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Abstract
Predicting the approval chance of a patent001
application is a challenging problem involv-002
ing multiple facets. The most crucial facet003
is arguably the novelty — 35 U.S. Code §004
102 rejects more recent applications that have005
very similar prior arts. Such novelty evalua-006
tions differ the patent approval prediction from007
conventional document classification — Suc-008
cessful patent applications may share similar009
writing patterns; however, too-similar newer010
applications would receive the opposite la-011
bel, thus confusing standard document classi-012
fiers (e.g., BERT). To address this issue, we013
propose a novel framework AISeer that uni-014
fies the document classifier with handcrafted015
features, particularly time-dependent novelty016
scores. Specifically, we formulate the novelty017
scores by comparing each application with mil-018
lions of prior arts using a hybrid of efficient019
filters and a neural bi-encoder. Moreover, we020
impose a new regularization term into the clas-021
sification objective to enforce the monotonic022
change of approval prediction w.r.t. novelty023
scores. From extensive experiments on the024
large-scale USPTO dataset, we find that our025
time-dependent novelty features offer a boost026
on top of the document classifier. Also, our027
monotonic regularization, while shrinking the028
search space, can drive the optimizer to better029
local optima, yielding empirical performance030
gains. Ex-post analysis of prediction scores031
further confirms that the document classifier032
and handcrafted features capture distinct sets033
of learning information.034

1 Introduction035

Securing patent approvals offers a major shot in036

the arm to inventors and innovators in the knowl-037

edge economy, increasing the chances of obtaining038

angel and venture capital investments. However,039

the process of getting a patent approved can cost040

applicants tens of thousands of dollars in payments041

to law firms who claim to be helpful in understand-042

ing what gets approved and improving the odds of043

success of a patent application. Algorithmic ap- 044

proaches to aid in the patent evaluation process can 045

potentially save precious time and resources for ap- 046

plicants including inventors and lawyers during the 047

patent application phase, as well as benefit patent 048

examiners in government patent offices around the 049

world who could use the tool to accelerate and im- 050

prove the review process (Ebrahim, 2018). 051

The approval of a patent application is deter- 052

mined necessarily and sufficiently by the approval 053

of application claims. Patent laws define individual 054

claims as the subject matter of inventions (35 U.S. 055

Code §112), on which “patentability” is defined (35 056

U.S. Code § 101, 102, and 103). Application claims 057

prescribe the particular scopes of legal protection 058

that the applicant is seeking and are the eventual ob- 059

jects for investigation under legal disputes or trans- 060

fer of commercial rights. Patent examiners from 061

the U.S. Patent and Trademark Office (USPTO) 062

will make decisions on each application claim indi- 063

vidually and independently with other sections as 064

supporting materials. Therefore we focus on claim 065

texts and use the term “patent approval” informally 066

and interchangeably referring to “claims approval.” 067

In particular, we primarily consider 35 U.S. Code 068

§ 102, assessing the novelty of application claims. 069

To the best of our knowledge, we are the first to 070

predict patent approval, which is as an extremely 071

challenging problem. Patent documents are le- 072

gal, technical, often vague, abstract and difficult 073

to parse, with writing conventions different from 074

typical articles (Singer and Smith, 1967). Although 075

AI/ML approaches are often discussed in the patent 076

domain (Aristodemou and Tietze, 2018) such as 077

in the area of information retrieval (Kang et al., 078

2007; Fujii, 2007; Shalaby and Zadrozny, 2019), 079

applications of deep NLP methods are mostly con- 080

cerned with classifying the content domains of 081

patents (Verberne et al., 2010; D’hondt et al., 2013; 082

Hu et al., 2016; Lee and Hsiang, 2019). In ad- 083

dition, extant literature usually explore approved 084
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Figure 1: An overview of our proposed AISeer.

