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Abstract

Learning high-level causal representations together
with a causal model from unstructured low-level
data such as pixels is impossible from observa-
tional data alone. We prove under mild assump-
tions that this representation is however identifi-
able in a weakly supervised setting. This requires
a dataset with paired samples before and after ran-
dom, unknown interventions, but no further labels.
We then introduce implicit latent causal models,
variational autoencoders that represent causal vari-
ables and causal structure without having to opti-
mize an explicit discrete graph structure. On sim-
ple image data, including a novel dataset of sim-
ulated robotic manipulation, we demonstrate that
such models can reliably identify the causal struc-
ture and disentangle causal variables.

1 INTRODUCTION

The dynamics of many systems can be described in terms
of some high-level variables and causal relations between
them. Often, these causal variables are not known but only
observed in some unstructured, low-level representation,
such as the pixels of a camera feed. Learning the causal
representations together with the causal structure between
them is a challenging problem and may be important for
instance for applications in robotics and autonomous driv-
ing [1]. Without prior assumptions on the data-generating
process or supervision, it is impossible to uniquely identify
the causal variables and their causal structure [2, 3].

In this work, we show that a weak form of supervision is
sufficient to identify both the causal representations and the
structural causal model between them. We consider a setting
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Figure 1: We learn to represent pixels x as causal variables z.
The bottom shows the effect of intervening on one variable.
We prove that variables and causal model can be identified
from samples (x, x̃).

in which we have access to data pairs, representing the sys-
tem before and after a randomly chosen, unknown interven-
tion. Such data may for instance be collected from a video
feed of an external agent or demonstrator interacting with a
system. Neither labels on the intervention targets nor active
control of the interventions are necessary for our identifia-
bility theorem, making this setting useful for offline learn-
ing. We prove that with this form of weak supervision, latent
causal models (LCMs)—structural causal models (SCMs)
together with a decoder from the causal factors to the data
space—are identifiable up to a relabelling and elementwise
reparameterizations of the causal variables.

We then discuss two practical methods for LCM inference.
First, we define explicit latent causal models (ELCMs) as
a variational autoencoder (VAE) [4] in which the causal
variables are the latent variables and the prior is based on an
SCM. While this approach works in simple problems, it can
be finicky and is difficult to scale. We trace this to a major
challenge in causal representation learning, namely that it is
a chicken-and-egg problem: it can be difficult to learn the
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causal variables when the causal graph is not yet learned,
and it is difficult to learn the graph without knowing the
variables.

To overcome this optimization difficulty, we introduce a
second model class: implicit latent causal models (ILCMs).
These models can represent causal structure and variables
without requiring an explicit, discrete graph representation,
which makes gradient-based optimization easier. Neverthe-
less, these models still contain the causal structure implic-
itly, and we discuss two algorithms that can extract it after
the model is trained. Finally, we demonstrate ILCMs on syn-
thetic datasets, including the new CausalCircuit dataset of a
robot arm interacting with a causally connected system of
light switches. We show that these models can robustly learn
the true causal variables and the causal structure from pixels.

Related work Our work builds on the work of Locatello
et al. [5] on disentangled representation learning. The au-
thors introduce a similar weakly supervised setting where
observations are collected before and after unknown inter-
ventions. In contrast to our work, however, they focus on
disentangled representations, i. e. (conditionally) indepen-
dent factors of variation with a trivial causal graph, which
our work subsumes as a special case. Other relevant works
on disentangled representation learning and (nonlinear) in-
dependent component analysis include Refs. [6–12].

The problem of causal representation learning has been
gaining attention lately, see the recent review by Schölkopf
et al. [1]. Lu et al. [13] learn causal representations by ob-
serving similar causal models in different environments.
von Kügelgen et al. [14] use the weakly supervised setting
to study self-supervised learning, using a known but non-
trivial causal graph between content and style factors. Lippe
et al. [15] learn causal representations from time-series data
from labelled interventions, assuming that causal effects are
not instantaneous but can be temporally resolved. Yang et al.
[16] propose to train a VAE with an SCM prior, but require
the true causal variables as labels. To the best of our knowl-
edge, our work is the first to provide identifiability guaran-
tees for arbitrary, unknown causal graphs in this weakly su-
pervised setting.

2 IDENTIFIABILITY OF LATENT
CAUSAL MODELS FROM WEAK
SUPERVISION

We now show theoretically that causal variables and mecha-
nisms are identifiable from weak supervision. Here, we only
provide informal definitions and assume familiarity with
common concepts from causality; see Appendix A.1 for a
complete and precise treatment. In Appendix B, we discuss
limitations of the setup and possible generalizations.

We describe the causal structure between latent variables
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Figure 2: In LCM M, zi denotes whether the i-th stone
from the front is standing. Intervening on the second vari-
able, z2, leads to z̃. The decoder g renders z, z̃ as images
x, x̃. LCMM′ has an equivalent representation in which
z′i denotes whether the i-th stone from the back has fallen.
In Theorem 1, we prove that if and only if two causal mod-
els have the same pixel distribution p(x, x̃), there exists an
LCM isomorphism φ: an element-wise reparametrization of
the causal variables plus a permutation of the ordering that
commutes with interventions and causal mechanisms.

as a Structural Causal Model (SCM). An SCM C describes
the relation between causal variables z1, . . . , zn with do-
mains Zi and noise variables ϵ1, . . . , ϵn with domains Ei
along a directed acyclic graph (DAG) G(C). Causal mech-
anisms fi : Ei ×

∏
j∈pai

Zj → Zi describe how the value
of a causal variable is determined from the associated noise
variables, as well as the values of its parents in the graph. Fi-
nally, an SCM includes a probability measure for the noise
variables.

An SCM entails a unique solution s : E → Z defined by
successively applying the causal mechanisms. We require
the causal mechanisms to be pointwise diffeomorphic, that
is, for any value of the parents zpai we have that fi(·; zpai)
is a diffeomorphism.1 Then s is also diffeomorphic and
thus noise variables can be uniquely inferred from causal
variables. This simplifies the weakly supervised distribution,
as the only stochasticity comes from the noise variables
and the intervention. The SCM also entails an observational
distribution pC(z) (Markov with respect to the graph of the
SCM), which is the pushforward of pE through the solution.

A perfect, stochastic intervention (I, (f̃i)i∈I) modifies an
SCM by replacing for a subset of the causal variables, called
the intervention target set I ⊂ {1, ..., n}, the causal mecha-

1Under some mild smoothness assumptions, any SCM can be
brought into this form by elementwise redefinitions of the variables,
preserving the observational and interventional distributions, but
not the weakly supervised / counterfactual distribution.



nism fi with a new mechanism f̃i : Ei → Zi, which does
not depend on the parents. The intervened SCM has a new
solution s̃I : E → Z . We call interventions atomic if the
number of targeted variables is one or zero.

We will reason about generative models in a data space
X , in which the causal structure is latent. Also including a
distribution of interventions, we define LCMs:

Definition 1 (Latent causal model (LCM)). A latent causal
modelM = ⟨C,X , g, I, pI⟩ consists of

• an acyclic, faithful SCM C,

• an observation space X ,

• a decoder g : Z → X that is diffeomorphic onto its
image,

• a set I of interventions on C, and

• a probability measure pI over I.

We define two LCMs as equivalent if all of their compo-
nents are equal up to a permutation of the causal variables
and elementwise diffeomorphic reparameterizations of each
variable, see Fig. 2.

Definition 2 (LCM isomorphism (informal)). Let M =
⟨C,X , g, I, pI⟩ andM′ = ⟨C′,X , g′, I ′, p′I′⟩ be two LCMs
with identical observation space. An LCM isomorphism be-
tween them is a graph isomorphism ψ : G(C) → G(C′)
together with elementwise diffeomorphisms for noise and
causal variables that tell us how to reparameterize them,
such that the structure functions, noise distributions, de-
coder, intervention set, and intervention distribution ofM′

are compatible with the corresponding elements ofM repa-
rameterized through the graph isomorphism and element-
wise diffeomorphisms. M and M′ are equivalent, M ∼
M′, if and only if there is an LCM isomorphism between
them.

Following Ref. [5], we define a generative process of pre
and post interventional data:2

Definition 3 (Weakly supervised generative process). Con-
sider an LCMM where the underlying SCM has continu-
ous noise spaces Ei, independent probabilities pEi , and ad-
mits a solution s. We define the weakly supervised genera-
tive process of data pairs (x, x̃) ∼ pXM(x, x̃) as follows:

ϵ ∼ pE , z = s(ϵ) , x = g(z) ,

I ∼ pI , ∀i ∈ I , ϵ̃i ∼ pẼi , ∀i ̸∈ I , ϵ̃i = ϵi ,

z̃ = s̃I(ϵ̃) , x̃ = g(z̃) . (1)

2This construction is closely related to twinned SCMs [17,
Def. 2.17], typically used to compute counterfactual queries
p(z̃\I |z, z̃I). We instead focus on the joint distribution of pre-
intervention and post-intervention data.

The main theoretical result of this paper is that an LCM
M can be identified from p(x, x̃) up to a relabeling and
elementwise transformations of the causal variables:

Theorem 1 (Identifiability of R-valued LCMs from weak
supervision). Let M = ⟨C,X , g, I, pI⟩ and M′ =
⟨C′,X , g′, I ′, p′I′⟩ be LCMs with the following properties:

• The LCMs have an identical observation space X .

• The SCMs C and C′ both consist of n real-valued en-
dogeneous causal variables and corresponding exoge-
nous noise variables, i. e. Ei = Zi = Z ′

i = E ′i = R.

• The intervention sets I and I ′ consist of all atomic,
perfect interventions, I = {∅, {z0}, . . . , {zn}} and
similar for I ′.

• The intervention distribution pI and p′I′ have full sup-
port.

Then the following two statements are equivalent:

1. The LCMs entail equal weakly supervised distributions,
pXM(x, x̃) = pXM′(x, x̃).

2. The LCMs are equivalent,M∼M′.

We prove this result in Appendix A.2.

3 IMPLICIT LATENT CAUSAL MODELS

Theorem 1 means that it is possible to learn causal structure
from pixel-level data in the weakly supervised setting. Con-
sider a system that is described by an unknown true LCM
and assume that we have access to data pairs (x, x̃) sampled
from its probability density. Then we can train another LCM
with learnable components by maximum likelihood. Assum-
ing sufficient data and perfect optimization, this model’s
density will match that of the ground-truth LCM. Our iden-
tifiability result guarantees that the trained LCM then has
the same causal variables and causal structure as the ground
truth, up to relabelling.

Explicit LCMs The most straightforward neural LCM
implementation consists of a variational autoencoder
(VAE) [4], in which the latent variables are the causal vari-
ables (z, z̃). Such an explicit LCM (ELCM) requires a graph
representation. In practice we find that learning the causal
variables and the causal graph jointly is a challenging op-
timization problem and prone to local minima in the loss
landscape. We discuss these models, show some experimen-
tal results, and describe the failure modes in Appendix E.

Implicit LCMs To enable causal representation learning
in a more robust, scalable way, we propose a second LCM
implementation: Implicit Latent Causal Models (ILCMs).
ILCMs are also variational autoencoders with a causally



structured prior, but unlike ELCMs, they do not require an
explicit graph parameterization and are thus easier to train
in practice.

