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Abstract

Use of synthetic data is rapidly emerging as
a realistic alternative to manually annotating
real data for industry-scale model building.
Manual data annotation is slow, expensive and
not preferred for meeting customer privacy ex-
pectations. Further, commercial natural lan-
guage applications are required to support con-
tinuously evolving features as well as newly
added experiences. To address these require-
ments, we propose a targeted synthetic data
generation technique by inserting tokens into a
given semantic signature. The generated data
are used as additional training samples in the
tasks of intent classification and named entity
recognition. We evaluate on a real-world voice
assistant dataset, and using only 33% of the
available training set, we achieve the same ac-
curacy as training with all available data. Fur-
ther, we analyze the effects of data generation
across varied real-world applications and pro-
pose heuristics that improve the task perfor-
mance further.

1 Introduction

One of the common challenges to deploying nat-
ural language understanding (NLU) techniques at
scale in commercial applications is the necessity
for continuous annotation of user data. Models
can then be re-trained and updated to capture new
usage patterns. This process is expensive, labor
intensive, and time-consuming.

At an age when user privacy is becoming the
focus of increased concern in all AI applications,
manual review of user data normally required for
such annotation becomes highly undesirable. Con-
sequently, multiple initiatives are undertaken to-
wards minimizing the amount of human annota-
tions needed for training NLU models.

Data augmentation (DA) refers to strategies that
aim at increasing the diversity of training samples
without explicitly collecting new data. In this work,

we present a generative model that is used to gener-
ate labeled synthetic data. Given a set of utterance
templates 1 that we construct from a limited amount
of labeled data, our goal is to generate synthetic
utterances and augment the original (reduced) train-
ing data, with the objective of improving the model
robustness and performance.

We focus on the special case where the synthetic
data must retain a specific fine-grained interpreta-
tion of the original utterance, such as token-level
annotation. For example, we would like to control
the composition of entities (and their combinations)
in the training data when expanding to new features
while maintaining NLU model performance. In our
proposed approach, we control the desired anno-
tation by re-framing the generation process as in-
sertion rather than left-to-right generation. We pre-
serve the desired entities in the synthetic example
by including them in the model’s input during gen-
eration and introduce methods to explicitly prevent
entity corruption during the generation process.

Our contributions are as follows: (i) We propose
a novel synthetic data generation technique using
insertion transformers that allows for token-level
control over the generated synthetic utterance. (ii)
We demonstrate the usefulness of the proposed ap-
proach for NLU model building. Our model which
is trained using a limited fraction of user data com-
bined with synthetic data matches the performance
of a model trained with the entire real data. (iii)
We apply domain-specific heuristics to improve
the quality of synthetic data, which would further
improving task performance.

2 Background

Our NLU models are responsible for interpreting
the corresponding domain, intent and actionable
slots of customer utterances. These categories are
modularized, i.e., utterances belonging to a partic-

1For the purposes of this work, we define a template as the
sequence of intent label, slot labels and slot values.
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PlayMusicIntent AlbumName(shake it off) ArtistName(taylor swift)

PlayMusicIntent  can you play  AlbumName(shake it off)  by  ArtistName(taylor swift) now

Input Template

Generated Output  

Figure 1: An input template to GIT with its generated labeled utterance. The output maintains the original template
but inserts new phrases (shown within brackets) between the slots.

ular domain (e.g., Books) are supported by a spe-
cific set of intents (e.g., PlayBook) and actionable
slots (e.g., BookName), and served by the domain-
specific intent classification (IC) and named entity
recognition (NER) models. In this work we ex-
periment and evaluate IC and NER tasks across
multiple domains. We explore the use of synthetic
data as an additional source for training the models
of these domains.

