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Abstract

Predicting the approval chance of a patent
application is a challenging problem involv-
ing multiple facets. The most crucial facet
is arguably the novelty — 35 U.S. Code §
102 rejects more recent applications that have
very similar prior arts. Such novelty evalua-
tions differ the patent approval prediction from
conventional document classification — Suc-
cessful patent applications may share similar
writing patterns; however, too-similar newer
applications would receive the opposite la-
bel, thus confusing standard document classi-
fiers (e.g., BERT). To address this issue, we
propose a novel framework AlSeer that uni-
fies the document classifier with handcrafted
features, particularly time-dependent novelty
scores. Specifically, we formulate the novelty
scores by comparing each application with mil-
lions of prior arts using a hybrid of efficient
filters and a neural bi-encoder. Moreover, we
impose a new regularization term into the clas-
sification objective to enforce the monotonic
change of approval prediction w.r.t. novelty
scores. From extensive experiments on the
large-scale USPTO dataset, we find that our
time-dependent novelty features offer a boost
on top of the document classifier. Also, our
monotonic regularization, while shrinking the
search space, can drive the optimizer to better
local optima, yielding empirical performance
gains. Ex-post analysis of prediction scores
further confirms that the document classifier
and handcrafted features capture distinct sets
of learning information.

1 Introduction

Securing patent approvals offers a major shot in
the arm to inventors and innovators in the knowl-
edge economy, increasing the chances of obtaining
angel and venture capital investments. However,
the process of getting a patent approved can cost
applicants tens of thousands of dollars in payments
to law firms who claim to be helpful in understand-
ing what gets approved and improving the odds of

success of a patent application. Algorithmic ap-
proaches to aid in the patent evaluation process can
potentially save precious time and resources for ap-
plicants including inventors and lawyers during the
patent application phase, as well as benefit patent
examiners in government patent offices around the
world who could use the tool to accelerate and im-
prove the review process (Ebrahim, 2018).

The approval of a patent application is deter-
mined necessarily and sufficiently by the approval
of application claims. Patent laws define individual
claims as the subject matter of inventions (35 U.S.
Code §112), on which “patentability” is defined (35
U.S. Code § 101, 102, and 103). Application claims
prescribe the particular scopes of legal protection
that the applicant is seeking and are the eventual ob-
jects for investigation under legal disputes or trans-
fer of commercial rights. Patent examiners from
the U.S. Patent and Trademark Office (USPTO)
will make decisions on each application claim indi-
vidually and independently with other sections as
supporting materials. Therefore we focus on claim
texts and use the term “patent approval” informally
and interchangeably referring to “claims approval.”’
In particular, we primarily consider 35 U.S. Code
§ 102, assessing the novelty of application claims.

To the best of our knowledge, we are the first to
predict patent approval, which is as an extremely
challenging problem. Patent documents are le-
gal, technical, often vague, abstract and difficult
to parse, with writing conventions different from
typical articles (Singer and Smith, 1967). Although
AI/ML approaches are often discussed in the patent
domain (Aristodemou and Tietze, 2018) such as
in the area of information retrieval (Kang et al.,
2007; Fujii, 2007; Shalaby and Zadrozny, 2019),
applications of deep NLP methods are mostly con-
cerned with classifying the content domains of
patents (Verberne et al., 2010; D’hondt et al., 2013;
Hu et al., 2016; Lee and Hsiang, 2019). In ad-
dition, extant literature usually explore approved
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patents rather than applications (Balsmeier et al.,
2018). Even to simply classify the topics of ap-
proved patents, state-of-the-art document classi-
fiers can only achieve an accuracy of about 69.3%
(only 2.2% over RoBerta) (Zaheer et al., 2020).

Compared with topic classification, our patent
approval prediction task is much more challenging
for these document classifiers, because the patent
examination process tends to suffer from subjectiv-
ity and inconsistencies.! To mitigate the issue, we
first develop several handcrafted features based on
domain knowledge for use alongside the language
model to provide contexts and control.

The time-dependent nature of the novelty also
makes traditional document classifiers not suitable
here, because they typically assume that similar
instances belong to the same label. Rejections of
claims by 35 U.S. Code § 102 require examiners
to cite prior approved patent claims, prior arts, as
evidence.>? USPTO receives thousands of applica-
tions a week; thus a novel application at one time
may be dramatically different in the assessment of
novelty. This means that a classifier can pick up a
positive label from an earlier approved application
but receives a negative label from a similar but no
longer novel application sometime later. Such con-
flicting information can confuse the classifier and
undermine its performance.