Latents The latent variables in an ILCMs are noise en-
codings, defined through the inverse solution function as
e = s−1(z) and ẽ = s−1(z̃). The pre-intervention noise en-
coding e is identical to the SCM noise variables. The post-
intervention noise encoding ẽ corresponds to the value of
the SCM noise variables that would have generated the post-
intervention causal variables z̃ under the unintervened SCM
mechanisms. ILCMs contain a stochastic encoder q(e|x)
and decoder p(x|e) that map data (x, x̃) to noise encodings
(e, ẽ).

Noise encodings have the convenient property that under an
intervention with intervention targets I , precisely the com-
ponents eI change value: ei ̸= ẽi ⇔ i ∈ I with probabil-
ity 1. We prove this property in Appendix A. This means
that from noise encodings e, ẽ, we can infer interventions
easily. We use a simple heuristic intervention encoder that
assigns higher intervention probability q(i ∈ I|x, x̃) to a
component i the more this component of the noise encoding
changes under interventions:

log q(i ∈ I|x, x̃) ∼ h
(
µe(x)i − µe(x̃)i

)
, (2)

where µe(x) is the mean function of the noise encoder
q(e|x) and h is a quadratic function with learnable parame-
ters. Both the equality pattern of e under interventions and
this heuristic intervention encoder are similar to the ones
used for disentangled representation learning in Ref. [5].

Prior Given encoders for noise encodings and interven-
tion targets, let us now write down the prior p(e, ẽ, I), which
encodes the structure of the weakly supervised setting. The
intervention-target prior p(I) and the pre-intervention noise
distribution p(e) are given by simple base densities, which
we choose as uniform categorical and standard Gaussian, re-
spectively. The post-intervention noise encodings ẽ follow
the conditional probability distribution

p(ẽ|e, I) =
∏
i/∈I

δ(ẽi−ei)
∏
i∈I

p̃(z̄i)

∣∣∣∣∂z̄i∂ẽi

∣∣∣∣ , z̄i = s̄i(ẽi; e\i).

(3)
In the second equality we have parameterized the condi-
tional density p(ẽi|e) with a conditional normalizing flow
consisting of a learnable diffeomorphic transformation ẽi 7→
z̄i = s̄i(ẽi; e\i) and a base density p̃ on z̄i, which we choose
as standard Gaussian.

How does this prior encode causal structure? When inter-
vening on i, the map s̄i transforms ẽi into a variable z̄i that
is independent of e. This may sound familiar: the causal
model gives another such transformation. The noise encod-
ing ẽ is related to the causal variables via the solution func-
tion z̃ = s(ẽ). The solution function is defined through re-

cursive application of the causal mechanisms, so that z̃i =
si(ẽ) = f(ẽi, spai(ẽanci)). Because we assume perfect
stochastic interventions, the output z̃i is independent from
ẽanci = eanci . Then, it is easy to show (see Appendix C)
that for R-valued variables, z̄i and z̃i are related by an ele-
mentwise diffeomorphism. Because we desire identifiability
up to an elementwise diffeomorphism, we are free to choose
z̃i := z̄i, and thus s̄i(ẽi; ẽ\i) := si(ẽ). By learning to trans-
form ẽi into z̃i, we have learned the solution function!

The solution functions can now be also used to infer the un-
intervened causal variables: zi = si(ei; e\i). We have thus
learned a causal model without ever explicitly modelling a
graph. Because the solution function only depends on an-
cestors in the graph, the learned transformation si(ei; e\i)
should also depend only on ancestors of i. As each si is con-
structed to be a diffeomorphism in its first argument, jointly
they have a triangular structure and thus a diffeomorphism
s : e 7→ z. In practice, however, the learned solution func-
tions may still depend weakly on non-ancestors. Therefore,
to ensure that s always forms a diffeomorphism, at some
point in training, we test functional dependence to infer an-
cestral dependence, pick a topological ordering of variables
conforming to the ancestry, and parameterize the solution
functions si to only depend on earlier variables in the order-
ing.

The final question is how to implement the first terms in
Eq. (3), which encode that those noise encodings that are
not part of the intervention targets I should not change value
under the intervention. We enforce this in the encoder by
setting the non-intervention components of e and ẽ to the
same value [similar to 5]. In Appendix C this procedure is
described in more detail. We will refer to this projective
noise encoder as q(e, ẽ|x, x̃, I).

Learning Putting everything together, an ILCM con-
sists of an intervention encoder q(I|x, x̃), a noise encoder
q(e, ẽ|x, x̃, I), a noise decoder p(x|e), and transformations
/ solution functions si(·; e). All of these components are
implemented with neural networks and learnable, see Ap-
pendix C for details. The lower bound on the joint log likeli-
hood of pre-intervention and post-intervention data is given
by

log p(x, x̃) ≥ EI∼q(I|x,x̃)Ee,ẽ∼q(e,ẽ|x,x̃,I)[
log p(I) + log p(e) + log p(ẽ|e, I)− log q(I|x, x̃)

− log q(e, ẽ|x, x̃, I) + log p(x|e) + log p(x̃|ẽ)
]
. (4)

The model is trained by minimizing the corresponding VAE
loss, learning to map low-level data to noise variables (with
q) and to map noise variables to causal variables (with s).
The expectation over I is computed via summation, but
could alternatively be done with sampling.



Downstream tasks Despite the implicit representation of
causal structure, we argue that ILCMs let us solve various
tasks:

• Causal representation learning / disentanglement: IL-
CMs allow us to map low-level data x to causal vari-
ables z by applying the encoder q followed by the so-
lution functions s.

• Intervention inference: It is also straightforward to in-
fer intervention targets from an observed pair (x, x̃)
of pre-intervention and post-intervention data, as this
just requires evaluating the intervention-target encoder
qI(x, x̃).

• Causal discovery / identification: We propose two
methods to infer the causal graphs after training an
ILCM. One is to use an off-the-shelf method for causal
discovery on the learned representations. Since the
ILCM allows us to infer intervention targets, we can
use intervention-based algorithms. In this paper, we
use ENCO [18], a recent differentiable causal discov-
ery method that exploits interventions to obtain acyclic
graphs without requiring constrained optimization. Al-
ternatives to ENCO include DCDI [19] and GIES [20].
Alternatively, we can analyze the causal structure im-
plicitly represented in the learned solution functions si.
We propose a heuristic algorithm that proceeds in three
steps. First, it infers the topological order by sorting
variables such that si only depends on ej if zi is after
zj in the topological order. It then iteratively rewrites
the solution functions such that they only depend on an-
cestors in the topological order. Finally, it determines
which causal ancestors are direct parents by testing the
functional dependence of the causal mechanisms. We
describe this algorithm in more detail in Appendix C.

• Generation of interventions and counterfactuals: The
ILCM entails a generative model for pairs of pre- and
post-intervention data. It is straightforward to sample
from the joint distribution p(x, x̃, I), from the condi-
tional p(x, x̃|I), or from the conditional p(x̃|x, I).

4 EXPERIMENTS

Finally, we demonstrate latent causal models in practice.
Here we focus on implicit LCMs; explicit LCMs are demon-
strated in similar experiments in Appendix E. We evaluate
the causal graphs learned by the ILCM models either with
ENCO (ILCM-E) or with the heuristic algorithm described
above (ILCM-H).

Since we are to the best of our knowledge the first to study
causal representation learning in this weakly supervised set-
ting, we are not aware of any baseline methods designed for
this task. We nevertheless compare ILCMs to three other
methods. First, we define a disentanglement VAE that mod-
els the weakly supervised process, but assumes independent

Table 1: Experiment results. We compare our ILCM-E (us-
ing ENCO for graph inference) and ILCM-H (with a heuris-
tic for graph inference) to disentanglement VAE (dVAE-E),
unstructured β-VAE, and slot attention baselines. We show
the DCI disentanglement score (D), the accuracy of inter-
vention inference (Acc), and structural Hamming distance
(SHD) between learned and true graph. Best results in bold.

Dataset Method D Acc SHD

Causal3DIdent ILCM-E (ours) 0.99 0.98 0.00
ILCM-H (ours) 0.99 0.98 0.17
dVAE-E 0.82 0.98 1.67
β-VAE 0.66 – –
Slot attention 0.60 – –

CausalCircuit ILCM-E (ours) 0.97 1.00 0.00
ILCM-H (ours) 0.97 1.00 0.00
dVAE-E 0.34 1.00 6.00
β-VAE 0.39 – –
Slot attention 0.38 – –

factors of variation rather than a non-trivial causal structure
between the variables. This baseline is similar to the method
proposed by Ref. [5], but it differs in some implementation
details to be more comparable to our ILCM setup. We infer
the causal graph between the learned representations with
ENCO (dVAE-E). We also compare to an unstructured β-
VAE that treats x and x̃ as i. i. d. and uses a standard Gaus-
sian prior. Finally, we consider a slot attention model [21],
which segments the image unsupervisedly into as many ob-
jects as there are causal variables. The latent representation
associated to each object is considered a learned causal vari-
able.

Causal3DIdent We first test ILCMs on an adaptation of
the Causal3DIdent dataset [14], which contains images of
three-dimensional objects under variable positions and light-
ing conditions. We consider three causal variables repre-
senting object hue, the spotlight hue, and the position of
the spotlight. We construct six versions of this dataset, each
with a different causal graph, randomly initialized nonlin-
ear structure functions, and heteroskedastic noise. These are
mapped to images with a resolution of 64× 64.

ILCMs are able to disentangle the causal variables reliably.
The results in Tbl. 1 show that the learned representations
are more disentangled than those learned by methods that
do not account for causal structure. The ILCM as well as the
dVAE baseline can infer interventions with almost perfect
accuracy. Unlike the baselines, ILCMs also learn the causal
graphs accurately. When using ENCO to extract them, the
causal graph is always correct; the heuristic algorithm fails
in one instance. In contrast, the acausal dVAE-E baseline
does in most cases not find the correct causal graphs.

CausalCircuit While Causal3DIdent provides a good test
of the ability to disentangle features that materialize in pixel



Figure 4: Varying learned causal factors vs. intervening on
them. With a trained ILCM, we encode a single CausalCir-
cuit test image (left column). In the top row, we then vary
the latent z1 independently, without computing causal ef-
fects, and show the corresponding reconstructed images.
Only the robot arm position changes, highlighting that we
learned a disentangled representation. In the bottom row we
instead intervene on z3 and observe the causal effects: the
robot arm may activate lights, which in turn can affect other
lights in the circuit.

space in different ways, like through the position of lights
and the color of objects, the underlying causal structure we
imposed may feel rather ad-hoc. To explore causal repre-
sentation learning in a more intuitively causal setting, we
introduce a new dataset, which we call CausalCircuit.

Robot 
arm

Blue 
light

Green 
light

Red 
light

Figure 3: CausalCircuit
graph.

