucinated 69.8% 66.5% 67.5%
Non-hallucinated 30.2% 33.5% 32.5%
Numerical Errors 23.2% 17.9% 20.0%
Temporal Errors 31.9% 30.0% 30.8%
Entity Errors 13.1% 13.9% 13.6%
Relation Errors 7.4% 7.9% 7.7%
Contradictory Statements 16.4% 20.1% 18.6%
Unverifiable Statements 8.0% 10.1% 9.2%

3. Experiments
Following Mishra et al. (2024), we evaluate two key aspects
of factual verification: hallucination detection and hallucina-
tion editing. Specifically, we investigate the effectiveness of
fine-tuned SLMs and benchmark their performance against
LLMs. Towards this, we fine-tuned four SLMs-—Phi-4,
Phi-4 Mini, Qwen3-4B, and Qwen3-14B. The train-
ing details can be seen in Appendix D.

3.1. Experiments for Hallucination Detection

Comparison with baseline models on FAVA. We be-
gin our experiments using the FAVA dataset. This dataset
comprises approximately 35,000 synthetic instances, each
consisting of a pair of hallucinated inputs and their corre-
sponding corrected outputs. The raw data is drawn from
Wikipedia-based open-domain content, spanning topics
such as science, history, politics, and technology. Designed
for factuality verification, the dataset is well-suited for eval-
uating and training models on tasks in general field.

For our baseline models, we selected GPT-4.1-mini and
o3. GPT-4.1-mini is a lightweight variant of OpenAI’s
GPT-4.1 model, offering strong language understanding
with lower computational overhead—making it ideal for
resource-constrained settings. In contrast, o3 (also known
as GPT-4-o or Omni) is OpenAI’s flagship multimodal
model, featuring enhanced reasoning, factual accuracy, and

performance across modalities. It underpins the latest ver-
sions of ChatGPT and API services.

Table 2 presents the F1-scores of various editors across fine-
grained hallucination categories in the factuality detection
task. Phi4* achieves the highest overall performance, sig-
nificantly surpassing other models across all error types.
Notably, it demonstrates exceptional performance in detect-
ing Invented (93.6) and Unverifiable (90.3) hallu-
cinations, yielding the highest overall F1-score (79.8) and
binary detection score (92.1). o3 ranks second, exhibiting
strong performance on Entity hallucinations (67.2) and
binary detection (89.7). These results highlight the efficacy
of small, fine-tuned models such as Phi4* in identifying
hallucinated content across diverse factual error categories,
even outperforming advanced proprietary models like o3.
More results on precision and recall metrics can be found in
Table 9 and Table 10 in Appendix E.1

Table 2. Detection Performance (F1-score) on FAVA

Editor Ent. Rel. Con. Inv. Sub. Unv. Ov. Bi.

GPT-4.1 mini 34.3 39.7 53.1 50.0 71.7 37.1 54.6 82.3
o3 67.2 40.0 65.5 72.5 59.6 69.4 69.8 89.7
Phi4-mini∗ 42.4 37.8 52.5 52.2 61.8 44.8 57.8 88.6
Phi4∗ 54.9 62.9 81.8 93.6 85.1 90.3 79.8 92.1

* are fine-tuned models.
Ent. = Entity, Rel. = Relation, Con. = Contradictory, Inv. =

Invented, Sub. = Subjective, Unv. = Unverifiable, Ov. = Overall,
Bi. = Binary.

Comparison with baseline models on FinQA+TATQA.
Building on our initial analysis using the FAVA dataset, we
shift our focus to evaluating the factual editing capabilities
of SLMs in the financial domain. For this purpose, we use
FinQA and TATQA as our primary training and evaluation
datasets. We conducted experiments using two training
datasets. The first consists of 8k examples, comprising 3k
samples from FinQA and 5k from TATQA. The second
is a larger dataset with 36k examples, including 11k from
FinQA and 25k from TATQA. Additionally, we introduced
two new models—QWEN3-4b and QWEN3-14b—open-
weight dense models from the latest Qwen family. These
models feature enhanced reasoning capabilities, performing
detailed, step-by-step reasoning to tackle complex tasks.