To address this challenge, we propose a novel
framework AlSeer as shown in Figure 1. We for-
mulate a time-dependent novelty score for each
patent claim with its semantic similarity against
prior approved claims from patent grants, which
are final versions of approved patents. Specifically,
inside a comprehensive pool comprising millions
of grants, we consider those approved before the
filing date of the focal application and then mea-
sure the maximum semantic similarity score of

"https://www.ipwatchdog.com/2018/10/

31/visualizing-outcome—-inconsistency—-uspto/

1id=102810/

More details about the examination process can
be found in Manual of Patent Examining Procedure at
https://www.uspto.gov/web/offices/pac/
mpep/index.html.

the focal patent claim matched with all approved
claims in the time-dependent sub-pool. To improve
computing efficiency, we apply document-level fil-
ters to narrow the sub-pool for each claim. After
integrating such similarity scores along with the
handcrafted features on top of BERT, experiments
on the large-scale USPTO dataset demonstrate sig-
nificant performance gains over fine-tuning a stan-
dard BERT alone. Intuitively, with all else equal,

a patent claim with a higher similarity score, i.e.,

semantically more similar to prior approved claims,

should be less likely approved. Hence we pro-
pose to impose monotonic regularization on the
novelty score so that the loss function has an ad-
ditional term of the hinge loss to further penalize
non-decreasing predictions in the similarity. This
effectively restricts the search space for the opti-
mizer to prediction mechanisms that are reason-
ably consistent with the novelty measure. From our
experiments, this regularization can help the opti-
mizer steer away from unfavorable local optima
and further improve AUROC.

In summary, our contributions are as follows.

* We collect patent application data from several
data sections of USPTO and integrate full texts,
metadata, office actions, rejections and citations
data into a massive dataset;

* We develop a series of handcrafted features to
aid the prediction of 35 U.S. Code § 102 approval
decisions. In particular, we design and analyze a
time-dependent feature that measures the novelty
of patent applications at the time of filing;

* We propose to incorporate the handcrafted fea-
tures and impose monotonic regularization on the
novelty features and verify the effectiveness of
the methodology in predicting patent approvals.

Reproducibility. We will release the benchmark

dataset and our code on GitHub.

2 Problem Formulation and Benchmark

In this section, we formally formulate the novelty-
based patent approval problem. We describe the
experiment setup, the dataset, and baseline results
with common document classifiers.

2.1 Problem Formulation

Each patent applications Ay, k& € {1---M},
sorted by filing dates, comprises of a number of
application claims. Given text representation X;,
i € {1--- N}, of each application claim, there ex-
ist {ix}, k € {0--- M} such that claim representa-
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Table 1: Dataset Statistics. The approval ratio is calcu-
lated based on 35 U.S. Code § 102 labels.

Train Validation Test
Applications M 216,101 175,597 153,632
Claims N 3.90M 3.07M 2.58M
Approval % 80.65 80.16 81.68
Time range 04/16-02/17  03/17-10/17  11/17-06/19
tions {X;, , ---X;, } belong to patent application

Ag. 35 U.S. Code § 102 based binary labels y;
indicate approval decisions derived from patent ex-
amination history where y; = 1 indicates approvals.
We would like to classify application claims accord-
ing to approval labels.

2.2 Benchmark Dataset Preparation

Dataset Collection. USPTO provides public data
arranged in separate sources, including application
and grant full texts, application metadata, citations,
office actions, and rejections. Patent grants are final
versions of approved patent applications. Later we
will utilize grants for constructing the application
novelty feature. To extract labels and create hand-
crafted features, we utilize both the legacy data
system for office actions, rejections and citations
made between 2008 and mid-2017 (Lu et al., 2017),
and newer v2 APIs that cover mid-2018 onward.
For application metadata, we obtain bulk data from
PEDS (Patent Examination Data System).? In order
to match all the available labels, we obtain weekly
bulk releases for of both utility patent applications
and utility patent grants in XML format ranging
between 2005 and 2019. In total, we extract 8.8
million patent applications and 3.7 million patent
grants during the same time period whose texts are
around 730 GiB.