While a number of data augmentation techniques
for natural language have been proposed, ranging
from token-level perturbations (Wei and Zou, 2019)
to paraphrase generation (Chen et al., 2020; Jolly
et al., 2020) and auto-regressive models (Ding
et al., 2020; Malandrakis et al., 2019; Anaby-Tavor
et al., 2020; Kumar et al., 2020), these techniques
can not be directly applied to token labeling tasks
such as NER. Specifically, synthetic data genera-
tion for NER involves two additional challenges:
(1) Label preservation: producing correct token-
level annotation in the generated utterances, e.g.,
in Figure 1 “shake it” may be incorrectly labeled
as AlbumName instead of “shake it off” (2) Entity
control: controlling slot-type and slot-values in
the synthetic data. e.g., we would like to generate
requests for other artists and albums. The first chal-
lenge is typically addressed by a label projection ap-
proach (Ehrmann et al., 2011) or semi-supervised
learning, however this is known to introduce errors
in the resulting annotation. To handle the second
challenge, methods such as (Jolly et al., 2020; Ma-
landrakis et al., 2019) input the desired slot types
and values to the model but cannot force the gener-
ator to include these slots in the synthetic example.

3 Methodology

3.1 Synthetic Data Augmentation with GIT

Our approach, dubbed generative insertion trans-
former (GIT) is based on non-autoregressive inser-
tion transformer model introduced in (Stern et al.,
2019). Previously, it has been shown that these
models can be used effectively for generating an-
notations; given an utterance generate the correct
NLU interpretation (intent and slots) using inser-

tion operations (Zhu et al., 2020). In this work, we
extend the idea to solve the inverse NLU problem;
given a template produce a valid labeled utterance
that matches the annotation (Figure 1).

The insertion transformer is a generative model
in which the decoder generates a sequence by in-
serting tokens between previously generated tokens.
We adopt this idea to insert carrier tokens (token
without an entity label) between the labels in the
template in an iterative manner. (An example of
template is provided in Figure 1, and the insertion
process is illustrated in Figure 2). The insertion
process at each position in the utterance is inde-
pendent of every other position and stops when the
EOS token is generated at all positions, resulting
in a fully annotated synthetic utterance that can be
directly augmented with real data for model build-
ing purpose. We now describe the stages involved
in building and deploying GIT.

Pre-Training: We pre-train GIT using BERT
encoder (Devlin et al., 2019) and KERMIT (Chan
et al., 2019) objective on an unsupervised LM
task: given a sentence with masked tokens, GIT is
trained to insert the masked tokens. We test two
configurations (1) Pre-training using only English
Wikipedia2 (wiki), and (2) Pre-training using an
internal corpus of 800M unlabeled utterances ran-
domly sampled from de-identified Alexa requests,
using English Wikipedia pre-trained models as ini-
tialization (wiki+in-domain).

Fine-Tuning: We fine-tune the pre-trained GIT
models for each domain (e.g., Books) using anno-
tated real data (reduced). Table 1 shows a few data
samples and derived templates. For each utterance,
we provide the template as model input and the
complete (annotated) utterance as output. During
training, at each insertion slot, we have multiple
candidate tokens from the ground truth unlike au-
toregressive generation which entails a single token
per generation step. For example, in Figure 2 the
tokens “can”, “you” and “play” can be inserted be-
tween “PlayMusicIntent” and “Album(”. Hence,
we cannot use the traditional cross-entropy loss

2https://en.wikipedia.org
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Table 1: Representative examples for labeled utterances and derived templates from 3 domains. Carrier tokens
(slot label "|Other") are removed from the labeled utterance and intent names added to create a template

ID Domain Intent Labeled Utterance Derived Template
1 Recipes SearchRecipe find|Other breakfast|Meal recipe|InstructionType please|Other breakfast|Meal recipe|InstructionType
2 Books NavigateBooks skip|Other to|Other chapter|SectionName one|SectionNumber chapter|SectionName one|SectionNumber
3 Home GetSettingsDetails what’s|Other the|Other heat|Setting set|Other at|Other heat|Setting