patents rather than applications (Balsmeier et al.,085

2018). Even to simply classify the topics of ap-086

proved patents, state-of-the-art document classi-087

fiers can only achieve an accuracy of about 69.3%088

(only 2.2% over RoBerta) (Zaheer et al., 2020).089

Compared with topic classification, our patent090

approval prediction task is much more challenging091

for these document classifiers, because the patent092

examination process tends to suffer from subjectiv-093

ity and inconsistencies.1 To mitigate the issue, we094

first develop several handcrafted features based on095

domain knowledge for use alongside the language096

model to provide contexts and control.097

The time-dependent nature of the novelty also098

makes traditional document classifiers not suitable099

here, because they typically assume that similar100

instances belong to the same label. Rejections of101

claims by 35 U.S. Code § 102 require examiners102

to cite prior approved patent claims, prior arts, as103

evidence.2 USPTO receives thousands of applica-104

tions a week; thus a novel application at one time105

may be dramatically different in the assessment of106

novelty. This means that a classifier can pick up a107

positive label from an earlier approved application108

but receives a negative label from a similar but no109

longer novel application sometime later. Such con-110

flicting information can confuse the classifier and111

undermine its performance.112

To address this challenge, we propose a novel113

framework AISeer as shown in Figure 1. We for-114

mulate a time-dependent novelty score for each115

patent claim with its semantic similarity against116

prior approved claims from patent grants, which117

are final versions of approved patents. Specifically,118

inside a comprehensive pool comprising millions119

of grants, we consider those approved before the120

filing date of the focal application and then mea-121

sure the maximum semantic similarity score of122

1https://www.ipwatchdog.com/2018/10/
31/visualizing-outcome-inconsistency-uspto/
id=102810/

2More details about the examination process can
be found in Manual of Patent Examining Procedure at
https://www.uspto.gov/web/offices/pac/
mpep/index.html.

the focal patent claim matched with all approved 123

claims in the time-dependent sub-pool. To improve 124

computing efficiency, we apply document-level fil- 125

ters to narrow the sub-pool for each claim. After 126

integrating such similarity scores along with the 127

handcrafted features on top of BERT, experiments 128

on the large-scale USPTO dataset demonstrate sig- 129

nificant performance gains over fine-tuning a stan- 130

dard BERT alone. Intuitively, with all else equal, 131

a patent claim with a higher similarity score, i.e., 132

semantically more similar to prior approved claims, 133

should be less likely approved. Hence we pro- 134

pose to impose monotonic regularization on the 135

novelty score so that the loss function has an ad- 136

ditional term of the hinge loss to further penalize 137

non-decreasing predictions in the similarity. This 138

effectively restricts the search space for the opti- 139

mizer to prediction mechanisms that are reason- 140

ably consistent with the novelty measure. From our 141

experiments, this regularization can help the opti- 142

mizer steer away from unfavorable local optima 143

and further improve AUROC. 144

In summary, our contributions are as follows. 145

• We collect patent application data from several 146

data sections of USPTO and integrate full texts, 147

metadata, office actions, rejections and citations 148

data into a massive dataset; 149

• We develop a series of handcrafted features to 150

aid the prediction of 35 U.S. Code § 102 approval 151

decisions. In particular, we design and analyze a 152

time-dependent feature that measures the novelty 153

of patent applications at the time of filing; 154

• We propose to incorporate the handcrafted fea- 155

tures and impose monotonic regularization on the 156

novelty features and verify the effectiveness of 157

the methodology in predicting patent approvals. 158

Reproducibility. We will release the benchmark 159

dataset and our code on GitHub. 160

2 Problem Formulation and Benchmark 161

In this section, we formally formulate the novelty- 162

based patent approval problem. We describe the 163

experiment setup, the dataset, and baseline results 164

with common document classifiers. 165

2.1 Problem Formulation 166

Each patent applications Ak, k ∈ {1 · · ·M}, 167

sorted by filing dates, comprises of a number of 168

application claims. Given text representation Xi, 169

i ∈ {1 · · ·N}, of each application claim, there ex- 170

ist {ik}, k ∈ {0 · · ·M} such that claim representa- 171
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Table 1: Dataset Statistics. The approval ratio is calcu-
lated based on 35 U.S. Code § 102 labels.

