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ABSTRACT

Transformers have become the predominant architecture in foundation models due
to their excellent performance across various domains. However, the substantial
cost of scaling these models remains a significant concern. This problem arises
primarily from their dependence on a fixed number of parameters within linear
projections. When architectural modifications (e.g., channel dimensions) are intro-
duced, the entire model typically requires retraining from scratch. As model sizes
continue growing, this strategy results in increasingly high computational costs
and becomes unsustainable. To overcome this problem, we introduce Tokenformer,
a natively scalable architecture that leverages the attention mechanism not only
for computations among input tokens but also for interactions between tokens and
model parameters, thereby enhancing architectural flexibility. By treating model
parameters as tokens, we replace all the linear projections in Transformers with
our token-parameter attention layer, where input tokens act as queries and model
parameters as keys and values. This reformulation allows for progressive and
efficient scaling without necessitating retraining from scratch. Our model scales
from 124M to 1.4B parameters by incrementally adding new key-value parameter
pairs, achieving performance comparable to Transformers trained from scratch
while greatly reducing training costs. Code will be available.

1 INTRODUCTION

Designing a powerful neural network architecture is a long-standing goal in machine learning. Recent
developments in foundation models (FMs) have shown the potential of Transformers (Vaswani
et al., 2017) as a universal computational architecture. Thanks to their flexibility and scalability,
Transformers have achieved state-of-the-art performance across various domains, including natural
language processing (NLP) (Radford et al., 2018; Alec et al., 2019; Brown et al., 2020), visual
modeling (Dosovitskiy et al., 2021; Liu et al., 2021), vision-language (Liu et al., 2023; Wang et al.,
2024), graph representation (Ying et al., 2021), and 3D vision (Wang et al., 2023a;b).

Transformers typically divide the computation required to process a single token into two distinct
parts: interactions with other input tokens (token-token interaction) and computations involving
the model’s parameters (token-parameter interaction). The attention mechanism (Vaswani et al.,
2017) facilitates token-token interactions, allowing modern general-purpose foundation models to
encode multi-modal data into a unified token sequence and effectively capture complex dependencies
among them (Liu et al., 2023; Zhu et al., 2023; Wang et al., 2023d). Conversely, token-parameter
computations rely heavily on linear projections (Dunford & Schwartz, 1988), where input tokens are
multiplied by a fixed set of parameters. This prescribed design limits scalability because increasing
the model size requires altering core architectural components, often necessitating retraining the
entire model from scratch. As models grow larger, this results in excessive resource consumption,
making it increasingly impractical. In this paper, we introduce a novel architecture that enhances the
flexibility of token-parameter interactions, allowing for incremental scaling of model parameters and
effectively reusing previously trained models, thus significantly reducing the training burden.

To achieve this objective, we introduce Tokenformer, a novel architecture that unifies the computations
of token-token and token-parameter interactions by entirely employing the attention mechanism. The
flexibility of our token-parameter attention layer, along with its ability to handle a variable number of
parameters, inherently enhances the model’s scalability, facilitating progressively efficient scaling.
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Figure 1: Traditionally, large transformer architectures are trained from scratch without reusing
previous smaller-scale models (represented by blue dots on the left). In this paper, we propose a novel
fully attention-based architecture that allows scaling model incrementally, thus greatly reducing the
overall cost of training large transformer architectures (depicted by red dots on the left). The right
panel delineates a comparison between conventional Transformer and our Tokenformer.

As shown in Figure 1, we extend the Transformer architecture by preserving the computational
patterns between input tokens while reformulating all the linear projections using a cross-attention
mechanism. Specifically, to project features with input and output dimensions D1 and D2, we employ
two sets of parameters, each comprising N learnable tokens with channel dimensions of D1 and D2,
respectively. In this formulation, input tokens serve as queries, and model parameters as keys and
values. This flexibility renders our model’s parameters inherently scalable with variable N , allowing
for efficient expansion by continuously adding new key-value parameter pairs. Figure 1 shows that
our model can be scaled incrementally from 124M to 1.4B parameters, achieving performance similar
to training from scratch while saving more than half of the training cost.

The key contributions of this work are summarized as 1) As shown in Figure 1, we propose Token-
former, a fully attention-driven neural network that treats model parameters as tokens, maximizing
the flexibility of token-parameter computations while achieving competitive performance on standard
benchmarks across both language and vision domains. 2) Thanks to this design, our model can
be naturally scaled by progressively adding new key-value parameter pairs. Compared with the
train-from-scratch approach (Biderman et al., 2023; Kaplan et al., 2020), our method achieves nearly
the same performance while greatly reducing training costs.

2 RELATED WORK

Transformer (Vaswani et al., 2017) has emerged as a foundational architecture in deep learning
due to its versatile attention mechanism, enabling it to process any tokenized data and adapt to
numerous domains, including language modeling (Radford et al., 2018; Touvron et al., 2023), image
processing (Dosovitskiy et al., 2021), multi-modal understanding (Liu et al., 2023; Wang et al.,
2024; 2023b; 2022), decision making (Chen et al., 2021b), graph learning (Yun et al., 2019), among
others. While the Transformer effectively handles interactions among input tokens with flexibility,
this property does not extend to computations involving model parameters, which are conducted
via prescribed linear projections. In this work, we seek to restructure token-parameter interactions
by developing a fully attention-based network that unifies both token-token and token-parameter
computations through attention mechanisms, thus further extending the network’s flexibility.

Large Scale Training has proven to be an effective approach for developing powerful foundation
models. As demonstrated by models like the GPT series (Radford et al., 2018; Alec et al., 2019;
Brown et al., 2020), simple architectures—when supported by larger training datasets and increased
model sizes (measured in parameters)—often outperform more complex algorithms. Scaling up data
is generally more cost-effective because it is independent of the model’s architecture and allows for
the continuous integration of new data through fine-tuning existing models (Kaplan et al., 2020). In
contrast, increasing the model size often incurs extremely high costs, as it alters architectural details
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and usually requires retraining the entire dataset from scratch at each scaling step (Biderman et al.,
2023). This significantly raises the expenses for building progressively larger models in the industry.