Encoder

Non Autoregressive Decoder

by nowyou

can you play

EOS

shake Tayloroffit SwiftAlbum( Artist()Album )ArtistPlayMusicIntent

shake Tayloroffit SwiftAlbum( Artist()Album )ArtistPlayMusicIntent

EOSEOS

EOSEOS

EOSEOSEOSEOS

EOS

EOS

Figure 2: A generation example with GIT. An utterance template is provided as input to the decoder. The decoder
generates one or more (carrier) tokens between every two input tokens and stops the generation process when the
End of Sequence (EOS) token is generated (we set maximum number of non-EOS generated tokens to three). The
model learns to only generate EOS tokens within entity tokens (e.g., "shake it off") but this is not enforced. We
discard generated examples when it is not the case (<0.01%).

and instead compute KL divergence between the
predicted token distribution and the ground truth
distribution at each position, and use the mean di-
vergence over all insertion slots as the training loss
(Zhu et al., 2020). The ground truth distribution
sets non-candidate token probabilities to 0 and uni-
formly weighs all candidate token probabilities.

Generation: To generate synthetic data for
NLU, we first construct a template that contains
the desired intent, slot types, and slot values for
the synthetic example. This priming sequence is
provided as an input to the decoder, which inserts
carrier tokens in an iterative manner to form a co-
herent utterance. The generation process is shown
in Figure 2 and addresses both the label projec-
tion and entity control challenges. Templates used
in inference are constructed from the reduced real
data.

4 Experimental Setup

In order to study the effectiveness of synthetically
generated data, we evaluate NLU model perfor-
mance in reduced data regime. For each domain,

we build multiple IC-NER models using all real
data, a reduced set of real data and combination
of real and synthetic data. All models within a
domain share the same training hyper-parameters,
including architecture and encoder. They differ
only in training data composition. Similar to (Ding
et al., 2020), we limit the focus of this work to syn-
thetic data generation and defer hyper-parameter
optimization to future work. We use Apache
MXNet (Chen et al., 2015) to build both GIT and
IC-NER models in this work.

Full: This baseline is trained using all real data
and default training hyper-parameters for each do-
main. This setup reflects the current performance
of NLU models in production and serves as an esti-
mate for lower bound in error metric for all other
models.

Reduced: We train another baseline using one-
third of real data. Our reduction of two-thirds of
the data is motivated by a privacy control feature
allowing customers to delete their data. Given the
trends, we estimated a worst case drop of 67% in
our annotated data before it can be refilled with
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more human annotations. To simulate this worst
case scenario, we randomly downsample across all
utterances.

Duplicate: To reduce the impact of hyper-
parameters we also train a model with the Reduced
set duplicated to reach the full training size. We
refer to it as Duplicate. We note that duplication
has been used as a baseline for data augmentation
in (Estabrooks et al., 2004; Kumar et al., 2019; Wei
and Zou, 2019)

EDA: Easy Data Augmentation (EDA) consists
of four simple operations: synonym replacement,
random insertion, random swap, and random dele-
tion. EDA has shown to be a strong baseline, out-
performing complex model-based baselines par-
ticularly for small datasets (Wei and Zou, 2019).
Similar to GIT, EDA can provide control and flex-
ibility over the type of data generated, which is a
key requirement from our users.

GIT: (ours). We use the Reduced set to fine-
tune domain-specific GIT models and also as in-
put templates during inference, with fixed hyper-
parameters. During inference, we control the num-
ber of generated synthetic utterances which is aug-
mented with Reduced set. We test two configura-
tions: in GIT_50, the fraction of synthetic to real
data is set to 50% while with GIT_200, the frac-
tion of synthetic to real data is set to 200%. In the
former, synthetic data size is kept smaller than real
data while in latter, we add enough synthetic data
to compensate for removed data.