Train Validation Test

Applications M 216,101 175,597 153,632

Claims N 3.90M 3.07M 2.58M

Approval % 80.65 80.16 81.68

Time range 04/16-02/17 03/17-10/17 11/17-06/19

tions {Xik−1
· · ·Xik} belong to patent application172

Ak. 35 U.S. Code § 102 based binary labels yi173

indicate approval decisions derived from patent ex-174

amination history where yi = 1 indicates approvals.175

We would like to classify application claims accord-176

ing to approval labels.177

2.2 Benchmark Dataset Preparation178

Dataset Collection. USPTO provides public data179

arranged in separate sources, including application180

and grant full texts, application metadata, citations,181

office actions, and rejections. Patent grants are final182

versions of approved patent applications. Later we183

will utilize grants for constructing the application184

novelty feature. To extract labels and create hand-185

crafted features, we utilize both the legacy data186

system for office actions, rejections and citations187

made between 2008 and mid-2017 (Lu et al., 2017),188

and newer v2 APIs that cover mid-2018 onward.189

For application metadata, we obtain bulk data from190

PEDS (Patent Examination Data System).3 In order191

to match all the available labels, we obtain weekly192

bulk releases for of both utility patent applications193

and utility patent grants in XML format ranging194

between 2005 and 2019. In total, we extract 8.8195

million patent applications and 3.7 million patent196

grants during the same time period whose texts are197

around 730 GiB.198

Patent applications are usually required to be199

published within 4 months after filing. Yet only200

one version among possibly a number of revisions201

is published. Next we identify the office actions and202

rejections associated with the published version by203

matching the closest action dates with publication204

dates minus 4 months, so that correct labels can be205

obtained. We identify the labels associated with206

the published version, and we then merge the dif-207

ferent sources of data by the application number208

and ingest them into a DBMS. This way, we allow209

a model to predict for any version of a patent ap-210

plication so that the attorneys and applicants can211

evaluate their chances for decision making. We212

find out around 900K applications under which all213

3https://ped.uspto.gov/peds/

corresponding sections of data are available. Be- 214

cause of the data size and to control for compu- 215

tation times, we choose the most recent, around 216

500K applications for experiments. 217

Dataset Splits. We split the data into training data, 218

validation data, and testing data by their filing dates. 219

The more recent patent applications are chosen for 220

testing. The size for final experimental data, includ- 221

ing the abstract, claim texts, labels, and handcrafted 222

features, is around 15 GiB. For more details, see 223

Table 1. The dataset is highly imbalanced towards 224

positive labels. 225

2.3 Common Document Classifier 226

Benchmark 227

Common Document Classifiers. We mainly eval- 228

uate the following common document classifiers. 229

• Log. Reg. refers to logistics regression using 230

TF-TDF features. 231

• Text-CNN (Kim, 2014) with GloVe (Pennington 232

et al., 2014) embeddings as the input. Adam 233

optimizer with learning rate 0.001. 10 epochs’ 234

run; batch size as 1024; 235

• LSTM (Hochreiter and Schmidhuber, 1997) 236

with GloVe embeddings as the input. AdamW 237

optimizer with learning rate 0.005 and 10 epochs’ 238

run; batch size as 1024; 239

• BERT (Devlin et al., 2018) fine-tuning. AdamW 240

optimizer with learning rate 5e-5 as the optimizer. 241

The number of fine-tuning epochs as 5; batch size 242

as 256. This is the the same model as in the state- 243

of-the-art model, PatentBERT, in patent content 244

classification (Lee and Hsiang, 2019) with a dif- 245

ferent set of hyper-parameters and balanced class 246

weights. The original PatentBERT model is de- 247

signed for a different task, and the experimental 248

setting is not suitable for predicting patent ap- 249

provals, hence we make the tweaks. 250

In all of the models, we impose class weights in the 251

loss functions inversely proportional to the number 252

of class instances, such that two classes are treated 253

equally by the optimizer. For the details, please 254

refer to Section 3.1. The neural models are trained 255

with text inputs processed at a maximum length of 256

128 tokens per claim and on a single GPU. 257

Evaluation Metrics. Given the imbalanced nature 258

of our dataset, we adopt both the Area Under the 259

Curve for the ROC plot (Fawcett, 2004) (AUROC) 260

and macro F1 score as our evaluation metrics. With 261

AUROC, the predicting performance of the minor- 262

ity class could be taken into consideration with 263

3
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Table 2: Benchmark Results of Common Document
Classifiers.

AUROC % Macro F1 %

Random Guess 50.00 50.00

Predicting All "1" 50.00 44.96

Log. Reg. (Tf-Idf) 58.94 54.54

TextCNN (GloVe) 59.70 55.58

LSTM (GloVe) 61.68 56.95

BERT (PatentBERT) 61.79 56.51
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Figure 2: ROC Curves for Common Document Classi-
fiers. BERT and LSTM are arguably the most effective
ones.

a similar weight as for the majority class (in our264

case, positive class). Moreover, the probability-265

based metric can provide more detailed insights266

into model performances. Therefore, we choose267

AUROC as our main metric. The macro F1 score268

is a direct average of F1 scores of both the positive269

class and the negative class and provides an alterna-270

tive balanced view of both classes’ performances.271

We treat it as a secondary metric. We compute272

the maximum macro F1 score (Lipton et al., 2014)273

by varying the decision threshold for each model.274

Other traditional measures focused on the positive275

class performance such as accuracy and recall have276

little practical implications due to data imbalance.277

Benchmark Results. Table 2 shows common doc-278

ument classifiers’ performance with some naive279

predictions as references. Results of neural mod-280

els are reported with the median metrics among281

several runs with different optimizer random states.282

Figure 2 further visualizes more details of the ROC283

curves of these models. One can find that BERT284

and LSTM are arguably the most effective ones.285

Therefore, we will focus on BERT and LSTM for286

further comparisons.287

3 Our AISeer Framework288

Our AISeer framework unifies the document clas-289

sifier, handcrafted features and monotonic regular-290

ization, as shown in Figure 1. It is compatible with291
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Figure 3: Illustration of Novelty Feature Construction.