Patent applications are usually required to be
published within 4 months after filing. Yet only
one version among possibly a number of revisions
is published. Next we identify the office actions and
rejections associated with the published version by
matching the closest action dates with publication
dates minus 4 months, so that correct labels can be
obtained. We identify the labels associated with
the published version, and we then merge the dif-
ferent sources of data by the application number
and ingest them into a DBMS. This way, we allow
a model to predict for any version of a patent ap-
plication so that the attorneys and applicants can
evaluate their chances for decision making. We
find out around 900K applications under which all

*https://ped.uspto.gov/peds/

corresponding sections of data are available. Be-
cause of the data size and to control for compu-
tation times, we choose the most recent, around
500K applications for experiments.

Dataset Splits. We split the data into training data,
validation data, and testing data by their filing dates.
The more recent patent applications are chosen for
testing. The size for final experimental data, includ-
ing the abstract, claim texts, labels, and handcrafted
features, is around 15 GiB. For more details, see
Table 1. The dataset is highly imbalanced towards
positive labels.

2.3 Common Document Classifier
Benchmark

Common Document Classifiers. We mainly eval-

uate the following common document classifiers.

* Log. Reg. refers to logistics regression using
TE-TDF features.

* Text-CNN (Kim, 2014) with GloVe (Pennington
et al., 2014) embeddings as the input. Adam
optimizer with learning rate 0.001. 10 epochs’
run; batch size as 1024;

e LSTM (Hochreiter and Schmidhuber, 1997)
with GloVe embeddings as the input. AdamW
optimizer with learning rate 0.005 and 10 epochs’
run; batch size as 1024;

* BERT (Devlin et al., 2018) fine-tuning. AdamW
optimizer with learning rate Se-5 as the optimizer.
The number of fine-tuning epochs as 5; batch size
as 256. This is the the same model as in the state-
of-the-art model, PatentBERT, in patent content
classification (Lee and Hsiang, 2019) with a dif-
ferent set of hyper-parameters and balanced class
weights. The original PatentBERT model is de-
signed for a different task, and the experimental
setting is not suitable for predicting patent ap-
provals, hence we make the tweaks.

In all of the models, we impose class weights in the

loss functions inversely proportional to the number

of class instances, such that two classes are treated
equally by the optimizer. For the details, please
refer to Section 3.1. The neural models are trained
with text inputs processed at a maximum length of

128 tokens per claim and on a single GPU.

Evaluation Metrics. Given the imbalanced nature

of our dataset, we adopt both the Area Under the

Curve for the ROC plot (Fawcett, 2004) (AUROC)

and macro F1 score as our evaluation metrics. With

AUROC, the predicting performance of the minor-

ity class could be taken into consideration with
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Table 2: Benchmark Results of Common Document
Classifiers.

AUROC % Macro F1 %
Random Guess 50.00 50.00
Predicting All "'1" 50.00 44.96
Log. Reg. (Tf-1df) 58.94 54.54
TextCNN (GloVe) 59.70 55.58
LSTM (GloVe) 61.68 56.95
BERT (PatentBERT) 61.79 56.51

ROC Curves of Common Document Classifiers
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Figure 2: ROC Curves for Common Document Classi-
fiers. BERT and LSTM are arguably the most effective
ones.

a similar weight as for the majority class (in our
case, positive class). Moreover, the probability-
based metric can provide more detailed insights
into model performances. Therefore, we choose
AURQOC as our main metric. The macro F1 score
is a direct average of F1 scores of both the positive
class and the negative class and provides an alterna-
tive balanced view of both classes’ performances.
We treat it as a secondary metric. We compute
the maximum macro F1 score (Lipton et al., 2014)
by varying the decision threshold for each model.
Other traditional measures focused on the positive
class performance such as accuracy and recall have
little practical implications due to data imbalance.
Benchmark Results. Table 2 shows common doc-
ument classifiers’ performance with some naive
predictions as references. Results of neural mod-
els are reported with the median metrics among
several runs with different optimizer random states.
Figure 2 further visualizes more details of the ROC
curves of these models. One can find that BERT
and LSTM are arguably the most effective ones.
Therefore, we will focus on BERT and LSTM for
further comparisons.