The CausalCircuit system
consists of a robot arm that
can interact with multiple
touch-sensitive lights. The
lights are connected with a
stochastic circuit: a light is
more likely to be on if its
button is pressed or if its
parent lights are on. The
robot arm itself can be seen
as part of the causal system.
Concretely, we consider the
causal graph shown in Fig. 3. This system is observed
from a fixed-position camera, and we generate samples in
512×512×3 resolution with MuJoCo [22], see Appendix D
for more details.

ILCMs are again able to disentangle the causal variables
reliably and better than the acausal baselines, see Tbl. 1. As
shown in Appendix D, the slot attention model fails because
the lights have no limited spatial extent and thus are not
well represented by segments of the image. Interventions
are identified with high accuracy. The model also correctly
learns the causal graph shown in Fig. 3, both when extracted
with ENCO and with our heuristic algorithm. In Fig. 4 we
demonstrate how ILCMs let us infer and manipulate causal
factors and reason about interventions.

By studying variations of this dataset, we tested the limita-
tions of our method. We find that it works reliably only as
long as the causal variables are continuous (that is, when

we model the lights with a continuous intensity). As soon
as we consider discrete states, the assumptions of our identi-
fiability theorem are violated and the model has difficulty
disentangling these variables.

5 DISCUSSION

What makes a variable causal? One school of thought is that
it that causal variables are those aspects of a system that
can be intervened upon [23]. Following this logic, we find
it interesting to ask: can we uniquely determine the causal
variables underlying a system just by observing the effect
of interventions?

In this work we have found a partial answer to this question:
we have shown in theory and practice that under certain
assumptions, causal variables and their causal structure are
identifiable from low-level representations like the pixels
of a camera feed if the system is observed before and after
random, unlabeled interventions. Our identifiability theorem
extends the results by Locatello et al. [5] from independent
factors of variation (trivial causal graphs) to arbitrary causal
graphs.

LCMs can be implemented as a variational autoencoder.
However, a straightforward, explicit parameterization of the
causal structure requires simultaneously learning the vari-
ables and the causal graph. We found that leads to challeng-
ing optimization problems, especially when scaling to larger
systems. As a more robust alternative, we introduced im-
plicit latent causal models (ILCMs), which parameterize
causal structure without requiring an explicit graph repre-
sentation. We also discussed two algorithms for extracting
the learned causal mechanisms and graph after training.

In first experiments, we demonstrated that ILCMs let us
reliably disentangle causal factors, identify causal graphs,
and infer interventions from unstructured pixel data. For
these experiments, we introduced the new CausalCircuit
dataset, which consists of images of a robot arm interacting
with connected switches and lights.

The setting we consider is motivated by a potentially useful
scenario: learning causal structure from passive observations
of an agent (or demonstrator) interacting with a causal sys-
tem. However, it is currently far from practical. Our identifi-
ability result relies on a number of assumptions, including
that interventions are stochastic and perfect, that all atomic
interventions may be observed, and that the causal variables
are real-valued. We discuss these requirements and their po-
tential relaxation in Appendix B. Similarly, our practical im-
plementation has so far been restricted to simplified datasets
with relatively few, continuous causal variables. While more
work will be required to make latent causal models applica-
ble to real-world settings, we believe that our results demon-
strate that causal representation learning is possible without
explicit labels.
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A IDENTIFIABILITY RESULT

A.1 DEFINITIONS

Here we define objects and relations that were not formally
defined in the main body of the paper, but are necessary to
make Thm. 1 precise and to prove it.

We use the following notation:

• [n] = {1, ..., n}
• paCi ⊆ [n] the set of parent nodes of node i in graph
G(C).

• descCi ⊆ [n] the set of descendant nodes of node i in
graph G(C), excluding i itself.

• ancCi ⊆ [n] the set of ancestor nodes of node i in graph
G(C), excluding i itself.

• nonancCi = [n]\(ancCi ∪{i}) the set of non-ancestor
nodes of node i in graph G(C), excluding i itself.

• Given measure p on space A and measurable function
f : A→ B, f∗p is the push-forward measure on B.

We describe causal structure with SCMs.

Definition 4 (Structural causal model (SCM)). An SCM is
a tuple C = ⟨Z, E , F, pE⟩ consisting of the following:

• domains Z = Z1 × · · · × Zn of causal (endogenous)
variables z1, . . . , zn;

• domains E = E1 × · · · × En of noise (exogeneous)
variables ϵ1, . . . , ϵn;

• a directed acyclic graph G(C), whose nodes are the
causal variables and edges represent causal relations
between the variables;

• causal mechanisms F = {f1, . . . , fn} with fi : Ei ×∏
j∈pai

Zj → Zi; and

• a probability measure pE(ϵ) =
pE1(ϵ1) pE2(ϵ2) . . . pEn(ϵn) with full support that ad-
mits a continuous density.

Additionally, we assume that ∀i,∀zpai , fi(·, zpai) : Ei →
Zi is a diffeomorphism.

We will need to reason about vectors being “equal up to per-
mutation and elementwise reparameterizations”. We formal-
ize this in the following definition:

Definition 5 (ψ-diagonal). Let ψ : [n]→ [n] be a bijection
(that is, a permutation). Let φ :

∏n
i=1Xi →

∏n
i=1 Yi be a

function between product spaces. Then φ is ψ-diagonal if
there exist functions, called components, φi : Xi → Yψ(i)
such that ∀i,∀x, φ(x1, ..., xi, ..., xn)ψ(i) = φi(xi).

This lets us define isomorphisms between SCMs:

Definition 6 (Isomorphism of SCMs). Let C =
⟨Z, E , F, pE⟩ and C′ = ⟨Z ′, E ′, F ′, p′E⟩ be SCMs. An iso-
morphism φ : C → C′ consists of

1. a graph isomorphism ψ : G(C) → G(C′) that tells us
how to identify corresponding variables in the two mod-
els and which preserves parents: paC

′

ψ(i) = ψ(paCi )
and

2. ψ-diagonal diffeomorphisms for noise and endogenous
variables that tell us how to reparameterize them φE :
E → E ′ and φZ : Z → Z ′, where φE must be measure
preserving pE′ = φE∗pE . For notational simplicity, we
will drop the subscript in φZ and use the symbol φ
to refer both to the SCM isomorphism and the noise
isomorphism.

The elementwise diffeomorphisms are required to make the
following diagrams commute ∀i, i′ = ψ(i):

Zpai × Ei Z ′
pa′

i′
× E ′i′

Zi Z ′
i′

fi f ′
i′

φi

(φpai
,φE,i)

(5)

Intuitively, this says that if we apply a causal mechanism fi
and then reparameterize the causal variable i using φi, we



get the same thing as first reparameterizing the parents and
noise variable of variable i, and then applying the causal
mechanism f ′i′ .

To reason about interventions, we equip SCMs with inter-
vention distributions in the following definition.

Definition 7 (Intervention structural causal model (ISCM)).
An intervention structural causal model (ISCM) is a tuple
D = ⟨C, I, pI⟩ of

1. an acyclic SCM C = ⟨Z, E , F, pE⟩ that admits a faith-
ful distribution, meaning that conditional indepen-
dence of causal variables z implies d-separation [24].

2. a set I of interventions on C, where each intervention
(I, (f̃i)i∈I) ∈ I consist of

(a) a subset I ⊂ {1, ..., n} of the causal variables,
called the intervention target set, and

(b) for each i ∈ I , a new causal mechanism f̃i :
Ei → Zi which replaces the original mechanism
and which does not depend on the parents.

We define intervention set I to be atomic if the number
of targeted variables is one or zero.

3. a probability measure pI over I.

We can extend the notion of isomorphism from SCMs to
ISCMs.

Definition 8 (Isomorphism of ISCMs). Let D = ⟨C, I, pI⟩
and D′ = ⟨C′, I ′, p′I′⟩ be ISCMs. An ISCM isomorphism is
an SCM isomorphism φ : C → C′ with underlying graph
isomorphism ψ : G(C) → G(C′) and a ψ-diagonal diffeo-
morphism φ̃E : E → E such that

• the graph isomorphism ψ induces a bijection of inter-
vention sets

ψI : I → I ′ : (I, (f̃i)i∈I) 7→ (ψ(I), (f̃ ′i′)i′∈ψ(I))

• for each intervention (I, (f̃i)i∈I) ∈ I, and each inter-
vened on variable i ∈ I , the following diagram com-
mutes:

Ei E ′ψ(i)

Zi Z ′
ψ(i)

f̃i f̃ ′
ψ(i)

φi

φ̃E,i

(6)

• φ̃E is measure preserving, i. e. pE′ = (φ̃E)∗pE .

• the bijection ψI : I → I ′ preserves the distribution
over interventions: ψ∗pI = p′I′ .

Latent Causal Models (LCMs), defined in Def. 1, add a map
to the data space to an ILCM. We can lift ISCM isomor-
phisms to LCM isomorphisms by requiring that these de-
coders must respect the ISCM isomorphism.

Definition 9 (Isomorphism of LCMs). Let M =
⟨C,X , g, I, pI⟩ and M′ = ⟨C′,X , g′, I ′, p′I′⟩ be LCMs
with identical observation space X = X ′. An LCM isomor-
phism of LCM is an ISCM isomorphism φ : D → D′ such
that the decoders respect the SCM isomorphism, so this dia-
gram must commute:

Z Z ′

X

φ

g g′
(7)

Remark 1. By defining objects and isomorphisms, we have
defined a groupoid of SCMs, a groupoid of ISCMs and a
groupoid of LCMs, as the isomorphisms are composed and
inverted in an obvious way.

Definition 10 (Equivalence). We call two SCMs, ISCMs, or
LCMs equivalent if an isomorphism exists between them.

Informally, two SCMs, ISCMs, or LCMs are equivalent if
there is a ψ-diagonal map between their causal variables
(i. e. the causal variables are equal up to permutation and
elementwise diffeomorphisms), there is a ψ-diagonal map
between their noise encodings, and all other structure (de-
coders, intervention sets, intervention distributions) is com-
patible with these reparameterizations.

Next, we define the solution function of an SCM or ISCM,
which maps from noise variables to causal variables by
repeatedly applying the causal mechanisms.

Definition 11 (Solution). Given an ISCM D = ⟨C, I, pI⟩,
the solution function s : E → Z is the unique function such
that for all i ∈ [n], the following diagram commutes [17]

E

Zpai × Ei Zi

si(spai
,idEi )

fi

In equations, we have that s(ϵ)i = f(ϵi; s(ϵpai)). Similarly,
intervention (I, (f̃i)i∈I) ∈ I yields a solution function s̃I :
E → Z with the modified causal mechanisms.

For example, with two variables with z1 → z2, the solution
is given by:

s : E → Z :

(
ϵ1
ϵ2

)
7→

(
z1
z2

)
=

(
f1(ϵ1)

f2(ϵ2, f1(ϵ1))

)
.

Since we require causal mechanisms to be pointwise diffeo-
morphic, the solution function is a diffeomorphism as well.

