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Abstract

Probabilistic Circuits (PCs) are a promising avenue
for probabilistic modeling. They combine advan-
tages of probabilistic graphical models (PGMs)
with those of neural networks (NNs). Crucially,
however, they are tractable probabilistic models,
supporting efficient and exact computation of many
probabilistic inference queries, such as marginals
and MAP. Further, since PCs are structured com-
putation graphs, they can take advantage of deep-
learning-style parameter updates, which greatly
improves their scalability. However, this innova-
tion also makes PCs prone to overfitting, which
has been observed in many standard benchmarks.
Despite the existence of abundant regularization
techniques for both PGMs and NNs, they are not
effective enough when applied to PCs. Instead, we
re-think regularization for PCs and propose two
intuitive techniques, data softening and entropy
regularization, that both take advantage of PCs’
tractability and still have an efficient implemen-
tation as a computation graph. Specifically, data
softening provides a principled way to add uncer-
tainty in datasets in closed form, which implicitly
regularizes PC parameters. To learn parameters
from a softened dataset, PCs only need linear time
by virtue of their tractability. In entropy regulariza-
tion, the exact entropy of the distribution encoded
by a PC can be regularized directly, which is again
infeasible for most other density estimation models.
We show that both methods consistently improve
the generalization performance of a wide variety
of PCs. Moreover, when paired with a simple PC
structure, we achieved state-of-the-art results on
10 out of 20 standard discrete density estimation
benchmarks.
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1 INTRODUCTION

Probabilistic Circuits (PCs) [Choi et al., 2020c, Dang et al.,
2021] are considered to be the lingua franca for Tractable
Probabilistic Models (TPMs) as they offer a unified frame-
work to abstract from a wide variety of TPM circuit rep-
resentations, such as arithmetic circuits (ACs) [Darwiche,
2003], sum-product networks (SPNs) [Poon and Domingos,
2011], and probabilistic sentential decision diagrams (PS-
DDs) [Kisa et al., 2014]. PCs are a successful combination
of classic probabilistic graphical models (PGMs) and neural
networks (NNs). Moreover, by enforcing various structural
properties, PCs permit efficient and exact computation of a
large family of probabilistic inference queries [Vergari et al.,
2021, Khosravi et al., 2019, Shen et al., 2016]. The ability to
answer these queries leads to successful applications in ar-
eas such as model compression [Liang and Van den Broeck,
2017] and model bias detection [Choi et al., 2020a,b]. At the
same time, PCs are analogous to NNs since their evaluation
is also carried out using computation graphs. By exploiting
the parallel computation power of GPUs, dedicated imple-
mentations [Dang et al., 2021, Molina et al., 2019] can train
a complex PC with millions of parameters in minutes. These
innovations have made PCs much more expressive and scal-
able to richer datasets that are beyond the reach of “older”
TPMs [Peharz et al., 2020a].

However, such advances make PCs more prone to over-
fitting. Although parameter regularization has been exten-
sively studied in both the PGM and NN communities [Sri-
vastava et al., 2014, Ioffe and Szegedy, 2015], we find that
existing regularization techniques for PGMs and NNs are
either not suitable or not effective enough when applied to
PCs. For example, parameter priors or Laplace smoothing
typically used in PGMs, and often used in PC learning as
well [Liang et al., 2017, Dang et al., 2020, Gens and Pedro,
2013], incur unwanted bias when learning PC parameters –
we will illustrate this point in Sec. 3. Classic NN methods
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such as L1 and L2 regularization are not always suitable
since PCs often use either closed-form or EM-based param-
eter updates.

This paper designs parameter regularization methods that
are directly tailored for PCs. We propose two regularization
techniques, data softening and entropy regularization. Both
formulate the regularization objective in terms of distribu-
tions, regardless of their representation and parameterization.
Yet, both leverage the tractability and structural properties
of PCs. Specifically, data softening injects noise into the
dataset by turning hard evidence in the samples into soft ev-
idence [Chan and Darwiche, 2005, Pan et al., 2006]. While
learning with such softened datasets is infeasible even for
simple machine learning models, with their tractability, PCs
can learn the maximum-likelihood estimation (MLE) pa-
rameters given a softened dataset in O(|p|·|D|) time, where
|p| is the size of the PC and |D| is the size of the (origi-
nal) dataset. Additionally, the entropy of the distribution
encoded by a PC can be tractably regularized. Although the
entropy regularization objective for PC is multi-modal and
a global optimum cannot be found in general, we propose
an algorithm that is guaranteed to converge monotonically
towards a stationary point.

We show that both proposed approaches consistently im-
prove the test set performance over standard density estima-
tion benchmarks. Furthermore, we observe that when data
softening and entropy regularization are properly combined,
even better generalization performance can be achieved.
Specifically, when paired with a simple PC structure, this
combined regularization method achieves state-of-the-art
results on 10 out of 20 standard discrete density estimation
benchmarks.

Notation We denote random variables by uppercase letters
(e.g., X) and their assignments by lowercase letters (e.g., x).
Analogously, we use bold uppercase letters (e.g., X) and
bold lowercase letters (e.g., x) for sets of variables and their
joint assignments, respectively.

2 TWO INTUITIVE IDEAS FOR
REGULARIZING DISTRIBUTIONS

A common way to prevent overfitting in machine learn-
ing models is to regularize the syntactic representation of
the distribution. For example, L1 and L2 losses add mu-
tually independent priors to all parameters of a model;
other approaches such as Dropout [Srivastava et al., 2014]
and Bayesian Neural Networks (BNNs) [Goan and Fookes,
2020] incorporate more complex and structured priors into
the model [Gal and Ghahramani, 2016]. In this section, we
ask the question: how would we regularize an arbitrary dis-
tribution, regardless of the model at hand, and the way it is
parameterized? Such global, model-agnostic regularizers ap-
pear to be under-explored. Next, we introduce two intuitive

ideas for regularizing distributions, and study how they can
be practically realized in the context of probabilistic circuits
in the remainder of this paper.