almost all document classifiers. In this paper, we 292

choose BERT as the base document classifier to 293

demonstrate the effects as it is widely adopted and 294

also performing well in our benchmark evaluations. 295

After each application claim text is run through the 296

BERT model, the output representation is concate- 297

nated with the corresponding handcrafted features. 298

Our handcrafted features include a time-dependent 299

claim-level novelty score, claim-level structural fea- 300

tures, document-level similarity scores, and other 301

application metadata features. We further impose 302

a monotonic regularization on the impact of the 303

claim-level novelty score so that the loss function 304

has an additional term of the hinge loss. 305

3.1 Base Document Classifier 306

For the self-containess, we briefly introduce how 307

we use BERT in AISeer. We first utilize BERT 308

to transform the i-th application claim to a text 309

representation Xi in batches of a size Nb, which is 310

then passed to a linear layer to obtain the prediction 311

through a softmax layer. 312

Approvals (i.e., yi = 1) are much more popular 313

than rejections (refer to Table 1), so the vanilla 314

training will bias the model towards approvals. 315

Therefore, we adopt a weighted loss for training: 316

L =
∑

i−wyi (yi log ŷi + (1− yi) log(1− ŷi)) 317

where wyi denotes the fixed weights of the two 318

classes, which is inversely proportional to the num- 319

ber of instances from the corresponding class, bal- 320

ancing the training weights of the two classes. 321

3.2 Claim-Level Novelty Feature Ns,claim 322

The backbone of the novelty feature is the time- 323

dependent claim-level maximum similarity score. 324

We first index all patent grants with Elastic- 325

Search (NV). Given a patent application and a 326

claim under it, we first take advantage of its fast 327

BM25-based document-level fuzzy matches to ob- 328

tain 5 most similar grant documents to the focal 329
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application document as a first-stage pre-filter. To330