3 Our AlSeer Framework

Our AlSeer framework unifies the document clas-
sifier, handcrafted features and monotonic regular-
ization, as shown in Figure 1. It is compatible with
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Figure 3: Illustration of Novelty Feature Construction.

almost all document classifiers. In this paper, we
choose BERT as the base document classifier to
demonstrate the effects as it is widely adopted and
also performing well in our benchmark evaluations.
After each application claim text is run through the
BERT model, the output representation is concate-
nated with the corresponding handcrafted features.
Our handcrafted features include a time-dependent
claim-level novelty score, claim-level structural fea-
tures, document-level similarity scores, and other
application metadata features. We further impose
a monotonic regularization on the impact of the
claim-level novelty score so that the loss function
has an additional term of the hinge loss.

3.1 Base Document Classifier

For the self-containess, we briefly introduce how
we use BERT in AlSeer. We first utilize BERT
to transform the i-th application claim to a text
representation X; in batches of a size IV, which is
then passed to a linear layer to obtain the prediction
through a softmax layer.

Approvals (i.e., y; = 1) are much more popular
than rejections (refer to Table 1), so the vanilla
training will bias the model towards approvals.
Therefore, we adopt a weighted loss for training:
L = > —wy (yilog i + (1 — yi)log(1 — 4;))
where w,, denotes the fixed weights of the two
classes, which is inversely proportional to the num-
ber of instances from the corresponding class, bal-
ancing the training weights of the two classes.

3.2 Claim-Level Novelty Feature N claim

The backbone of the novelty feature is the time-
dependent claim-level maximum similarity score.

We first index all patent grants with Elastic-
Search (NV). Given a patent application and a
claim under it, we first take advantage of its fast
BM25-based document-level fuzzy matches to ob-
tain 5 most similar grant documents to the focal



application document as a first-stage pre-filter. To
account for time-dependence, each focal applica-
tion is matched against a sub-pool of patent grants
which are time-stamped to be approved strictly be-
fore the filing date of the focal application. In
application level matching, all document sections
are considered, including the abstract, summary of
invention, details of invention of all claims.

Among all claims under the top-5 matched
grants, we then find the most similar one to the fo-
cal claim using sentence-transformer (Reimers and
Gurevych, 2019) with st sb-roberta-large
pre-trained bi-encoder model. Base cross-encoder
transformers such as BERT can lack in perfor-
mance for pure semantic similarity tasks. Although
certain cross-encoders have excellent semantic sim-
ilarity performance, it can be computationally too
demanding for our purpose since the scale of the
claims in all patent grants is more than 100 mil-
lion, and since each grant claim can be required
to be paired many times with a focal application
claim. The Elasticsearch-based pre-filter process
also helps manage the computational need.

Figure 3 demonstrates how the time-dependent
novelty feature is generated — the application that
the red-highlighted focal claim belongs to is first
matched with 5 patent grants on the application
level; then the focal claim is matched against every
claim under the 5 matched grants to compute the
semantic similarity score, before the most similar
grant claim is identified. Our experiments con-
firm that the claim-level maximum similarity score,
as expected, is negatively correlated with 35 U.S.
Code § 102 labels, as shown in Figure 4.

3.3 Application-Level Handcrafted Features

Application-Level Similarity. We consider the
application-level maximum similarity score, de-
noted as Ny 4o, and mean similarity score gener-
ated by ElasticSearch (NV) as handcrafted features.
These document-level scores measure how similar
overall are the applications to the approved grants.
The document-level similarity scores are positively
correlated with 35 U.S. Code § 102 labels. We be-
lieve that they primarily capture the overall writing
quality and structural resemblance. We will present
further analyses and discussions in Section 4.2.

Features from Metadata. The USPTO dataset of-
fers a rich collection of metadata about each patent
application. We use the following two of them:

* Patent Classification: the USPC class designated

for the applications. USPC is a system of classify-
ing the subject matter of each patent application
for recording, publication, and assignment pur-
poses. Different classes of patents tend to have
varying approval rates, as illustrated in Table 6
in the appendix.

* Number of Applicant Cited References: the num-
ber of citations of other patents or articles initi-
ated by the applicant herself. In the patent do-
main, most citations are initiated by the exam-
iners as “prior arts” to reject application claims.
However, they can also be made by the applicant
to demonstrate understanding of related work and
claim contributions. The number of applicant-
initiated citations is a signal of the effort and
research the applicant puts in the application.