Data softening Data augmentation is a common technique
to improve the generalization performance of machine learn-
ing models [Perez and Wang, 2017, Szegedy et al., 2016].
A simple yet effective type of data augmentation is to inject
noise into the samples, for example by randomly corrupt-
ing bits or pixels [Vincent et al., 2008]. This can greatly
improve generalization as it renders the model more robust
to such noise. While current noise injection methods are
implemented as a sequence of sampled transformations, we
stress that some noise injection can be done in closed form:
we will be considering all possible corruptions, each with
their own probability, as a function of how similar they are
to a training data point.

Consider boolean variables1 as an example: after noise in-
jection, a sample X=1 is represented as a distribution over
all possible assignments (i.e., X=1 and X=0), where the
instance X = 1, which is “similar” to the original sample,
gets a higher probability: P (X=1)=β. Here β∈(0.5, 1] is
a hyperparameter that specifies the regularization strength —
if β=1, no regularization is added; if β approaches 0.5, the
regularized sample represents an (almost) uniform distribu-
tion. For a sample x with K variables X :={Xi}Ki=1, where
the kth variable takes value xk, we can similarly ‘soften’ x
by independently injecting noise into each variable, result-
ing in a softened distribution Px,β (∀x′∈val(X)):

Px,β(X=x′) :=

K∏
i=1

Px,β(Xi=x′i)

=

K∏
i=1

(
β ·1[x′i=xi] + (1−β)·1[x′i 6=xi]

)
.

For a full dataset D :={x(i)}Ni=1, this softening of the data
can also be represented through a new, softened dataset Dβ .
Its empirical distribution is the average softened distribution
of its data. It is a weighted dataset Dβ := {x |x∈val(X)},
where the weight weight(Dβ ,x) of sample x is:

weight(Dβ ,x) =
1

N

N∑
i=1

Px(i),β(X = x). (1)

This softened dataset ensures that each possible assignment
has a small but non-zero weight in the training data. Conse-
quently, any distribution learned on the softened data must
assign a small probability everywhere as well. Of course,
materializing this dataset, which contains all possible train-
ing example, is not practical. Regardless, we will think
of data softening as implicitly operating on this softened
dataset. We remark that data softening is related to soft ev-
idence [Jeffrey, 1990] and virtual evidence [Pearl, 2014],

1We postpone the discussion on regularizing samples with
non-boolean variables in Appendix A.1.



which both define a framework to incorporate uncertain
evidence into a distribution.

Entropy regularization Shannon entropy is an effective
indicator for overfitting. For a datasetD withN distinct sam-
ples, a perfectly overfitting model that learns the exact em-
pirical distribution has entropy log(N). A distribution that
generalizes well should have a much larger entropy, since
it assigns positive probability to exponentially more assign-
ments near the training samples. Concretely, for the protein
sequence density estimation task [Russ et al., 2020] that we
will experiment with in Sec. 4.3, the perfectly overfitting
empirical distribution has entropy 3, a severely overfitting
learned model has entropy 92, yet a model that generalizes
well has entropy 177. Therefore, directly controlling the
entropy of the learned distribution will help mitigate over-
fitting. Given a model Pθ parametrized by θ and a dataset
D :={x(i)}Ni=1, we define the following entropy regulariza-
tion objective:

LLent(θ;D, τ) :=
1

N

N∑
i=1

logPθ(x(i))+τ ·ENT(Pθ), (2)

where ENT(Pθ) :=−∑x∈val(X) Pθ(x) logPθ(x) denotes
the entropy of distribution Pθ, and τ is a hyperparameter
that controls the regularization strength. Various forms of
entropy regularization have been used in the training pro-
cess of deep learning models. Different from Eq. (2), these
methods regularize the entropy of a parametric [Grandvalet
and Bengio, 2006, Zhu et al., 2017] or non-parametric [Feng
et al., 2017] output space of the model.

Although both ideas for regularizing distributions are rather
intuitive, it is surprisingly hard to implement them in prac-
tice since they are intractable even for the simplest machine
learning models.

Theorem 1. Computing the likelihood of a distribution rep-
resented as a exponentiated logistic regression (or equiva-
lently, a single neuron) given softened data is #P-hard.

Theorem 2. Computing the Shannon entropy of a normal-
ized logistic regression model is #P-hard.

Proofs of all theoretical results are provided in an extended
version of the paper due to space limitation.2 Although data
softening and entropy regularization are infeasible for many
models, we will show in the following sections that they are
tractable to use when applied to Probabilistic Circuits (PCs)
[Choi et al., 2020c], a class of expressive TPMs.

3 BACKGROUND AND MOTIVATION

Probabilistic Circuits (PCs) are a collective term for a wide
variety of TPMs. They present a unified set of notations

2https://tinyurl.com/sfbb67vc

that provides succinct representations for TPMs such as
Probabilistic Sentential Decision Diagrams (PSDDs) [Kisa
et al., 2014], Sum-Product Networks (SPNs) [Poon and
Domingos, 2011], and Arithmetic Circuits (ACs) [Darwiche,
2003]. We proceed by introducing the syntax and semantics
of a PC.

