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Hyperbolic Diffusion Recommender Model
Anonymous Author(s)

ABSTRACT
Diffusion models (DMs) have emerged as the new state-of-the-art

family of deep generative models. To gain deeper insights into the

limitations of diffusion models in recommender systems, we in-

vestigate the fundamental structural disparities between images

and items. Consequently, items often exhibit distinct anisotropic

and directional structures that are less prevalent in images. How-

ever, the traditional forward diffusion process continuously adds

isotropic Gaussian noise, causing anisotropic signals to degrade into

noise, which impairs the semantically meaningful representations

in recommender systems.

Inspired by the advancements in hyperbolic spaces, we propose

a novel Hyperbolic Diffusion Recommender Model (named HDRM).

Unlike existing directional diffusion methods based on Euclidean

space, the intrinsic non-Euclidean structure of hyperbolic space

makes it particularly well-adapted for handling anisotropic diffu-

sion processes. In particular, we begin by constructing a geomet-

rically latent space grounded in hyperbolic geometry, incorporat-

ing interpretability measures to define the latent anisotropic diffu-

sion processes. Subsequently, we propose a novel hyperbolic latent

diffusion process specifically tailored for users and items. Draw-

ing upon the natural geometric attributes of hyperbolic spaces,

we restrict both radial and angular components to facilitate di-

rectional diffusion propagation, thereby ensuring the preserva-

tion of the original topological structure in user-item interaction

graphs. Extensive experiments on three benchmark datasets demon-

strate the effectiveness of HDRM. Our code is available at https:

//anonymous.4open.science/status/HDRM-ECFA.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Diffusion models (DMs) [14, 38–40] have emerged as the new state-

of-the-art family of deep generative models. They have broken the
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long-time dominance of generative adversarial networks (GANs)

[10] in the challenging task of image synthesis [6, 14, 40] and have

demonstrated promise in computer vision, ranging from video gen-

eration [13, 15], semantic segmentation [2, 44], point cloud comple-

tion [28, 67] and anomaly detection [55, 64].

Despite the increasing research on diffusion models in computer

vision [6, 14, 26, 36, 40, 45], their potential in recommender sys-

tems has not been equally explored. Generative recommender mod-

els [24, 48, 50, 54, 60, 66] aim to align with the user-item interaction

generation processes observed in real-world environments. Unlike

other earlier generative recommender models like VAEs [24, 54] and

GANs [48, 60], diffusion recommender models [21, 50, 66] leverage

a denoising framework to effectively reverse a multi-step noising

process to generate synthetic data that matches closely with the dis-

tribution of the training data. This highlights the exceptional ability

of diffusion models to capture multi-scale feature representations

and generate high-quality samples, while also ensuring improved

stability during training. However, the aforementioned diffusion

recommender models are still directly based on extensions of com-

puter vision methods, neglecting the latent structural differences

between images and items.

To gain deeper insights into the limitations of traditional diffu-

sion models in recommender systems, we begin by investigating

the fundamental structural disparities between images and items.

Specifically, we apply singular value decomposition [58] to both

image and graph data, and plot the resulting projections on a two-

dimensional plane. Figure 1a reveals that the projected data from

ML-1M exhibits strong anisotropic structures across multiple di-

rections, whereas the projected images from F-MNIST (as seen

in Figure 1b) form a relatively more isotropic distribution cen-

tered around the origin. As a result, items often exhibit distinct

anisotropic and directional structures that are less prevalent in im-

ages [59]. Unfortunately, the traditional forward diffusion process

continuously adds isotropic Gaussian noise, causing anisotropic

signals to degrade into noise [58], which impairs the semantically

meaningful representations in recommender systems.

Hyperbolic spaces are extensively regarded as the optimal con-

tinuous manifold for modeling discrete tree-like or hierarchical

structures [1, 20, 37, 42], and have been widely studied and applied

to various recommender tasks [5, 41, 43, 46, 57, 61, 62]. In hyper-

bolic spaces, the expansion of space is not uniform (i.e., isotropic),

but rather depends on the position and direction. This leads to

variations in the rate of change in distances between points along

different directions. As shown in Figure 1c, hyperbolic spaces are

well-suited to preserving the anisotropy of data due to its inherent

geometric properties. Additionally, due to the infinite volume of hy-

perbolic space [33, 37], modeling uniformly distributed data tends

to push the data features toward the boundary, thereby weakening

the isotropy of the data to some extent (as seen in Figure 1d).

Inspired by the advancements in hyperbolic spaces, we propose

a novel Hyperbolic Diffusion Recommender Model named HDRM.

Unlike existing directional diffusion methods based on Euclidean

1

https://anonymous.4open.science/status/HDRM-ECFA
https://anonymous.4open.science/status/HDRM-ECFA
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

0.0 0.5 1.0 1.5 2.0 2.5

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Action
Adventure
Drama
Children's
Comedy
Crime
Documentary

(a) ML-1M (Euclidean space)

10 5 0 5 10

10

5

0

5

10
T-shirt
Trouser
Pullover
Dress
Coat

(b) F-MNIST (Euclidean space)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Action
Adventure
Drama
Children's
Comedy
Crime
Documentary

(c) ML-1M (Poincaré disk)

0

+

T-shirt
Trouser
Pullover
Dress
Coat

(d) F-MNIST (Lorentz manifold)

Figure 1: 2D visualization of the data using SVD decomposition, where each color corresponds to a unique category. (a) Euclidean
visualization of the item features in MovieLens-1M; (b) Euclidean visualization of the image features in Fashion-MNIST; (c)
Hyperbolic visualization of the item features in MovieLens-1M; (d) Hyperbolic visualization of the image features in Fashion-
MNIST.

space [58, 59], the intrinsic non-Euclidean structure of hyperbolic

space makes it particularly well-adapted for handling anisotropic

diffusion processes. In particular, we begin by constructing a ge-

ometrically latent space grounded in hyperbolic geometry, incor-

porating interpretability measures to define the latent anisotropic

diffusion processes. Subsequently, we propose a novel hyperbolic

latent diffusion process specifically tailored for users and items.

Drawing upon the natural geometric attributes of hyperbolic spaces,

we restrict both radial and angular components to facilitate direc-

tional diffusion propagation, thereby ensuring the preservation of

the original topological structure in user-item interaction graphs.