Other Application-Level Features are also con-

sidered for utility and writing as follows.

* Max Citation: based on ElasticSearch pre-filter,
the maximum number of total citations among
the top 5 most similar patent grant documents to
the focal patent application.

* Max Article Citation is similar to the above. It
refers to the maximum number of citations which
are research articles (not other patents) in top
matched grants.

* Lexical Diversity: the richness in the vocabulary
of the abstract of the patent application.

3.4 Claim-Level Structural Features

We consider two indicators on how each claim is

specified.

* Component: indicator on whether the application
claim is describing the components of a system
(e.g., a machine, a process, a compound). Other
claims may describe the properties or utility of
particular components. This is identifiable by the
transitional phrases used in the claim.

* Transitional Phrase: indicator on whether a com-
ponent claim is open, closed, or half-open, which
is determined by which transitional phrase is
used. Openness or closedness regulates the scope
of legal IP protection the applicant enjoys once
the patent is approved. Often it is a strategic
choice by the applicant and the attorney. If a
claim is open, indicated by transitional phrases
“comprising” and legal synonyms, any additional
components later added to the system are also
protected, in contrast to closed claims . Open
claims are, in turn, more difficult to be approved.
These particular language phenomena are well-
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Figure 4: Handcrafted Features vs. Proportions of Positive 102-Labels. Features are grouped into bins for 10-90

percentile against mean positive label proportions.

known in the IP communities and sometimes re-
ferred to as “patentese” (Singer and Smith, 1967).
The patent examination manual explicitly dis-
cusses the transitional phrases with case laws.*

3.5 Integrating with BERT

Now let H; denote other handcrafted features in
addition to Ny ¢jqim and N, 4,.. Figure 4 demon-
strates the correlations between some representa-
tive handcrafted features and the positive label.
Let Z; = X; U H; U Ns,claim U Ns,doc U {1}’
Vi € {1, ..., Ny }. Note that X is the representation
for the claim and that the document or application-
level handcrafted features will be augmented to
each claim. The concatenated Z; will pass through
the linear and the softmax layer.

3.6 Monotonic Regularization

Mathematically, we would like to restrict the search
space upon Ny cjqim, regularizing predictions to be
decreasing in it. Let Z; denote all other inputs
except Ny ciaim- We would like to manipulate the
input such that inconsistency with the monotonicity
in N cjaim 18 represented. For a positive constant
C(0 < C < 1) let N] yuim = CNs claim, let
Z{ = Z; U N/ 4, Given log-likelihood with
respect to Zi,

F(Z;) = y;log §:(Z;) + (1 — y;) log(1 — §i(Zs)),

we shall constrain F'(Z;) < F(Z). To imple-
ment it, we shall impose a hinge loss penalty when-
ever F'(Z;) > F(Z;) and return 0 when otherwise.
Therefore, the final objective function becomes:

O=L+XY max{0,F(Z;) > F(Z})},

where A\ determines the regularization strength.

“Refer to patent glossary https://www.uspto.
gov/learning-and-resources/glossary and ex-
amination manual https://www.uspto.gov/web/
offices/pac/mpep/s2111.html#d0e200824

4 Experiments

We mainly compare AlSeer with two models,
BERT and LSTM, as they are the best common
document classifiers from our benchmark results.
For ablation study purpose, we also compare with
Log. Reg. Feat. Only, a logistics regression
model with handcrafted features only, and AISeer
w/o Regu., which is a BERT model integrated with
our handcrafted features but not regularized by our
monotonic constraints. AlSeer is trained with the
same set of hyper-parameters as BERT: maximum
length for the tokenizer as 128, the number of fine-
tuning epochs as 5; batch size as 256; AdamW
with learning rate being 5e-5 as the optimizer. The
monotonic regularization parameters C' is % and A
is Se-4.

4.1 Empirical Results

With the setup above, we conducted several empiri-
cal tests. The results are shown below in Table 3.

Baseline BERT model gives decent AUC (ROC)
and macro F1. The introduction of handcrafted
novelty feature along with other computed ones
together helps both the metric dimensions: AlSeer
boosts AUROC by around 2.5% percent and macro
F1 by around 1% compared to the best common
document classifiers. Figure 5 shows the AUROC
improvement originates consistently from the en-
tire spectrum of prediction scores. The reported
numbers are medium results from multiple runs
with the setup. We find the pattern of the results
consistent.