Model Reusing. Previous methods for reusing models have typically involved initializing larger
models with pre-trained smaller models by duplicating (Chen et al., 2015; 2021a), stacking (Gong
et al., 2019), or combining (Wang et al., 2023c) model weights. While these approaches can be
effective, they often disturb the pre-established distribution of the smaller model, increasing the
risk of losing pre-trained knowledge and slowing convergence. In contrast, our model allows for
parameter scaling in a natural and seamless manner and preserves the integrity of the existing model.

3 METHODOLOGY

In this section, we first revisits the conventional attention mechanism in Section 3.1. Then, Section 3.2
introduces Tokenformer, a natively scalable architecture centered around a flexible token-parameter
attention layer. Finally, incremental model scaling of Tokenformer is detailed in Section 3.3.

3.1 PRELIMINARIES

Transformer models (Vaswani et al., 2017) have established themselves as fundamental architectures
in deep learning, demonstrating outstanding performance across a wide range of tasks. The corner-
stone of their success is the self-attention mechanism, which allows the model to dynamically assess
the importance of each token, efficiently modeling complex dependencies among them.

Given a set of T input tokens X ∈ RT×d with channel dimension d, the self-attention block first
derives input-dependent query Q, key K, and value V , with three distinct linear projections as

Q = X ·WQ, K = X ·WK , V = X ·WV , (1)

where the WQ,WK ∈ Rd×dk and WV ∈ Rd×dv are learnable weight matrices. The attention scores
are calculated by measuring the similarity between query and key vectors, followed by a softmax
function to obtain normalized weights. These scores are subsequently used to compute the output of
the scaled dot-product attention as,

Attention(Q,K, V ) = softmax[
Q ·K⊤
√
d

] · V, (2)

where
√
d is a scale factor for alleviating small gradients caused by softmax. Finally, the output is,

O = Xatt ·WO, (3)

with Xatt being the attention output and WO ∈ Rdv×d as the output projection matrix.

The above architectural design enables the model to flexibly manage interactions between tokens
of varying lengths, thereby allowing modern general models to concurrently process any form and
quantity of tokenized multi-modal data. This capability markedly enhances the development of
current AI domain and is fundamental to the success of transformer-based systems.

3.2 TOKENFORMER

Although transformers excel across various domains, their scalability is limited by high computational
overheads resulting from prescribed token-parameter interactions (i.e., linear projections). As a result,
scaling strategies that adjust architectural components (e.g., channel dimensions) typically require
retraining the entire model from the beginning, leading to inefficient use of computational resources.

To overcome this challenge, we propose Tokenformer, an architecture entirely based on attention
mechanisms. The central innovation of Tokenformer is token-Parameter attention (Pattention) layer,
which incorporates a set of trainable tokens functioning as model parameters and then employs
cross-attention to manage interactions between input tokens and these parameter tokens. In this way,
the Pattention layer introduces an additional dimension—the number of parameter tokens—which
operates independently of the input and output channel dimensions. This decoupling enables input
data to dynamically interact with a variable number of parameters, providing the flexibility required

3
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Figure 2: Tokenformer is a fully attention-driven architecture featuring a new token-Parameter
attention (Pattention) layer. The Pattention uses a set of learnable tokens to represent model
parameters and lets the input tokens attend to them. As the model scales, Tokenformer adds new
learnable tokens to expand the existing key-value parameter sets, while keeping the feature dimension
constant and leaving the rest of the computation unaffected.

for incremental model scaling by reusing pre-trained models. Consequently, training larger models is
greatly accelerated while achieving performance on par with transformers trained from scratch.

Pattention Layer. Let the input tokens and output tokens be represented as I ∈ RT×d1 and
O ∈ RT×d2 , where T is the sequence length, and d1 and d2 are the input and output dimensions,
respectively. To implement our Pattention mechanism, we introduce two sets of n learnable parameter
tokens: KP ∈ Rn×d1 representing the keys, and VP ∈ Rn×d2 representing the values. The output O
from the scaled dot-product Pattention layer is computed as:

Pattention(X,KP , VP ) = Θ

(
X ·K⊤

P

τ

)
· VP , (4)

where τ is the scale factor, which is set to 1√
n

by default, and Θ is a modified softmax operation for
stable optimization of Pattention layer. The output Pattention scores, S ∈ Rn×n, are formulated as,

Sij = f

(
Aij√∑n
k=1 |Aik|2

)
, ∀ i, j ∈ 1...n, (5)

where A is the score derived from (X · K⊤
P )/τ and f is a non-linearity function, which in our

formulation is set to the GeLU function (Hendrycks & Gimpel, 2016). This design improves gradient
stability in our architecture and results in better performance compared to the standard softmax
operation (see Appendix A and Table 4 for model details).

Our Pattention layer employs a cross-attention mechanism to manage interactions between tokens
and parameters, thereby fully preserving the adaptability characteristic of attention mechanisms.
Similar to how self-attention in Transformer models handles sequences with variable lengths, our
Pattention layer is designed to process a flexible number of parameters independently of the input and
output channel dimensions used in feature projection. This allows network parameters to be expanded
seamlessly along the parameter token axis, enabling the effective reuse of pre-trained weights and
offering a naturally incremental manner for model scaling.

Overall Architecture. Figure 2 illustrates the architecture of Tokenformer. Given the input tokens
Xin ∈ RT×d, we follow the design of the pre-norm transformer, the computation for the output of a
Tokenformer layer is represented as follows:

Xinter = Xin + MHA(LN(Xin)), (6)

Xout = Xinter + FFN(LN(Xinter)), (7)
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where LN denotes the layer normalization (Ba, 2016; Zhang & Sennrich, 2019), and MHA and FFN
refer to our modified multi-head self-attention and feed-forward layer, respectively.