Extensive experiments on three benchmark datasets demonstrate

the effectiveness of HDRM. To summarize, we highlight the key

contributions of this paper as follows:

• We contribute to the exploration of anisotropic structures in rec-

ommender systems. To the best of our knowledge, this is the first

work to design a hyperbolic diffusion model for recommender

systems.

• We propose a novel hyperbolic latent diffusion process specif-

ically tailored for users and items. Drawing upon the natural

geometric attributes of hyperbolic spaces, we restrict both ra-

dial and angular components to facilitate directional diffusion

propagation.

• Extensive experimental results on three benchmark datasets

demonstrate that HDRM outperforms various baselines. Further

ablation studies verify the importance of each module.

2 PRELIMINARIES
2.1 Hyperbolic Spaces
Here we introduce some fundamental concepts of hyperbolic spaces.

For more detailed operations on hyperbolic spaces, please refer to

Appendix A.1.

• Manifold: Consider a manifoldM with 𝑛 dimensions as a space

where the local neighborhood of a point can be closely approx-

imated by Euclidean spaces R𝑛 . For instance, the Earth can be

represented by a spherical space, its immediate vicinity can be

approximated by R2.

• Tangent space: For every point 𝑥 ∈ M, the tangent space T𝑥M
of M at 𝑥 is set as a 𝑛-dimensional space measuringM around

x at a first order.

• Geodesics distance: This denotes the generalization of a straight
line to curved spaces, representing the shortest distance between

two points within the context of the manifold.

• Exponential map: The exponential map carries a vector 𝑣 ∈
T𝑥M of a point 𝑥 ∈ M to the manifoldM, i.e., exp𝑥 : T𝑥M →
M by simulating a fixed distance along the geodesic defined as

𝛾 (0) = 𝑥 with direction 𝛾 ′ (0) = 𝑣 . Each manifold corresponds to

its unique way of constructing exponential maps.

• Logarithmicmap: Serving as the counterpart to the exponential
map, the logarithmic map takes a point 𝑧 from the manifoldM
and maps it back to the tangent space T𝑥M, i.e., log

𝜅
𝑥 : M →

T𝑥M. Like exp
𝜅
𝑥 , each manifold has its formula that defines log

𝜅
𝑥 .

2.2 Diffusion Models
DMs have attained remarkable success across numerous domains,

primarily through the use of forward and reverse processes [36, 50].

• Forward Process: Given an input data sample 𝑥0 ∼ 𝑞(𝑥0), the
forward process constructs the latent variables 𝑥1:𝑇 by gradually

adding Gaussian noise in 𝑇 steps. Specifically, DMs define the

forward transition 𝑥𝑡−1 → 𝑥𝑡 as:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I),

=
√︁
1 − 𝛽𝑡𝑥𝑡−1 +

√︁
𝛽𝑡𝜖, 𝜖 ∼ N(0, I)

(1)

where 𝑡 ∈ {1, . . . ,𝑇 } represents the diffusion step, N(0, I) de-
notes the Gaussian distribution, and 𝛽𝑡 ∈ (0, 1) controls the
amount of noise added at each step. This method shows the flex-

ibility of the direct sampling of 𝑥𝑡 conditioned on the input 𝑥𝑡−1
at an arbitrary diffusion step 𝑡 from a random Gaussian noise 𝜖 .

• Reverse Process: DMs learn to remove the noise from 𝑥𝑡 to

recover 𝑥𝑡−1 in the reverse process, aiming to capture subtle

changes in the generative process. Formally, taking 𝑥𝑇 as the ini-

tial state, DMs learn the denoising process 𝑥𝑡 → 𝑥𝑡−1 iteratively
as follows:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)), (2)

2
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where 𝜇𝜃 (𝑥𝑡 , 𝑡) and Σ𝜃 (𝑥𝑡 , 𝑡) are the mean and covariance of the

Gaussian distribution predicted by parameters 𝜃 .

• Optimization: For training the diffusion models, the key focus is

obtaining reliable values for 𝜇𝜃 (𝑥𝑡 , 𝑡) and Σ𝜃 (𝑥𝑡 , 𝑡) to guide the

reverse process towards accurate denoising. To achieve this, it is

important to optimize the variational lower bound of the negative

log-likelihood of the model’s predictive denoising distribution

𝑝𝜃 (𝑥0):
L = E𝑞 (𝑥0 ) [− log𝑝𝜃 (𝑥0)]

≤ E𝑞 [𝐿T + 𝐿T−1 + · · · + 𝐿0], where (3)

𝐿T = 𝐷KL (𝑞(𝑥T |𝑥0) ∥ 𝑝𝜃 (𝑥T)),
𝐿𝑡 = 𝐷KL (𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0) ∥ 𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1)),
𝐿0 = − log𝑝𝜃 (𝑥0 |𝑥1),

(4)

where 𝑡 ∈ {1, 2, . . . ,T − 1}. While 𝐿T can be disregarded during

training due to the absence of learnable parameters in the for-

ward process, 𝐿0 represents the negative log probability of the

original data sample 𝑥0 given the first-step noisy data 𝑥1, and

𝐿𝑡 aims to align the distribution 𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1) with the tractable

posterior distribution 𝑞(𝑥𝑡 |𝑥𝑡+1, 𝑥0) in the reverse process [27].

• Inference: After training the model parameters 𝜃 , DMs can

sample 𝑥𝑇 from a standard Gaussian distribution N(0, I), and
subsequently utilize 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) to iteratively reconstruct the

data, following the reverse process 𝑥T → 𝑥T−1 → · · · → 𝑥0. In

addition, previous works [22, 36] have explored the incorporation

of specific conditions to enable controlled generation.

3 METHOD
In light of the successful applications of diffusionmodels [21, 50, 66],

we employ a two-stage training strategy for our implementation.

First, we train the hyperbolic encoder to generate pre-trained user

and item embeddings. Subsequently, we proceed with the training

of the hyperbolic latent diffusion process. The overall architecture

is illustrated in Figure 2.

