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Abstract

We conduct a comparative study of prediction-driven strategies for staffing hospital
emergency departments (ED). We evaluate three approaches: (i) a machine learn-
ing (ML) approach that relies on census forecasts and applies a straightforward
patient-to-nurse ratio to determine staffing; (ii) a staffing-level informed machine
learning (SIML) approach that models the mapping from staffing levels to conges-
tion outcomes and chooses the staffing plan that minimizes the associated cost;
and (iii) a queueing-informed (QI) approach that leverages a calibrated queueing
model to guide staffing decisions. We evaluate the three approaches using real
ED arrival patterns. ML, which overlooks the endogeneity of queueing dynamics,
can suffer from varying degrees of delayed feedback. SIML performs well when
training and evaluation conditions align, but can be sensitive to distribution shifts.
QI typically achieves the best results under correct model specification, though it is
vulnerable to misspecification, for which we provide a diagnostic tool. Finally, we
offer practical guidance to help hospitals select the most suitable approach given
their data and modeling expertise.

1 Introduction

Emergency department (ED) crowding has become a widespread crisis, exacerbated by a national
shortage of nurses [Hoot and Aronsky, 2008]. Chronic understaffing leaves EDs unable to meet
surges in demand, leading to long waits and patients leaving without care. At the same time, hospitals
face intense budgetary pressures that limit their ability to overstaff [Hodgson et al., 2024]. These
challenges make it urgent to develop prediction-informed staffing algorithms that help hospitals
allocate limited nursing resources more effectively, thereby reducing crowding and improving patient
safety. In this paper, we examine prediction-driven strategies for ED nurse staffing, with the objective
of minimizing total cost, defined as the sum of congestion-related waiting costs and staffing costs.

A central challenge in ED staffing is the feedback between staffing and congestion: staffing decisions
influence not only the immediate system state but also future crowding, and approaches that ignore
this dynamic often underperform. This challenge is further complicated by the fact that the ED
is a highly non-stationary environment, with demand fluctuating across hours. At the same time,
staffing levels must be fixed within each shift and scheduled in advance, restricting the ability to
make real time adjustments. Against this backdrop, we examine three prediction-driven methods that
capture the staffing-congestion interaction to varying degrees while also spanning the spectrum of
implementation complexity faced by hospitals. I) Machine learning (ML): The simplest approach.
In this setting, machine learning is used only for short-term forecasting of patient census, which is
then converted into staffing through a fixed patient-to-nurse ratio. This design is intentionally simple,
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reflecting common practice where hospitals combine forecast tools with ratio-based staffing rules,
but it ignores how staffing itself shapes congestion. II) Staffing-informed machine learning (SIML):
A more sophisticated approach that conditions predictions on candidate staffing levels, learning how
different staffing choices affect congestion and selecting the plan that minimizes implied cost. This
better accounts for feedback but requires richer training data and more careful model development.
III) Queueing-informed (QI): The most structurally grounded but also the most demanding approach.
It calibrates a queueing model to data, simulates patient flow under alternative staffing vectors, and
selects the lowest-cost plan. When well specified, it fully internalizes staffing-congestion interactions,
but calibration and validation require greater modeling expertise.

Our comparative analysis highlights implementation-relevant insights across a wide variety of
scenarios, including settings with different levels of demand-prediction accuracy, varying baseline
congestion, and alternative boarding conditions. Using real ED arrival patterns, we find that both
SIML and QI substantially reduce total cost relative to ML in most cases. ML underperforms because
it ignores the feedback between staffing and congestion, which manifests as delayed adjustments
in system performance. SIML performs well when training and evaluation conditions are aligned
but deteriorates under distributional shifts, such as when demand or staffing patterns differ from
those represented in the training data. QI generally achieves the lowest costs when its queueing
assumptions are valid, but its performance degrades under misspecification (e.g., alternative service-
time distributions or omitted system features). To mitigate this risk, we develop a diagnostic test that
compares simulated trajectories to observed data and signals when refinement is needed. Finally, we
translate these findings into practical guidance, identifying which approach is most suitable given a
hospital’s data availability and modeling expertise.