4.1 Confidence filtering of synthetic data
selection

Not all synthetic utterances may be useful for
model training, such as duplicates of real utter-
ances, semantically incorrect samples ("play al-
bum” instead of "buy album” for BuyAlbumIntent),
etc. A handful of previous approaches have investi-
gated filtering synthetic utterances before augmen-
tation: using influence functions (Yang et al., 2020),
reinforcement learning (Bhattarai et al., 2020), etc.
In this work, we use the confidence score obtained
using Reduced models to filter synthetic utter-
ances. Assuming M represents Reduced model,
we predict labels ŷ for a synthetic utterance x using
M , i.e

ŷ, c = M(x) (1)

Here, c is a confidence score derived as the un-
weighted mean of IC and NER scores and scaled to
(0,1). We select x for augmentation if (i) ŷ = y and

(ii) c ∈ (tlow, thigh), where y is the ground truth
label of x available from its template, and tlow and
thigh are threshold hyper-parameters >0.5. Hence,
we select those synthetic samples which are cor-
rectly labeled by M and avoid incorrect utterances
(tlow) and duplicates (thigh). We consider y = ŷ if
the predicted intent label and all slot labels exactly
match with the ground truth.

4.2 Evaluation

We evaluate the models on each domain’s test set.
For each model, we use weighted semantic error
rate (SemERw Su et al. (2018)) to jointly evaluate
IC-NER performance. SemER is defined as the
ratio of Leveshtein distance between reference and
hypothesis labels, and total count of reference la-
bels. We concatenate the intent and slot labels to
arrive at an utterance-level label. We weigh each
domain’s SemER by its test utterance count and
report the mean SemER (SemERw) for each model.
We report relative performance gains with respect
to Full baseline: we only report relative perfor-
mance as we are not allowed to publish absolute
performance numbers.

5 Results

Table 2 shows relative SemERw across differ-
ent methods (lower is better). We can see that
SemERw for Reduced model increases 2.42%. In-
terestingly, Sports domain improves in SemER
(>5%) when reducing real data (Reduced vs Full;
Figure 3): We found that Sports is a relatively
smaller domain and tends to have noisier train-
ing data (Section 6.3). While Duplicate and EDA
do not improve over Reduced, GIT_50 (wiki+in-
domain) achieves the same error rate as training
with all available data. Not surprisingly, using in-
domain data during pre-training GIT_N (wiki+in-
domain) improves results significantly over pre-
training only on Wikipedia GIT_N (wiki).

6 Discussion

While the overall regression appears modest, there
exists significant variation among domains (Fig-
ure 3). We can see that GIT improves SemER
only among certain domains when compared to
Reduced (e.g., Music but not Sports). In general,
domains with relatively higher traffic exhibit mod-
erate regression (<5%). Recall that for simplicity
we use the same hyper-parameters across all do-
mains.
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Figure 3: Relative change in per-domain SemER comparing Reduced and GIT_50_wiki+in-domain to Full.
Domains are sorted according to decreasing traffic volume

Table 2: Relative SemERw (weighted mean, by traffic volume) for baselines and GIT models for different pre-
training corpora and synthetic data sizes. All results are reported relative to Full baseline

Full Reduced Duplicate EDA GIT_200
(wiki)

GIT_50
(wiki)

GIT_200
(wiki+in-domain)

GIT_50
(wiki+in-domain)

0% +2.38% +2.57% +3.07% +9.94% +1.27% +2.66% -0.05%

6.1 Value of Synthetic Data

While we observe that GIT_50 (wiki) and GIT_50
(wiki+in-domain) configurations provide over-
all improvements over Reduced, we investigate
whether data reduction effects are related to im-
provements with synthetic data addition. Specif-
ically, using the null hypothesis that the relative
SemER (%) between data reduction (Full→ Re-
duced) and data addition (Reduced → GIT) are
not related, we estimate the Pearson correlation
between them using two-tailed t-distribution. In
Table 3, we present the correlation coefficients (r)
along with significance information. We notice
in all configurations that a domain’s SemER im-
provement with added synthetic data is inversely
proportional to the regression with data reduction.
In other words, domains which are most affected
by data reduction benefit from adding synthetic
data and vice versa, irrespective of the source and
quantity of synthetic data.