account for time-dependence, each focal applica-331

tion is matched against a sub-pool of patent grants332

which are time-stamped to be approved strictly be-333

fore the filing date of the focal application. In334

application level matching, all document sections335

are considered, including the abstract, summary of336

invention, details of invention of all claims.337

Among all claims under the top-5 matched338

grants, we then find the most similar one to the fo-339

cal claim using sentence-transformer (Reimers and340

Gurevych, 2019) with stsb-roberta-large341

pre-trained bi-encoder model. Base cross-encoder342

transformers such as BERT can lack in perfor-343

mance for pure semantic similarity tasks. Although344

certain cross-encoders have excellent semantic sim-345

ilarity performance, it can be computationally too346

demanding for our purpose since the scale of the347

claims in all patent grants is more than 100 mil-348

lion, and since each grant claim can be required349

to be paired many times with a focal application350

claim. The Elasticsearch-based pre-filter process351

also helps manage the computational need.352

Figure 3 demonstrates how the time-dependent353

novelty feature is generated — the application that354

the red-highlighted focal claim belongs to is first355

matched with 5 patent grants on the application356

level; then the focal claim is matched against every357

claim under the 5 matched grants to compute the358

semantic similarity score, before the most similar359

grant claim is identified. Our experiments con-360

firm that the claim-level maximum similarity score,361

as expected, is negatively correlated with 35 U.S.362

Code § 102 labels, as shown in Figure 4.363

3.3 Application-Level Handcrafted Features364

Application-Level Similarity. We consider the365

application-level maximum similarity score, de-366

noted as Ns,doc, and mean similarity score gener-367

ated by ElasticSearch (NV) as handcrafted features.368

These document-level scores measure how similar369

overall are the applications to the approved grants.370

The document-level similarity scores are positively371

correlated with 35 U.S. Code § 102 labels. We be-372

lieve that they primarily capture the overall writing373

quality and structural resemblance. We will present374

further analyses and discussions in Section 4.2.375

Features from Metadata. The USPTO dataset of-376

fers a rich collection of metadata about each patent377

application. We use the following two of them:378

• Patent Classification: the USPC class designated379

for the applications. USPC is a system of classify- 380

ing the subject matter of each patent application 381

for recording, publication, and assignment pur- 382

poses. Different classes of patents tend to have 383

varying approval rates, as illustrated in Table 6 384

in the appendix. 385

• Number of Applicant Cited References: the num- 386

ber of citations of other patents or articles initi- 387

ated by the applicant herself. In the patent do- 388

main, most citations are initiated by the exam- 389

iners as “prior arts” to reject application claims. 390

However, they can also be made by the applicant 391

to demonstrate understanding of related work and 392

claim contributions. The number of applicant- 393

initiated citations is a signal of the effort and 394

research the applicant puts in the application. 395

Other Application-Level Features are also con- 396

sidered for utility and writing as follows. 397

• Max Citation: based on ElasticSearch pre-filter, 398

the maximum number of total citations among 399

the top 5 most similar patent grant documents to 400

the focal patent application. 401

• Max Article Citation is similar to the above. It 402

refers to the maximum number of citations which 403

are research articles (not other patents) in top 404

matched grants. 405

• Lexical Diversity: the richness in the vocabulary 406

of the abstract of the patent application. 407

3.4 Claim-Level Structural Features 408

We consider two indicators on how each claim is 409

specified. 410

• Component: indicator on whether the application 411

claim is describing the components of a system 412

(e.g., a machine, a process, a compound). Other 413

claims may describe the properties or utility of 414

particular components. This is identifiable by the 415

transitional phrases used in the claim. 416

• Transitional Phrase: indicator on whether a com- 417

ponent claim is open, closed, or half-open, which 418

is determined by which transitional phrase is 419

used. Openness or closedness regulates the scope 420

of legal IP protection the applicant enjoys once 421

the patent is approved. Often it is a strategic 422

choice by the applicant and the attorney. If a 423

claim is open, indicated by transitional phrases 424

“comprising” and legal synonyms, any additional 425

components later added to the system are also 426

protected, in contrast to closed claims . Open 427

claims are, in turn, more difficult to be approved. 428

These particular language phenomena are well- 429
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Figure 4: Handcrafted Features vs. Proportions of Positive 102-Labels. Features are grouped into bins for 10-90
percentile against mean positive label proportions.

known in the IP communities and sometimes re-430

ferred to as “patentese” (Singer and Smith, 1967).431

The patent examination manual explicitly dis-432

cusses the transitional phrases with case laws.4433

3.5 Integrating with BERT434

Now let Hi denote other handcrafted features in435

addition to Ns,claim and Ns,doc. Figure 4 demon-436

strates the correlations between some representa-437

tive handcrafted features and the positive label.438

Let Zi = Xi ∪ Hi ∪ Ns,claim ∪ Ns,doc ∪ {1},439

∀i ∈ {1, ..., Nb}. Note thatXi is the representation440

for the claim and that the document or application-441

level handcrafted features will be augmented to442

each claim. The concatenated Zi will pass through443

the linear and the softmax layer.444

3.6 Monotonic Regularization445

Mathematically, we would like to restrict the search446

space upon Ns,claim, regularizing predictions to be447

decreasing in it. Let Z̃i denote all other inputs448

except Ns,claim. We would like to manipulate the449

input such that inconsistency with the monotonicity450

in Ns,claim is represented. For a positive constant451

C(0 < C < 1) let N ′
s,claim = CNs,claim, let452

Z′
i = Z̃i ∪ N ′

s,claim. Given log-likelihood with453

respect to Zi,454

F (Zi) = yi log ŷi(Zi) + (1− yi) log(1− ŷi(Zi)),455

we shall constrain F (Zi) < F (Z′
i). To imple-456

ment it, we shall impose a hinge loss penalty when-457

ever F (Zi) > F (Z′
i) and return 0 when otherwise.458

Therefore, the final objective function becomes:459

O = L+ λ
∑
i

max
{
0, F (Zi) > F (Z′

i)
}
,460

where λ determines the regularization strength.461

4Refer to patent glossary https://www.uspto.
gov/learning-and-resources/glossary and ex-
amination manual https://www.uspto.gov/web/
offices/pac/mpep/s2111.html#d0e200824

4 Experiments 462

We mainly compare AISeer with two models, 463

BERT and LSTM, as they are the best common 464

document classifiers from our benchmark results. 465

For ablation study purpose, we also compare with 466

Log. Reg. Feat. Only, a logistics regression 467

model with handcrafted features only, and AISeer 468

w/o Regu., which is a BERT model integrated with 469

our handcrafted features but not regularized by our 470

monotonic constraints. AISeer is trained with the 471

same set of hyper-parameters as BERT: maximum 472

length for the tokenizer as 128, the number of fine- 473

tuning epochs as 5; batch size as 256; AdamW 474

with learning rate being 5e-5 as the optimizer. The 475

monotonic regularization parameters C is 1
2 and λ 476

is 5e-4. 477

4.1 Empirical Results 478

With the setup above, we conducted several empiri- 479

cal tests. The results are shown below in Table 3. 480

Baseline BERT model gives decent AUC (ROC) 481

and macro F1. The introduction of handcrafted 482

novelty feature along with other computed ones 483

together helps both the metric dimensions: AISeer 484

boosts AUROC by around 2.5% percent and macro 485

F1 by around 1% compared to the best common 486

document classifiers. Figure 5 shows the AUROC 487

improvement originates consistently from the en- 488

tire spectrum of prediction scores. The reported 489

numbers are medium results from multiple runs 490

with the setup. We find the pattern of the results 491

consistent. 492

Aforementioned in the introduction, wven to 493

simply classify the topics of approved patents, state- 494

of-the-art document classifiers can only achieve 495

an accuracy of about 69.3% (only 2.2% over 496

RoBerta) (Zaheer et al., 2020). Therefore we be- 497

lieve a 2.5% performance margin is substantial for 498

the patent domain given its difficulty, especially 499

given the relatively low dimensionality of hand- 500
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Table 3: Evaluation Results of AISeer, Compared
Methods, and Ablations.