Definition 1 (Probabilistic Circuits). A PC p that represents
a probability distribution over variables X is defined by a
parametrized directed acyclic graph (DAG) with a single
root node, denoted nr. The DAG comprises three kinds of
units: input, sum, and product. Each leaf node n in the DAG
corresponds to an input unit; each inner node n (i.e., sum
and product units) receives inputs from its children, denoted
in(n). Each unit n encodes a probability distribution pn,
defined as follows:

pn(x) :=


fn(x) if n is an input unit,∑
c∈in(n) θn,c · pc(x) if n is a sum unit,∏
c∈in(n) pc(x) if n is a product unit,

where fn is a univariate input distribution (e.g., boolean,
categorical or Gaussian), and θn,c represents the parameter
corresponds to edge (n, c). Intuitively, a sum unit models
a weighted mixture distribution over its children, and a
product unit encodes a factored distribution over its children.
We assume w.l.o.g. that all parameters are positive and the
parameters associated with any sum unit n sum up to 1 (i.e.,∑
c∈in(n) θn,c = 1). We further assume w.l.o.g. that a PC

alternates between sum and product layers [Vergari et al.,
2015]. The size of a PC p, denoted |p|, is the number of
edges in its DAG.

This paper focuses on two classes of PCs that support differ-
ent types of queries: (i) PCs that allow linear-time computa-
tion of marginal (MAR) and maximum-a-posterior (MAP)
inferences (e.g., PSDDs [Kisa et al., 2014], selective SPNs
[Peharz et al., 2014]); (ii) PCs that only permit linear-time
computation of MAR queries (e.g., SPNs [Poon and Domin-
gos, 2011]). The borders between these two types of PCs
are defined by their structural properties, i.e., constraints
imposed on a PC. First, in order to compute MAR queries
in linear time, both classes of PCs should be decomposable
(Def. 2) and smooth (Def. 3) [Choi et al., 2020c]. These are
properties of the (variable) scope φ(n) of PC units n, that
is, the collection of variables defined by all its descendent
input nodes.

Definition 2 (Decomposability). A PC is decomposable if
for every product unit n, its children have disjoint scopes:
∀c1, c2 ∈ in(n) (c1 6= c2), φ(c1) ∩ φ(c2) = ∅.

Definition 3 (Smoothness). A PC is smooth if for every
sum unit n, its children have the same scope: ∀c1, c2 ∈
in(n), φ(c1) = φ(c2).

Next, determinism is required to guarantee efficient compu-
tation of MAP inference [Mei et al., 2018].

https://tinyurl.com/sfbb67vc


(a) A PC with imbalanced sum unit .n1 (b) Imbalanceness of the PCs learned by Strudel.
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Figure 1: A Problem of Laplace smoothing. (a) Laplace
smoothing cannot properly regularize this PC as the sum
unit n1 is imbalanced, i.e., its two children have drastically
different support sizes. (b) A large fraction of sum units
learned by a PC structure learning algorithm [Dang et al.,
2020] are imbalanced.

Definition 4 (Determinism). Define the support supp(n)
of a PC unit n as the set of complete variable assignments
x ∈ val(X) for which pn(x) has non-zero probability (den-
sity): supp(n) = {x | x∈val(X), pn(x)>0}. A PC is de-
terministic if for every sum unit n, its children have disjoint
support: ∀c1, c2∈ in(n) (c1 6=c2), supp(c1)∩ supp(c2)=∅.

Since the only difference in the structural properties of both
PCs classes is determinism, we denote members in the first
PC class as deterministic PCs, and members in the second
PC class as non-deterministic PCs. Interestingly, both PC
classes not only differ in their tractability, which is charac-
terized by the set of queries that can be computed within
poly(|p|) time [Vergari et al., 2021], they also exhibit dras-
tically different expressive efficiency. Specifically, abun-
dant empirical [Dang et al., 2020, Peharz et al., 2020a]
and theoretical [Choi and Darwiche, 2017] evidences sug-
gest that non-deterministic PCs are more expressive than
their deterministic counterparts. Due to their differences
in terms of tractability and expressive efficiency, this pa-
per studies parameter regularization on deterministic and
non-deterministic PCs separately.

Motivation Laplace smoothing is widely adopted as a PC
regularizer [Liang et al., 2017, Dang et al., 2020]. Since it is
also the default regularizer for classical probabilistic mod-
els such as Bayesian Networks (BNs) [Heckerman, 2008]
and Hierarchical Bayesian Models (HBMs) [Allenby and
Rossi, 2006], this naturally raises the following question: are
there differences between a good regularizer for classical
probabilistic models such as BNs and HBMs and effective
regularizers for PCs? The question can be answered affir-
matively — while Laplace smoothing provides good priors
to BNs and HBMs, its uniform prior could add unwanted
bias to PCs. Specifically, for every sum unit n, Laplace
smoothing assigns the same prior to all its child parameters
(i.e., {θn,c | c∈ in(n)}), while in many practical PCs, these
parameters should be given drastically different priors. For
example, consider the PC shown in Fig. 1(a). Since c2 has an
exponentially larger support than c1, it should be assumed
as prior that θ12 will be much larger than θ11.

Algorithm 1 Forward pass
1: Input: A deterministic PC p; sample x
2: Output: value[n]:=(x∈supp(n)) for each unit n
3: foreach n traversed in postorder do
4: if n isa input unit then value[n]←fn(x)
5: elif n isa product unit then
6: value[n]←

∏
c∈in(n) value[c]

7: else //n is a sum unit
8: value[n]←

∑
c∈in(n) value[c]

Algorithm 2 Backward pass

1: Input: A deterministic PC p; ∀n, value[n]
2: Output: flow[n, c] := (x ∈ (γn∩γc)) for each pair (n, c),

where n is a sum unit and c∈ in(n)
3: ∀n, context[n]←0; context[nr]←value[nr]
4: foreach sum unit n traversed in preorder do
5: foreach m ∈ pa(n) do (denote g←pa(m))
6: f← value[m]

value[g]
· context[g]