For baseline models, we selected GPT-4.1-mini and o3,
consistent with our earlier experiments. To align with our
predefined error types, we modified the prompt accordingly
to guide the generation process. The prompt used for the
baseline models is given in Appendix E.2.

We report the F1 scores in Table 3. Results of precision and
recall are provided in Table 11 and 12, respectively, in the
Appendix E.1. Phi4-36k* achieves the highest performance
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across most categories, with top F1 scores in Numerical
(86.0), Temporal (93.3), and Entity(92.1), as well as
the best Overall score (93.8) and binary detection score
(97.5). Notably, in the binary detection task, all the 14b
models (including Phi4-36k*, Phi4-8k* and QWEN3-14b-
36k*) outperform o3, while smaller models like Phi4-mini-
36k* and QWEN3-4b-36k* deliver comparable performance.
In addition, results from Phi4-36k* and Phi4-mini-36k* are
generally better than their counterparts with 8k training
datasets, indicating that increasing the amount of training
data consistently improves model performance, suggesting
further gains are achievable with additional data.

Table 3. Detection Performance (F1-score) on FinQA+TATQA
Editor Num. Tem. Ent. Rel. Con. Unv. Ov. Bi.

GPT-4.1 mini 23.5 24.6 19.8 55.2 21.5 42.1 46.0 77.8
o3 52.2 83.8 63.8 46.6 29.4 78.9 71.9 90.3
Phi4-mini-8k∗ 29.1 51.9 42.0 38.6 70.4 76.1 63.9 83.8
Phi4-mini-36k∗ 51.1 66.2 40.0 40.6 84.1 76.2 72.0 88.3
Phi4-8k∗ 71.4 85.7 79.5 80.8 95.0 96.6 89.9 96.7
Phi4-36k∗ 86.0 93.3 92.1 88.1 94.3 94.5 93.8 97.5
QWEN3-4b-36k∗ 48.2 58.8 54.3 50.7 82.6 76.2 72.4 89.7
QWEN3-14b-36k∗ 57.7 72.0 59.7 45.5 86.5 83.7 77.6 91.1

* are fine-tuned models.
Num. = Numerical, Tem. = Temporal, Ent. = Entity, Rel. =
Relation, Con. = Contradictory, Unv. = Unverifiable, Ov. =

Overall, Bi. = Binary.

3.2. Experiments for Hallucination Editing

Hallucination editing enables a more fine-grained evalua-
tion of the factual accuracy of generated text. In this study,
we utilize FActScoreLite (Habibnia, 2024), a stream-
lined and modular reimplementation of the FactScore
metric, specifically designed for detailed factuality as-
sessment in natural language generation. The frame-
work consists of two primary components: (i) the
AtomicFactGenerator, which decomposes long-form
model outputs into discrete atomic factual statements,
and (ii) the FactScorer, which evaluates the factual
correctness of each atomic statement against a refer-
ence document. For our purposes, we employ only the
FactScorer module to assess the factual alignment of
model-generated text with respect to the source content.
While the original implementation of FActScoreLite
supports only gpt-4-turbo-preview as the evaluation
backend, we extend the framework to incorporate additional
model options, including gpt-4-turbo, o3-mini, and
LLaMA-Scout for a more comprehensive evaluation.

Tables 4 and 5 report editing results on the FAVA and
FinQA+TATQA datasets, respectively. “No Edit” denotes
the erroneous passage prior to any correction. On the
FAVA dataset, o3 achieves the highest performance, indi-
cating strong capabilities in hallucination correction, fol-

lowed closely by Phi4*. Interestingly, although Phi4* out-
performs o3 in detection tasks, o3 shows superior perfor-
mance in editing, likely due to better fact-checking abil-
ities despite less consistent formatting compliance. On
FinQA+TATQA, Phi4-36k* slightly outperforms o3 when
scored with gpt-4-turbo, while o3 maintains a consis-
tent lead across the remaining evaluation settings. Another
note is that although GPT-4.1 mini demonstrates sig-
nificant improvement on the FAVA editing task, it shows
minimal improvement on FinQA+TATQA, indicating its rel-
atively limited ability for numerical reasoning compared to
the other models. In contrast, both fine-tuned Phi4-mini
and Phi4 exhibit consistent performance improvements
across both FAVA and FinQA+TATQA, showcasing their
strong proficiency in numerical reasoning tasks.