Aforementioned in the introduction, wven to
simply classify the topics of approved patents, state-
of-the-art document classifiers can only achieve
an accuracy of about 69.3% (only 2.2% over
RoBerta) (Zaheer et al., 2020). Therefore we be-
lieve a 2.5% performance margin is substantial for
the patent domain given its difficulty, especially
given the relatively low dimensionality of hand-
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Table 3: Evaluation Results of AlSeer, Compared
Methods, and Ablations.

Table 4: Regression Analysis of Prediction Scores on
Handcrafted Features.

AUROC% Macro F1%
LSTM (GloVe) 61.68 56.95
BERT (patentBERT) 61.79 56.51
AlSeer 604.14 57.92
Log. Reg. Feat. Only 60.45 55.47
AlSeer w/o Regu. 63.71 57.73

ROC Curves of AlSeer and Compared Models
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Figure 5: ROC Curves for AlSeer and Compared Mod-
els. Only the two ends are visualized because we want
to zoom in enough while saving space.

crafted features compared to BERT.

Log. Reg. Feat. Only result in the lower half of
Table 3 indicate the necessity of a language model.
Neither a language model only nor handcrafted
features only could yield satisfactory performance.
Also , AlSeer w/o Regu. result shows that adding
monotonic regularization on the novelty feature is
effective. The relatively small performance gain
over monotonic regularization may be attributed to
the compromised precision of the novelty feature
due to the use of the ElasticSearch pre-filter for
the sake of computational costs. We would like to
emphasize that the combination methodology has
great potential.

In the next section, we will discuss in depth what
the model framework has learned from the lan-
guage model, the handcrafted features, and mono-
tonic regularization, respectively.

4.2 Ex-Post Analysis for AISeer

Learning from Handcrafted Features.
Empirical results in Table 3 demonstrate that
handcrafted features improve on best common
document classifiers by about 2%. One may
ask whether the handcrafted features have con-
tributed significantly given the moderate improve-
ment. Granted, application full texts may also con-
tain signals for the patent class and applicant efforts
that may partially reflect handcrafted features and
the document classifier such as BERT may pick up.

BERT AlSeer w/o  AlSeer
Regu.

No. of Applicant  -3.5¢-06"**  -8.2e-06"**  4.3e-06"**
Cited Refs

(9e-7) (le-6) (8e-7)
Transitional -0.045*** -0.037*** -0.067***
Phrase - Open

(0.000) (0.000) (0.000)
Transitional -0.015*** -0.022*** 2e-4
Phrase - Closed

(0.000) (0.000) (0.000)
Max Article Cita- 1.9e-5*** 2.5e-5%"* 3.2e-5%"*
tions

(7e-7) (7e-7) (5e-7)
N.sudo(: 2e-4*** 4e-4*** De-4***

(6e-7) (6e-7) (4e-7)
N, claim -0.18*** -0.17** -0.21***

(0.001) (0.001) (0.001)
R? 0.085 0.125 0.189

Notes: HC1 heteroskedasticity-robust standard errors used.
Not all regressors shown. ***1% significance level.

To shed light on how AlSeer learns from hand-
crafted features, we run linear regressions for the
model prediction scores on handcrafted features
for interpretable insights and present statistical re-
sults, as shown in Table4. Even prediction scores
under BERT are significant in all handcrafted fea-
tures, showing that BERT does learn knowledge
overlapping with the handcrafted features to some
extent. However, low R?’s indicate that knowledge
from the deep neural model and knowledge from
handcrafted features are quite distinct.

The dramatic R? increase from 0.085 to 0.189
shows that AlSeer captures handcrafted features
much more effectively than BERT. About 19% of
knowledge of AlSeer corresponds to handcrafted
features, a 10% increase over BERT. Also, AlSeer
corrects incorrect coefficient signs from BERT. In-
tuitively, the chance of approval shall increase with
in the number of applicant cited references. How-
ever, BERT is negatively correlated with it statisti-
cally significantly. Under AlSeer, the direction of
the effect is revered to match intuitions.