In the multi-head self-attention block, for simplicity, we consider a single-head variant and set both
dk and dv equal to d. Then we replace all the linear projections with our Pattention layers. Let
LN(Xin) be denoted as X , this block is formulated as follows:

Q = Pattention(X,KQ
P , V Q

P ), K = Pattention(X,KK
P , V K

P ), V = Pattention(X,KV
P , V V

P ), (8)

Xatt = softmax
[
Q ·K⊤
√
d

]
· V, (9)

Oatt = Pattention
(
Xatt,K

O
P , V O

P

)
, (10)

where Eq. 8 and 10 represent token-parameter attention while Eq. 9 represents token-token attention.
The key-value parameter tokens for the QKV projections are (KQ

P , V Q
P ) ∈ Rnq×d, (KK

P , V K
P ) ∈

Rnk×d, (KV
P , V V

P ) ∈ Rnv×d, while (KO
P , V O

P ) ∈ Rno×d is used for the output projection layer.

For consistency and simplicity, the feed-forward block in Tokenformer utilizes a single Pattention
Layer. Denote LN(Xinter) as Xffn, and the FFN computation is given by:

Offn = Pattention
(
Xffn,K

ffn
P , V ffn

P

)
, (11)

where (K ffn
P , V ffn

P ) ∈ Rnffn×d are learnable key-value pairs for FFN block.

By designing the architecture in this manner, we represent all fundamental components-including both
input data and model parameters—as tokens within the computational framework. This token-centric
perspective allows the utilization of successful attention mechanisms to unify two primary computa-
tions within the transformer, token-token and token-parameter interactions, thereby establishing a
fully attention-based neural network characterized by exceptional flexibility.

Architecture Configurations. Our model meticulously mirrors the hyper-parameter configuration of
the standard Transformer architecture. Taking GPT-2 (Radford et al., 2018) as an exemplar, which
features 12 Transformer layers and a hidden dimension of 768, our model replicates this configuration
with identical layer counts and dimensionality. The number of key-value parameter pairs in both the
query-key-value and output projections corresponds directly to the hidden dimension. In contrast,
the FFN module utilizes four times the number of parameter pairs relative to the hidden size. This
architectural alignment facilitates the initialization of our model’s parameters using a pre-trained
Transformer, thereby ensuring seamless integration into the Transformer pre-training ecosystem.

3.3 PROGRESSIVE MODEL SCALING

Our model demonstrates strong suitability for large-scale model training along the parameter axis, at-
tributable to the versatile design of the Pattention layer, which allows for the incremental development
of larger models by reusing parameters from smaller, pre-trained counterparts.

To facilitate understanding without compromising generality, we employ a single Pattention layer
to exemplify the intricacies of model scaling. Consider an existing Tokenformer model equipped
with a set of pre-trained key-value parameter tokens, denoted as Kold

P , V old
P ∈ Rn×d. As shown in

Figure 2, to scale the model, we augment this set by appending new key-value parameter tokens
Knew

P , V new
P ∈ Rm×d as

Kscale
P =

[
Kold

P ,Knew
P

]
, V scale

P =
[
V old
P , V new

P

]
, (12)

where [·old, ·new] means the concatenation operation along the token dimension and Kscale
P , V scale

P ∈
R(m+n)×d are scaled parameter sets. The forward pass of the scaled model is then defined as

O = Pattention
(
X,Kscale

P , V scale
P

)
. (13)

This scaling scheme permits the integration of an arbitrary number of parameters without altering the
input or output dimensions. As demonstrated in Figure 3, this approach notably enhances training
efficiency for models at greater scales without degrading performance. Importantly, by initializing
Knew

P with zero, similar to LoRA technique (Hu et al., 2022), our model can perfectly resume the
model state from the pre-training phase without losing the well-learned knowledge, facilitating faster
convergence and accelerating the overall scaling process.
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Figure 3: Evaluating model scaling costs through
cumulative computational budgets. The Trans-
former baseline incurs expenses for each individ-
ual scaling step performed independently from
scratch, whereas Tokenformer aggregates costs
across all scaling stages, including training a
124M model initially, progressively scaling to
354M, 757M, and 1.4B parameters.
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Figure 4: Evaluating model scaling costs by mea-
suring the budget required at each scaling stage.
The Transformer baselines used are consistent
with those depicted in Figure 3, trained with 30B
and 300B tokens. Similarly, for Tokenformer, the
cost is the budget required for each incremental
scaling step from a smaller one. All the experi-
ments were conducted on TPU v4 hardware.

4 EXPERIMENTS

In this section, we present experimental results for the techniques described above. Section 4.1
validates the continual expansion capability of our model. Section 4.2 highlights the model’s efficacy
in handling tasks within both language and vision domains. Section 4.3 offers an in-depth comparison,
highlighting our model’s advantages over standard Transformer models. Finally, Section 4.4 details
the ablation experiments conducted to assess the significance of each module in Tokenformer.

4.1 PROGRESSIVE MODEL SCALING

Datasets. Our models are trained using the OpenWebText Corpus described in (Gokaslan & Cohen,
2019). This corpus serves as a widely recognized open-source approximation of OpenAI’s proprietary
WebText dataset, which was employed in the development of GPT-2 (Alec et al., 2019). The dataset
comprises textual data extracted from 8,013,769 Reddit-shared documents. During training, we
randomly sample segments from these documents.

Baseline Transformer Training from Scratch. To evaluate the effectiveness of our progressive
model scaling strategy, we established a baseline by training a Transformer model from scratch.
Following the training procedures outlined in Karpathy (2022); Kaplan et al. (2020), we employed the
AdamW optimizer (Loshchilov & Hutter, 2019) with a batch size of 512 sequences, each containing
1024 tokens. For a fair comparison with our incremental scaling approach, we configured two
training variants based on the total number of training tokens. The first variant underwent 6× 105

steps (approximately 300B tokens), consistent with the training steps utilized by Karpathy (2022) to
replicate GPT-2 performance. The second variant was limited to 6× 104 steps (approximately 30B
tokens) to ensure comparability with each stage of our progressive scaling. In all trainings included
in our analysis, unless otherwise indicated, a learning rate of 6× 10−4 was employed, featuring a
2000-step warmup followed by a cosine decay to zero.