Table 4. Editing Results on FAVA

Model

Editor gpt-4-turbo o3-mini Llama-scout

No Edit 34.4 34.5 41.2
GPT-4.1 mini 66.9 64.2 69.6
o3 92.6 95.3 89.9
Phi4-mini∗ 68.2 68.2 73.7
Phi4∗ 85.1 81.1 82.4

* are fine-tuned models.

Table 5. Editing Results on FinQA+TATQA

Model

Editor gpt-4-turbo o3-mini Llama-scout

No Edit 40.1 40.4 43.8
GPT-4.1 mini 40.1 41.1 41.8
o3 91.0 94.5 90.4
Phi4-mini-8k∗ 73.6 71.2 69.9
Phi4-mini-36k∗ 78.4 69.2 73.6
Phi4-8k∗ 87.3 82.9 83.2
Phi4-36k∗ 91.4 84.6 86.0
QWEN3-4b-36k∗ 74.0 78.1 74.3
QWEN3-14b-36k∗ 72.9 82.5 76.7

* are fine-tuned models.

4. Conclusion
We present a suite of state-of-the-art SLMs fine-tuned to
detect and correct fine-grained hallucinations based on
grounded context in the financial domain. Experimental
results demonstrate that our models outperform existing ap-
proaches in both detection and editing tasks, particularly
in terms of overall accuracy and binary detection accuracy,
while operating under limited computational resources.
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A. Related Work
Detection and Editing in Context-Grounded LMs. With the growing adoption of Retrieval-Augmented Generation
(RAG) systems, evaluating contextual hallucinations has become increasingly important. Recent advancements in this
area include post-hoc detection methods (Manakul & Gales, 2023), contrastive verification techniques (Min et al., 2023),
fine-grained hallucination detection frameworks (Mishra et al., 2024; Deng et al., 2024), and evidence-grounded editing
approaches (Krishna et al., 2024). Our work builds upon the fine-grained hallucination detection paradigm proposed
by (Mishra et al., 2024), extending it to the financial domain through the introduction of a domain-specific error taxonomy
and an emphasis on practical correction of factual inconsistencies.

Financial Question and Answering. Question answering in the financial domain requires reasoning over both unstructured
text and structured tabular data. Several benchmark datasets have been proposed to support numerical reasoning tasks,
such as FinQA (Chen et al., 2021) and TAT-QA (Zhu et al., 2021). State-of-the-art approaches leverage LLMs that are
instruction-tuned or domain-adapted to financial corpora, such as BloombergGPT (Wu et al., 2023), FinMA (Xie et al.,
2023) and FinGPT (Wang et al., 2023). Program generation technique (Chen et al., 2021) and graph-structured method
(Barry et al., 2025) have also been employed to improve interpretability and robustness in table-based reasoning. In parallel,
multimodal models like Donut (Kim et al., 2021) and LayoutLMv3 (Huang et al., 2022) have been adapted to process
complex financial PDFs that blend text, tables, and charts. Our work aims at investigating contextual hallucinations in RAG
systems and evaluating the effectiveness of SLMs for fine-grained hallucination annotation with minimal editing.