Pushing the noise distribution of an SCM through the solu-
tion function finally gives us the (observable) distribution



ϵ, ϵ̃ ϵ′, ϵ̃′

z, z̃ z, z̃′

x, x̃ x, x̃

φE ,φ̃E

s,s̃I s′,s̃′
I′

φZ ,φZ

g,g g′,g′

Figure 5: An illustration of the spaces and maps in our def-
initions and proof. When LCMs M,M′ are isomorphic,
all squares in the diagram should commute. Additionally,
all maps should preserve the weakly supervised distribu-
tions on the variables and all horizontal maps should be ψ-
diagonal. Note that the latent variables (ϵ, z) can differ up to
a diffeomorphism, but the x variables are actually observed,
so must be identically equal. From that equality, the other
horizontal maps are uniquely defined.

entailed by an SCM or ISCM. In an ISCM or LCM we can
define several other (observable or interventional) distribu-
tions.

Definition 12 (Distributions). Given an LCM M =
⟨C,X , g, I, pI⟩, we have the following generative process:

I ∼ pI ,
ϵ ∼ pE , ϵ̃ ∼ p̃Ẽ(ϵ̃ | ϵ, I) ,
z = s(ϵ) , z̃ = s̃I(ϵ̃) ,

x = g(z) , x̃ = g(z̃) ,

e = s−1(z) , ẽ = s−1(z̃) , (8)

where p(ϵ̃i | ϵi, i ∈ I) = pEi(ϵ̃i) and p(ϵ̃i | ϵi, i ̸∈ I) =
δ(ϵ̃i | ϵi) is the Dirac measure.

Then we define the following weakly supervised distribu-
tions:

• The weakly supervised noise distribution with interven-
tions: pE,IC (ϵ, ϵ̃, I).

• The weakly supervised causal distribution with inter-
ventions: pZ,IC (z, z̃, I).

• The weakly supervised observational distribution with
interventions: pX ,IM (x, x̃, I).

These distributions are given by appropriate pushforwards
of the noise distributions through the transformations in
Eq. (8).

By marginalizing over I , we get pEC , p
Z
C , p

e
C , p

X
M respectively.

The relationships between all the maps can be found in
Fig. 5.

A.2 IDENTIFIABILITY PROOF

First, we prove two auxiliary lemmata.

Lemma 1. Let f : [0, 1] → [0, 1] be differentiable and
Lebesgue measure preserving. Then either f(x) = x or
f(x) = 1− x.

Proof. We follow the proof from Stack Exchange user zhw
[25]. Let λ be the Lebesgue measure. Measure preservation
means that for any measurable subset U ⊆ [0, 1], λ(U) =
λ(f−1(U)).

First, note that f is surjective, because otherwise the
image of f is a proper subinterval [a, b] ⊊ [0, 1] and
λ(f−1([a, b])) = λ([0, 1]) = 1 > λ([a, b]) = b− a, which
contradicts measure-preservation.

Define the open ball B(x, r) = {y ∈ [0, 1] | |y −
x| < r}. Suppose that f ′(0) = 0 for some x ∈ [0, 1].
Then there exists an r > 0 such that f(B(x, r)) ⊆
B(f(x), r/4), and thus B(x, r) ⊆ f−1(B(f(x), r/4)).
Therefore, r ≤ λ(B(x, r)) ≤ λ(f−1(B(f(x), r/4))),
while λ(B(f(x), r/4)) ≤ 2 ·r/4 = r/2, contradicting mea-
sure preservation. Hence f ′(x) ̸= 0 on [0, 1].

By the Darboux theorem, f ′ is either strictly positive or
strictly negative on the interval and thus f is either strictly
increasing or decreasing and thus a bijection. Assume that
it is strictly increasing, then ∀x ∈ [0, 1], x = λ([0, x]) =
λ(f−1(f([0, x]))) = λ(f([0, x])) = f(x) − f(0) = f(x).
Similarly, if it is strictly decreasing, we find f(x) = 1 −
x.

Lemma 2. LetA = C = R andB = Rn. Let f : A×B →
C be differentiable. Define differentiable measures pA on
A and pC on C. Let ∀b ∈ B, f(·, b) : A→ C be measure-
preserving. Then f is constant in B.

Proof. Let PA : A → [0, 1], PC : C → [0, 1] be the dif-
feomorphic cumulative density functions. Then P−1

A and
P−1
C are measure-preserving maps from the uniform dis-

tribution on [0, 1]. Now write g : [0, 1] × B → [0, 1] :
(z, b) 7→ PC(f(P

−1
A (z), b)) such that this diagram of

measure-preserving differentiable maps commutes:

A C

[0, 1] [0, 1]

f(·,b)

PA P−1
C

g(·,b)

Then g is differentiable and ∀b ∈ B measure-preserving
[0, 1] → [0, 1]. By the previous Lemma 1, the only differ-
entiable measure-preserving functions [0, 1]→ [0, 1] are id
and 1− id. As g is continuous in B, it can not vary between
id and 1− id and thus g, and consequently f are constant
in B.

We can interpret this lemma in terms of statistical indepen-
dence. Starting from a product measure on A× B, the re-
quirements of the lemma correspond to a⊥⊥b and c⊥⊥b. The



lemma thus defines a sense in which for real-valued vari-
ables, statistical independence implies functional indepen-
dence (the converse is always true).

Now in the remainder of this subsection, we prove the main
theorem.

Theorem 1 (Identifiability of R-valued LCMs from weak
supervision). Let M = ⟨C,X , g, I, pI⟩ and M′ =
⟨C′,X , g′, I ′, p′I′⟩ be LCMs with the following properties:

• The SCMs C and C′ both consist of n real-valued en-
dogeneous variables, i. e. Ei = Zi = Z ′

i = E ′i = R.

• The intervention sets I and I ′ consist of the empty
intervention and all atomic interventions, I =
{∅, {z0}, . . . , {zn}} and similar for I ′.

• The intervention distribution pI and p′I′ have full sup-
port.

Then the following two statements are equivalent:

1. The weakly supervised distributions entailed by the
LCMs are equal, pM(x, x̃) = pM′(x, x̃).

2. The LCMs are equivalent,M∼M′.

Proof. “(2) ⇒ (1)”: If the LCMs are equivalent, then
the fact that φE and φ̃E are measure preserving and
that diagrams (5) and (6) commute, implies that pZ

′

C′ =
(φZ , φZ)∗p

Z
C . Then because diagram (7) commutes, the

weakly supervised distributions coincide, pXM′ = pXM.

“(1)⇒ (2)”: Conversely, if the weakly supervised distribu-
tions coincide, pXM′ = pXM, the images of g : Z → X , g′ :
Z ′ → X coincide,

φ = g′−1 ◦ g : Z → Z ′ (9)

is a diffeomorphism, and ϕ preserves the weakly supervised
distribution over causal variables: pZ

′

C′ = (φ,φ)∗p
Z
C .

LCM equivalence then follows from showing that φ : D →
D′ is an ISCM isomorphism, where D = ⟨C, I, pI⟩ and
D′ = ⟨C′, I ′, p′I′⟩ be the ISCMs inherent to M and M′.
We show this in the following steps:

1. For each intervention I in D, there is a correspond-
ing intervention I ′ in D′, given by a permutation ψ :
[n]→ [n], such that φ preserves the interventional dis-
tribution.

2. The diffeomorphism φ is ψ-diagonal.

3. The permutation ψ preserved the ancestry structure of
graphs G(C) and G(C′).

4. The diffeomorphism φE : E → E of noise variables is
ψ-diagonal.

5. The causal mechanisms are compatible with φ.

Step 1: Interventions preserved Remember that the dif-
feomorphism φ : Z → Z ′ is such that pZ

′

C′ = (φ,φ)∗p
Z
C .

For atomic interventions I ̸= J ∈ I, consider the intersec-
tion of the supports of the weakly supervised distribution
for interventions on I and J : U = supp pZ,IC (z, z̃ | I) ∩
supp pZ,IC (z, z̃ | J) ⊂ Z×Z . Note thatU has zero measure
in pZ,IC (U | I) = pZ,IC (U | J) = 0. The distribution is thus
a discrete mixture on (z, z̃) of non-overlapping distributions.

The diffeormorphism (φ,φ) must map between these mix-
tures. Thus there exists a bijection ψ : I → I ′, also induc-
ing a permutation ψ : [n]→ [n], such that

pZ
′,I′

C′ = (φ,φ, ψ)∗p
Z,I
C .

Step 2: φ is ψ-diagonal This measure preservation lets
us define two equal distributions on Z × Z̃ ′ × I, namely
(idZ , φ, idI)∗p

Z,I
C and (φ−1, idZ̃′ , ψ

−1)∗p
Z′,I′

C′ . In partic-
ular, these must then have equal conditionals p(z̃′ | z, I).
Thus, for any U ⊆ Z̃ ′, z ∈ Z, I ∈ I,

pZ
′,I′

C′ (z̃′ ∈ U | φ(z), ψ(I)) = pZ,IC (z̃ ∈ φ−1(U) | z, I)

The conditional probability pZ,IC (z̃ | z, I) can be interpreted
as a stochastic map Z → Z̃ . The above relation can then
be written as a commuting diagram of stochastic maps,
∀I ∈ I, I ′ = ψ(I):

Z Z̃

Z ′ Z̃ ′

pZ,IC (z̃|z,I)

pZ
′,I′

C′ (z̃′|z′,I′)

φ φ (10)

where we treat φ : Z → Z ′ as a deterministic stochastic
map.

For any variable i ∈ [n], write the other nodes as o =

[n] \ {i}. Let I = {i}. Then pZ,IC (z̃ | z, I) can be written
as a string diagram of stochastic maps:

z̃i z̃o

f̂o

z

This string diagram represents a conditional probability dis-
tribution p(z̃i, z̃o | z) and is read from the bottom to the top.
String diagrams map formally to a generative process [26]
and have been used previously in the context of causal mod-
els [27]. In this case, the diagram maps to:

z̃i ∼ p(z̃i), z̃o = f̂o(z̃i, z)



where p(z̃i) is the interventional distribution and the deter-
ministic map f̂o : Z̃i × Z → Z̃o can be constructed from
the inverse solution s−1 : Z → E and the causal mecha-
nisms. Each box in a string diagram of stochastic maps de-
notes a stochastic map and each line to a measurable space.
The triangle is the stochastic map ⋆→ Z̃i (the star denoting
the one-point space; maps from which correspond to prob-
ability distributions over the codomain). The • represents
copying a variable.

The above commuting diagram (10) can then be written as
the equality of the following two string diagrams, where
ψ(I) = I ′ = {i′}, o′ = [n] \ {i′}. We write φ : Z → Z ′

as the pair φi′ : Z → Z ′
i′ , φo′ : Z → Z ′

o′ obtained by
projecting the output of φ to the partition Z ′ = Z ′

i′ ×Z ′
o′ :

z̃′i′ z̃′o′

f̂ ′o′

z′

φ

z

z̃i z̃o

f̂o

z

φo′φi′

z̃′i′ z̃′o′

=

(11)

This should be read as the equality of the two conditional
probability distributions p(z̃′i′ , z̃

′
o′ | z) generated in the fol-

lowing way:

Left: z̃i ∼ p(z̃i) , z̃o = f̂o(z̃i, z) , z̃′i′ = φ(z̃i, z̃o)i′ , z̃o′ = φ(z̃i, z̃o)o′ .

Right: z′ = φ(z) , z̃′i′ ∼ p′(z̃′i′) , z̃′o′ = f ′o′(z̃
′
i′ , z

′) .