AUROC% Macro F1%

LSTM (GloVe) 61.68 56.95
BERT (patentBERT) 61.79 56.51
AISeer 64.14 57.92

Log. Reg. Feat. Only 60.45 55.47
AISeer w/o Regu. 63.71 57.73
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BERT (area = 0.6179)
AISeer w/o Regu. (area = 0.6371)
AISeer (area = 0.6414)
Random Guessing

Figure 5: ROC Curves for AISeer and Compared Mod-
els. Only the two ends are visualized because we want
to zoom in enough while saving space.

crafted features compared to BERT.501

Log. Reg. Feat. Only result in the lower half of502

Table 3 indicate the necessity of a language model.503

Neither a language model only nor handcrafted504

features only could yield satisfactory performance.505

Also , AISeer w/o Regu. result shows that adding506

monotonic regularization on the novelty feature is507

effective. The relatively small performance gain508

over monotonic regularization may be attributed to509

the compromised precision of the novelty feature510

due to the use of the ElasticSearch pre-filter for511

the sake of computational costs. We would like to512

emphasize that the combination methodology has513

great potential.514

In the next section, we will discuss in depth what515

the model framework has learned from the lan-516

guage model, the handcrafted features, and mono-517

tonic regularization, respectively.518

4.2 Ex-Post Analysis for AISeer519

Learning from Handcrafted Features.520

Empirical results in Table 3 demonstrate that521

handcrafted features improve on best common522

document classifiers by about 2%. One may523

ask whether the handcrafted features have con-524

tributed significantly given the moderate improve-525

ment. Granted, application full texts may also con-526

tain signals for the patent class and applicant efforts527

that may partially reflect handcrafted features and528

the document classifier such as BERT may pick up.529

Table 4: Regression Analysis of Prediction Scores on
Handcrafted Features.

BERT AISeer w/o
Regu.

AISeer

No. of Applicant
Cited Refs

-3.5e-06∗∗∗ -8.2e-06∗∗∗ 4.3e-06∗∗∗

(9e-7) (1e-6) (8e-7)

Transitional
Phrase - Open

-0.045∗∗∗ -0.037∗∗∗ -0.067∗∗∗

(0.000) (0.000) (0.000)

Transitional
Phrase - Closed

-0.015∗∗∗ -0.022∗∗∗ 2e-4

(0.000) (0.000) (0.000)

Max Article Cita-
tions

1.9e-5∗∗∗ 2.5e-5∗∗∗ 3.2e-5∗∗∗

(7e-7) (7e-7) (5e-7)

Ns,doc 2e-4∗∗∗ 4e-4∗∗∗ 2e-4∗∗∗

(6e-7) (6e-7) (4e-7)

Ns,claim -0.18∗∗∗ -0.17∗∗∗ -0.21∗∗∗

(0.001) (0.001) (0.001)

R2 0.085 0.125 0.189

Notes: HC1 heteroskedasticity-robust standard errors used.
Not all regressors shown. ∗∗∗1% significance level.

To shed light on how AISeer learns from hand- 530

crafted features, we run linear regressions for the 531

model prediction scores on handcrafted features 532

for interpretable insights and present statistical re- 533

sults, as shown in Table4. Even prediction scores 534

under BERT are significant in all handcrafted fea- 535

tures, showing that BERT does learn knowledge 536

overlapping with the handcrafted features to some 537

extent. However, low R2’s indicate that knowledge 538

from the deep neural model and knowledge from 539

handcrafted features are quite distinct. 540

The dramatic R2 increase from 0.085 to 0.189 541

shows that AISeer captures handcrafted features 542

much more effectively than BERT. About 19% of 543

knowledge of AISeer corresponds to handcrafted 544

features, a 10% increase over BERT. Also, AISeer 545

corrects incorrect coefficient signs from BERT. In- 546

tuitively, the chance of approval shall increase with 547

in the number of applicant cited references. How- 548

ever, BERT is negatively correlated with it statisti- 549

cally significantly. Under AISeer, the direction of 550

the effect is revered to match intuitions. 551

Learning from Monotonic Regularization. Ac- 552

cording to Table 4, our claim-level novelty feature 553

Ns,claim has the most significant impact. The use 554

of monotonic regularization alone boosts the R2 555

significantly, indicating that the approach also helps 556

the model learn from handcrafted features overall. 557

We also evaluate the Spearman correlation coeffi- 558

cients of the probability prediction scores produced 559

by the models with the claim-level novelty feature 560

Pearson correlations with the document-level simi- 561
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Table 5: Ns,doc, Ns,claim vs. Prediction Scores Corre-
lations.