B. Definition of Fine-grained Hallucinations
The design of our error tag taxonomy builds upon the fine-grained hallucination framework introduced by Mishra et al.
(2024), which categorizes hallucinations into six distinct types: Entity, Relation, Contradictory, Invented,
Subjective, and Unverifiable. This classification provides a structured basis for the detection and correction
of factual inconsistencies, contributing to improvements in both model accuracy and response reliability. However, the
taxonomy proposed by Mishra et al. (2024) exhibits limitations, particularly with regard to the categories of Invented,
Subjective and Unverifiable, which are inherently subjective and lack clearly defined linguistic criteria. To address
these shortcomings, we consolidate these three categories into a unified Unverifiable class. In addition, we introduce
two new categories—Temporal and Numerical—to better accommodate the types of errors frequently observed in
financial-domain applications, thus enhancing the domain specificity and practical applicability of the taxonomy. The details
of our definition of error tags are shown in Table 6.

C. Data Curation
C.1. Preliminary Investigation of Models

To evaluate the robustness of different language models in the context of error insertion, we selected a diverse set of candidate
models that represent both proprietary and open-source architectures. Specifically, we include the following:

GPT-family models: gpt-3.5-turbo, gpt-4-turbo, and gpt-4.1-mini, which are proprietary models devel-
oped widely by OpenAI, known for their high performance on a range of natural language understanding tasks.

LLaMA-based models: LLaMA3-70B and LLaMA-4-Maverick, representing both classic and recent advances in
open-weight foundation models. These models are optimized for both capability and computational efficiency.

Gemma family: Gemma2-9B-IT, an instruction-tuned model that balances performance and cost efficiency, featuring a
lightweight architecture optimized for instruction following.

These models were evaluated by prompting them to generate passages containing the error types defined in Table 6, following
a controlled error-insertion setup. During the analysis, we observed a variety of systematic errors, which we categorized into
the following types:

• Incorrect Type: The semantic label assigned to a marked span does not accurately reflect the nature of the content. For
instance, in the example: Total Net Cost in <entity><delete>2018</delete><mark>2017</mark>
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Table 6. Tag Definition

Tag Type Definition

Temporal A temporal error arises when a statement contains incorrect or mis-
matched time-related information, such as dates, timeframes, fiscal years,
or ordering of events.
Example: The total amount outstanding in 2010 2019 is $ 576.2 million
(342.9 + 78.5 + 154.8).

Numerical A numerical error involves incorrect or imprecise quantities, percentages,
ratios, or other numerical values present in financial data or reasoning.
Example: The before tax charge related to adopting Fin No. 47 as of
December 31, 2005, was $25 $19 million.

Entity An entity error occurs when a company, organization, geographic loca-
tion, product name, or financial instrument is incorrectly referenced.
Example: In 2014, the net change in revenue recognition tax positions
was an increase of $17,290.

Relation A relation error refers to a misrepresentation of the relationship between
entities or financial concepts, such as ownership, causality, comparison,
or attribution.
Example: The earnings from service operations decreased increased
from $32.8 million in 2000 to $35.1 million in 2001.

Contradictory A contradictory error exists when a statement conflicts with the informa-
tion in the given context or with another part of the response.
Example: The company was profitable in Q4 2022. (Context: The
company reported a net loss in Q4 2022.)

Unverifiable An unverifiable error includes hallucinated or speculative content that
cannot be confirmed or grounded in the provided context or authoritative
sources. This also includes vague generalizations or invented data.
Example: The company plans to acquire a fintech startup next quarter.

8
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</entity> = <numerical><delete>$3,495 million</delete><mark>$3,395 million
</mark></numerical>, the tag <entity> should have been <temporal> to correctly represent the type
of modification. This type of mislabeling was observed across multiple models and reflects a general weakness in
fine-grained error-type classification.

• Identical Text: In this case, the model incorrectly generates an edit where the marked and deleted spans are identical,
suggesting an unnecessary or meaningless modification. For example: The net income as at June 30, 2019
is <relation><delete>$271,885</delete><mark>$271,885</mark></relation>. This error, al-
though rare, was observed in a generation from gpt-3.5-turbo, and should be considered critical as it undermines
the purpose of controlled error simulation.