Table 3: Pearson correlation coefficient (p < 0.01**)
for domain-level relative SemER between (Full → Re-
duced) and (Reduced → GIT)

Method r

GIT_200 (wiki) -0.711**
GIT_50 (wiki) -0.751**
GIT_200 (wiki+in-domain) -0.234
GIT_50 (wiki+in-domain) -0.700**

6.2 Confidence Filtering

Among domains where GIT_50 (wiki+in-
domain) performance is worse than Reduced,

we notice that there exist real utterances which
lack the appropriate context necessary for GIT
inference and are more error-prone, such as
those without an entity slot (E.g., “stop|Other”,
“turn|Other off|Other”). As described in Section
4.1, we implement confidence filtering for the top 5
domains with highest SemER degradations for GIT
(Figure 3) and present results in Table 5. Based
on empirical observations, we choose (tlow, thigh)
= (0.5, 0.85). We find that confidence-filtering
results in consistent SemER improvements across
domains compared to GIT, with upto 12.85%
relative improvement for Bookings. When com-
bined with confidence filtering, GIT marginally
improves over the Reduced baseline for these 5
domains.

6.3 Synthetic Data Diversity

In this section, we analyze the generated synthetic
data using quantitative metrics and qualitative ex-
amples. We use the distinct-n metric (introduced
by Li et al. (2016)), which measures the fraction of
unique n-grams to the n-gram count (higher met-
ric indicates more diverse utterances). We com-
pare distinct-2 and distinct-3 metrics between real
and synthetic utterances for domains with high-
est (Bookings, Books, Sports) and lowest (Home,
Video, Health) relative SemER in Table 6. We no-
tice a clear decrease in token diversity in synthetic
data among former domains and increase in token
diversity among latter domains. This hints at the
usefulness of distinct-n as a measure for predicting
value of synthetic data for IC-NER model building.
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Table 4: Some representative utterance templates and generated synthetic utterances. Tokens in orange represent
carrier tokens which are replaced by tokens in blue during synthetic data generation by GIT
Domain ID Real utterance Synthetic utterance

Video

1 youtube|AppName denis|VideoName daily|VideoName
half|VideoName hour|VideoName song|MediaType

search|Other youtube|AppName for|Other denis|VideoName
daily|VideoName half|VideoName hour|VideoName song|MediaType

2 youtube|AppName baby|VideoName car|VideoName search|Other on|Other youtube|AppName for|Other baby|VideoName
car|VideoName

3 find|Other pineola|VideoName lucinda|ArtistName
william|ArtistName

search|Other for|Other pineola|VideoName by|Other lu-
cinda|ArtistName william|ArtistName

4 show|VisualModeTrigger the|Other video|MediaType nurs-
ery|VideoName rhymes|VideoName

show|VisualModeTrigger me|Other a|Other video|MediaType of|Other
nursery|VideoName rhymes|VideoName

Sports

1 can|Other you|Other give|Other me|Other the|Other sports|Other
news|Other of|Other the|Other day|Other

tell|Other me|Other a|Other sports|Other updates|Other

2 can|Other you|Other give|Other me|Other the|Other latest|SortType
sports|Other headlines|Other

what’s|Other the|Other latest|SortType in|Other sports|Other up-
date|Other

3 what’s|Other the|Other latest|SortType in|Other the|Other sports|Other
program|Other

what’s|Other the|Other latest|SortType in|Other sports|Other up-
date|Other

Table 5: Relative SemER (compared with Full) results
using confidence-filtered synthetic utterances for 5 do-
mains with highest regressions

Domain Reduced GIT + Conf. filtering
Bookings 0% 11.1% -3.1%
Books 8.8% 10.5% 7.7%
Sports -10.8% 7.8% -1.3%
Weather 4.8% 6.3% 3.8%
Knowledge 6.3% 6.3% 6.3%
Total (Weighted) 6.3% 8.4% 5.6%

Table 6: Quantitative estimate of n-gram diversity of
real and synthetic utterances as measured with distinct-
2 and distinct-3 metrics for each domain. Relative di-
versity is provided for comparison purposes.