BERT AISeer w/o Regu. AISeer

Ns,doc (Pearson) 0.128 0.238 0.180

Ns,claim (Spearman) -0.0788 -0.0230 -0.103

larity score. Spearman correlations measure how562

monotone two variables are correlated. According563

to Table 5, first we can confirm that applying mono-564

tonic regularization significantly pushes the predic-565

tion scores to be more monotonically decreasing in566

the core novelty feature – the Spearman correlation567

shifts from -0.0230 to -0.103. However, compared568

to the BERT, the regularization effect is less promi-569

nent. Observe that adding handcrafted features will570

actually steer the monotonicity into the opposite di-571

rection. Our regularized AISeer model manages to572

both benefit from the novelty feature and incorpo-573

rates knowledge from other handcrafted features.574

We believe the novelty feature should be only575

considered under contexts and will not perform576

well on it’s own. First, novelty can be a subjective577

concept and may vary according to different types578

of claims, openness of claims, the department (cate-579

gory), etc. Second, novelty as practically measured580

by dis-similarity, can be easily achieved by poorly581

written random content, thus structural or overall582

similarity is also important. However, the obser-583

vations indicate that there are potential conflicts584

between the novelty feature and other handcrafted585

features. While the latter helps with prediction per-586

formance on their own and provide contexts for the587

novelty feature thus imperative, it will also atten-588

uate the effects of the regularized novelty feature.589

We leave this challenge for future work.590

5 Related Work591

To our knowledge, our work is the first in predict-592

ing patent approvals according to the examination593

procedures at the government patent office. Few594

extant researches attempt to predict decisions in595

office. (Winer, 2017) studies PTAB (Patent Trial596

and Appeal Board) hearing decisions at USPTO.597

Other related work addresses patent quality in a598

general and broad sense (Wu et al., 2016). More599

broadly in the IP/patent domain, although AI/ML600

applications have been often advocated (Ebrahim,601

2018), studied (for a review see (Aristodemou and602

Tietze, 2018)) or implemented in practice (Lu et al.,603

2017), most work focus on determining patent con-604

tent classes to save manpower or concern only with605

patent grants rather than applications (Verberne606

et al., 2010; D’hondt et al., 2013; Hu et al., 2016; 607

Balsmeier et al., 2018; Lee and Hsiang, 2019). Re- 608

cent studies (Hsu et al., 2020) emerge aiming at 609

predicting patent transfers and the economic value. 610

Other streams of related work include those ex- 611

ploring patent similarity. Our approach of con- 612

structing the novelty feature with a state-of-the-art 613

neural bi-encoder (Reimers and Gurevych, 2019) 614

is significantly more advanced than relatively rudi- 615

mentary approaches in the extant literature, such 616

as text matching and frequency-based methods 617

(Younge and Kuhn, 2016; Arts et al., 2018; Shah- 618

mirzadi et al., 2019). Studies on semantic analysis 619

and representation of technology (Kim et al., 2016; 620

Strumsky and Lobo, 2015) based on patent data are 621

also related. 622

6 Conclusions and Future Work 623

In this paper, we tackle the challenging problem 624

of predicting patent approval decisions as per 35 625

U.S. Code § 102, namely the novelty-based deci- 626

sions. We have prepared a large-scale benchmark 627

dataset by consolidating different data sources from 628

USPTO. From the evaluations of the popular docu- 629

ment classifiers, BERT and LSTM are arguably 630

the most effective ones. We identify the time- 631

dependent challenge of the novelty judgement, and 632

therefore propose AISeer, a novel framework going 633

beyond the traditional document classifiers. Specif- 634

ically, we construct a claim-level core novelty fea- 635

ture along with several other handcrafted features 636

and apply them on top of the pre-trained BERT 637

model. We further propose to add the monotonic 638

regularization on the core novelty feature to re- 639

solve the potential label conflicts caused by the 640

mechanism of the patent examination process. Ex- 641

perimental results have verified the superiority of 642

AISeer and also the effectiveness of introducing 643

novelty features and monotonic regularization. 644

We believe that our work is beneficial to vari- 645

ous parties, including patent applicants, attorneys, 646

examiners and regulators. While the advantages 647

of our regularization methodology are significant, 648

there is still room for potential metric improve- 649

ments, thus further developing the work will yield 650

opportunities for promising future research and 651

greater contributions to the communities. In fu- 652

ture, it is also important to extend the scope from 653

claims to the other sections in the patent applica- 654

tions. Model interpretability is another direction 655

that worthies exploring. 656
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A An Example Patent Application770