3.1 Hyperbolic Geometric Autoencoding
3.1.1 Hyperbolic Graph Convolutional Network. We adopt the hy-

perbolic graph convolutional network [3] as the hyperbolic encoder

to embed the user-item interaction graph G𝑢 = (U,I) into a low-

dimensional hyperbolic geometric space, thereby enhancing the

subsequent graph latent diffusion process. The objective of the hy-

perbolic encoder is to generate hyperbolic embeddings for users

and items. Formally, we use x ∈ R𝑛 to represent the Euclidean state

of users and items. Then the initial hyperbolic state e(0)
𝑖

and e(0)𝑢

can be obtained by:

e(0)
𝑖

= exp
𝜅
o (z

(0)
𝑖

), e(0)𝑢 = exp
𝜅
o (z

(0)
𝑢 ), (5)

z(0)
𝑖

= (0, x𝑖 ), z(0)𝑢 = (0, x𝑢 ), (6)

where x is taken from multivariate Gaussian distribution. z(0) =
(0, x) denotes the operation of inserting the value 0 into the zeroth

coordinate of x so that z(0) can always live in the tangent space of

origin.

Next, the hyperbolic neighbor aggregation is computed by aggre-

gating the representations of neighboring users and items. Given

the neighbors N𝑖 and N𝑢 of 𝑖 and 𝑢, respectively, the embedding
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Figure 2: An overview illustration of the HDRM architecture.

of user 𝑢 and 𝑖 is updated using the tangent state z and the 𝑘-th

(𝑘 > 0) aggregation is given by:

z(𝑘 )
𝑖

= z(𝑘−1)
𝑖

+
∑︁
𝑢∈N𝑖

1

|N𝑖 |
z(𝑘−1)𝑢 ,

z(𝑘 )𝑢 = z(𝑘−1)𝑢 +
∑︁
𝑖∈N𝑢

1

|N𝑢 |
z(𝑘−1)
𝑖

,

(7)

where |N𝑢 | and |N𝑖 | are the number of one-hop neighbors of 𝑢 and

𝑖 , respectively. For high-order aggregation, sum-pooling is applied

in these 𝑘 tangential states:

z𝑖 =
∑︁
𝑘

z(𝑘 )
𝑖
, z𝑢 =

∑︁
𝑘

z(𝑘 )𝑢 .

e𝑖 = exp
𝜅
o (z𝑖 ), e𝑢 = exp

𝜅
o (z𝑢 ).

(8)

Note that z is on the tangent space of origin. For the hyper-

bolic state, it is projected back to the hyperbolic spaces with the

exponential map.

3.1.2 Hyperbolic Decoder. In accordance with these hyperbolic

learning models [3, 8, 20, 33], we use the Fermi-Dirac decoder, a

generalization of sigmoid, to estimate the probability of the user

clicking on the item:

s(𝑢, 𝑖) = 1

exp (𝑑𝜅L (ê𝑢
0
, ê𝑖

0
)2 − 𝑟 )/𝑡 + 1

, (9)

where 𝑑𝜅L (·, ·) is the hyperbolic distance as mentioned in Table 5,

𝜅 denotes the curvature, ê𝑢
0
and ê𝑖

0
denote the exponential maps

of ẑ𝑢
0
and ẑ𝑖

0
resulting from the reverse process. 𝑟 and 𝑡 are hyper-

parameters. Here, we slightly abuse the notation for exp: the unin-

dexed exp refers to the exponential operation, and exp
𝜅
o denotes

the mapping of embeddings from the tangent space to hyperbolic

space.

In summary, the workflow of hyperbolic geometric autoencoding

is that the output from the encoder’s final layer is projected into

hyperbolic space through exponential mapping, after which the

sampled latent vector is returned to Euclidean space via logarithmic

mapping before being passed into the decoder layers.

3.2 Hyperbolic Latent Diffusion Process
Different from the linear addition in Euclidean space, hyperbolic

spaces employ Möbius addition, posing challenges for diffusion on

hyperbolic manifolds. Moreover, the isotropic noise causes a rapid

decrease in the signal-to-noise ratio [58], making it challenging to

maintain the integrity of topological structures. To achieve this,

3
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we propose a novel hyperbolic latent diffusion process designed to

tackle the aforementioned challenges.

3.2.1 Hyperbolic Directional Diffusion. To conserve computational

resources and memory usage, we follow previous works [21, 50, 66]

by clustering items during the pre-processing stage. Due to the

hyperbolic nature of the space, clustering items based on their

similarity to determine the diffusion direction (i.e., angle) is equiv-

alent to dividing the hyperbolic space into multiple sectors. Next,

we project the items of each cluster onto the tangent plane corre-

sponding to its centroid, enabling the diffusion process to proceed.

Formally, let e𝑖 belong to the 𝑘-th cluster and its clustering center

coordinates are 𝜇𝑘 , then the node e𝑖 is represented in the tangent

space of 𝜇𝑘 as z𝑖 :
z𝑖𝜇𝑘 = log

𝜅
𝜇𝑘
(e𝑖 ), (10)

where 𝜇𝑘 is the central point of cluster 𝑘 obtained by hyperbolic-

kmeans [11]. Furthermore, the hyperbolic clustering parameter 𝑘

possesses the following characteristic:

Theorem 1. Given the hyperbolic clustering parameter 𝑘 ∈ [1, 𝑛],
which represents the number of sectors dividing the hyperbolic space
(disk). The directional hyperbolic diffusion is equivalent to direc-
tional diffusion in the Klein model K𝑛

𝜅 with multi-curvature 𝜅𝑖 ∈
{|𝑘 |}, which is an approximate projecting onto the tangent plane set
To𝑖 ∈{ |𝑘 | } of the centroids o𝑖 ∈ {|𝑘 |}.

The proof can be found in Appendix A.2. This result elegantly

illustrates the connection between our approximation algorithm

and the Klein model with varying curvatures. Depending on the

value of 𝑘 , our algorithm demonstrates distinct behaviors, offering

a more flexible and refined representation of anisotropy grounded

in hyperbolic geometry. As a result, this improves both accuracy

and efficiency in the following noise injection and training stages.

Additionally, it is important to note that a particularly fascinating

feature of HDRM is the generalization of the normal distribution to

Riemannian manifolds. Current approaches generally fall into two

categories: the Poincaré normal distribution [31] and the hyperbolic

wrapped normal distribution [32]. In the Appendix A.3, we demon-

strate the non-additivity of the package normal distribution, which

ultimately leads us to choose the Poincaré normal distribution.