The string diagram equality (11) implies equality when we
disregard outputs Z ′

o′ :

z̃′i′

z

z̃i
f̂o

z

φi′

z̃′i′

=
z̃o

where the upwards pointing triangle represents discarding a
variable.

Using Lemma 2, and the fact that Z̃i = Z̃ ′
i′ = R, the

composed differentiable function Z̃i×Z → Z̃ ′
i′ is constant

in Z . Thus we have a deterministic function Z̃i → Z̃ ′
i′ such

that:
z̃′i′

zz̃i

f̂o

z

φi′

z̃′i′

=
z̃o

z̃i

The deterministic function Z̃i ×Z → Z̃i × Z̃o is surjective
and both the left- and right-hand side can be seen as first
applying this function (though the output is discarded on
the right hand side), which implies there exists a function
Z̃i → Z̃ ′

i′ such that

z̃′i′

z̃oz̃i

φi′

z̃′i′

=

z̃o z̃i

In words, the function φi′ : Zi × Zo → Z ′
i′ is constant in

Zo. This holds for all i and thus φ is ψ-diagonal.

Step 3: Ancestry preserved Let i ̸= j ∈ [n], i′ = ψ(i),
j′ = ψ(j), and I = {i}. Writing φ as ψ-diagonal, the
commuting diagram (10) for the j′ component of z̃′, can be
written as the following string diagram:

z̃′j′

z̃′i′

f̂ ′j′

z′

φ

z

z̃j

z̃i

f̂j

z

φj′

z̃′j′

=

The left hand side is a deterministic map Z → Z̃ ′
j′ if and

only if f̂j is constant in Z̃i which by faithfulness is the case
if and only if i ̸∈ ancj . The same holds on the right hand
side, so ∀i ̸= j ∈ [n], i ∈ ancCj ⇐⇒ ψ(i) ∈ ancC

′

ψ(j).

Step 4: Noise map diagonal Define φE = s′−1 ◦ φ ◦ s :
E → E ′. Note that φE(ϵ)i′ only depends on ϵi and ϵanci ,
because s(ϵ)anci,i and s′−1(z′)i′ only depend on ancestors,
φ is ψ-diagonal and ψ preserves ancestry.



The map φ is measure-preserving. Thus ∀i and writing A =
anci, the conditional p(zi | zA) = p(zi | zpai), interpreted
as a stochastic map, is preserved by φ. We can express this
as another commuting diagram, in which the two paths from
EA to E ′i′ must be equal:

EA ZA ZA,i

Z ′
A′ Z ′

A′,i′ E ′i′

p(zi|zpai
)

φA φA,i

p(z′
i′ |z

′
pa
i′
) f ′

i′
−1

sA

where f ′i′
−1

(z′) = f(z′pai′ , ·)
−1(z′i′). Then we have:

ϵi

fi

φA′ φi′

f ′i′
−1

zi

ϵ′i′

zA

z′A′ z′i′

ϵ′i′

f ′i′

φA′

f ′i′
−1

ϵ′i′

zA

z′A′ z′i′

ϵ′i′

ϵA

(3)
=

(2)
=

ϵA

sA

ϵA

sA

ϵi

φE,i′

ϵ′i′

ϵA

(1)
=

where the first equality follows from the definition of φE,i′ ,
the second equality from the commuting diagram above and
the third equality from the fact that f ′i′ and f ′i′

−1 cancel.
Then, again using Lemma 2, the map on the left hand side
must be constant in ϵA. The noise encoding is thus also ψ-
diagonal.

Step 5: Equivalence Consider for a variable i and with
i′ = ψ(i) the following commuting diagram of determinis-
tic maps. Note that we write the causal mechanism fi as a

function of all ancestors, not just the parents, so it is con-
stant in the non-parents. Because of faithfulness, it is non-
constant in the parents. Since ψ preserves ancestors, f ′i′ is
well-typed.

E E ′

Zanci × Ei Z ′
anci′

× E ′i′

Zi Z ′
i′

φE

φZ,i

(sanci
,idEi )

(s′anc
i′
,idE′

i′
)

fi f ′
i′

(φZ,anci
,φE,i)

The composition of the left vertical maps is equal to si,
the composition of the right vertical maps to s′i′ . Therefore
and because of the definition of φE , the outer and the top
square commute. Then, because (sanci , idEi) is surjective,
the bottom square also commutes [28, Lemma 1.6.21].

Then for zj ∈ anci, we have that

zj ∈ paCi ⇐⇒ fi not constant in zj
⇐⇒ f ′i′ not constant in z′j′

⇐⇒ z′j′ ∈ paC
′

i′ .

And thus ψ not only preserves ancestry, but also parenthood
and is thus a graph isomorphism ψ : G(C) → G(C′). Dia-
gram (5) commutes, and we have established an SCM iso-
morphism φ : C → C′.

To have this also be an ISCM isomorphism, we need dia-
gram (6) to commute and the distribution over interventions
to be preserved. For the first, use the fact that all maps in
(6) are isomorphisms to simply define φ̃E so that the dia-
gram commutes. The second follows directly from the as-
sumptions. Hence φ : D → D′ is an ISCM isomorphism,
D ∼ D′, and—together with the arguments in the beginning
of this proof—finallyM∼M′.

B LIMITATIONS & GENERALIZATION

Our identifiability result relies on a few assumptions. Here
we discuss some key requirements of Thm. 1 and whether
they can be relaxed.

Diffeomorphic causal mechanisms In Def. 4, we require
causal mechanisms to be pointwise diffeomorphisms from
noise variables to causal variables. Under some mild smooth-
ness assumptions, any SCM can be brought into this form
by elementwise redefinitions of the variables, without affect-
ing the observational or interventional distributions. How-
ever, such a redefinition may change counterfactual / weakly
supervised distributions.



All interventions observed To guarantee identifiability,
we require that the intervention distribution has support for
any atomic intervention: datasets need to contain data pairs
generated from interventions on any causal variable. How-
ever, in many systems not all variables can be intervened
upon, for instance because some variables are fundamentally
immutable or for safety reasons. In that case, the LCM may
not be fully identifiable, but there may still be partial identi-
fiability. Interventions on child variables, for instance, can
guarantee the identifiability of the parents [14]. We leave
a precise characterization of the equivalence classes under
such partial weak supervision for future work.

Perfect interventions Our proof of Thm. 1 requires per-
fect interventions, i. e. that intervened-upon mechanisms do
not depend on any causal variables. This is arguably the
biggest mismatch between our assumptions and many real-
world systems.

If we try to generalize the assumptions and allow the inter-
vention mechanisms to depend on the parent variables, iden-
tifiability is lost. A simple counterexample is the following.

Example 1 (Non-identifiable ISMCs under imperfect inter-
ventions). Consider two inequivalent ISCMs D,D′, each
with two variables and graph z1 → z2. Let the mecha-
nisms be equal, except that f ′2(ϵ2; z1) = f2(ϵ2; z1)+z1 and
f̃ ′2(ϵ̃2; z1) = f̃2(ϵ̃2; z1) + z1. Then it is easy to see that a ϕ
that is the identity on the first variable and on the second
variable is ϕ2(z1, z2) = z1 + z2, preserves the weakly su-
pervised distribution, but is not an ISCM isomorphism.

Diffeomorphic decoder Definition 1 and Thm. 1 assume
that the map from causal variables to observed data is given
by a deterministic, diffeomorphic decoder. However, our
practical implementation in a VAE uses a stochastic decoder
and allows for noisy data. Our experiments provide empir-
ical evidence for identifiability in this setting. We believe
that it may be possible to extend Thm. 1 to stochastic de-
coders, similarly to Khemakhem et al. [8]. We plan to study
this extension in future work.

Real-valued causal variables Theorem 1 assumes real-
valued causal and noise variables, Zi = Ei = R. We can
easily extend this to intervals (a, b) ∈ R, as these are iso-
morphic to R. However, the extension to arbitrary continu-
ous spaces or Rn is not straightforward. The main reason is
that our proof relies on Lemma 2, which does not generalize.

Let us provide a counterexample for identifiability with
circle S1-valued causal variables.

Example 2 (S1-valued non-identifiable LCMs). Consider
an LCMM = ⟨C,X , g, I, pI⟩ with the following compo-
nents:

• The SCM C consists of two circle-valued variables
z1, z2 ∈ S1 with noise variables ϵ1, ϵ2 ∈ S1. We pa-

rameterize S1 as [0, 2π) with addition defined modulo
2π.

• The causal graph is z1 → z2.

• The causal mechanisms are f1(ϵ1) = ϵ1 and
f2(ϵ2; z1) = ϵ2 + z1.

• The solution function is s(ϵ1, ϵ2) = (ϵ1, ϵ2 + ϵ1).

• The noise variables are distributed as ϵ1 ∼ U , uni-
formly, and ϵ2 ∼ q, which we require to not be invari-
ant under translations (so in particular not uniform).
For example, one can take the von Mises distribution
log q(ϵ2) = cos(ϵ2) + const.

• The observation space is X and the decoder g : S1 ×
S1 → X is diffeomorphic.

• The intervention set I consists of the empty interven-
tion, atomic interventions on z1 with z̃1 ∼ U , and
atomic interventions on z2 with z̃2 ∼ U . Each of these
interventions has probability 1

3 in pI .

Note that the SCM is faithful, as z1⊥̸⊥z2 in the observational
distribution, because q is not translationally invariant. The
LCM entails the weakly supervised causal distribution

pZC (z, z̃) = U(z1) q(z2 − z1)
[
1

3
δ(z̃1 − z1) δ(z̃2 − z2)

+
1

3
U(z̃1) δ(z̃2− z2− z̃1+ z1)+

1

3
δ(z̃1− z1) U(z̃2)

]
(12)

with Dirac delta δ. The weakly supervised data distribution
is then given by pXM = (g∗, g∗)p

Z
C .

Now consider a second LCMM′ = ⟨C′,X , g′, I ′, p′I′⟩:

• The SCM C′ consists of two circle-valued variables
z′1, z

′
2 ∈ S1 with noise variables ϵ′1, ϵ

′
2 ∈ S1.

• The causal graph is trivial and the causal mechanisms
are given by the identity, f ′i(ϵ

′
i) = ϵ′i.

• The noise variables are distributed as ϵ′1 ∼ U and
ϵ′2 ∼ q.

• The observation space is X and the decoder g′ : S1 ×
S1 → X is given by the diffeomorphism g′(z′) =
g ◦ s(z′), where s is the solution function of C.

• The intervention set I ′ consists of empty interventions,
atomic interventions on z′1 with z̃′1 ∼ U , and atomic
interventions on z′2 with z̃′2 ∼ U . Each of these inter-
ventions has probability 1

3 in pI′ .