Tokenformer with Progressive Model Scaling. Building upon the above training protocols, we
testify the performance of our model scaling with parameter sizes ranging from 124M to 1.4B. Unlike
the aforementioned scratch-training approach, each scaling iteration leverages a pre-trained smaller
Tokenformer to partially initialize the weights of the larger one described in Section 3.3. The scaling
procedure begins with training the initial source model from scratch on approximately 300B tokens,
mirroring the Transformer baseline. For scaling, we select the pre-trained model closest in parameter
count to the target size for weight initialization. For example, to train a model with 354M parameters,
we employ the 124M model as a partial initializer and retrain the entire model using a reduced
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Pile LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C AverageModel #Param ppl ↓ ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑
Pythia-160M (Biderman et al., 2023) 160M 29.64 37.25 35.4 30.3 62.3 43.6 23.6 39.0

Ours-150M 150M 10.45 16.38 45.0 35.5 65.2 47.3 24.6 43.5
Pythia-410M (Biderman et al., 2023) 410M 9.95 10.84 51.4 40.6 66.9 52.1 24.6 47.1

Ours-450M 450M 8.28 7.69 57.3 47.5 69.5 56.2 26.5 51.4
Pythia-1B (Biderman et al., 2023) 1B 7.82 7.92 56.1 47.2 70.7 57.0 27.1 51.6

Ours-900M 900M 7.38 5.46 63.9 55.3 72.2 60.0 30.7 56.4
GPT-Neo 1.3B (Black et al., 2021) 1.3B - 7.50 57.2 48.9 71.1 56.2 25.9 51.9

OPT-1.3B (Zhang et al., 2022) 1.3B - 6.64 58.0 53.7 72.4 56.7 29.6 54.1
Pythia-1.3B (Biderman et al., 2023) 1.3B 7.51 6.08 61.7 52.1 71.0 60.5 28.5 54.8
GPT-Neo 2.7B (Black et al., 2021) 2.7B - 5.63 62.2 55.8 71.1 61.1 30.2 56.1

OPT-2.7B (Zhang et al., 2022) 2.7B - 5.12 63.6 60.6 74.8 60.8 31.3 58.2
Pythia-2.8B (Biderman et al., 2023) 2.8B - 5.04 64.7 59.3 74.0 64.1 32.9 59.0

Ours-1.5B 1.5B 6.91 5.24 64.7 60.0 74.8 64.8 32.0 59.3

Table 1: (Zero-shot Evaluations.) The best performance for each model size is highlighted in bold.
Our comparisons are made with publicly available transformer-based LMs with various tokenizers.
Following Pythia (Biderman et al., 2023), our model is trained for up to 300B tokens on pile dataset.

Method Image Size #Param Top-1 acc

ViT-B/16 (Dosovitskiy et al., 2021) 3842 86M 77.9
DeiT-B/16 (Touvron et al., 2021) 2242 86M 81.8
ViT-B/16 (MAE) (He et al., 2022) 2242 86M 82.3

Ours-B/16† 2242 86M 82.1
Ours-B/16 2242 109M 82.5

ViT-L/16 (Dosovitskiy et al., 2021) 3842 307M 76.5
ViT-L/16 (MAE) (He et al., 2022) 2242 307M 82.6

Ours-L/16† 2242 307M 82.8
Ours-L/16 2242 407M 83.1

Table 2: (Image Classification.) Comparison of standard vision transformer on ImageNet-1K. The
training hyperparameters are completely consistent (batch size, learning rate, etc.) with He et al.
(2022). † denotes models where the parameter size has been matched to that of the standard ViT.

computational budget (e.g., 15B, 30B, or 60B tokens). This iterative process continues for scaling to
757M and then to 1.4B parameters. Notably, to simplify the scaling procedure, both new and existing
parameters are trained equivalently with identical training hyperparameters throughout the process.

Our training optimizes the autoregressive log-likelihood (i.e., cross-entropy loss) averaged over a
1024-token context and the log perplexity evaluated on the test set as the test score.

Experimental Analysis. As illustrated in Figure 3, our progressive scaling methodology employing
Tokenformer achieves performance comparable to that of a Transformer model trained from scratch,
while substantially reducing the training budget. Specifically, Starting with a 124M parameter model
trained on 300B tokens, we progressively scaled to 354M, 757M, and 1.4B parameters, requiring only
an additional 30B tokens—just one-tenth of the computational budget compared to the scratch-trained
Transformer. This scaling process achieved a test perplexity of 11.77 at the 1.4B parameter level. In
comparison, a Transformer model of the same size trained from scratch achieved a similar perplexity
of 11.63 but with 3× the training cost. Importantly, our approach reports cumulative training costs,
encompassing all scaling stages, unlike the Transformer baseline that only accounts for individual
stages. Even with this comparison, our method demonstrates a substantially lower computational
cost than training a Transformer from scratch, thereby validating the effectiveness of our approach.

Figure 4 presents the training costs at each scaling stage for both our model and the standard
Transformer. When compared to Figure 3, the cost savings are even more significant. Specifically, our
model requires only one-tenth of the training costs associated with Transformer baselines. To mitigate
the effects of varying training data, we also included the performance curve of a Transformer trained
from scratch using an equivalent computational budget of 30B tokens. Under the same computational
constraints, our progressively scaled model achieves a lower perplexity of 11.77 compared to the
Transformer’s 13.34, thereby highlighting the superior efficiency and scalability of our approach.