3.2.2 Forward Process of Geometric Constraints. Hyperbolic spaces
provide a natural and geometric framework for modeling the con-

nection patterns of nodes during the process of graph growth [3].

Our goal is to develop a diffusion model that incorporates hyper-

bolic radial growth, aligning this growth with the inherent proper-

ties of hyperbolic spaces.

To ensure the maintenance of this hyperbolic growth behavior

in the tangent space, we employ the following formulas:

𝑞(z𝑢𝑡 |z𝑢𝑡−1) =
√︁
1 − 𝛽𝑡 z𝑢𝑡−1 +

√︁
𝛽𝑡𝜖B + 𝛿 tanh(

√
𝜅𝜆𝜅zut−1

/r)z𝑢𝑡−1,

𝑞(z𝑖𝑡 |z𝑖𝑡−1) =
√︁
1 − 𝛽𝑡 z𝑖𝑡−1 +

√︁
𝛽𝑡𝜖B + 𝛿 tanh(

√
𝜅𝜆𝜅zit−1

/r)z𝑖𝑡−1,
(11)

where 𝛿 is the radial popularity coefficient that determines the

diffusion strength in hyperbolic space, r is a hyper-parameter to

control the speed of radial growth rate, 𝜖B follows the Poincaré

normal distribution (i.e., 𝜖B ∼ NB (0, I)), and 𝜆𝜅zt−1 is defined as

2

1+𝜅 |zt−1 |2 .

Inspired by recent directional diffusion models [58, 59], we de-

fine the geodesic direction between the center of each cluster and

the north pole o as the target diffusion direction, while imposing

constraints to regulate the forward diffusion processes. In particular,

the angular similarity constraints can be described as follows:

a𝑢 = sgn(log𝜅o (e𝜇𝑢 )) ∗ 𝜖B , a𝑖 = sgn(log𝜅o (e𝜇𝑖 )) ∗ 𝜖B , (12)

where a𝑢 and a𝑖 represent the angle constrained noise, 𝜇 is the

clustering center corresponding to each user 𝑢 and item 𝑖 . By inte-

grating both radial and angular constraints, the geometric diffusion

process (cf. Eq. (11)) can be reformulated as follows:

𝑞(z𝑢𝑡 |z𝑢𝑡−1) =
√︁
1 − 𝛽𝑡 z𝑢𝑡−1 +

√︁
𝛽𝑡a𝑢 + 𝛿 tanh(

√
𝜅𝜆𝜅zut−1

/r)z𝑢𝑡−1,

𝑞(z𝑖𝑡 |z𝑖𝑡−1) =
√︁
1 − 𝛽𝑡 z𝑖𝑡−1 +

√︁
𝛽𝑡a𝑖 + 𝛿 tanh(

√
𝜅𝜆𝜅zit−1

/r)z𝑖𝑡−1 .
(13)

Theorem 2. Let z𝑡 denotes the user or item at the 𝑡-step in the
forward diffusion process Eq. (13). As 𝑡 → ∞, the low-dimensional
latent representation z𝑡 satisfies:

lim

𝑡→∞
z𝑡 ∼ N𝑓 (𝛿z𝑡−1, I), (14)

where N𝑓 is an approximate folded normal distribution. More detail
and proof can be referred to in the Appendix A.4.

3.2.3 Reverse Process. After getting noisy user embeddings z
𝑢
𝑇

and noisy item embeddings z
𝑖
𝑇
in the forward process, we follow

the standard denoising process (cf. Eq. (2)) and train a denoising

network to simulate the process of reverse diffusion.

𝑝𝜃 (ẑ𝑢𝑡−1 |ẑ
𝑢
𝑡 ) = NB (ẑ𝑢𝑡−1; 𝜇𝜃 (ẑ

𝑢
𝑡 , 𝑡), Σ𝜃 (ẑ𝑢𝑡 , 𝑡)),

𝑝𝜓 (ẑ𝑖𝑡−1 |ẑ
𝑖
𝑡 ) = NB (ẑ𝑖𝑡−1; 𝜇𝜓 (ẑ

𝑖
𝑡 , 𝑡), Σ𝜓 (ẑ𝑖𝑡 , 𝑡)),

(15)

where ẑ𝑢𝑡 and ẑ𝑖𝑡 are the denoised embeddings in the reverse step 𝑡 ,

𝜃 and𝜓 are the learnable parameters of the user denoising module

and the item denoising module correspondingly. These denoising

modules are executed iteratively in the reverse process until the

generation of final clean embeddings ẑ𝑢
0
and ẑ𝑖

0
.

3.3 Optimization
3.3.1 Hyperbolic Margin-based Ranking Loss. The margin-based

ranking loss has shown to be quite beneficial for hyperbolic recom-

mender methods [41, 57, 62]. This loss aims to distinguish user-item

pairs up to a specified margin into positive and negative samples,

once the margin is satisfied the pairs are regarded as well sepa-

rated. Specifically, for each user 𝑢 we sample a positive item 𝑖 and

a negative item 𝑗 , and the margin loss is described as:

LRec (𝑢, 𝑖, 𝑗) =𝑚𝑎𝑥 (s(𝑢, 𝑗)︸︷︷︸
𝑝𝑢𝑠ℎ

− s(𝑢, 𝑖)︸︷︷︸
𝑝𝑢𝑙𝑙

+𝑚, 0),
(16)

where the s(·) denotes the Fermi-Dirac decoder (cf. Eq. (9)),𝑚 is

the margin between (𝑢, 𝑖) and (𝑢, 𝑗). As a result, positive items are

pulled closer to user while negative items are pushed outside the

margin.

3.3.2 Reconstruction Loss. To improve the embedding denoising

process, it is crucial to minimize the variational lower bound of the

predicted user and item embeddings. Based on the KL divergence

4
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derived from the multivariate Gaussian distribution (cf. Eq. (8)), the
reconstruction loss of denoising process is stated as follows:

Lre (𝑢, 𝑖) = E𝑞
[
− log 𝑝𝜃 (ẑ𝑢0 ) − log𝑝𝜓 (ẑ𝑖0)

]
, (17)

where ẑ𝑢
0
and ẑ𝑖

0
are derived from the final step of Eq. (15).