Learning from Monotonic Regularization. Ac-
cording to Table 4, our claim-level novelty feature
N claim has the most significant impact. The use
of monotonic regularization alone boosts the R?
significantly, indicating that the approach also helps
the model learn from handcrafted features overall.

We also evaluate the Spearman correlation coeffi-
cients of the probability prediction scores produced
by the models with the claim-level novelty feature
Pearson correlations with the document-level simi-



Table 5: Ng dgoc> N ciaim vs. Prediction Scores Corre-
lations.

BERT  AlSeer w/o Regu.  AlSeer
N, doc (Pearson) 0.128 0.238 0.180
N, claim (Spearman)  -0.0788 -0.0230 -0.103

larity score. Spearman correlations measure how
monotone two variables are correlated. According
to Table 5, first we can confirm that applying mono-
tonic regularization significantly pushes the predic-
tion scores to be more monotonically decreasing in
the core novelty feature — the Spearman correlation
shifts from -0.0230 to -0.103. However, compared
to the BERT, the regularization effect is less promi-
nent. Observe that adding handcrafted features will
actually steer the monotonicity into the opposite di-
rection. Our regularized AlSeer model manages to
both benefit from the novelty feature and incorpo-
rates knowledge from other handcrafted features.

We believe the novelty feature should be only
considered under contexts and will not perform
well on it’s own. First, novelty can be a subjective
concept and may vary according to different types
of claims, openness of claims, the department (cate-
gory), etc. Second, novelty as practically measured
by dis-similarity, can be easily achieved by poorly
written random content, thus structural or overall
similarity is also important. However, the obser-
vations indicate that there are potential conflicts
between the novelty feature and other handcrafted
features. While the latter helps with prediction per-
formance on their own and provide contexts for the
novelty feature thus imperative, it will also atten-
uate the effects of the regularized novelty feature.
We leave this challenge for future work.

5 Related Work

To our knowledge, our work is the first in predict-
ing patent approvals according to the examination
procedures at the government patent office. Few
extant researches attempt to predict decisions in
office. (Winer, 2017) studies PTAB (Patent Trial
and Appeal Board) hearing decisions at USPTO.
Other related work addresses patent quality in a
general and broad sense (Wu et al., 2016). More
broadly in the IP/patent domain, although AI/ML
applications have been often advocated (Ebrahim,
2018), studied (for a review see (Aristodemou and
Tietze, 2018)) or implemented in practice (Lu et al.,
2017), most work focus on determining patent con-
tent classes to save manpower or concern only with
patent grants rather than applications (Verberne

et al., 2010; D’hondt et al., 2013; Hu et al., 2016;
Balsmeier et al., 2018; Lee and Hsiang, 2019). Re-
cent studies (Hsu et al., 2020) emerge aiming at
predicting patent transfers and the economic value.

Other streams of related work include those ex-
ploring patent similarity. Our approach of con-
structing the novelty feature with a state-of-the-art
neural bi-encoder (Reimers and Gurevych, 2019)
is significantly more advanced than relatively rudi-
mentary approaches in the extant literature, such
as text matching and frequency-based methods
(Younge and Kuhn, 2016; Arts et al., 2018; Shah-
mirzadi et al., 2019). Studies on semantic analysis
and representation of technology (Kim et al., 2016;
Strumsky and Lobo, 2015) based on patent data are
also related.

6 Conclusions and Future Work

In this paper, we tackle the challenging problem
of predicting patent approval decisions as per 35
U.S. Code § 102, namely the novelty-based deci-
sions. We have prepared a large-scale benchmark
dataset by consolidating different data sources from
USPTO. From the evaluations of the popular docu-
ment classifiers, BERT and LSTM are arguably
the most effective ones. We identify the time-
dependent challenge of the novelty judgement, and
therefore propose AlSeer, a novel framework going
beyond the traditional document classifiers. Specif-
ically, we construct a claim-level core novelty fea-
ture along with several other handcrafted features
and apply them on top of the pre-trained BERT
model. We further propose to add the monotonic
regularization on the core novelty feature to re-
solve the potential label conflicts caused by the
mechanism of the patent examination process. Ex-
perimental results have verified the superiority of
AlSeer and also the effectiveness of introducing
novelty features and monotonic regularization.