4.2 BENCHMARKING OF MODEL EXPRESSIVENESS

Language Modeling. We assess the efficacy of our proposed architecture through standard au-
toregressive language modeling tasks, benchmarking against existing transformer-based models.
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Parameter Training FLOPsOperation Transformer Ours Transformer Ours

Embed nvocabdmodel nvocabdmodel - -
Attention: QKV Project 3nlayerd

2
model nlayerdtoken(nq + nk + nv) 6nlayerd

2
modelT 2nlayerdtoken(nq + nk + nv)T

Attention: Token-Token - - 4nlayerdmodelT
2 4nlayerdtokenT

2

Attention: Output Project nlayerd
2
model nlayerdtokenno 2nlayerd

2
modelT 2nlayerdtokennoT

Feedforward 8nlayerd
2
model 2nlayerdtokennff 16nlayerd

2
modelT 4nlayerdtokennffT

De-embed - - 2nvocabdmodel 2nvocabdmodel

Total (Non-Embedding) N = 12nlayerd
2
model N = nlayerdtoken(nq + nk + nv + no + 2nff) 2NT + 4nlayerdmodelT

2 2NT + 4nlayerdtokenT
2

Table 3: Parameter counts and training compute estimates for Transformer and our Tokenformer.
Sub-leading terms such as nonlinearities, biases, and layer normalization are omitted.

Sequence Length / k
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Figure 5: The relationship between FLOPs and text length for both Transformer and Tokenformer. As
shown in Table 3, Transformer exhibits an increase in computational cost for token-token interactions
as dmodel scales upwards. Our Tokenformer model, however, offers a flexible parameter scaling
mechanism that maintains dtoken at a constant value. This strategy results in controllable computational
costs for token-token interactions and markedly enhances the efficiency of long-text modeling.

Evaluations are conducted using both pre-training metrics, specifically perplexity, and zero-shot
performance measures. Training is performed on the Pile dataset (Gao et al., 2020), following the
training protocol described in Biderman et al. (2023). Detailed training procedures and model sizes
(depth and width) are provided in the Appendix F.

Table 1 presents the performance of Tokenformer across various widely-recognized zero-shot down-
stream tasks. Comparisons are drawn against leading open-source transformer models of equivalent
scale, notably Pythia (Biderman et al., 2023), which utilizes the same tokenizer, dataset, and training
duration (300B tokens) as our models. As shown in this table, our model achieves competitive
performance compared to the standard Transformer, demonstrating the potential of our architecture
in terms of expressive power as a foundation model.

Visual Modeling. Table 2 validates the expressiveness of our model in visual tasks. We compare
our approach against the standard Vision Transformer (ViT) (Dosovitskiy et al., 2021) trained with
supervised learning on the ImageNet-1K dataset (Deng et al., 2009). For a fair comparison, we used
the MMDetection code base (MMDetection Contributors, 2018) and followed the hyperparameters
and training strategy used in He et al. (2022). As shown in the table, our model achieves the same
performance as ViT in visual modeling, confirming its expressiveness in visual tasks.

4.3 COMPARISON WITH STANDARD TRANSFORMER

Transformer can also achieve model reuse to a certain extent. Net2Net (Chen et al., 2015), a classical
model growth method, proposes a technique to expand the width of neural networks by duplicating
neurons. In this method, the pre-trained weight matrix of a transformer layer in the smaller model
denoted W old

s ∈ Rds×ds , is used to create a larger weight matrix W new
l ∈ Rdl×dl (dl > ds) to fill the

larger model. This expansion is formulated as follows,

W new
l =

[
W old

s W new
l(12)

W new
l(21) W new

l(22)

]
, (14)

where W new
l(12) ∈ R(dl−ds)×ds , W new

l(21) ∈ Rds×(dl−ds), and W new
l(22) ∈ R(dl−ds)×(dl−ds) are new

parameters for expansion. The scaling procedures are the same as schemes introduced in Section 4.1.
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Training iterations
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Figure 6: Loss curves comparing pre-trained
Transformer and Tokenformer as their parameters
are scaled during continued training on enwik8.

Pe
rp
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ty

Training cost / TPU hours

Figure 7: Performance benchmarking on incre-
mental model scaling between Transformer with
Net2Net scheme and our Tokenformer.

Controllable cost of token-token interaction for long-context modeling. Recent advancements
in Chain-of-Thought (CoT) modeling (Wei et al., 2022) have emphasized the critical importance
of efficiently processing lengthy textual sequences (Tay et al., 2020) within Large Language Mod-
els (LLMs). As delineated in Section 1, the training costs of transformer architectures are primarily
divided into two components: interactions involving model parameters and interactions among input
sequences. Table 3 demonstrates that the computational complexity of transformer-based models
exhibits a quadratic dependence on text length, scaling linearly with token-parameter interactions
and quadratically with token-token interactions. Consequently, it is imperative to expand model
parameters while controlling the computational burden of token-token interaction part.

Conventionally, scaling transformer models involves increasing the channel dimension. For a
fixed text length, this results in higher computational costs, mainly because dominant token-token
interactions become more intensive, which hampers the model’s performance with long texts. Our
proposed model takes a different approach by decoupling the computation cost of token-token
interactions from model scaling. We increase the parameter size without changing the token channel
dimension, thereby maintaining the computational cost associated with token-token interactions.
As shown in Figure 5, our model exhibits increasingly significant computational advantages over
Transformers as the number of parameters grows, especially when processing longer sequences.

Scaling without losing the well-learned distribution. Our Tokenformer can maintain the existing
output distribution when new key parameters are initialized to zero. This characteristic is beneficial
for continuously scaling models to incorporate additional data, as it facilitates an increase in model
capacity without disrupting the ongoing training process, thereby promoting rapid convergence.

To evaluate Tokenformer’s scaling efficacy, we compare the loss curves of Net2Net-based transformer
scaling against Tokenformer scaling. Both models, initially with 354M parameters, were pre-trained
on the OpenWebText dataset. We then introduced the EnWik8 dataset and continued training with one
epoch, expanding the models to 757M parameters to accommodate new data. Figure 6 demonstrates
Tokenformer not only converges more rapidly but also reaches a lower final loss, attributable to its
ability to preserve the output distribution during the resumption of training.