7: context[n] += f; flow[g,m] = f

We highlight the significance of the above issue by examin-
ing the fraction of sum units with imbalanced child support
sizes in PCs learned by Strudel, a state-of-the-art structure
learning algorithm for deterministic PCs [Kisa et al., 2014].
We examine 20 PCs learned from the 20 density estimation
benchmarks [Van Haaren and Davis, 2012], respectively. All
sum units with ≥3 children and with a support size ≥128
are recorded. We measure “imbalanceness” of a sum unit n
by the fraction of the maximum and minimum support size
of its children (i.e., maxc1∈in(n) |supp(c1)|

minc2∈in(n) |supp(c2)| ). As demonstrated
in Fig. 1(b), more than 20% of the sum units have imbal-
anceness≥102, which suggests that the inability of Laplace
smoothing to properly regularize PCs with imbalanced sum
units could lead to severe performance degradation in prac-
tice.

4 HOW IS THIS TRACTABLE AND
PRACTICAL?

In this section, we first provide additional background about
the parameter learning algorithms for deterministic and non-
deterministic PCs (Sec. 4.1). We then demonstrate how the
two intuitive ideas for regularizing distributions (Sec. 2),
i.e., data softening and entropy regularization, can be effi-
ciently implemented for deterministic (Sec. 4.2) and non-
deterministic (Sec. 4.3) PCs.

4.1 LEARNING THE PARAMETERS OF PCS

Deterministic PCs Given a deterministic PC p defined
on variables X and a dataset D = {x(i)}Ni=1, the max-
imum likelihood estimation (MLE) parameters θ∗D :=

argmaxθ
∑N
i=1 log p(x(i);θ) can be learned in closed-



form. To formalize the MLE solution, we need a few extra
definitions.

Definition 5 (Context). The context γn of every unit n
in a PC p is defined in a top-down manner: for the base
case, context of the root node nr is defined as its support:
γnr := supp(nr). For every other node n, its context is
the intersection of its support and the union of its parents’
(pa(n)) contexts:

γn :=
⋃

m∈pa(n)
γm ∩ supp(n).

Intuitively, if an assignment x is in the context of unit n,
then there exists a path on the PC’s DAG from n to the
root unit nr such that for any unit m in the path, we have
x∈ supp(m). Circuit flow extends the notation of context
to indicate whether a sample x is in the context of an edge.

Definition 6 (Flows). The flow Fn,c(x) of any edge (n, c)
in a PC given variable assignments x∈val(X) is defined as
1[x∈γn∩γc], where 1[·] is the indicator function. The flow
Fn,c(D) w.r.t. dataset D={x(i)}Ni=1 is the sum of the flows
of all its samples: Fn,c(D) :=

∑N
i=1 Fn,c(x

(i)).

The flow Fn,c(x) for all edges (n, c) in a PC p w.r.t. sam-
ple x can be computed through a forward and backward
path that both take O(|p|) time. The forward path, as shown
in Alg. 1, starts from the leaf units and traverses the PC
in postorder to compute ∀n, value[n] := 1[x ∈ supp(n)];
afterwards, the backward path illustrated in Alg. 2 be-
gins at the root unit nr and traverses the PC in preorder
to compute ∀n, context[n] := 1[x ∈ γn] as well as
∀(n, c), flow[n, c] := Fn,c(x). By Def. 6, the time com-
plexity for computing Fn,c(D) with respect to all edges
(n, c) in p is O(|p|·|D|), where |D| is the size of dataset D.

The MLE parameters θ∗D given dataset D can be computed
using the flows [Kisa et al., 2014]:

∀(n, c), θ∗n,c = Fn,c(D)/
∑

c∈in(n)
Fn,c(D). (3)

Define hyperparameter α≥0, for every sum unit n, Laplace
smoothing regularizes its child parameters (i.e., {θn,c |c∈
in(n)}) by adding a pseudocount α/|in(n)| to every child
branch of n, which is equivalent to adding α/|in(n)| to the
numerator of Eq. (3) and α to its denominator.

Non-deterministic PCs As justified by Peharz et al. [Pe-
harz et al., 2016], every non-deterministic PC can be aug-
mented as a deterministic PC with additional hidden vari-
ables. For example, in Fig. 2, the left PC is not deterministic
since the support of both children of n1 (i.e., n2 and n3)
contains x1x̄2. The right PC augments the left one by adding
input units correspond to hidden variable Z1, which retains
determinism by “dividing” the overlapping support x1x̄2
into x1x̄2z1∈supp(n2) and x1x̄2z̄1∈supp(n3). Under this
interpretation, parameter learning of non-deterministic PCs

is equivalent to learning the parameters of deterministic PCs
given incomplete data (we never observe the hidden vari-
ables), which can be solved by Expectation-Maximization
(EM) [Darwiche, 2009, Dempster et al., 1977]. In fact,
EM is the default parameter learning algorithm for non-
deterministic PCs [Peharz et al., 2020a, Choi et al., 2020a].

Under the latent variable model view of a non-deterministic
PC, its EM updates can be computed using expected flows
[Choi et al., 2020a]. Specifically, given observed variables
X and (implicit) hidden variables Z, the expected flow of
edge (n, c) given dataset D is defined as

EFn,c(D;θ) := Ex∼D,z∼pc(·|x;θ)[Fn,c(x, z)],

where θ is the set of parameters, and pc(· | x;θ) is the
conditional probability over hidden variables Z given x
specified by the PC rooted at unit c. Similar to flows, the
expected flows can be computed via a forward and backward
pass of the PC (Alg. 5 and 6 in the Appendix). As shown by
Choi et al. Choi et al. [2020a], for a non-deterministic PC,
its parameters for the next EM iteration are given by

θ(new)
n,c = EFn,c(D;θ)/

∑
c∈in(n)

EFn,c(D;θ). (4)

This paper uses a hybrid EM algorithm, which uses mini-
batch EM updates to initiate the training process, and switch
to full-batch EM updates afterwards. Specifically, in mini-
batch EM, θ(new) are computed using mini-batches of sam-
ples, and the parameters are updated towards the taget with
a step size η: θ(k+1)←(1− η)θ(k) + ηθ(new); when using
full-batch EM, we iteratively compute the updated param-
eters θ(new) using the whole dataset. Fig. 3 demonstrates
that this hybrid approach offers faster convergence speed
compared to using full-batch or mini-batch EM only.