To reduce computational complexity, we follow paper [66] by

uniformly sampling t from {1, 2, ..., T} and simplify Eq. (17) into the

following equation:

Lre (𝑢, 𝑖) = (L𝑢
re
+ L𝑖

re
)/2, where (18)

L𝑢
re
= E𝑡∼U(1,T)E𝑞

[
| |z𝑢

0
− ẑ𝑢

0
| |2
2

]
,

L𝑖
re
= E𝑡∼U(1,T)E𝑞

[
| |z𝑖

0
− ẑ𝑖

0
| |2
2

]
.

(19)

3.3.3 Total Loss. The total loss function of HDRM comprises two

parts: a hyperbolic margin-based ranking loss for recommendation,

and a reconstruction loss for the denoising process. In summary,

the total loss function of HDRM is formulated as follows:

L(𝑢, 𝑖, 𝑗) = 𝛼 · LRec (𝑢, 𝑖, 𝑗) + (1 − 𝛼) · Lre (𝑢, 𝑖), (20)

where 𝛼 is a balance factor to adjust the weight of these two losses.

To further refine HDRM, we introduce a reweighted loss aimed

at improving data cleaning. Drawing inspiration from the previous

works [49, 66], we dynamically assign lower weights to instances

with lower positive scores:

w(𝑢, 𝑖, 𝑗) = sigmoid(s(𝑢, 𝑖))𝛽 , (21)

L
total

(𝑢, 𝑖, 𝑗) = w(𝑢, 𝑖, 𝑗)L(𝑢, 𝑖, 𝑗), (22)

where 𝛽 is the reweighted factor which regulates the range of

weights, s(𝑢, 𝑖) is obtained from Eq. (9). Consequently, we redefine

the total loss function of HDRM as presented in Eq. (22).

3.4 Complexity Analysis
3.4.1 Time Complexity. The time complexity of our model is pri-

marily composed of two phases: 1) Hyperbolic embedding and

clustering; 2) Diffusion forward process.

• Hyperbolic embedding and clustering: We encode each user

and item into hyperbolic space using hyperbolic GCN. This pro-

cess results in 𝑛 ∗ 𝑑-dimensional vectors, where n is the total

number of users and items. The time complexity of this step

is 𝑂 (𝑛𝑑) ∗ 1(𝑡), where 1(𝑡) represents the time cost of pass-

ing through the neural network. The clustering process has an

approximate time complexity of 𝑂 (𝑐𝑛𝑑), where 𝑐 denotes the
number of cluster categories.

• Diffusion forward process: For the forward process of diffu-

sion, a single noise addition step suffices. This step has a time

complexity of 𝑂 (𝑛𝑑). The training of denoising networks incurs

a complexity of 𝑂 (𝑛𝑑) ∗ 1(𝑡).
In summary, the overall time complexity for each epoch is𝑂 (1(𝑡)∗

2𝑛𝑑) +𝑂 ((𝑐 + 1)𝑛𝑑).

3.4.2 Space Complexity. In HDRM, we encode users and items in

hyperbolic space, representing each as an 𝑛 ∗𝑑-dimensional vectors.

This encoding scheme results in a diffusion scale of 𝑂 (ℎ𝑛𝑑), where
ℎ denotes the total number of user-item interactions.

4 EXPERIMENTS
In this section, we conduct a series of experiments to validate HDRM

and answer the following key research questions:

• RQ1: How does HDRM perform compared to baseline models

on real-world datasets?

• RQ2: How does each proposed module contribute to the perfor-

mance?

• RQ3: How does HDRM perform in mitigating the effects of noisy

data?

• RQ4: How do hyper-parameters influence the performance of

HDRM?

4.1 Experimental Settings
4.1.1 Datasets and Evaluation Metrics. We evaluate HDRM on

three real-world datasets: Amazon-Book
1
, Yelp2020

2
, and ML-1M

3
.

The detailed statistical information is presented in the Table 1.

Across all datasets, interactions rating below 4 classify as false-

positive engagements. We follow the data partition rubrics in re-

cent collaborative filtering methods [35] [12] and split into three

parts (training sets, validation sets, and test sets) with a ratio 7:1:2.

Our evaluation of top-K recommendation efficiency involves the

full-ranking protocol, incorporating two popular metrics Recall@K

(R@K) and NDCG@K (N@K) for which we use K values of 10 and

20.

Table 1: Statistics of three datasets under two different set-
tings, where “C” and “N” represent clean training and natural
noise training, respectively. “Int.” denotes interactions.

Dataset #User #Item (C) #Int. (C) #Item (N) #Int. (N)

Amazon-Book 108,822 94,949 3,146,256 178,181 3,145,223

Yelp2020 54,574 34,395 1,402,736 77,405 1,471,675

ML-1M 5,949 2,810 571,531 3,494 618,297

4.1.2 Baselines and Hyper-parameter Settings. The effectiveness of
our method is assessed through comparisonwith the following base-

lines: classic collaborative filtering methods include BPRMF [35]

and LightGCN [12]. Autoencoder-based recommender methods are

represented by CDAE [54] and Multi-DAE [24]. Diffusion-based

recommender methods include CODIGEM [47], DiffRec [23], and

DDRM [66]. Finally, hyperbolic recommender methods encompass

HyperML [46], HGCF [41], and HICF [57]. It is worth noting that

the complete form of our adopted DDRM is LightGCN+DDRM.

Further details on these models can be found in Appendix B.1.1.

More details about our HDRM’s hyper-parameter settings can be

found in Appendix B.1.2.

4.2 Overall Performance Comparison (RQ1)
Table 2 reports the comprehensive performance of all the com-

pared baselines across three datasets. Based on the results, the main

observations are as follow:

1
https://jmcauley.ucsd.edu/data/amazon/

2
https://www.yelp.com/dataset/

3
https://grouplens.org/datasets/movielens/1m/

5

https://jmcauley.ucsd.edu/data/amazon/
https://www.yelp.com/dataset/
https://grouplens.org/datasets/movielens/1m/
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Table 2: The overall performance evaluation results for the proposed method and compared baseline models on three experi-
mented datasets, highlighting the best and second-best performances in bold and borderline, respectively. Numbers with an
asterisk (*) indicate statistically significant improvements over the best baseline (t-test with p-value <0.05).