We believe that our work is beneficial to vari-
ous parties, including patent applicants, attorneys,
examiners and regulators. While the advantages
of our regularization methodology are significant,
there is still room for potential metric improve-
ments, thus further developing the work will yield
opportunities for promising future research and
greater contributions to the communities. In fu-
ture, it is also important to extend the scope from
claims to the other sections in the patent applica-
tions. Model interpretability is another direction
that worthies exploring.
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A An Example Patent Application

TITLE: Data labeling for deep-learning models

ABSTRACT: A first and second scoring endpoint
with payload logging are deployed. At the second
scoring endpoint, native data and a user-generated
score for the native data are received, the native
data is pre-processed into readable data for the
deep-learning model, and the user-generated score
and the readable data are output to the first scoring
endpoint, which is associated directly with the
deep-learning model...

BACKGROUND: The present disclosure relates
generally to the field of deep-learning models, and
more particularly to evaluating and providing feed-
back data for deep-learning models.

The evaluation and feedback data labeling for
deep-learning models, where the pre-processing
code is embedded in the model, can be difficult to
execute and accurately assess...

SUMMARY: Disclosed herein are embodiments
of a method, system, and computer program prod-
uct for evaluating and providing feedback data for
deep-learning models.

A method, system, and computer program
product may manage deep-learning models. A
first and a second scoring endpoint with payload
logging are deployed for a deep-learning model.
At the second scoring endpoint, native data and
a user-generated score for the native data are
received...

DETAILED DESCRIPTION: Aspects of the
present disclosure relate to deep-learning models,
and more particularly to evaluating and providing
feedback data for deep-learning models. While
the present disclosure is not necessarily limited to
such applications, various aspects of the disclosure
may be appreciated through a discussion of various
examples using this context.

An understanding of the embodiments of the
present disclosure may be aided by describing ex-
amples in the context of a neural networking en-
vironment. Such as examples are intended to be
illustrative, and not limiting in any sense.

When black box (e.g., deep-learning) models
include pre-processing of raw data, it can be
difficult to accurately and efficiently evaluate and
label feedback data for retraining purposes. Con-
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ventionally, machine learning deployment systems
(e.g., deep-learning models) have difficulty when
defining/extracting the logic used to transform the
training data into the format used by the model 1,
because the pre-processing steps (e.g., image trans-
formation, text vectorization, etc.) are usually not
included in the machine learning model definition...

CLAIMS:

Claim 1: A computer-implemented method for
managing deep-learning, the method comprising:
deploying a first and a second scoring endpoint
with payload logging for a deep-learning model;
receiving, at the second scoring endpoint, native
data and a user-generated score for the native
data; pre-processing, at the second scoring
endpoint, the native data into readable data for the
deep-learning model; outputting, from the second
scoring endpoint to the first scoring endpoint, the
user-generated score for the native data and the
readable data, wherein the first scoring endpoint is
associated directly with the deep-learning model;
outputting, from the second scoring endpoint to
a payload store, a raw payload, wherein the raw
payload includes the native data; processing, at the
first scoring endpoint and using the deep-learning
model, the readable data and the user-generated
score to output a transformed payload and a
prediction, respectively, to the payload store;
matching, at the payload store, the raw payload
with the transformed payload and the prediction
to produce a comprehensive data set; evaluating
the comprehensive data set to describe a set of
transformation parameters; and retraining the
deep-learning model to account for the set of
transformation parameters.

Claim 2: ...

Claim 3: ...

B Example Approval Rates across
Common Patent Classes

Figure 6 demonstrates the variations of approval
rates in different patent classess, ranging from
63.1% to 93.2%, indicating the inclusion of patent
class feature is critical.



Table 6: Example Approval Rates across Common Classes.

USPC Code  Application Counts ~ Approval Rate Description

716 4425 63.10% COMPUTER-AIDED DESIGN AND ANALYSIS OF CIRCUITS AND SEMICONDUCTOR MASKS

362 28054 75.59% ILLUMINATION

257 151435 80.43% ACTIVE SOLID-STATE DEVICES (E.G..,TRANSISTORS, SOLID-STATE DIODES)

375 44245 89.10% PULSE OR DIGITAL COMMUNICATIONS

718 6848 93.17% ELECTRICAL COMPUTERS AND DIGITAL PROCESSING SYSTEMS: VIRTUAL MACHINE TASK OR

PROCESS MANAGEMENT OR TASK MANAGEMENT/CONTROL
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