TITLE: Data labeling for deep-learning models771

772

ABSTRACT: A first and second scoring endpoint773

with payload logging are deployed. At the second774

scoring endpoint, native data and a user-generated775

score for the native data are received, the native776

data is pre-processed into readable data for the777

deep-learning model, and the user-generated score778

and the readable data are output to the first scoring779

endpoint, which is associated directly with the780

deep-learning model...781

782

BACKGROUND: The present disclosure relates783

generally to the field of deep-learning models, and784

more particularly to evaluating and providing feed-785

back data for deep-learning models.786

The evaluation and feedback data labeling for787

deep-learning models, where the pre-processing788

code is embedded in the model, can be difficult to789

execute and accurately assess...790

791

SUMMARY: Disclosed herein are embodiments792

of a method, system, and computer program prod-793

uct for evaluating and providing feedback data for794

deep-learning models.795

A method, system, and computer program796

product may manage deep-learning models. A797

first and a second scoring endpoint with payload798

logging are deployed for a deep-learning model.799

At the second scoring endpoint, native data and800

a user-generated score for the native data are801

received...802

803

DETAILED DESCRIPTION: Aspects of the804

present disclosure relate to deep-learning models,805

and more particularly to evaluating and providing806

feedback data for deep-learning models. While807

the present disclosure is not necessarily limited to808

such applications, various aspects of the disclosure809

may be appreciated through a discussion of various810

examples using this context.811

An understanding of the embodiments of the812

present disclosure may be aided by describing ex-813

amples in the context of a neural networking en-814

vironment. Such as examples are intended to be815

illustrative, and not limiting in any sense.816

When black box (e.g., deep-learning) models817

include pre-processing of raw data, it can be818

difficult to accurately and efficiently evaluate and819

label feedback data for retraining purposes. Con-820

ventionally, machine learning deployment systems 821

(e.g., deep-learning models) have difficulty when 822

defining/extracting the logic used to transform the 823

training data into the format used by the model 1, 824

because the pre-processing steps (e.g., image trans- 825

formation, text vectorization, etc.) are usually not 826

included in the machine learning model definition... 827

828

CLAIMS: 829

830

Claim 1: A computer-implemented method for 831

managing deep-learning, the method comprising: 832

deploying a first and a second scoring endpoint 833

with payload logging for a deep-learning model; 834

receiving, at the second scoring endpoint, native 835

data and a user-generated score for the native 836

data; pre-processing, at the second scoring 837

endpoint, the native data into readable data for the 838

deep-learning model; outputting, from the second 839

scoring endpoint to the first scoring endpoint, the 840

user-generated score for the native data and the 841

readable data, wherein the first scoring endpoint is 842

associated directly with the deep-learning model; 843

outputting, from the second scoring endpoint to 844

a payload store, a raw payload, wherein the raw 845

payload includes the native data; processing, at the 846

first scoring endpoint and using the deep-learning 847

model, the readable data and the user-generated 848

score to output a transformed payload and a 849

prediction, respectively, to the payload store; 850

matching, at the payload store, the raw payload 851

with the transformed payload and the prediction 852

to produce a comprehensive data set; evaluating 853

the comprehensive data set to describe a set of 854

transformation parameters; and retraining the 855

deep-learning model to account for the set of 856

transformation parameters. 857

858

Claim 2: ... 859

860

Claim 3: ... 861

862

... 863

B Example Approval Rates across 864

Common Patent Classes 865

Figure 6 demonstrates the variations of approval 866

rates in different patent classess, ranging from 867

63.1% to 93.2%, indicating the inclusion of patent 868

class feature is critical. 869
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Table 6: Example Approval Rates across Common Classes.
USPC Code Application Counts Approval Rate Description

716 4425 63.10% COMPUTER-AIDED DESIGN AND ANALYSIS OF CIRCUITS AND SEMICONDUCTOR MASKS

362 28054 75.59% ILLUMINATION

257 151435 80.43% ACTIVE SOLID-STATE DEVICES (E.G.,TRANSISTORS, SOLID-STATE DIODES)

375 44245 89.10% PULSE OR DIGITAL COMMUNICATIONS

718 6848 93.17% ELECTRICAL COMPUTERS AND DIGITAL PROCESSING SYSTEMS: VIRTUAL MACHINE TASK OR

PROCESS MANAGEMENT OR TASK MANAGEMENT/CONTROL
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