This study connects to two main streams of literature. First, queueing models have long been used to
study capacity sizing and staffing in service systems, including EDs. Foundational work traces back
to Erlang’s formulas and the square-root safety staffing principle [Erlang, 1917, Halfin and Whitt,
1981, Kolesar and Green, 1998, Borst et al., 2004]. In settings with time-varying demand and patient
abandonment, analytical models have been developed to balance service quality with staffing cost
[Garnett et al., 2002, Mandelbaum and Zeltyn, 2009, Gurvich et al., 2008, Green et al., 2007], and
related prescriptions have been applied to ED operations [Green et al., 2006]. Second, there is a
growing body of data-driven and machine learning research for forecasting and decision support in
EDs. Studies develop statistical and learning-based methods for arrivals and census [Ang et al., 2016,
Hu et al., 2021, Bacchi et al., 2020, Harrou et al., 2020] and link predictions to operational levers such
as staffing and flow management [Xu and Chan, 2016, Wang et al., 2022]. A related stream integrates
prediction with prescription by training models in ways that account for downstream decision quality
[Oroojlooyjadid et al., 2020, Chen et al., 2023, Sir et al., 2017].

Our contribution is to bridge these streams through a single, implementable comparison of three
approaches. The comparative study identifies when structural queueing information or staffing-
informed learning provides advantages, quantifies sensitivity to misspecification and distribution
shift, and provides practical guidance for method selection in hospitals.

2 Methods

We partition each day into N shifts (in our experiments N = 6), and select integer staffing levels
s = (s1, . . . , sN ), fixed within each shift and determined at the start of the day. Total cost combines
a service-performance component Cw, increasing with congestion through waiting and abandonment,
and a staffing component Cs(s), reflecting labor expenditure. Our baseline model of the ED is an
Mt/M/n+M queue, i.e., a multi-server queue with time-varying arrival rate and abandonment. The
intra-day arrival pattern is represented by a fixed profile {γt}23t=0. Day-to-day variability is captured
by a multiplicative scale factor ρD, so that the arrival rate on day D hour t is ρDγt. We assume γt is
known, while ρD must be forecast with varying degrees of accuracy.

ML Approach The machine learning (ML) approach sets staffing based solely on forecasts of
the ED census, without considering how staffing affects future patient flow. Let xt denote the
average census during hour t and at the arrival rate in hour t. At hour 0, the feature vector con-
sists of the predicted arrival rate â0 and the most recent 48 hours of arrivals and census values:
(â0, (a−1, x−1), . . . , (a−k, x−48)). A feedforward neural network is trained to predict the one-step-
ahead census x0. Multi-step forecasts for the next 24 hours are then obtained autoregressively by
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iteratively feeding predictions back as inputs. Staffing levels, sML, are obtained by dividing the
predicted census by a fixed patient-to-nurse ratio.

SIML Approach The staffing-level informed machine learning (SIML) approach extends ML
by incorporating candidate staffing levels into the prediction process. Let qt denote the average
queue length and at the arrival rate in hour t. At hour 0, the feature vector includes the predicted
arrival rate â0, the candidate staffing level s0, and the most recent 48 hours of arrivals, queue lengths,
and staffing values: (â0, s0, (a−1, q−1, s−1), . . . , (a−k, x−k, s−k)), k = 48. The neural network is
trained to predict the one-step-ahead queue length q0, and forecasts for the next 24 hours are again
generated autoregressively. The resulting queue length trajectory yields a proxy estimate of the
service-performance cost Cw. The SIML staffing plan sSIML is then chosen as the candidate vector
that minimizes this proxy cost plus the staffing cost Cs(s).

QI Approach The queueing-informed (QI) approach embeds an explicit structural model of ED
operations (e.g., Mt/M/n+M queue in the baseline scenario) into the staffing decision. Parameters
such as service rates and abandonment are estimated from data, and each candidate staffing plan s
is evaluated by simulating the induced queueing dynamics. The expected service-performance cost
Cw is approximated by averaging across multiple simulation replications, which is then combined
with the staffing cost Cs(s) to yield an estimated total cost. The QI staffing plan sQI is chosen as the
vector that minimizes this estimated objective.

Evaluation. Performance is evaluated in a Monte Carlo framework spanning a wide range of
operating regimes. Specifically, we compare short and long boarding scenarios, represented in the
model by shorter versus longer service and abandonment times. Additional experiments vary the
staffing cost, initial system load (starting census), and the accuracy of demand forecasts. To assess
robustness, we further stress-test each method under scenarios with distributional shifts between
training and deployment as well as model misspecification in the structural assumptions.