We find a weakly supervised causal distribution

pZ
′

C′ (z′, z̃′) = U(z′1) q(z′2)
[
1

3
δ(z̃′1 − z′1) δ(z̃′2 − z′2)

+
1

3
U(z̃′1) δ(z̃′2 − z′2) +

1

3
δ(z̃′1 − z′1) U(z̃′2)

]
. (13)



Clearly, two LCMs are not equivalent, because their graphs
are non-isomorphic. Yet, if we define

φ : Z → Z ′ : (z1, z2) 7→ (z1, z2 − z1)

then the weakly supervised distribution of the causal vari-
ables is preserved:

((φ,φ)∗p
Z
C )(z

′, z̃′)

= pZC ((z
′
1, z

′
2 + z′1), (z̃

′
1, z̃

′
2 + z̃′1))

= U(z′1) q(z′2 + z′1 − z′1)

×
[
1

3
δ(z̃′1 − z′1) δ(z̃′2 + z̃′1 − (z′2 + z′1))

+
1

3
U(z̃′1) δ(z̃′2 + z̃′1 − (z′2 + z′1)− z̃′1 + z′1)

+
1

3
δ(z̃′1 − z′1) U(z̃′2 + z̃′1)

]
= U(z′1) q(z′2)

×
[
1

3
δ(z̃′1 − z′1) δ(z̃′2 − z′2)

+
1

3
U(z̃′1) δ(z̃′2 − z′2)

+
1

3
δ(z̃′1 − z′1) U(z̃′2)

]
= pZ

′

C′ (z′, z̃′)

where we use that the density U is constant. Also, because
φ = s−1 and g′(z′) = g ◦ s(z′), we have that pXM = pXM′ .

So these two models with their non-isomorphic graph struc-
tures have identical weakly-supervised distributions on the
observables x, x̃. They therefore provide a counter-example
for a straightforward generalization of Thm. 1 to causal
variables with arbitrary continuous domains.

The key issue here is that the interventional distribution on
z̃2 has many symmetries or automorphisms: diffeomorphic
maps Z2 → Z2 that preserve p(z̃2) — in this case these
are the cyclic translations. In general, for any causal model
D with two variables z1 → z2, we can construct a map
ϕ(z1, z2) = (z1,Γ(z1)(z2)) where for all z1, Γ(z1) : Z2 →
Z2 is a differentiable map from Z1 to a diffeomorphism
on Z2 that preserves the interventional distribution p(z̃2).
This map ϕ preserves the weakly supervised distribution
from D to a unique model D′, whose causal mechanisms
are: f ′1(ϵ1) = f1(ϵ1) and f ′2(z1, ϵ1) = Γ(z1)(f2(z1, ϵ2)).
However, ϕ is only an ISCM morphism if it is also diagonal,
and thus Γ must be constant in z1.

For the R-valued variables of the main paper, any smooth
distribution on R has exactly two automorphisms, related to
the automorphisms of the univariate Gaussian distribution
x 7→ x and x 7→ −x. Γ can not smoothly switch between
these and thus must be constant, making ϕ diagonal and an
ISCM morphism. However, any multi-dimensional distribu-

tion has many automorphisms. One class of these is related
to the orthogonal transformations of a standard multivari-
ate Gaussian. Another, much larger, class is related to the
flows generated by divergence-free vector fields on the unit
ball. Γ can smoothly choose different such automorphisms
for different values of z1, making ϕ not diagonal and thus
not an ISCM morphism. In conclusion, this smooth space
of automorphisms make the multivariate case unidentifiable
from weak supervision.

C IMPLICIT LATENT CAUSAL MODELS

C.1 MODEL SPECIFICATION

An implicit latent causal model for a system of n causal
variables consists of the following components, see Fig. 6:

• a Gaussian noise encoder q(e|x) with mean µe(x) and
standard deviation σe(x) implemented as neural net-
works;

• a Gaussian noise decoder p(x|e) with mean µx(e) im-
plemented as neural network and fixed, constant stan-
dard deviation;

• an intervention encoder q(I|x, x̃) defined as

log q(i ∈ I|x, x̃) =
1

Z

(
a+b |µe(x)i − µe(x̃)i|+c |µe(x)i − µe(x̃)i|2

)
,

where a < 0 and b, c > 0 are learnable parameters and
where the normalization constant Z is defined such
that

∑
I q(i ∈ I|x, x̃) = 1;

• solution functions si(ei; e\i) for i = 1, . . . , n imple-
mented as invertible affine transformations, where the
offset and slope are functions of e\i implemented with
neural networks;

• noise priors pi(ei), which we choose to be standard
Gaussian;

• an post-intervention causal-variable prior π̃(z̃i), which
we choose to be standard Gaussian; and

• an intervention-target prior p(I), which we choose to
be uniform.

Encoding a data pair (x, x̃) during training consists of the
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Figure 6: ILCM architecture. Pre- and post-intervention data (left) are encoded to noise encodings and intervention targets,
which are then decoded back to the data space. To compute the prior probability density, the noise encodings are transformed
into causal variables with the neural solution function.

following steps:

I ∼ q(I|x, x̃)
epreliminary ∼ q(e|x)
ẽpreliminary ∼ q(ẽpreliminary|x̃)
∀i , λi ∼ Uniform(0, 1)

eaverage i = λiepreliminary i + (1− λi)ẽpreliminary i

ei =

{
epreliminary i i ∈ I
eaverage i i /∈ I

ẽi =

{
ẽpreliminary i i ∈ I
eaverage i i /∈ I

. (14)

In the first line, we encode to an intervention target (either
by sampling or by enumerating all possibilities and sum-
ming up the corresponding loss terms). In the second and
third line, the data is encoded to the noise-encoding space.
The fourth to last lines project these noise encodings such
that for those components ei that are not intervened upon,
i /∈ I , we have that the pre-intervention noise encoding and
post-intervention noise encoding are equal, ei = ẽi. This
makes sure that the latents are consistent with the weakly su-
pervised structure, and punishes deviations from this struc-
ture through the reconstruction error (likelihood). We use
the symbol e, ẽ ∼ q(e, ẽ|x, x̃, I) to refer to the fourth to last
line together.

The prior is given by

p(e, ẽI , I) = p(I)
∏
i

pi(ei)
∏
i∈I

p(ẽi|e)

with, for i ∈ I ,

p(ẽi|e) = p̃
(
si(ẽi|e\i)

) ∣∣∣∣∂s̄i(ẽi; e\i)∂ẽi

∣∣∣∣ . (15)

C.2 TRAINING

Loss We train ILCMs by minimizing the β-VAE loss

LILCM = Ex,x̃EI∼q(I|x,x̃)Ee,ẽ∼q(e,ẽ|x,x̃,I)[
log p(x|e) + log p(x̃|ẽ)

+β
{
log p(e, ẽI , I)−log q(I|x, x̃)−log q(e, ẽI |x, x̃, I)

}]
,

where β is a hyperparameter.

Two additional loss terms are used as regularizers during
training. The first is a plain reconstruction error (or log
likelihood term) that does not use the projections given in
Eq. (14) to encourage consistency between the noise encoder
and noise decoder:

Lreco = Ex,x̃Ee∼q(e|x)Eẽ∼q(ẽ|x̃)
[
log p(x|e) + log p(x̃|ẽ)

]
.

Throughout training, we also add the negative entropy
of the batch-aggregate intervention posterior qbatch

I (I) =
Ex,x̃∈batch[q(I|x, x̃)]:

Lentropy = Ebatches

[
−
∑
I

qbatch
I (I) log qbatch

I (I)
]
.

This helps avoid a collapse of the latent space to a lower-
dimensional subspace. The overall loss is then given by L =
LILCM + αLreco + γLentropy with hyperparameters α, γ ≥ 0.

Training phases We train ILCM models in four phases:

1. We begin with a short pre-training phase, in which
the noise encoder and noise decoder are trained on a
plain β-VAE loss with a standard Gaussian prior. This
provides a good starting point for the remainder of



the training, in which the encoders and decoders have
already learned some patterns in the data space.

2. Next, we train the noise encoder, noise decoder, and
intervention encoder on the combined loss L described
above. However, in this phase we do not yet use the
solution functions and instead model p(ẽi|e) with a
uniform probability density. This avoids a feedback the
randomly initialized solution functions influencing the
training of the encoder and decoders, stabilizing the
learning of good latent representations.

3. We then “switch on” the solution functions and model
the intervention targets with the density p(ẽi|e) as
given above and train on the combined loss L.
On image datasets, we freeze the convolutional layers
in the encoder in this stage and only continue training
the final layers of the encoder together with the solution
functions.

4. For the final training phase, we change the setup in
two more ways. First, we analyze the learned solution
functions to infer the most likely topological order.
For this we use the step 1 of the heuristic algorithm
for graph inference, which we will define in Sec. C.4
below. Then the solution functions are modified such
that si only depends on the ancestors eanci according
to the inferred topological order:

si(ei; e\i)→ si(ei; eanci) . (16)

This is implemented with a suitable masking layer
in the neural network implementation of si. We find
that this form of inductive bias in the prior helps with
learning cleanly disentangled representations.
Second, we fix the intervention encoders to the deter-
ministic,

qdeterministic(I|x, x̃) =

{
1 I = argmaxI q(I|x, x̃)
0 else .

This further improves the training efficiency.

The separation of phase 2 and 3—first training the encoder
with a simplified prior, then training the solution functions—
improved the success of our method substantially. Adding
the pre-training and fine-tuning phases 1 and 4 slightly im-
proved the efficiency of the training, but is not critical.

We use the Adam optimizer [29] with a cosine annealing
schedule [30], which is restarted at the beginning of training
phases 3 and 4. The hyperparameters differ slightly between
experiments and will be given in Sec. D.

C.3 IDENTIFIABILITY

We will now show that our identifiability result extends to
implicit latent causal models. First, note that any implicit

LCM, whose intervention distributions p(ẽi | e) satisfy
some topological ordering so that s is a diffeomorphism, cor-
responds exactly to one explicit LCM, by pre-composing the
decoder with the solution diffeomorphism. The weakly su-
pervised distribution of an ICLM and its equivalent ELCM
are the same. Similarly, any ELCM isomorphism corre-
sponds exactly to an appropriately defined morphism of IL-
CMs.

Using the language of category theory, we can visualize
the relationship between explicit and implicit latent causal
models in the following commuting diagram:

p(x, x̃)

ELCM ILCM

where ELCM is the category of explicit latent causal mod-
els and morphisms thereof, ILCM the isomorphic category
of implicit latent causal models and its morphisms, and
p(x, x̃) the discrete category whose objects are weakly su-
pervised distributions and which contains only identity mor-
phisms. We know that isomorphic ELCMs have the same
weakly supervised distribution, so that we indeed get a func-
tor ELCM→ p(x, x̃). Our main result furthermore says that
this functor is full, so that any equality of weakly-supervised
distributions comes from an isomorphism of ELCMs.

Because the categories of ELCMs and ICLMs are isomor-
phic, this result, and thus identifiability, also holds for the
equivalent ILCM formulation.

C.4 GRAPH INFERENCE

ILCMs do not contain an explicit graph representation, but
the causal structure is implicitly represented by the learned
solution functions. We propose two algorithms for causal
discovery based on a trained ILCM model.

ILCM-E We can perform causal discovery in a two-stage
procedure. After training an ILCM to learn the causal repre-
sentations, we use an off-the-shelf method for causal discov-
ery on the learned representations. Since the ILCM allows us
to infer intervention targets, we can use intervention-based
algorithms. In this paper, we use ENCO [18], a recent dif-
ferentiable causal discovery method that exploits interven-
tions to obtain acyclic graphs without requiring constrained
optimization. Alternatives to ENCO include DCDI [19] and
GIES [20].