• Invalid Format: The structure of the generated tags violates the expected schema, most commonly through illegal nesting
of tags. An illustrative example is: <contradictory>The depreciation and amortization expense
included as a charge to income was the same for the years ended <temporal>
<delete>December 31, 2019</delete><mark>June 30, 2018</mark></temporal> and
2018.</contradictory>. Such structural violations were predominantly observed in outputs from LLaMA-based
models.

• Inconsistent Content: The edited passage is inconsistent with the original input, such that the original cannot be
reconstructed by simply removing the inserted error markers and texts. Consider the following example:

– Original passage: Therefore, 2018 has a higher total value of property and
equipment.

– Tagged passage: Therefore, <contradictory>2019</contradictory> <relation>
<delete>has</delete><mark>does not have</mark></relation> a higher total
value of property and equipment.

Here, the logical relationship between entities is altered beyond the scope of explicit edits, creating an irrecoverable
semantic mismatch.

We further categorize the first two error types, Incorrect Type and Identical Text, as fixable, as they can potentially be
corrected through post-processing or rule-based validation. In contrast, the latter two categories, Invalid Format and
Inconsistent Content, are deemed unfixable, since the inserted error tags introduce structural or semantic inconsistencies
that are difficult to resolve through any automatic post-processing methods. We manually evaluated ten examples and
summarized the errors in the candidate models in Table 7. Among all evaluated models, GPT-3.5-turbo, GPT-4,
and Gemma2-9B-IT produce the fewest unfixable errors, making them suitable candidates for synthetic training data
generation.

Table 7. Investigation of Models on Error Insertion

Fixable Unfixable

Model Inc. Typ. Ide. Tex. Inv. For. Inc. Con. Tot. Unf.

gpt-3.5-turbo 2 1 0 1 1
gpt-4-turbo 2 0 0 1 1
gpt-4.1-mini 1 0 0 3 3
Llama3-70b 0 0 1 2 3
llama-4-maverick 1 0 2 5 7
gemma2-9b-it 1 0 0 1 1

Inc. Typ. = Incorrect Type, Ide. Tex. = Identical Text, Inv. For. = Invalid Format, Inc. Con. = Inconsistent Content, Tot. Unf. = Total
Unfixable.

C.2. Strategies for error insertion

Based on our preliminary investigation, systematic errors during error insertion are inevitable. To generate high-quality
synthetic data for hallucination detection and editing, we adopt the following strategies for controlled error insertion:
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Model Selection for Error Injection. To enrich and diversify error patterns, we employ a range of language mod-
els—GPT-3.5-turbo, GPT-4, and Gemma2-9B-IT—which produce the fewest unfixable errors. This multi-model
approach enables a more robust assessment of error type manifestations, minimizing dependence on model-specific biases.

Controlled and Systematic Variation of Error Types. Error injection is guided by a dynamic control mechanism that
scales the number of inserted errors in proportion to the token length of each passage, ensuring balanced perturbation across
both short and long texts. During generation, error types are stochastically sampled from a predefined taxonomy to avoid
over-representation of specific categories. This approach promotes a diverse and representative error distribution, enhancing
the effectiveness of downstream training and evaluation.

Prompt Diversification with Few-shot Demonstrations. To mitigate prompt overfitting and encourage lexical and
structural diversity, we present the model with varied few-shot exemplars labeled by error type. These exemplars reflect
realistic, domain-specific scenarios (e.g., in finance) and guide the model toward generating plausible yet systematically
flawed responses. This strategy improves the generalizability of error patterns while preserving alignment with predefined
error taxonomies.

C.3. Synthetic Data Generation

Figure 1 shows the three steps for synthetic data generation.

Step 1: Error Insertion

Determine Number of Error
Types Based on Text Length

and Stochastically Select Error
Types from Predefined List

Prompt LM to Insert Errors One
by One

Step 2: Filtering and Correction

Filter Out Unfixable Errors (e.g.
Invalid Format and Inconsistent

Content)

Correct Fixable Errors (e.g.
Incorrect Type and Identical

Text)

Step 3: Training Data Preparation

Remove Tags and Delete
Portions to Create Erroneous

Passage

Reverse Delete and Mark
Portions to Create Target

Output

Figure 1. Overview of high-quality synthetic data generation process.