Performance benchmarking on incremental scaling. In this study, we progressively scale the
standard Transformer using Net2Net approach detailed earlier. For a fair comparison, we aligned all
hyperparameters, including the parameter size, learning rate, dataset, and so on. As shown in Figure
7, our model performs better in scaling compared to the standard Transformer.

4.4 ABLATION STUDY

Optimized Softmax Function in Pattention Layer. Within the token-parameter attention layer, we
address training instabilities arising from the diminished gradients associated with the traditional
softmax function. The conventional softmax operation comprises two primary steps: computing the

9
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Nonlinear Function Normalization Top-1 acc

ex L1 Norm 79.6
GeLU L1 Norm 81.7
GeLU L2 Norm 82.5

Table 4: Ablation of Softmax part on ImageNet
classification with base model.

Learnable Weight (γ) Learnable Bias (β) Top-1 acc

✓ ✓ 82.6
- ✓ 82.5
- - 82.5

Table 5: Ablation of non-parametric layer normaliza-
tion on ImageNet classification with base model.

exponential of attention scores followed by L1 normalization. As shown in Table 4, to mitigate the is-
sue of small gradients, we substitute the exponential non-linearity with the GeLU function (Hendrycks
& Gimpel, 2016), resulting in a performance enhancement of +2.1 points on the ImageNet clas-
sification benchmark. Subsequently, we replace the L1 normalization with an L2 normalization,
yielding an additional improvement of +0.8 points. These modifications collectively allow our model
to achieve performance parity with the standard Vision Transformer.

Non-Parametric Layer Normalization. In pursuit of enabling model expansion and the merging of
two separately trained parameter token sets for subsequent studies, we modified the Transformer’s
layer normalization to a non-parametric variant by removing its trainable weights and biases. This
adjustment guarantees that only the key-value parameters are subject to learning within the model.
Empirical results presented in Table 5 demonstrate that the model maintains comparable performance
after discarding the learnable weights and biases.

5 FUTURE WORK

Extending the Mixture-of-Experts Paradigm. We interpret Tokenformer as an extreme instantiation
of the Mixture of Experts (MoE) framework, where each key-value parameter pair functions as an
individual expert. This innovative MoE-like architecture has the potential to significantly reduce
the computational costs associated with token-parameter interactions. Additionally, Tokenformer’s
adjustable computational load for token-token interactions complements the MoE feature, facilitating
the development of more resource-effective foundational models.

Advancing Parameter-Efficient Tuning. The scaling approach of Tokenformer, which involves
integrating additional key-value parameter pairs, exemplifies a strategy for parameter-efficient tuning.
When confronted with new tasks or datasets, the model can augment its pre-trained parameters by
incorporating these new parameter tokens, thereby adapting to specific task requirements quickly.

Integrating Vision and Language Models. Leveraging the parameter-efficient tuning capabilities of
Tokeformer, we can achieve seamless integration of visual and linguistic modalities. This can be ac-
complished by unifying the key-value parameter tokens derived from pre-trained visual Tokenformer
and language Tokenformer into a single parameter set. Then, the new learnable tokens are introduced
to perform vision-language alignment and instruction tuning.

Enhancing Model Interpretability. As Tokenformer is entirely based on attention mechanisms, it
inherently benefits from the interpretability associated with attention in token-parameter interactions.
This characteristic enhances the model’s explainability, contributing to the AI community’s efforts to
develop more transparent and understandable models.

6 CONCLUSION

This paper introduces Tokenformer, a naturally scalable architecture that leverages the attention
mechanism to facilitate not only inter-token computations but also interactions between tokens and
model parameters, thereby enhancing architectural flexibility. By representing model parameters as
tokens, we replace all linear projection layers in the Transformer with our Pattention layers, allowing
for seamless and efficient incremental scaling without the need for retraining from scratch. We believe
that this architecture, offering greater flexibility than traditional Transformers, will further contribute
to the development of foundation models.

10
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A GRADIENT OF PATTENTION LAYER

Our token-parameter attention mechanism employs L2-normalization followed by the GeLU
(Hendrycks & Gimpel, 2016) activation function, in contrast to the conventional SoftMax func-
tion in standard token-token attention layers, which utilizes an exponential transformation followed
by L1-normalization. This design choice is motivated by our experimental observation that SoftMax
tends to increase the magnitude of outputs, often pushing them into regions where the gradients
become extremely small, leading to an inferior overall performance (see Table 4).

Specifically, given a query token and n key-value pairs with dimension d, let the similarity scores
between the query and key tokens be represented as A ∈ R1×n. In standard SoftMax attention, the
attention scores S ∈ R1×n are computed as follows:

Si =
exp(Ai/

√
d)∑n

j=1 exp(Aj/
√
d)

, ∀ i ∈ 1...n, (15)

The derivative of the SoftMax function with respect to Ai is given by:

∂Si

∂Aj
=

1√
d
Si(1i=j − Sj) =


1√
d
Si(1− Sj) i = j

− 1√
d
SiSj i ̸= j.

(16)

In contrast, our activation function uses L2-normalization followed by the GeLU function. Denoting
GeLU as f , the attention scores Z ∈ R1×n are computed as:

Ŝi = f(Zi) = f(
Ai ×

√
n√∑n

j=1 |Aj |2
), ∀ i ∈ 1...m, (17)

For the derivative of our attention function when i = j, we have:

∂Ŝi

∂Ai
= f ′√m

||A||2 −Ai
Ai

||A||2
||A||22

(18)

= f ′√n
||A||22 −A2

i
1

||A||2
||A||22

(19)

= f ′√n
1

||A||2
||A||22 −A2

i

||A||22
(20)

= f ′√n
1

||A||2
(1− Z2

i d) (21)

= f ′ 1√
n

1

||A||2
(d− Z2

i ) (22)

When i ̸= j, the derivative becomes:

∂Ŝi

∂Ai
= −f ′√n

Ai
Aj

||A||2
||A||22

(23)

= −f ′√n
1

||A||2
AiAj

||A||22
(24)

= −f ′ 1√
n

1

||A||2
ZiZj (25)

Thus, the derivative of our attention function is:

∂Ŝi

∂aj
=


f ′ 1√

n

1

||A||2
(n− ZiZj) i = j

− f ′ 1√
n

1

||A||2
ZiZj i ̸= j.