Model

ML-1M Amazon-Book Yelp2020

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

BPRMF (UAI2009) 0.0876 0.0749 0.1503 0.0966 0.0437 0.0264 0.0689 0.0339 0.0341 0.0210 0.0560 0.0276

LightGCN (SIGIR2020) 0.0987 0.0833 0.1707 0.1083 0.0534 0.0325 0.0822 0.0411 0.0540 0.0325 0.0904 0.0436

CDAE (WSDM2016) 0.0991 0.0829 0.1705 0.1078 0.0538 0.0361 0.0737 0.0422 0.0444 0.0280 0.0703 0.0360

MultiDAE (WWW2018) 0.0995 0.0803 0.1753 0.1067 0.0571 0.0357 0.0855 0.0422 0.0522 0.0316 0.0864 0.0419

HyperML (WSDM2020) 0.0997 0.0832 0.1752 0.1042 0.0567 0.0362 0.0846 0.0432 0.0539 0.0311 0.0911 0.0409

HGCF(WWW2021) 0.1009 0.0865 0.1771 0.1126 0.0633 0.0392 0.0931 0.0481 0.0560 0.0329 0.0931 0.0447

HICF (KDD2022) 0.9970 0.0848 0.1754 0.1010 0.0652 0.0426 0.0984 0.0514 0.0590 0.0366 0.0968 0.0488

CODIGEM (KSEM2022) 0.0972 0.0837 0.1699 0.1087 0.0300 0.0192 0.0478 0.0245 0.0470 0.0292 0.0775 0.0385

DiffRec (SIGIR2023) 0.1023 0.0876 0.1778 0.1136 0.0695 0.0451 0.1010 0.0547 0.0581 0.0363 0.0960 0.0478

DDRM (SIGIR2024) 0.1017 0.0874 0.1760 0.1132 0.0685 0.0432 0.0994 0.0521 0.0556 0.0343 0.0943 0.0438

HDRM 0.1089* 0.0943* 0.1859* 0.1201* 0.0732* 0.0517* 0.1065* 0.0591* 0.0630* 0.0395* 0.1034* 0.0496*

Improv. 6.5% 7.6% 4.6% 5.7% 5.3% 14.6% 5.4% 8.0% 6.8% 7.9% 6.8% 1.6%

Table 3: Performance of different design variations on the three datasets. The bolded numbers denote the most significant
change in performance.

Model

ML-1M Amazon-Book Yelp2020

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

HDRM 0.1089 0.0943 0.1859 0.1201 0.0732 0.0517 0.1065 0.0591 0.0630 0.0395 0.1034 0.0496

HDRM w/o H𝑛
𝜅 0.1061 0.0919 0.1798 0.1153 0.0703 0.0473 0.1033 0.0566 0.0593 0.0383 0.0983 0.0476

HDRM w/o Geo 0.1059 0.0907 0.1788 0.1141 0.0694 0.0442 0.1003 0.0534 0.0568 0.0359 0.0978 0.0453
HDRM w/o Diff 0.1041 0.0883 0.1775 0.1139 0.0695 0.0457 0.1012 0.0547 0.0589 0.0382 0.0976 0.0463

• Our proposed HDRM demonstrates consistent performance im-

provements across all metrics on three datasets compared to

state-of-the-art baselines. This superior performance is primarily

attributed to three key factors: 1) HDRM excels in capturing

the complex relationships in user-item interactions compared to

Euclidean-based approaches. This capability allows for a more

nuanced understanding of the underlying recommendation dy-

namics. 2) By employing neural networks to incrementally learn

each denoising transition step from 𝑡 to 𝑡-1, HDRM effectively

models complex distributions. This approach significantly en-

hances the model’s capacity to capture intricate patterns in the

data. 3) Through learning the data distribution, HDRM exhibits

superior capabilities in addressing data sparsity issues. This en-

ables the model to infer latent associations from limited data.

• Diffusion-based approaches, such as DDRM and DiffRec, gener-

ally outperform traditional methods like BPRMF and LightGCN.

This superior performance can be attributed to the alignment

between their generative frameworks and the processes under-

lying user-item interactions. Among the generative methods,

DiffRec demonstrates particularly impressive results, leveraging

variational inference and KL divergence to achieve more robust

generative modeling. In contrast, CODIGEM underperforms com-

pared to LightGCN and other generative methods, primarily due

to its reliance on only the first autoencoder for inference.

• Diffusion-based recommendation models do not universally out-

perform hyperbolic-based models. For instance, on the Yelp2020

dataset, HICF demonstrates superior performance compared to

DiffRec. While diffusion-based models exhibit enhanced robust-

ness and noise-handling capabilities, hyperbolic spaces are inher-

ently well-suited for representing data with hierarchical struc-

tures and power-law distributions—characteristics that closely

align with user-item interaction graphs in numerous recom-

mender systems. Notably, models that integrate hyperbolic ge-

ometry with diffusion techniques have exhibited superior per-

formance across three datasets by leveraging the strengths of

both approaches.

4.3 Ablation Study (RQ2)
To validate the effectiveness of our proposed method, we conducted

ablation studies by removing three key components from HDRM:

the hyperbolic encoder (HDRM w/o H𝑛
𝜅 ), geometric constraints

(HDRM w/o Geo) and diffusion model (HDRM w/o Diff). Table

3 presents the results of our experiments on three datasets, from

which we draw the following significant conclusions:

• The model’s performance significantly decreases when the diffu-

sion model, geometric constraints, and hyperbolic encoder are

removed individually. This demonstrates the crucial role these

modules play in the model’s effectiveness. Furthermore, the table
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Table 4: Comparative analysis of best diffusion methods (DiffRec) and hyperbolic approaches (HICF) in noisy datasets, focusing
on their performance amid random clicks and other data imperfections, highlighting the best and second-best performances in
bold and borderline, respectively. Numbers with an asterisk (*) indicate statistically significant improvements over the best
baseline (t-test with p-value <0.05).