ILCM-H Alternatively, we can unearth the causal struc-
ture encoded in the learned solution functions si, which map
noise variables to causal variables. We introduce a heuris-
tic algorithm that can find the causal graph G and the causal
mechanisms fi from a trained ILCM. It proceeds in three
steps:



1. Computing the topological order: To determine the
topological order of the causal graph, we use the prop-
erty that after convergence, the solution function zi =
si(ei; e) will only depend on the ancestors of ei. This
allows us to define a heuristic that determines whether
zi is an ancestor of zj . For each pair (i, j), we compute

ancestry(i, j) = d
(
sj(ej ; e), sj(ej ; maski[e])

)
.

(17)
Here d(·, ·) is a distance measure between two func-
tions; in practice, we use the expected MSE over a vali-
dation dataset. The function maski[e] replaces the i-th
component of e with uninformative input, for instance
median of that component computed over the training
dataset.
After computing these ancestry scores, we can compute
a topological order by sorting the variables such that
likely ancestors appear before their likely descendants
according to this heuristic. We do this with a greedy
algorithm.

2. Extracting the causal mechanisms: Next, we compute
the causal mechanisms fi such that zi = fi(ei; zanci).
We begin by setting i to the root node (the first vari-
able in the topological order computed in step 1) and
proceed in topological order. At every step we set

fi(ei; zanci) = si(ei; ê) (18)

with

êj =

{
f−1
j (zj ; zancj ) j ∈ anci

mask[ej ] otherwise .
(19)

3. Finding causal parents: Finally, we check whether an
ancestor zi is a parent of a node zj by testing whether
fj explicitly depends on zi. Again, we use a heuristic
measure of functional dependence:

paternity(i, j) = d
(
fj(ej ; zancj ), fj(ej ; maski[zancj ])

)
.

(20)
We then construct the causal graph by thresholding
on this heuristic. This gives us the inferred adjacency
matrix

Âij =

{
1 i ∈ ancj and paternity(i, j) > pmin

0 else
(21)

where pmin > 0 is a hyperparameter.

The heuristic algorithm (ILCM-H) does not require any op-
timization and is thus computationally more efficient, but
arguably less principled than the likelihood-based ENCO
approach (ILCM-E). In our experiments, the ILCM-H ap-
proach finds the correct graph in 7 out of the 8 datasets,
while ILCM-E always yields the correct causal graph.

D EXPERIMENTS

D.1 GENERAL SETUP

Baselines We compare our ILCM-E and ILCM-H results
(which differ only by the graph inference algorithm, as de-
scribed above) to three baseline methods. The disentangle-
ment VAE (dVAE) method is a VAE for paired data with
individual latent components changing between the pre-
intervention latents and the post-intervention latents, but
without causal structure. We implement it by using an ILCM,
but enforce a trivial causal graph by not allowing the solu-
tion functions si(·; e) to depend on e.

Our second baseline is an unstructured β-VAE, which treats
pre-intervention and post-intervention data as i. i. d. and
models both with a standard Gaussian prior.

Finally, we include a slot attention baseline. We use as many
slots as there are latents. We break the symmetry between
the slots by initialising the slots not with a random vector,
but with a different learned vector per slot, as is done in
Ref. [31]. We choose a six-dimensional latent for each slot.

Metrics We evaluate the disentanglement of the learned
causal variables by computing the DCI disentanglement
score [32]. There are many other disentanglement metrics,
but empirically these tend to be highly correlated with the
DCI disentanglement score [3], so we omit them here for
simplicity. For the slot attention models, we add up the
contribution of the latent dimensions of each slot, to get a
importance matrix between slots and ground truth causal
variables.

The quality of intervention inference is evaluated with the
accuracy of the intervention encoder. Since we can only
identify causal variables and intervention targets up to a
permutation, we compute this accuracy for any possible
permutation of the causal variables and then report the best
result.

Finally, we evaluate the quality of the inferred causal graphs.
We identify the ground-truth variables with the correspond-
ing learned causal variables based on the importance ma-
trix computed for the DCI disentanglement score [32]. We
then compute the structural Hamming distance (or graph
edit distance) between the learned graph and the true graph.
As an example, consider the case of two causal variables,
where the ground-truth graph is z1 → z2, the ILCM graph
is z′1 → z′2, and the ground-truth and learned variables are
mapped to each other as z1 ↔ z′2 and z2 ↔ z′1. Then the
structural Hamming distance will be 1, as the cause and ef-
fect are flipped in the learned model.



Table 2: Detailed experiment results. We compare our ILCM-E (using ENCO for graph inference) and ILCM-H (with a
heuristic for graph inference) to disentanglement VAE (dVAE-E), unstructured β-VAE, and slot attention baselines. We
show the DCI disentanglement score, the accuracy of intervention inference, the learned graph, and the structural Hamming
distance (SHD) between learned and true graph. Best results in bold.

Dataset True graph Method Disentanglement Intervention accuracy Learned graph SHD

2D toy data ILCM-E (ours) 0.99 0.96 0
ILCM-H (ours) 0.99 0.96 0
dVAE 0.35 0.96 1
β-VAE 0.52 – n/a –

Causal3DIdent ILCM-E (ours) 0.99 0.98 0
ILCM-H (ours) 0.99 0.98 0
dVAE 1.00 0.98 0
β-VAE 0.94 – n/a –
Slot attention 0.90 – n/a –

ILCM-E (ours) 1.00 0.98 0
ILCM-H (ours) 1.00 0.98 0
dVAE 0.91 0.98 1
β-VAE 0.92 – n/a –
Slot attention 0.56 – n/a –

ILCM-E (ours) 0.99 0.98 0
ILCM-H (ours) 0.99 0.98 0
dVAE 0.83 0.98 2
β-VAE 0.63 – n/a –
Slot attention 0.42 – n/a –

ILCM-E (ours) 0.99 0.98 0
ILCM-H (ours) 0.99 0.98 1
dVAE 0.79 0.98 2
β-VAE 0.63 – n/a –
Slot attention 0.86 – n/a –

ILCM-E (ours) 0.99 0.98 0
ILCM-H (ours) 0.99 0.98 0
dVAE 0.80 0.98 2
β-VAE 0.28 – n/a –
Slot attention 0.32 – n/a –

ILCM-E (ours) 0.99 0.98 0
ILCM-H (ours) 0.99 0.98 0
dVAE 0.60 0.98 3
β-VAE 0.57 – n/a –
Slot attention 0.53 – n/a –

CausalCircuit ILCM-E (ours) 0.97 1.00 0
ILCM-H (ours) 0.97 1.00 0
dVAE-E 0.34 1.00 5
β-VAE 0.39 – n/a –
Slot attention 0.39 – n/a –
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Figure 7: 2D toy data with graph z∗1 → z∗2 . The grey grids show the map between true causal factors, data, and latent
causal factors learned by the LCM. The mint dots indicate the observational data distribution, the arrows from z to z̃ show
interventions targeting z∗1 (red) or z∗2 (blue). The fact that axis-aligned lines in the true latent space are mapped to axis-
aligned lines in the learned latent space implies that the disentanglement succeeded.

D.2 2D TOY EXPERIMENT

Dataset We first demonstrate LCMs in a pedagogical toy
experiment with X = Z = R2. Latent data is generated
from a nonlinear SCM with graph z1 → z2. In particular,
we have that z1 ∼ N (z1; 0, 1

2) and z2 ∼ N (z1; 0.3z
2
1 +

0.6z1, 0.8
2). This latent data is mapped to the data space

X = R2 with a randomly initialized coupling flow with five
affine coupling layers interspersed with random permuta-
tions of the dimensions. For the weakly supervised setting
we use a uniform intervention prior over {∅, {z1}, {z2}}.
We generate 105 training samples, 104 validation samples,
and 104 evaluation samples (where each sample is one pair
(x, x̃) of pre- and post-intervention data).

Architecture The noise encoder and noise decoder are
Gaussian, with mean and standard deviation computed by
fully connected networks. The solution functions are im-
plemented as affine transformations with slope and offset
computed as a function of the pre-intervention noise encod-
ings, also implemented with fully connected networks. For
each MLP, we use two hidden layers with 100 units each
and ReLU activations.

Training Models are trained using the procedure de-
scribed in Sec. C.2. We train for 9 · 104 steps using a batch
size of 100 and an initial learning rate of 10−3. The weights
of the different loss terms and regularizers are as follows: β
is initially set to 0 and increased to its final value of 1 during
training,α = 10−2, and γ = 0 throughout training. For each
method, we train models with three random seeds and in the
end select the median run according to the validation loss.

Results An ILCM trained in the weakly supervised set-
ting is able to reconstruct the causal factors accurately up
to elementwise reparameterizations, as shown in Fig. 7. In

Tbl. 2 we quantify the quality of the learned representations
with the DCI disentanglement score [32]. We find that our
LCM is able to disentangle the causal factors almost per-
fectly, while the baselines, which assume independent fac-
tors of variation, fail as expected. Both the ILCM and the
dVAE baseline infer the intervention targets with high accu-
racy. Finally, we test the quality of the learned causal graphs.
We infer the implicit graph with ENCO and the heuristic al-
gorithm discussed above. In both cases, the learned causal
graph is identical to the correct one, whereas the representa-
tions found by the dVAE baseline induce a wrong graph.

D.3 CAUSAL3DIDENT EXPERIMENTS

Dataset In the Causal3DIdent experiments we consider
six different datasets, each generated from a different causal
graph, SCM, and decoder. The six causal graphs we consider
are:

• the trivial graph ,

• single edge ,

• the chain ,

• the fork ,

• the collider , and

• the full graph .

For each of these subsets, we randomly generate a nonlin-
ear SCM with heteroskedastic noise: for each causal mecha-
nism, we randomly initialize an MLP that outputs the scale
and shift of an affine transformation as a function of the
causal parents. We choose an MLP initialization scheme
that emphasizes nontrivial, nonlinear causal effects. We then
identify a random permutation of the three causal variables
with three high-level concepts in the Causal3DIdent dataset:



Figure 8: Effect of varying the learned causal factors on the image in the Causal3DIdent dataset. We encode a single test
images (middle column) into the three learned causal variables. We then vary each of these causal factors in isolation
(without performing interventions, that is, without including the causal effects on other variables) and show the reconstructed
images. The ILCM (top) learns a representation that is quite disentangled: z1 largely corresponds to the spotlight color, z2
to the spotlight position, and z3 to the object color. In contrast, the acausal dVAE baseline entangles the object color and
spotlight color in its learned representation z1.



the object hue, the spotlight hue, and the spotlight position.
We use the following causal graphs:

• single edge: object hue→ spotlight position;

• chain: spotlight position→ spotlight hue→ object hue;

• fork: spotlight hue→ spotlight position, object hue;

• collider: spotlight hue→ object hue← spotlight posi-
tion;

• full graph: spotlight hue → object hue → spotlight
position, spotlight hue→ spotlight position.