D. Model
We fine-tuned four SLMs—Phi-4, Phi-4 Mini, Qwen3-4B, and Qwen3-14B—using LoRA with rank 16, targeting
both attention and MLP projection layers (q proj, k proj, v proj, o proj, gate proj, up proj, down proj).
We set lora alpha to 16 and disabled dropout to ensure training stability. For Phi-4, Qwen3-4B, and Qwen3-14B,
we employed the Unsloth framework (Daniel Han & team, 2023) for efficient 4-bit fine-tuning with a context window of
8192 tokens and enabled gradient checkpointing to reduce memory usage. Since Unsloth does not support Phi-4 Mini,
we resort to the Hugging Face ecosystem (Microsoft, 2025) with matched hyperparameters. All models were fine-tuned
using SFTTrainer with mixed-precision training and linear learning rate scheduling. Training was conducted over two
epochs with periodic evaluation. Full training details are summarized in Table 8.

We trained the models on two datasets: (1) the publicly available FAVA dataset, which contains 30k annotated examples
of erroneous passages with corresponding tagged corrections, and (2) our own composite dataset derived from FinQA
and TATQA, reformulated for an error-tagging task to improve factual consistency and editing capabilities. Each sample
included supporting references (e.g., table entries and/or factual statements) and an erroneous passage that may contain
factual inaccuracies. The target output was a minimally revised version of the passage, with errors explicitly identified
and corrected. This setup trains the models to detect factual inconsistencies and perform token-level, context-aware edits
grounded in supporting evidence. For inference, we followed the same data curation procedure to generate the erroneous
passage and target output. The erroneous passage was integrated with supporting references to construct a structured
prompt, while the target output was reserved for evaluation.
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All training experiments were conducted using an NVIDIA A100 GPU with 40 GB of memory, accessed through Google
Colab. The training hyperparametes are shown in Table 8.

Table 8. Training hyperparameters.

Precision Max. Seq. Len. Epochs Optim. LR Weight Decay Warmup Ratio

bf16 8192 2 adamw 8bit 2e-5 0.01 0.03

E. Detection Task
E.1. More Results of Hallucination Detection

Overall Precision and Recall on FAVA. Table 9 and Table 10 present the precision and recall metrics on FAVA datasets
across the models. Consistent with F1-score results, Phi4* achieves the highest scores on both metrics, while o3 ranks
second overall. For binary detection, recall is consistently higher than precision across all models, suggesting a tendency
to over-edit—even when the input is factually correct. Additionally, Phi4* exhibits an interesting trade-off: it has lower
precision than recall for Entity errors but higher precision than recall for Relation errors. This discrepancy may stem from
the ambiguous boundary between entity and relation hallucination categories.

Table 9. Detection Performance (Precision) on FAVA

Editor Ent. Rel. Con. Inv. Sub. Unv. Ov. Bi.

GPT-4.1 mini 22.9 34.8 48.6 67.9 82.5 92.9 48.7 69.9
o3 64.6 53.3 69.2 76.7 47.2 63.2 66.4 81.3
Phi4-mini-8k∗ 38.9 31.2 51.7 54.5 58.6 43.3 53.9 81.5
Phi4-8k∗ 41.7 71.8 86.5 95.7 87.8 89.5 75.7 86.1

* are fine-tuned models.
Ent. = Entity, Rel. = Relation, Con. = Contradictory, Inv. = Invented, Sub. = Subjective, Unv. = Unverifiable, Ov. = Overall, Bi. = Binary.

Table 10. Detection Performance (Recall) on FAVA

Editor Ent. Rel. Con. Inv. Sub. Unv. Ov. Bi.