Domain Distinct-2 Distinct-3
Real Syn Rel(%) Real Syn Rel(%)

Bookings 0.119 0.108 -9.1 0.194 0.174 -10.4
Books 0.097 0.055 -43.9 0.197 0.116 -40.81
Sports 0.024 0.006 -77.26 0.047 0.010 -78.27
Health 0.076 0.086 13.23 0.139 0.154 10.95
Video 0.072 0.095 31.42 0.158 0.188 18.88
Home 0.018 0.021 18.47 0.045 0.050 10.33

We further discuss two domains which show the
highest magnitude of diversity change.

Sports: Similar to typical real-world tasks,
Sports domain contains class-imbalanced training
data (ranging from O(102) to O(104) samples per
intent), ambiguous short utterances (∼65% of ut-
terances in a minority intent contain a single-token
and repeat in a majority intent) and 95.3% of ut-
terances do not contain any tokens with slot labels.
In addition to reduced token diversity, these fac-
tors contribute to shorter synthetic utterances on
average (Mean utterance length: real = 3.73 vs
syn = 2.32). Representative examples are provided
in Table 4: utterances 2 and 3 result in the same
synthetic utterance even though their tokens are
different.

Video: From Table 4, we observe that GIT en-

hances the semantics of real utterances by appro-
priate carrier token insertions, specifically for ut-
terances that search for video titles. In example 1,
GIT inserts the tokens “search” and “for” which
convey the meaning of the utterance more clearly
and disambiguate tokens representing the applica-
tion and video title. Similarly, in example 3 GIT
inserts the correct preposition “by” between “pe-
neola” and “lucinda william” using their slot label
information. We hypothesize that such synthetic
utterances are a better representation of token-level
labels when compared to corresponding real utter-
ances, and better assist NLU model building.

7 Limitations

Since our primary focus in this work was develop-
ing insertion transformers for DA, we did not ex-
plore extensive hyper-parameter optimization while
building IC-NER models using combination of real
and synthetic data. For example, we observed that
adding the same fraction of synthetic data results in
significant performance variations across domains,
suggesting that per-domain parameter optimization
may be yield improved performance.

8 Conclusion

We demonstrated DA using GIT as a feasible data
generation technique to mitigate reduced annota-
tion volumes for IC and NER tasks. We showed
that NLU models trained on 33% real data and syn-
thetic data perform similar to models trained on full
real data. Further, on domains with highest SemER
regressions we improved the quality of synthetic
data by filtering them with model confidence scores.
Among domains which benefit from synthetic data,
we showed that appropriate carrier token insertion
enhances utterances’ semantics and their value as
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training samples. In the future, we would like to ex-
plore data generation with entities replaced through
knowledge base sampling. Such finer control over
entities better supports new feature expansion and
enhances customer privacy.

9 Ethical Considerations

Risk: In this work, we have not controlled the
entities in utterance templates during generation.
This presents a risk of private information
propagating into the synthetic data. We note that
the entities themselves are not introduced during
generation, but carried over from real data. As
mentioned in Section 8, entity control methods
such as considered in the present work with GIT
can prevent such identifiable information from
being exposed to model training.

Data Protection: There are multiple guardrails to
safeguard customer data in our organization. In ad-
dition, we remove all metadata and personal iden-
tifiable information (PII) from utterances before
using them for NU model building and synthetic
data generation with GIT in this work.
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