Since all of these properties are defined on a range [0, 2π),
we apply an elementwise arctanh transform and rescaling
to our variables such that they populate a subset of [0, 2π).
This also avoids topological issues. Next, we generate im-
ages in 64×64 resolution following the procedure described
in Ref. [14]. We use Blender [33] to generate 3D rendered
images based on the previously defined causal variables.
To increase diversity of the six datasets, we render each
dataset with a different object: Teapot [34], Armadillo [35],
Hare [36], Cow [37], Dragon [38], and Horse [39]. We gen-
erate 105 training samples, 104 validation samples, and 104

evaluation samples.

Architecture For the noise encoder and noise decoder we
use a convolutional architecture with four residual blocks,
using downsampling via average-pooling and bilinear up-
sampling, respectively. We do not use BatchNorm, as we
found that that can lead to practical issues when images in
a batch are very similar. The output of the convolutional
layers is then fed through a fully connected network with
two hidden layers, 64 units each, and ReLU activations. For
each of the three latents output by the encoder, we apply
an additional elementwise MLP with one hidden layers, 16
units each, and ReLU activations. For the solution functions
we use the same architecture as in the 2D toy data.

Training Models are trained using the procedure de-
scribed in Sec. C.2. We train for 2.5 · 105 steps using a
batch size of 64 and an initial learning rate of 8 · 10−5. The
weights of the different loss terms and regularizers are as
follows: β is initially set to 0 and increased to its final value
of 0.05 during training, α = 10−2, and γ = 5 throughout
training. For each method, we train models with three ran-
dom seeds and in the end select the median run according
to the validation loss.

Results In addition to the results shown in the main paper,
we show metrics for each separate subset in in Tbl. 2. We
also visualize the disentanglement properties of the learned
representations in Fig. 8 and the ability of the ILCMs to
infer and reproduce interventions in Fig. 9.

Figure 9: Causal3DIdent before (top row) and after (middle
row) interventions, and post-intervention samples generated
from the ILCM under the intervention inferred from the
data, indicating we correctly learned to intervene.

D.4 CAUSALCIRCUIT EXPERIMENTS

Dataset We introduce the new CausalCircuit dataset. This
environment is built in the MuJoCo simulator [22], using a
model of the TriFinger robotic platform [40], of which we
use a single finger. There are four causal variables: the three
lights and the robot arm. The arm state is the position along
an arc that goes over three buttons. The position on the arc
is translated into actuator angles using an inverse kinematic
model. To obtain a sample, the arm is moved away from the
buttons, then lowered to the desired position, after which a
rendering is recorded. Each red, green and blue button then
has a pressed state bR, bG, bB that depends on how far the
button is touched from the center and scales linearly in the
radial distance from 0 to 1. The causal model for the red,
green and blue light variables and the arm zA then is:

vR = 0.2 + 0.6 ∗ clip(zG + zB + bR, 0, 1)

vG = 0.2 + 0.6 ∗ bG
vB = 0.2 + 0.6 ∗ bB
zR ∼ Beta(5vR, 5 ∗ (1− vR))
zG ∼ Beta(5vG, 5 ∗ (1− vG))
zB ∼ Beta(5vB , 5 ∗ (1− vB))
zA ∼ Uniform(0, 1)

The scene is rendered in 512×512 pixels using the MuJoCO
renderer.

Dimensionality reduction Rather than training directly
on images, we found it beneficial for fast experimentation to
first condense the image datasets into a lower-dimensional
representation and then train both ILCMs and baselines



Figure 10: Effect of varying the learned causal factors on the image in the CausalCircuit dataset. We encode a single test
images (left column) into the four learned causal variables. We then vary each of these causal factors in isolation (without
performing interventions, that is, without including the causal effects on other variables) and show the reconstructed images.
The ILCM (top) learns a representation that is quite disentangled: z1 corresponds to the blue light, z2 to the green light, z3
to the robot arm position, and z4 to the red light. In contrast, the acausal dVAE baseline entangles the different lights and the
robot arm position in its learned latent factors.
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Figure 11: The slots found by slot attention. We see that the slots do not correspond to the causal variables. Only the arm is
disentangled from the buttons and lights.

excluding slot attention) on that data. We used a β-VAE
with a standard Gaussian prior with 16 latent dimensions;
the encoder and decoder follow the same architecture as
for the Causal3DIdent dataset. This VAE was trained for
8.5 · 104 steps using the Adam optimizer, an initial learning
rate of 3 · 10−4, cosine annealing, and batchsize 128.

For slot attention, we reduced the resolution to 64× 64, as
we found it difficult to train the model on the full resolution
512× 512.

Architecture On this dimensionality-reduced, 16-
dimensional data, we use fully connected networks for noise
encoder and noise decoder, each with five hidden layers
with 64 units each and ReLU activations. The solution func-
tions have the same architecture as in the other experiments.

Training Models are trained using the procedure de-
scribed in Sec. C.2. We train for 9.4 · 104 steps using a
batch size of 64 and an initial learning rate of 3 · 10−4. The
weights of the different loss terms and regularizers are as
follows: β is initially set to 0 and increased to its final value
of 3 · 10−4 during training, α = 10−2, and γ = 10 through-
out training. For each method, we train models with three
random seeds and in the end select the best run according to
the validation loss.

Results In addition to the results in the main paper, Fig. 10
shows that our ILCM model successfully disentangled the
causal factors, while the dVAE baseline failed at that task.
Similarly, in Fig. 11 we see that the slot attention model

fails to assign the causal variables into separate slots. We
presume this is because the lights blend into each other,
making them only describable by a single slot.

E EXPLICIT LATENT CAUSAL MODELS

E.1 SETUP

Explicit latent causal models (ELCMs) are variational au-
toencoders, in which the latent variables are the causal vari-
ables of an SCM. They consist of a causal encoder q(z|x),
decoder p(x|z), and a prior p(z, z̃) that encodes the causal
structure.

Intervention targets can either be inferred with an interven-
tion encoder q(I|x, x̃), similar to our ILCM model, or be
marginalized over explicitly as p(z, z̃) =

∑
I p(I)p(z, z̃|I).

We have experimented with both settings, for concreteness
we here focus on the second, simpler setup.

The conditional prior p(z, z̃|I) is the weakly supervised dis-
tribution of an SCM. They are parameterized through the
causal graph G, neural causal mechanisms fi(ϵi; zpai), and
noise base distributions. To learn the graph, the simplest op-
tion is to instantiate one LCM per graph equivalence class,
train them, and select the model with the lowest validation
loss. Alternatively, we can parameterize the graph in a dif-
ferentiable way [18, 19, 41, 42] and learn the graph together
with the other components through gradient descent.

We contrast the VAE setup of ILCMs and ELCMs in Tbl. 3.



Table 3: Differences between explicit and implicit latent causal models (ELCMs and ILCMs). Optional learnable components
are shown in parantheses.
1For simplicity, in this section we describe an ELCM implementation without intervention encoder. 2We achieved the best results when
inferring and enforcing a topological order only for the last phase of ELCM training, see Sec. C.2.

Explicit latent causal model Implicit latent causal model

Latent variables causal variables (z, z̃) noise encodings (e, ẽ)
intervention targets I intervention targets I

Learnable components encoder q(z|x) encoder q(e|x)
decoder p(x|z) decoder p(x|e)
(intervention encoder q(I|x, x̃))1 (intervention encoder q(I|x, x̃))
graph G (topological order)2

causal mechanisms fi(ϵi; zpai) solution functions si(ei; e\i)

Like ILCMs, ELCMs are trained on a VAE loss correspond-
ing to a variational bound on log p(x, x̃). Following com-
mon practice in causal discovery [18, 19, 43], we incen-
tivize learning the sparsest graph compatible with the data
distribution by adding a regularization term proportional to
the number of edges in the graph to the loss.

E.2 EXPERIMENTS

Dataset We experiment with ELCMs in similar datasets
as we did in the main paper with ILCMs. In particular, we
report results on six Causal3DIdent variations. However,
we performed these datasets on an earlier iteration of these
datasets: while main parameters of the scenes and the causal
graphs are the same as in the experiments reported in the
main paper, the ground-truth causal mechanisms are dif-
ferent. The metrics reported here are therefore not directly
comparable to the ILCM results in the main paper.

Hyperparameters Our ELCM architecture and training
follows similar hyperparameters to our ILCM experiments.
We experimented with various graph parameterizations and
sampling procedures, including directed edge existence
probabilities with Gumbel-Softmax sampling [19, 41], undi-
rected edge existence probabilities and edge orientation
probabilities [18], and the parameterization through edge
existence probabilities and a distribution over permuta-
tions [42]. While our implementation all of these methods
were able to successfully learn causal graphs given the true
causal variables, we were not able to reliably learn the repre-
sentations and the graph jointly. We observed a higher suc-
cess rate when training separate models for different fixed
DAGs and then selecting the best graph based on the valida-
tion loss. The results reported below were generated with
this exhaustive graph search strategy. Again we show the
median run out of three random seeds according to the vali-
dation loss.

Results In Tbl. 4 we show disentanglement scores and
learned graphs. The results are mixed: in some of the

Table 4: ELCM experiments on Causal3DIdent datasets. We
show the learned causal graph, the structural Hamming dis-
tance SHD between the learned and the true graph and the
DCI disentanglement score (D). The datasets differ slightly
from the ones used in our main experiments, so metrics are
not directly comparable.

True graph D Learned graph SHD

1.00 0
0.99 0
0.45 3
0.98 0
0.98 0
0.43 2

datasets the graph was correctly identified and the variables
are disentangled, while in others the model failed at both
tasks. Notably, we find that the results strongly vary with
the initialization (i. e. the random seed). In Tbl. 4 we only
show the median result out of three runs, but in almost all
datasets there is one random seed that lead to successful dis-
entanglement (always with the best training and validation
loss) and one random seed that led to failed disentanglement
(with a worse training and validation loss). ELCM training
is thus much less robust than our ILCM experiments, where
the results were largely stable across random seeds.

Discussion This result hints at the presence of local min-
ima in the loss landscape that models can get stuck in when
starting from an unlucky initialization. By manually ana-
lyzing the trained ELCMs, we find that one common fail-
ure mode us that models learn variables that are to some
extent disentangled and the graph has the right skeleton,
but some of the causal effects are wrongly oriented (swap-
ping cause and effect). Such graphs are often in the same
Markov equivalence class as the correct graph, which is why
such a model can minimize the observational contribution
− log p(z) to the overall loss. Smoothly changing the repre-
sentations would take the model out of the Markov equiva-



lence class, increase this term and thus the overall loss; this
configuration thus presents a local loss minimum. The same
phenomenon occurs in our experiments with differentiable
graph parameterizations.

F POTENTIAL SOCIETAL IMPACT

Although we expect the immediate societal impact of this
work to be negligible, more generally causal representation
learning may have significant impact in the longer run. It
will allow for the discovery of potential causal relationships
in unstructured human-centric data. This may be beneficial,
for example as it allows one to inspect if a model has learned
sensible or fair causal relationships. A potential risk is that,
for example because certain confounding variables are not
discovered from the data, the algorithm may conclude erro-
neously that sensitive variables are causes of relevant out-
comes. Users of the algorithms should be cautious of that.
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