4.2 REGULARIZING DETERMINISTIC PCS

We demonstrate how the intuitive ideas for regularizing
distributions presented in Sec. 2 (i.e., data softening and
entropy regularization) can be efficiently applied to deter-
ministic PCs.

Data softening As hinted by Eq. (1), we need exponen-
tially many samples to represent a softened dataset, which
makes parameter learning intractable even for the simple
logistic regression model (Thm. 1), let alone more complex
probabilistic models such as VAEs [Kingma and Welling,
2013] and GANs [Goodfellow et al., 2014]. Despite this
negative result, the MLE parameters of a PC p w.r.t. Dβ can
be computed in time O(|p|·|D|), which is linear w.r.t. the
model size as well as the size of the original dataset.

Theorem 3. Let fn(x)=β·1[x ∈ supp(n)]+(1−β)·1[x 6∈
supp(n)] in Alg. 1. Given a deterministic PC p, a boolean
dataset D, and hyperparameter β ∈ (0.5, 1], the set of all
flows {Fn,c(Dβ) | ∀ edge (n, c)} w.r.t. the softened dataset
Dβ can be computed by Alg. 1 and 2 withinO(|p|·|D|) time.
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Figure 2: A non-deterministic PC can
be modified as an equivalent deter-
ministic PC with hidden variables.
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Since the MLE parameters (Eq. (3)) w.r.t. Dβ can be com-
puted in O(|p|) time using the flows, the overall time com-
plexity to compute the MLE parameters is again O(|p|·|D|).

Entropy regularization The hope for tractable PC entropy
regularization comes from the fact that the entropy of a
deterministic PC p can be exactly computed in O(|p|) time
[Vergari et al., 2021, Shih and Ermon, 2020]. However, it
is still unclear whether the entropy regularization objective
LLent(θ;D, τ) (Eq. (2)) can be tractably maximized. We
answer this question with a mixture of positive and negative
results: while the objective is multi-modal and the global
optimal is hard to find, we propose an efficient algorithm
that (i) guarantees convergence to a stationary point, and (ii)
achieves high convergence rate in practice. We start with
the negative result.

Proposition 1. There exists a deterministic PC p, a hy-
perparameter τ , and a dataset D such that LLent(θ;D, τ)
(Eq. (2)) is non-concave and has multiple local maximas.

Although global optimal solutions are generally infeasible,
we propose an efficient algorithm that guarantees to find a
stationary point of LLent(θ;D, τ). Specifically, Alg. 3 takes
as input a deterministic PC p and all its edge flows w.r.t. D,
and returns a set of learned log-parameters that correspond
to a stationary point of the objective.3 In its main loop (lines
4-10), the algorithm alternates between two procedures: (i)
compute the entropy of the distribution encoded by every
node w.r.t. the current parameters (line 5), and (ii) update
PC parameters with regard to the computed entropies (lines
6-10). Specifically, in the parameter update phase (i.e., the
second phase), the algorithm traverses every sum unit n in
preorder and updates its child parameters by maximizing
the entropy regularization objective (LLent(θ;D, τ)) with
all other parameters fixed. This is done by solving the set
of equations in Eq. (5) using Newton’s method (lines 7-8).4

In addition to the child nodes’ entropy computed in the first
phase, Eq. (5) uses the top-down probability of every unit
n (i.e., node_prob[n]), which is progressively updated in
lines 9-10.

Theorem 4. Alg. 3 converges monotonically to a stationary
point of LLent(θ;D, τ) (Eq. (2)).

3Log-domain parameters are used for numerical stability.
4Details for solving Eq. (5) is given in Appendix A.2.

Proof. The high-level idea of the proof is to show that
the parameter update phase (lines 6-10) optimizes a con-
cave surrogate objective of LLent(θ;D, τ), which is deter-
mined by the entropies computed in line 5. Specifically, we
show that whenever the surrogate objective is improved,
LLent(θ;D, τ) is also improved. Since the surrogate objec-
tive is concave, it can be easily optimized. Therefore, Alg. 3
converges to a stationary point of LLent(θ;D, τ). Please
refer to the extended version of this paper for a detailed
proof.

Alg. 3 can be regarded as a EM-like algorithm, where the
E-step is the entropy computation phase (line 5) and the M-
step is the parameter update phase (lines 6-10). Specifically,
the E-step constructs a concave surrogate of the true objec-
tive (LLent(θ;D, τ)), and the M-step updates all parameters
by maximizing the concave surrogate function. Although
Thm. 4 provides no convergence rate analysis, the outer loop
typically takes 3-5 iterations to converge in practice. Fur-
thermore, Eq. (5) can be solved with high precision in a few
(<10) iterations. Therefore, compared to the computation
of all flows w.r.t. D, which takes O(|p| · |D|) time, Alg. 3
takes a negligible O(|p|) time.