GPT-4.1 mini 68.3 46.0 58.6 39.6 63.5 23.2 62.0 1.0
o3 70.0 32.0 62.1 68.8 80.8 76.8 73.6 1.0
Phi4-mini-8k∗ 46.7 48.0 53.4 50.0 65.4 46.4 62.3 97.0
Phi4-8k∗ 80.0 56.0 77.6 91.7 82.7 91.1 84.4 99.0

* are fine-tuned models.
Ent. = Entity, Rel. = Relation, Con. = Contradictory, Inv. = Invented, Sub. = Subjective, Unv. = Unverifiable, Ov. = Overall, Bi. = Binary.

Overall Precision and Recall on FinQA+TATQA. The precision and recall metrics across models are given in Table 11
and Table 12, respectively. We observe that both Phi4-mini-8k* and Phi4-mini-36k* perform poorly in numerical error
detection. In contrast, their larger counterparts—Phi4-8k* and Phi4-36k*—demonstrate substantial improvements. For
instance, precision increases from 29.3 to 92.1 when switching from Phi4-mini-8k* to Phi4-8k*. However, we also note that
recall scores for the Phi-4 models tend to lag behind their precision scores, indicating that while they are highly accurate
when predicting numerical errors, they may still miss a notable proportion of such cases.

E.2. Prompt for Baseline Models

Below is the prompt for detecting and editing hallucinations given the reference and passage as input arguments. This
prompt is used for the evaluation of FinQA+TATQA datasets across all the baseline models.

11



Submission and Formatting Instructions for ICML 2025 Workshop on Assessing World Models

Table 11. Detection Performance (Precision) on FinQA+TATQA

Editor Num. Temp. Ent. Rel. Con. Unv. Ov. Bi.

GPT-4.1 mini 14.4 21.7 17.8 57.1 53.8 92.3 37.9 64.3
o3 37.2 89.9 66.7 39.5 66.7 93.8 68.5 86.5
Phi4-mini-8k∗ 29.3 51.2 37.8 40.7 70.0 74.5 63.3 84.1
Phi4-mini-36k∗ 46.6 76.2 37.5 38.2 78.4 82.1 71.3 87.6
Phi4-8k∗ 92.1 88.5 73.8 95.5 93.0 97.7 93.0 98.3
Phi4-36k∗ 94.2 95.1 89.7 89.7 93.0 93.4 95.0 98.3
QWEN3-4b-36k∗ 50.0 62.7 47.8 42.9 79.2 82.1 72.1 91.5
QWEN3-14b-36k∗ 62.7 67.0 56.1 41.7 84.7 87.8 76.4 90.3

* are fine-tuned models.
Num. = Numerical, Tem. = Temporal, Ent. = Entity, Rel. = Relation, Con. = Contradictory, Unv. = Unverifiable, Ov. = Overall, Bi. =

Binary.

Table 12. Detection Performance (Recall) on FinQA+TATQA

Editor Num. Temp. Ent. Rel. Con. Unv. Ov. Bi.

GPT-4.1 mini 63.3 28.4 22.2 53.3 13.5 27.3 58.4 98.4
o3 87.1 78.5 61.1 56.7 18.9 68.2 75.6 94.5
Phi4-mini-8k∗ 28.8 52.5 47.2 36.7 71.0 77.8 64.4 83.6
Phi4-mini-36k∗ 56.7 58.5 42.9 43.3 90.6 71.1 72.7 89.1
Phi4-8k∗ 58.3 83.1 86.1 70.0 97.1 95.6 86.9 95.1
Phi4-36k∗ 79.0 91.7 94.6 86.7 95.7 95.6 92.7 96.7
QWEN3-4b-36k∗ 46.6 55.3 62.9 62.1 86.4 71.1 72.7 88.0
QWEN3-14b-36k∗ 53.3 77.8 63.9 50.0 88.4 80.0 79.0 91.8

* are fine-tuned models.
Num. = Numerical, Tem. = Temporal, Ent. = Entity, Rel. = Relation, Con. = Contradictory, Unv. = Unverifiable, Ov. = Overall, Bi. =

Binary.
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Prompt for Baseline Models

Given a passage with factual errors, identify any <numerical>, <temporal>,
<entity>, <relation>, <contradictory>, or <unverifiable> errors in the passage
and add edits for <numerical>, <temporal>, <entity> and <relation> errors by
inserting additional <mark></mark> or <delete></delete> tags to mark and
delete. If there are no errors, return the passage with no tags. Any changes
to the original passage should be marked in <> tags. Below are the error
definitions followed by examples of what you need to follow.