Model

ML-1M Amazon-Book Yelp2020

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

HICF (KDD2022) 0.0635 0.0437 0.1211 0.0643 0.0512 0.0298 0.0763 0.0374 0.4770 0.0286 0.815 0.0387

DiffRec (SIGIR2023) 0.0658 0.0488 0.1236 0.0703 0.0537 0.0329 0.0806 0.0411 0.0501 0.0307 0.0847 0.0412

DDRM (SIGIR2024) 0.0667 0.0508 0.1221 0.0710 0.0468 0.0273 0.0742 0.0355 0.0516 0.0305 0.0870 0.0412

HDRM 0.0679* 0.0522* 0.1254* 0.0714* 0.0554* 0.0336* 0.0819* 0.0427* 0.0523* 0.0325* 0.0883* 0.0432*

3 reveals that the absence of the diffusion model and geomet-

ric constraints has a more substantial impact on the model’s

performance compared to the hyperbolic encoder. This discrep-

ancy may be attributed to the inherent hierarchical structure

and information-rich properties of hyperbolic space. However,

without geometric constraints, the learned embeddings might

become overly dispersed or concentrated within the space, fail-

ing to fully leverage the advantages of hyperbolic geometry. In

contrast to the diffusion component, real-world recommenda-

tion models may rely more heavily on capturing the propagation

and evolution of preferences rather than strictly adhering to

hierarchical structures.

• The removal of the diffusion model results in the most significant

performance decline on the ML-1M dataset, while the elimina-

tion of geometric constraints leads to the most substantial per-

formance drop on the Amazon-Book and Yelp2020 datasets. This

discrepancymay be attributed to the higher density of theML-1M

dataset compared to Amazon-Book and Yelp2020. The marked

performance degradation observed when removing the diffusion

model from the relatively dense ML-1M dataset underscores the

critical role of the diffusion process in modeling complex and

dynamic user behaviors. The higher density of ML-1M implies

more frequent user-item interactions and intricate information

flow compared to other datasets. In such an environment, diffu-

sion models may more effectively capture rapidly evolving user

preferences, social influences, and non-linear relationships.

In conclusion, our ablation studies highlight the significant con-

tributions of each module in HDRM to the overall model perfor-

mance. These findings not only validate our design choices but also

provide insights into the relative importance of different compo-

nents in hyperbolic recommender models.

4.4 Robustness Analysis (RQ3)
In real-world recommender systems, user behavior data often con-

tains noise, such as random clicks or unintentional interactions.

To evaluate HDRM’s effectiveness in handling noisy data, we con-

ducted a comparative analysis with DiffRec and DDRM, the leading

diffusion methods, and HICF, the leading hyperbolic approach. Our

noise comprises natural noise (cf. Table 1) and randomly sampled

interactions, maintaining an equal scale for both components.

Table 4 presents the performance metrics of these models in

the presence of noise. The results demonstrate that HDRM con-

sistently outperforms both HICF, DDRM and DiffRec, validating

its robustness against noisy data. Notably, diffusion-based models

exhibit superior performance in noisy environments, which aligns

with theoretical expectations. This can be attributed to the inherent

denoising process that underpins diffusion models, making them

particularly well-suited for mitigating the impact of erroneous user

interactions. In contrast, HICF’s performance degraded significantly

in the presence of noise, suggesting that the hyperbolic space does

not offer a substantial advantage over Euclidean space in terms of

reducing the influence of noisy interactions. This finding challenges

the presumed benefits of hyperbolic embeddings in this context and

highlights the need for further investigation into their limitations

in noisy recommendation scenarios.

4.5 In-depth Analysis (RQ4)
4.5.1 Diffusion Step Analysis. We investigate the impact of varying

diffusion and inference steps on HDRM’s performance. Figure 3

illustrates our experimental results across three datasets, HDRM’s

performance initially improves as diffusion and inference steps in-

crease. However, it subsequently declines with further increases in

these steps. This phenomenon can be attributed to several factors.

When the number of diffusion steps is insufficient, the model lacks

adequate iterations to progressively refine recommendation results,

leading to suboptimal capture of user preferences. Conversely, an

excessive number of diffusion steps may cause the model to overfit

the noise distribution, potentially discarding valuable information

from the original data. Similarly, an insufficient number of inference

steps prevents the model from fully recovering the original data dis-

tribution from a pure noise state. However, an excessive number of

inference steps can result in over-optimization, potentially causing

the model to deviate from the target distribution. More diffusion

step results can be found in Appendix B.2.1.

4.5.2 Margin Analysis. We investigate the impact of varying mar-

gin values on HDRM’s performance. Figure 4 presents the exper-

imental results, revealing a non-monotonic relationship between

margin size and HDRM’s performance. As the margin increases,

HDRM’s performance initially improves before subsequently de-

clining, indicating the existence of an optimal margin value for

maximizing model effectiveness. On the ML-1M dataset, the model

achieves peak performance at a margin of 0.1. In contrast, for the

Amazon-Book and Yelp2020 datasets, optimal model performance

is attained at a margin of 0.2. This discrepancy is notable across

different datasets. The Amazon-Book and Yelp2020 datasets show
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Figure 4: The variation of model performance across three
datasets as the margin changes.

greater distinction between positive and negative samples than

ML-1M. Considering the hyperbolic margin loss function, the mar-

gin represents the expected difference in scores between positive

and negative samples. When dealing with datasets characterized

by substantial disparities between positive and negative samples, a

larger margin is advisable.

5 RELATEDWORK
In this section, we review two relevant prior works: hyperbolic

representation learning and generative recommendation.

5.1 Hyperbolic Representation Learning
Currently, Non-Euclidean representation learning, particularly hy-

perbolic representation learning, plays a crucial role in recom-

mender systems (RSs)[41, 46, 65]. HyperML[46] investigates metric

learning in hyperbolic space and its connection to collaborative fil-

tering. Similarly, HGCF [41] proposes a hyperbolic GCN model for

CF. In order to address the power-law distribution in recommender

systems, HICF [57] focuses on enhancing the attention towards tail

items in hyperbolic spaces, incorporating geometric awareness into

the pull and push process. Interestingly, GDCF [65] aims to capture

intent factors across geometric spaces by learning geometric disen-

tangled representations associated with user intentions and differ-

ent geometries. On the other hand, the paper [56] highlights that the

naive inner product used in the factorization machine model [34]

may not adequately capture spurious or implicit feature interac-

tions. Collaborative metric learning [16] proposes that learning the

distance instead of relying on the inner product provides benefits

in capturing detailed embedding spaces that encompass item-user

interactions, item-item relationships, and user-user distances simul-

taneously. Consequently, the triangle inequality emerges as a more

favorable alternative to the inner product.