In response to the motivation in Sec. 3, we show that both
proposed methods can overcome the imbalanced regular-
ization problem of Laplace smoothing. Again consider the
example PC in Fig. 1(a), we conceptually demonstrate that
both data softening and entropy regularization will not over-
regularization θ11 compared to θ12. First, data softening
essentially add no prior to the parameters, and only soften
the evidences in the dataset. Therefore, it will not over-
regularize children with small support sizes. Second, en-
tropy regularization will add a much higher prior to θ12.
Suppose n=10, consider maximizing Eq. (2) with an empty
dataset (i.e., we maximize ENT(pn1

) directly), the optimal
parameters would be θ11 ≈ 0.002 and θ12 ≈ 0.998. There-
fore, entropy regularization will tend to add a higher prior
to children with large support sizes. More fundamentally,
the reason why both proposed approaches do not add biased
priors to PCs is that they are designed to be model-agnostic,
i.e., their definitions as shown in Sec. 2 are independent
with the model they apply to.

Empirical evaluation We empirically evaluate both pro-
posed regularization methods on the twenty density estima-



Algorithm 3 PC Entropy regularization

1: Input: A deterministic PC p; flow Fn,c(D) for every edge (n, c) in p; hyperparameter τ .
2: Output: A set of log-parameters, {ϕn,c : (n, c) ∈ p}, which are the solution of Eq. (2).
3: ∀n, node_prob[n]← 0; node_prob[nr]← 1 //nr is the root node of p
4: while not converge do
5: ∀n, entropy[n]← The entropy of the sub-PC rooted at n (see Alg. 4)
6: foreach sum unit n traversed in preorder (parent before children) do
7: di ← Fn,ci(D)/|D|; b = τ · node_prob[n] //{ci}in(n)i=1 is the set of children of n
8: Solve for {ϕn,ci}|in(n)|i=1 in the following set of equations (y is a variable):{

die
−ϕn,ci − b · ϕn,ci + b · entropy[ci] = y (∀i ∈ {1, . . . , |in(n)|})∑|in(n)|
i=1 eϕn,ci = 1

(5)

9: for each c ∈ in(n) and each m ∈ in(c) do //Update node_prob of grandchildren
10: node_prob[m]← node_prob[m] + eϕn,c · node_prob[n]

Figure 5: Both data softening and entropy regularization effectively improve the test set log-likelihood (LL) across various
datasets [Van Haaren and Davis, 2012] and PC structures [Dang et al., 2020]. LL improvement (higher is better) represents
the gain of test set LL compared to Laplace smoothing.

tion datasets [Van Haaren and Davis, 2012]. Since we are
only concerned with parameter learning, we adopt PC struc-
tures (defined by its DAG) learned by Strudel [Dang et al.,
2020]. 16 PCs with different sizes were selected for each
of the 20 datasets. For all experiments, we performed a hy-
perparameter search for all three regularization approaches
(Laplace smoothing, data softening, and entropy regulariza-
tion)5 using the validation set and report results on the test
set. Please refer to Appendix A.3 for more details.

Results are summarized in Fig. 5. First look at the scat-
ter plots on the left. The x-axis represents the degree of
overfitting, which is computed as follows: denote LLtrain
and LLval as the average train and validation log-likelihood
under the MLE estimation with Laplace smoothing (α=
1.0), the degree of overfitting is defined as (LLval −
LLtrain)/LLval, which roughly captures how much the
dataset/model pair suffers from overfitting. The y-axis repre-
sents the improvement on the average test set log-likelihood
compared to Laplace smoothing. As demonstrated by the
scatter plots, despite a few outliers, both proposed regular-
ization methods steadily improve the test set LL over various
datasets and PC structures, and the LL improvements are
positively correlated with the degree of overfitting. Further-

5Specifically, α ∈ {0.1, 0.4, 1.0, 2.0, 4.0, 10.0}, β ∈
{0.9996, 0.999, 0.996}, τ ∈ {0.001, 0.01, 0.1}.

more, as shown by the last scatter plot and the histogram
plot, when combining data softening and entropy regulariza-
tion, the LL improvement becomes much higher compared
to using the two regularizers individually.

4.3 REGULARIZING NON-DETERMINISTIC PCS

By viewing every non-deterministic PC as a deterministic
PC with additional hidden variables (Sec. 4.1), the regu-
larization techniques developed in Sec. 4.2 can be directly
adapted. Specifically, data softening can be regarded as in-
jecting noise in both observed and hidden variables. Since
the dataset provides no information about the hidden vari-
ables anyway, data softening essentially still “perturbs” the
observed variables only. On the other hand, entropy reg-
ularization will have different behaviors when applied to
non-deterministic PCs. Specifically, since it is coNP-hard
to compute the entropy of a non-deterministic PC [Vergari
et al., 2021], it is infeasible to optimize the entropy regular-
ization objective LLent(θ;D, τ) (Eq. (2)). However, we can
still regularize the entropy of the distribution encoded by a
non-deterministic PC over both of its observed and hidden
variables, since explicitly representing the hidden variables
renders the PC deterministic (Sec. 4.1).

On the implementation side, data softening is performed



Figure 6: Test set LL over 5 trials on the protein dataset.

by modifying the forward pass of the algorithm used to
compute expected flows (i.e., Alg. 5 and 6 in the Appendix).
Entropy regularization is again performed by Alg. 3 at the
M-step of each min-batch/full-batch EM update, except that
the input flows (i.e., F) are replaced by the corresponding
expected flows (i.e., EF).