Definitions:

1. numerical errors (<numerical>): an incorrect calculation, estimation, or
interpretation of numerical data such as percentages, growth rates, totals,
differences, or ratios. These errors can arise from misapplying formulas,
misreading data, rounding incorrectly, or failing to consider time periods or
units.
2. temporal errors (<temporal>): incorrect reference or use of figures from
the wrong time period. These errors typically arise from misinterpreting the
reference’s temporal context, such as year-over-year comparisons or quarter-
specific data.
3. entity errors (<entity>): a small part of a sentence, often an entity
(e.g., location name), is incorrect (usually 1-3 words). Entity errors often
involve noun phrases or nouns.
4. relational error (<relation>): a sentence is partially incorrect as a small
part (usually 1 - 3 words). Relational errors often involve verbs and are
often the opposite of what it should be.
5. contradictory sentence error (<contradictory>): a sentence where the entire
sentence is contradicted by the given reference, meaning the sentence can be
proven false due to a contradiction with information in the reference provided.
6. unverifiable sentence (<unverifiable>): a sentence where the whole sentence
or phrase is unlikely to be factually grounded although it can be true, and
the sentence cannot be confirmed nor denied using the reference given or
internet search, it is often something personal or private and hence cannot
be confirmed.

Follow the given example exactly, your task is to create the edited completion
with error tags <>:

Passage: Acme Corp’s revenue reached $1.4 billion in Q4 2023, a 18% increase
compared to the same quarter in 2021.The company posted a net income of $450
million, up from $390 million the year before. Acme attributed the improved
financial performance to strong demand for its AI division and successful
restructuring efforts carried out earlier in the year.

Reference: In Q4 2023, Acme Corp reported a revenue of $2.4 billion, marking a
12% increase from Q4 2022. Net income for the quarter stood at $450 million,
up from $390 million in the previous year. The company attributed this growth
to increased demand in its cloud services division and operational
efficiencies gained through restructuring efforts implemented in early 2023.

Edited: Acme Corp’s revenue reached <numerical><delete>$1.4</delete><mark>
$2.4</mark></numerical> billion in Q4 2023, a <numerical><delete>18%</delete>
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<mark>12%</mark></numerical> increase compared to the same quarter in
<temporal><delete>2021</delete><mark>2022</mark></temporal>. The company
posted a net income of $450 million, up from $390 million the year before.
Acme attributed the improved financial performance to strong demand for its
<entity><delete>AI division</delete><mark>cloud services</mark></entity> and
successful restructuring efforts carried out earlier in the year.
<unverifiable>The restructuring was merely a PR move and had no financial
impact.</unverifiable>

Now detect errors and include edits in the following passage like done in the
example above. Include error tags <> for ANYTHING YOU CHANGE IN THE ORIGINAL
PASSAGE.

Passage: [PASSAGE_TO_VERIFY]
Reference: [REFERENCE]

Return valid JSON in the following format:
{Edited: paragraph with inserted errors}

F. Limitations
Our experiments on hallucination detection and editing using SLMs demonstrate notable improvements over LLMs, while
also revealing certain limitations. First, our current evaluation relies solely on language model-generated synthetic data;
future work will extend this framework to real-world use cases to assess its practical applicability. Second, despite
the observed performance gains, the underlying mechanisms that enable our framework to outperform baselines remain
insufficiently understood. To address this, we plan to investigate the internal behavior of the system and provide mechanistic
interpretability of the fine-tuned models in comparison to the baselines—an essential step for deployment in high-stakes,
regulated domains.
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