3 Results

Main experiment. In the main experiment, we assume that training and testing data are well aligned
and that the queueing model used by QI is correctly specified. Under these benchmark conditions, QI
generally achieves the lowest cost, with SIML performing closely behind and ML trailing. A notable
exception occurs in long-boarding regimes, where congestion evolves so slowly that delayed feedback
is less limiting. In this setting, census forecasts provide a stable proxy for future workload, allowing
the ML approach to remain well aligned with realized demand. By contrast, SIML is disadvantaged
because the slow dynamics obscure staffing-congestion effects, limiting the predictive model’s ability
to learn their impact and weakening its optimization.

We evaluate 14 scenarios that vary in initialization, staffing cost, boarding times, and prediction errors,
we summarize the resulting performance gaps in Figure 1. Specifically, we compare (CostSIML −
CostQI)/CostQI (SIML gap) and (CostML − CostQI)/CostQI (ML gap) across these settings. In most
cases, SIML closely tracks QI, with gaps below 2.5%. The main exceptions are scenarios B1, B2, and
D1, where SIML is more vulnerable to distributional shifts. By contrast, the ML approach generally
performs worse, with an average gap of 6.8% across all scenarios. Its gap narrows when boarding
times are long, because delayed feedback is less limiting, and when staffing costs are low, because
ML tends to overstaff and the penalty for doing so is smaller.

QI suffers from model misspecification risk To evaluate the robustness of QI to model misspecifi-
cation, we consider two scenarios: (i) the structural form of the model is correct, but distributional
assumptions are misspecified (i.e., exponential vs. lognormal/Erlang/Weibull service times); and
(ii) the structural form itself is misspecified (e.g., omission of abandonment behavior). Distribu-
tional misspecification increases QI’s cost by about 4-8% relative to correct specification, while
structural misspecification raises costs by 4-5%. In most cases, QI still outperforms SIML, though
the margin narrows. To help practitioners detect problematic misspecifications, we implement a
trajectory-matching diagnostic that compares simulated queueing trajectories to historical ED data
using dynamic time warping. The method produces a similarity score on a 0–100 scale: values above
roughly 80 are associated with small performance losses (≤ 5%), while lower scores reliably flag
specifications that require refinement.
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Figure 1: Gaps of mean cost between SIML/ML and QI across all scenarios: A1-A3 and B1-B3
correspond to short/long boarding time scenarios; C1-C5 correspond to different staffing costs; D1-D3
correspond to different levels of demand prediction error.

SIML suffers from distributional shift risk We evaluate SIML’s robustness under three types
of distributional shift between training and deployment. First, when training arrival rates cover a
narrower range than those encountered at test time, the performance gap to QI grows modestly, from
7.5% at baseline to 8.6% under the widest expansion. Second, when testing arrivals are systematically
higher than in training, performance deteriorates sharply: a 100% uplift in demand increases SIML’s
cost by 81% relative to its baseline and by nearly 50% relative to QI. Third, when training data are
limited to extreme staffing regimes, SIML performs worst under highly overstaffed training (≈ 20%
worse than baseline), as the absence of congestion reduces its ability to learn staffing-congestion
interactions. Together, these experiments show that SIML’s predictive mapping becomes unreliable
when test conditions fall outside the training distribution, leading to degraded performance.

Executive Summary Taken together, our results provide clear guidance on how hospitals can select
among the three prediction-driven staffing approaches. The ML approach, while the easiest to train
and deploy, is generally outperformed by SIML and QI because it ignores the feedback between
staffing and congestion. Its competitiveness improves only in slow-moving systems with long service
or boarding times, where delayed feedback has less impact. The SIML approach performs better by
conditioning predictions on staffing levels and capturing their effect on congestion. It works well
when training and deployment conditions are aligned, but its accuracy deteriorates under distributional
shifts, such as unexpected surges in demand or staffing patterns outside the training range. Because
it depends on retraining and coverage of relevant operating conditions, SIML is data-intensive and
best suited for hospitals with stable operations and strong predictive infrastructure. The QI approach
generally achieves the lowest costs when its model is well specified and calibrated to data, as it fully
internalizes the staffing-congestion interaction. However, it is vulnerable to misspecification and
requires substantial queueing expertise to select, calibrate, and validate the underlying model. To
mitigate this risk, we introduce a diagnostic tool that compares simulated trajectories to observed
data and signals when refinement is needed.

In practice, hospitals should align method choice with their resources and capabilities. Institutions
with limited data and a need for quick deployment may start with ML; those with rich historical data
and the ability to retrain frequently may benefit from SIML; and those with the analytical capacity
and queueing expertise can gain the most from QI.
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