Empirical evaluation We use a simple yet effective PC
structure, hidden Chow-Liu Tree (HCLT), as demonstrated
in Fig. 4. Specifically, on the left is a Bayesian network rep-
resentation of a Chow-Liu Tree (CLT) [Chow and Liu, 1968]
over 5 variables. For any CLT over variables {Xi}ki=1, we
can modify it as a HCLT through the following steps. First,
we introduce a set of k latent variables {Zi}ki=1. Next, we
replace all observed variables in the CLT with its correspond-
ing latent variable (i.e., ∀i,Xi is replaced byZi). Finally, we
add an edge from every latent variable to its corresponding
observed variable (i.e., ∀i, add an edgeZi→Xi). The HCLT
structure is then compiled into a PC that encodes the same
probability distribution. We used the hybrid mini-batch +
full-batch EM as described in Sec. 4.1. For all experiments,
we trained the PCs with 100 mini-batch EM epochs and
100 full-batch EM epochs. Please refer to Appendix A.4 for
hyperparameters related to the HCLT structure. Similar to
Sec. 4.2, we perform hyperparameter search for all methods
using the validation set, and report results on the test set.

We first examine the performance on a protein sequence
dataset [Russ et al., 2020] that suffers from severe overfit-
ting. Specifically, the training LL is typically above −100
while the validation and test set LL are around −170. Fig. 6
shows the test LL for Laplace smoothing and the hybrid reg-
ularization approach as training progresses. With the help of
data softening and entropy regularization, we were able to
obtain consistently higher test set LL. Next, we compare our
HCLT model (with regularization) with the state-of-the-art
PSDD (Strudel [Dang et al., 2020] and LearnPSDD [Liang
et al., 2017]) and SPN (EinSumNet [Peharz et al., 2020a],
LearnSPN [Gens and Pedro, 2013], ID-SPN [Rooshenas
and Lowd, 2014], and RAT-SPN [Peharz et al., 2020b])
learning algorithms. With proper regularization, HCLT out-
performed all baselines in 10 out of 20 datasets. Compar-
ing with individual baselines, HCLT out-performs both
PSDD learners on all datasets; HCLT achieved higher log-
likelihood on 18, 19, 10, and 17 datasets compared to Ein-
SumNet, LearnSPN, ID-SPN, and RAT-SPN, respectively.

Table 1: Test set log-likelihood in 20 density estimation
benchmarks. We compare our method (HCLT) with the best
performance (Best PSDD) over 2 deterministic PC learner:
Strudel [Dang et al., 2020] and LearnPSDD [Liang et al.,
2017] as well as the best performance (Best SPN) over 4
SPN learning algorithms: EinSumNet [Peharz et al., 2020a],
LearnSPN [Gens and Pedro, 2013], ID-SPN [Rooshenas
and Lowd, 2014], and RAT-SPN [Peharz et al., 2020b].
With the help of data softening and entropy regularization
(α=0.1, β=0.002, and τ=0.001), HCLT achieved the best
performance over 10 out of 20 datasets. All experiments for
HCLT were repeated 5 times, and the average and standard
deviation are reported.

Dataset HCLT Best PSDD Best SPN
accidents -26.74±0.03 -28.29 -26.98
jester -52.46±0.01 -54.63 -52.56
ad -16.07±0.06 -16.52 -19.00
kdd -2.18±0.00 -2.17 -2.12
baudio -39.77±0.01 -41.51 -39.79
kosarek -10.66±0.01 -10.98 -10.60
bbc -251.04±1.19 -258.96 -248.33
msnbc -6.05±0.01 -6.04 -6.03
bnetflix -56.27±0.01 -58.53 -56.36
msweb -9.98±0.05 -9.93 -9.73
book -33.83±0.01 -35.77 -34.14
nltcs -5.99±0.01 -6.03 -6.01
c20ng -153.40±3.83 -160.43 -151.47
plants -14.26±0.16 -13.49 -12.54
cr52 -86.26±3.67 -92.38 -83.35
pumbs* -23.64±0.25 -25.28 -22.40
cwebkb -152.77±1.07 -160.5 -151.84
tmovie -50.81±0.12 -55.41 -51.51
dna -79.05±0.17 -82.03 -81.21
tretail -10.84±0.01 -10.90 -10.85

5 CONCLUSIONS

This paper proposes two model-agnostic distribution regu-
larization techniques: data softening and entropy regulariza-
tion. While both methods are infeasible for many machine
learning models, we theoretically show that they can be effi-
ciently implemented when applied to probabilistic circuits.
On the empirical side, we show that both proposed regular-
izers consistently improve the generalization performance
over a wide variety of PC structures and datasets.
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Algorithm 5 Forward pass (expected flows)
1: Input: A non-deterministic PC p; sample x
2: Output: value[n]:=(x∈supp(n)) for each unit n
3: foreach n traversed in postorder do
4: if n isa input unit then value[n]←fn(x)
5: elif n isa product unit then
6: value[n]←

∏
c∈in(n) value[c]

7: else //n is a sum unit
8: value[n]←

∑
c∈in(n) θn,c · value[c]

Algorithm 6 Backward pass (expected flows)

1: Input: A non-deterministic PC p; ∀n, value[n]
2: Output: eflow[n, c] := Ez∈pc(·|x;θ)((x,z) ∈ (γn∩γc)) for

each pair (n, c), where n is a sum unit and c∈ in(n)
3: ∀n, context[n]←0; context[nr]←value[nr]
4: foreach sum unit n traversed in preorder do
5: foreach m ∈ pa(n) do (denote g←pa(m))
6: f← value[m]

value[g]
· context[g] · θg,m

7: context[n] += f; flow[g,m] = f

A METHOD AND EXPERIMENT
DETAILS

A.1 SOFTEN NON-BOOLEAN DATASETS

As a direct extension of softening boolean datasets, datasets
with categorical variables can be similarly softened. Sup-
pose X is a categorical variable with k categories. For an
assignment x = j, we can soften it as follows{

P (x = i) = 1−β
k (i 6= j),

P (x = j) = β.

To compute the flow Fn,c(Dβ) w.r.t. a softened categorical
dataset, we can again adopt Alg. 1 and 2 by choosing

fn(x) = β ·1[x ∈ supp(n)] +
1− β
k
·1[x 6∈ supp(n)].