(26)
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Comparing the gradients of SoftMax (Eq. 16) and our method (Eq. 26), the key difference is that
our gradient depends on the product ZiZj , whereas SoftMax relies on SiSj . Due to the exponential
nature of SoftMax, the distribution of Si tends to be sharper and more concentrated, which often
drives the gradients toward zero. Conversely, our activation function produces a smoother distribution
of Z, mitigating the vanishing gradient problem and enabling more stable training dynamics.

B ZERO INITIALIZATION IN TOKENFORMER

As shown in Section 3.3, during model scaling, initializing new key parameters to zero allows the
model to continue training with minimal disruption. This is because zero initialization preserves the
model’s original output distribution, preventing significant interference to the learned representations.

In this section, we demonstrate that the Pattention layer is invariant to newly added parameters when
they are zero-initialized. Let X ∈ Rd be the input vector, and let the Pattention layer have n key-value
pairs, represented as KP , VP ∈ Rn×d. The output of the Pattention layer is computed as:

A = KP ·X, (27)

S = f(
A√∑
j A

2
j

), (28)

O = V ⊤
P · S. (29)

When scaling the model by adding m new key-value pairs with zero initialization, the output becomes:

Â =


KP

0, .., 0
...

0, .., 0

 ·X =


A
0
...
0

 , (30)

Ŝ = f(
Â√∑
j Â

2
j

) =


S
0
...
0

 , (31)

Ô =
[
V ⊤
P , V new⊤

P

]
· Ŝ = O. (32)

Since the newly added key parameters are initialized to zero, the attention mechanism does not modify
the original output. Therefore, the output Ô remains identical to O. This property is advantageous
for scaling models because it increases the model capacity without interrupting the well-learned
distribution and the ongoing training process, leading to faster convergence.

C TABULAR MAIN RESULTS

Here, we provide the tabulated results corresponding to Figure 3 from the main paper. Table 7
presents the perplexity on the validation set of OpenWebText. The Transformer models are trained
from scratch, while Tokenformer models leverage parameter reuse from smaller models (except
for the first Tokenformer model with 124M parameters, which is also trained from scratch). We
observe that Tokenformer achieves on-par performance to Transformers trained from scratch, but
with significantly reduced training costs due to parameter reuse. Notably, the largest Tokenformer
(1.4B) achieves even a slightly better perplexity than its Transformer counterpart (11.60 vs. 11.63).

Table 6 compares Transformer models trained from scratch and Tokenformer trained by parameter
reusing with varying amounts of seen tokens during training. It is evident that Transformers trained
with the same number of seen tokens do not reach the performance level of Tokenformer with
parameter reusing. This demonstrates that parameter reusing successfully transfers knowledge from
smaller models, reducing training time without sacrificing performance.
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Perplexity #Param

354M 757M 1.4B

Transformer
Train from scratch 300B 13.02 11.99 11.63

Transformer
Train from scratch 30B 15.97 13.78 13.34

Tokenformer
Parameter Reusing 30B 14.02 12.59 11.77

Table 6: Tabular results of Figure 4. The perplex-
ity of models trained with different numbers of
schemes is compared. Transformers are trained
from scratch, while Tokenformer are progres-
sively scaled up via parameter resuing. When
trained with the same number of tokens (30B),
Tokenformer demonstrates superior performance.

#Param Tokenformer Transformer

Tokens Perplexity Tokens Perplexity

124M 60B 16.41 300B 17.06

354M 15B 14.58
300B 13.02354M 30B 14.02

354M 60B 13.59

757M 15B 13.08
300B 11.93757M 30B 12.59

757M 60B 12.28

1.4B 15B 12.14
300B 11.631.4B 30B 11.77

1.4B 60B 11.60

Table 7: Tabular results of Figure 3. Due to pa-
rameter reusing, Tokenformer achieves the same
performance while using a much lower number
of training tokens when scaling up model sizes.

D EXPERIMENTAL DETAILS ON PROGRESSIVE MODEL SCALING

In this experiment, we utilize the OpenWebText dataset (Gokaslan & Cohen, 2019) to evaluate the
model scaling capability. The dataset comprises 8,013,769 documents, from which we randomly
select 5% to serve as the validation set and report perplexity on this subset. We investigate four
model sizes: 124M, 354M, 757M, and 1.4B parameters. Please find model specifications in Table 8.
During parameter reusing of Tokenformer, we partially resume the old model parameters and add new
key-value pairs to the Pattention layers and do not alter the number of layers or feature dimensions.

The training recipe is the same for both Transformers and Tokenformer: We do not implement dropout
in either model and the logits are computed at the final layer using the embedding layer. The tokenizer
is from GPT-NeoX-20B (Black et al., 2022). We employ the AdamW optimizer (Loshchilov, 2019)
with β1 = 0.9 and β2 = 0.95. A learning rate of 6× 10−4 is employed, with a linear warmup over
2000 steps followed by a cosine decay to zero. The training is conducted with a batch size of 512 and
a sequence length of 1024.

E EXPERIMENTAL DETAILS ON SCALING WITHOUT LOSING THE
WELL-LEARNED DISTRIBUTION

In this experiment, we utilize the EnWik8 (Mahoney, 2011) dataset to evaluate the model’s capacity
for continued adaptation to new data. The EnWik8 dataset comprises the first 100 million bytes of
English Wikipedia in XML format.