A.2 SOLVING EQUATION 5

Denote γci :=entropy[ci], our goal is to solve the follow-
ing set of equations:{
die
−ϕn,ci − b · ϕn,ci + b · γci = y (∀i ∈ {1, . . . , |in(n)|}),∑|in(n)|
i=1 eϕn,ci = 1.

We break down the problem by iteratively solve for
{ϕn,ci}|in(n)|i=1 and y, respectively.

• Solve for y. Given variables {ϕn,ci}|in(n)|i=1 , we update y as

y =
1

|in(n)|

|in(n)|∑
i=1

die
−ϕn,ci − b · ϕn,ci + b · γci .

• Solve for {ϕn,ci}|in(n)|i=1 . Given y, we first update each
ϕn,ci individually by solving the equation

die
−ϕn,ci − b · ϕn,ci + b · γci = y.

Specifically, this is done by iterative Newton method update:

ϕn,ci +=

di
ϕn,ci

+ b · (γci − ϕn,ci) + y

di
ϕn,ci

+ b

After one Newton method update step for every parameter in
{ϕn,ci}|in(n)|i=1 , we enforce the constraint

∑|in(n)|
i=1 eϕn,ci = 1

by

ϕn,ci −= log
( |in(n)|∑

i=1

eϕn,ci

)
.

A.3 DETAILS OF THE EXPERIMENTS ON
DETERMINISTIC PCS

PC structures For each dataset, we adopt 16
PCs by running Strudel [Dang et al., 2020] for
{1000, 1200, 1400, . . . , 4000} iterations except
for the dataset “dna”, which we ran Strudel for
{50, 100, 150, . . . , 800} iterations since the learning
algorithm takes significantly longer for this dataset.

Hyperparameters We always perform hyperparameter
search using the validation set, and report the final perfor-
mance on the test set. Whenever we use data softening or
entropy regularization, we also add pseudocount α=1 since
it yields better performance.

Server specifications All our experiments were run on a
server with 72 CPUs, 512G Memory, and 2 TITAN RTX
GPUs.

A.4 DETAILS OF THE EXPERIMENTS ON
NON-DETERMINISTIC PCS

The HCLT structure For the experiments on the twenty
datasets, we set the hidden size of the HCLT structure as 12,
i.e., every latent variable Z is a categorical variable with 12
categories. Additionally, following Dang et al. [2020], Liang
et al. [2017], we learn a mixture of 4 HCLTs to achieve better
performance. For the protein sequence dataset, we adopted
a mixture of 2 HCLTs with hidden size 32.

Detailed results As an extension of Table 1, Table 2
provides the average test set log-likelihood for all adopted
baselines.



Algorithm 4 PC entropy
1: Input: A deterministic PC p
2: Output: entropy[n] := ENT(pn) for every unit n
3: foreach n traversed in postorder do
4: if n isa input unit then entropy[n] = ENT(pn) //entropy of the input distribution
5: elif n isa product unit then entropy[n] =

∑
c∈in(n) entropy[c]

6: else //n is a sum unit then

entropy[n] = −
∑

c∈in(n)

θn,c log θn,c +
∑

c∈in(n)

θn,c · entropy[c]

Table 2: Full results on the 20 density estimation benchmarks. As an extension of Table 1, we report the average test-set
log-likelihood of all baselines: Strudel [Dang et al., 2020], LearnPSDD [Liang et al., 2017], EinSumNet [Peharz et al.,
2020a], LearnSPN [Gens and Pedro, 2013], ID-SPN [Rooshenas and Lowd, 2014], and RAT-SPN [Peharz et al., 2020b].

Dataset HCLT EiNet LearnSPN ID-SPN RAT-SPN Strudel LearnPSDD
accidents -26.78 -35.59 -40.50 -26.98 -35.48 -29.46 -28.29
ad -16.04 -26.27 -19.73 -19.00 -48.47 -16.52 -20.13
baudio -39.77 -39.87 -40.53 -39.79 -39.95 -42.26 -41.51
bbc -250.07 -248.33 -250.68 -248.93 -252.13 -258.96 -260.24
bnetflix -56.28 -56.54 -57.32 -56.36 -56.85 -58.68 -58.53
book -33.84 -34.73 -35.88 -34.14 -34.68 -35.77 -36.06
c20ng -151.92 -153.93 -155.92 -151.47 -152.06 -160.77 -160.43
cr52 -84.67 -87.36 -85.06 -83.35 -87.36 -92.38 -93.30
cwebkb -153.18 -157.28 -158.20 -151.84 -157.53 -160.50 -161.42
dna -79.33 -96.08 -82.52 -81.21 -97.23 -87.10 -83.02
jester -52.45 -52.56 -75.98 -52.86 -52.97 -55.30 -54.63
kdd -2.18 -2.18 -2.18 -2.13 -2.12 -2.17 -2.17
kosarek -10.66 -11.02 -10.98 -10.60 -10.88 -10.98 -10.99
msnbc -6.05 -6.11 -6.11 -6.04 -6.03 -6.05 -6.04
msweb -9.90 -10.02 -10.25 -9.73 -10.11 -10.19 -9.93
nltcs -6.00 -6.01 -6.11 -6.02 -6.01 -6.06 -6.03
plants -14.31 -13.67 -12.97 -12.54 -13.43 -13.72 -13.49
pumbs* -23.32 -31.95 -24.78 -22.40 -32.53 -25.28 -25.40
tmovie -50.69 -51.70 -52.48 -51.51 -53.63 -59.47 -55.41
tretail -10.84 -10.91 -11.04 -10.85 -10.91 -10.90 -10.92
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