We begin with a model size of 354M parameters, which has been pre-trained on OpenWebText
(Gokaslan & Cohen, 2019), and then scale it to 757M parameters for both the Transformer and
Tokenformer models. In the case of the Transformer, the 354M and 757M models differ solely in
feature dimension and the number of heads in the multi-head attention mechanism, and we follow
Net2Net(Chen et al., 2015) methodology for parameter expansion. For Tokenformer, we increase the
number of key-value pairs from 2140 to 4850.

We employ a constant learning rate of 6× 10−4 and process the dataset for a single pass, resulting in
a total of 2204 training steps. The AdamW optimizer (Loshchilov, 2019) is utilized, and we do not
resume the optimizer’s internal state from any previous runs. The batch size is set to 512, consistent
with the batch size used during pre-training.

F EXPERIMENTS ON LANGUAGE MODELING BENCHMARKING

We evaluate the expressiveness and performance of our proposed architecture using standard au-
toregressive language modeling benchmarks, comparing its results to those of existing open-source
LLMs, including RNN-based methods (Peng et al., 2023; Gu & Dao, 2023), in Table 9. Evaluations
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Model Layers Hidden size Attention
KV Pairs

FFN
KV Pairs Heads #Params

Language Modeling
Tokenformer-150M 12 768 768 3072 12 150M
Tokenformer-450M 24 1024 1024 4096 16 450M
Tokenformer-900M 32 1280 1280 5120 16 900M
Tokenformer-1.5B 40 1536 1536 6144 16 1.5B

Visual Modeling
Tokenformer-Base† 12 768 576 2304 12 86M
Tokenformer-Base 12 768 768 3072 12 109M

Tokenformer-Large† 24 1024 768 768 16 307M
Tokenformer-Large 24 1024 1024 4096 16 407M

Parameter Reusing
Tokenformer-124M 12 768 576 2304 12 124M
Tokenformer-354M 12 768 2140 8560 12 354M
Tokenformer-757M 12 768 4850 19400 12 757M
Tokenformer-1.4B 12 768 8620 34480 12 1.4B

Table 8: Details of Tokenformer model variants used in Section 4. † indicates models whose
key-value pairs are chosen to match the parameter numbers of Transformer of equivalent sizes.

Pile LAMBADA LAMBADA HellaSwag PIQA Arc-E Arc-C AverageModel #Param ppl ↓ ppl ↓ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc ↑
Hybrid H3-130M (Fu et al., 2023) 130M - 89.48 25.77 31.7 64.2 44.4 24.2 38.1

Pythia-160M (Biderman et al., 2023) 160M 29.64 37.25 35.4 30.3 62.3 43.6 23.6 39.0
Mamba-130M (Gu & Dao, 2023) 130M 10.56 16.07 44.3 35.3 64.5 48.0 24.3 43.3

Ours-150M 150M 10.45 16.38 45.0 35.5 65.2 47.3 24.6 43.5
Hybrid H3-360M (Fu et al., 2023) 360M - 12.58 48.0 41.5 68.1 51.4 24.7 46.7

Pythia-410M (Biderman et al., 2023) 410M 9.95 10.84 51.4 40.6 66.9 52.1 24.6 47.1
Mamba-370M (Gu & Dao, 2023) 370M 8.28 8.14 55.6 46.5 69.5 55.1 28.0 50.9

Ours-450M 450M 8.28 7.69 57.3 47.5 69.5 56.2 26.5 51.4
Pythia-1B (Biderman et al., 2023) 1B 7.82 7.92 56.1 47.2 70.7 57.0 27.1 51.6
Mamba-790M (Gu & Dao, 2023) 790M 7.33 6.02 62.7 55.1 72.1 61.2 29.5 56.1

Ours-900M 900M 7.38 5.46 63.9 55.3 72.2 60.0 30.7 56.4
GPT-Neo 1.3B (Black et al., 2021) 1.3B - 7.50 57.2 48.9 71.1 56.2 25.9 51.9
Hybrid H3-1.3B (Fu et al., 2023) 1.3B - 11.25 49.6 52.6 71.3 59.2 28.1 54.4

OPT-1.3B (Zhang et al., 2022) 1.3B - 6.64 58.0 53.7 72.4 56.7 29.6 54.1
Pythia-1.3B (Biderman et al., 2023) 1.3B 7.51 6.08 61.7 52.1 71.0 60.5 28.5 54.8

RWKV-1.5B (Peng et al., 2023) 1.5B 7.70 7.04 56.4 52.5 72.4 60.5 29.4 54.2
Mamba-1.4B (Gu & Dao, 2023) 1.4B 6.80 5.04 64.9 59.1 74.2 65.5 32.8 59.3

GPT-Neo 2.7B (Black et al., 2021) 2.7B - 5.63 62.2 55.8 71.1 61.1 30.2 56.1
Hybrid H3-1.3B (Fu et al., 2023) 1.3B - 11.25 49.6 52.6 71.3 59.2 28.1 54.4

OPT-2.7B (Zhang et al., 2022) 2.7B - 5.12 63.6 60.6 74.8 60.8 31.3 58.2
Pythia-2.8B (Biderman et al., 2023) 2.8B - 5.04 64.7 59.3 74.0 64.1 32.9 59.0

Ours-1.5B 1.5B 6.91 5.24 64.7 60.0 74.8 64.8 32.0 59.3

Table 9: (Zero-shot Evaluations.) The best results for each model size are highlighted in bold. We
compare our models against open-source language models (LMs), including RNN-based methods,
with various tokenizers, trained for up to 300B tokens.

are conducted using both pre-training metrics, specifically perplexity, and zero-shot performance
measures. For training, we used the Pile dataset (Gao et al., 2020) over a single epoch, adhering
to the training strategy used by Biderman et al. (2023). The Adam optimizer is applied with a
6× 10−4 learning rate, and each batch contains 1024 samples with a sequence length of 2048 tokens,
mirroring the setup of Mamba. The training process consists of 14,300 steps, with a 1430-step
warmup, equivalent to 1% of total training steps. Detailed model specifications are in Table 8.
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