5.2 Generative Recommendation
Generativemodels, such as Generative Adversarial Networks (GANs)

[9, 18, 48] and Variational Autoencoders (VAEs) [24, 30, 63], play

an important role in personalized recommendations but suffer

from structural drawbacks [19, 38]. Recently, diffusion models

have emerged as an alternative, offering better stability and rep-

resentation capabilities, especially in recommendation systems

[4, 17, 29, 52, 53]. Models like CODIGEM [47] and DiffRec [50]

use diffusion models to predict user preferences by simulating in-

teraction probabilities. Meanwhile, other approaches [7, 23, 25, 51]

focus on content generation at the embedding level, similar to our

DDRM framework. For instance, DiffRec [23] and CDDRec [51] add

noise to target items in the forward process, later reconstructing

them based on users’ past interactions. DiffuASR [25] applies diffu-

sion models to generate item sequences, addressing data sparsity

challenges. Furthermore, DDRM [66] leverages diffusion models to

denoise implicit feedback, leading to more robust representations

in learning tasks.

6 CONCLUSION
Motivated by the promising results obtained from recent diffusion-

based recommender models [21, 50, 66], we have decided to explore

a more complex architecture. Building on the success of hyper-

bolic recommender methods [41, 46, 57, 61], we investigate that

they hold great potential in addressing the non-Euclidean struc-

tural anisotropy of the underlying diffusion process in user-item

interaction graphs. To this end, we propose HDRM model architec-

ture, further mathematical proofs and experiments demonstrate the

superiority of this method. We believe that this paper represents

a milestone in hyperbolic diffusion models and offers a valuable

baseline for future research in this field.
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A METHODS
A.1 Hyperbolic Spaces
Here, we provide a comparison of geometric operations between

the Poincaré ball manifold and the Lorentz manifold (hyperboloid

manifold) as summarized in Table 5. It outlines the notation, geo-

desic distance, logarithmic map, exponential map, parallel transport,

and the origin point for both manifolds, along with their respec-

tive mathematical formulations. This table serves to summarize

the computational methods for these operations across the two

different manifolds, highlighting their similarities and differences.

A.2 Proof of Theorem 1
In hyperbolic geometry, four commonly used equivalent models

are the Klein model, the Poincare disk model, the Lorentz model,

and the Poincare half-plane model. For our analysis in this study,

we utilize the Lorentz model.

Lorentz model H𝑛 can be denoted by a set of points 𝑧 (𝑧 ∈ R𝑛+1)
through Lorentzian product:

⟨𝑧, 𝑧′⟩L = −𝑧0𝑧′0 +
𝑛∑︁
𝑖=1

𝑧𝑖𝑧
′
𝑖 , (23)

H𝑛 =

{
𝑧 ∈ R𝑛+1 : ⟨𝑧, 𝑧⟩L =

1

𝜅
, 𝑧0 > 0

}
. (24)

Tangent space 𝑇𝝁H
𝑛
is the tangent space of H𝑛 at 𝜇. 𝑇𝝁H

𝑛
can

be represented as the set of points that satisfy the orthogonality

relation with respect to the Lorentzian product:

𝑇𝝁H
𝑛
:= {u : ⟨u, 𝝁⟩L = 0}. (25)

A.2.1 Parallel transport and inverse parallel transport. For an arbi-

trary pair of point 𝜇, 𝜈 ∈ H𝑛 , the parallel transport from 𝜈 to 𝜇 is

defined as a map PT𝜈→𝜇 from 𝑇𝝂H
𝑛
to 𝑇𝝁H

𝑛
that carries a vector

in𝑇𝝂H
𝑛
along the geodesic from 𝜈 to 𝜇 without changing its metric

tensor.

The explicit formula for the parallel transport on the Lorentz

model is given by:

PT
𝜅
𝜈→𝜇 (𝑣) = 𝑣 +

⟨𝜇 − 𝛼𝜈, 𝑣⟩L
𝛼 + 1

(𝜈 + 𝜇), (26)

where 𝛼 = −⟨𝜈, 𝜇⟩L . The inverse parallel transport is given by:

𝑣 = PT
𝜅
𝜇→𝜈 (𝑢). (27)

A.2.2 Exponential map and Logarithmic map. Exponential map

exp𝑚 𝑢 : 𝑇𝝂H
𝑛 → H𝑛 is a map that we can use to project a vector

𝜈 ∈ 𝑇𝝁H𝑛 to H𝑛 . The explicit formula for the exponential map on

the Lorentz model is given by:

𝑧 = 𝑒𝑥𝑝𝜅𝝁 (u) = cosh(∥u∥L)𝝁 + sinh(∥u∥L)
u

∥u∥L
. (28)

The logarithmic map is defined to compute the inverse of the

exponential map, mapping the point back to the tangent space. It is

given by:

𝑢 = log
𝜅
𝝁 (𝑧) =

arccosh(𝛼)
√
𝛼2 − 1

(𝑧 − 𝛼𝝁), (29)

where 𝛼 = −⟨𝜇, 𝑧⟩L .

A.2.3 Klein model. This model of hyperbolic space is a subset of

𝑅𝑛 given by𝐾𝑛
, and a point in the Klein model can be obtained from

the corresponding point in the hyperbolic model by projection:

𝜋H→K (x)𝑖 =
𝑥𝑖

𝑥0
. (30)

With its inverse given by:

𝜋−1K→H (x) =
1√︁

1 − ∥x∥2
(1, x) . (31)

An interesting approach is that we can use the angle-preserving

nature of the Klein model to construct a mapping from the Lorentz

tangent plane to the Klein model via the spherical pole mapping

P
𝜅
:

𝑘 𝑗 = P
𝜅 (𝑥 𝑗 ) =

1

−𝜅 + ∑𝑛
𝑖=1 𝑥

2

𝑖

(𝑥2𝑗 ) . (32)

A.2.4 Proof. In our model,𝑚 represents the number of clusters

and e𝑖 (e𝑖 ∈ H𝑛) represents the points in class 𝑖 (𝑖 ∈ 1, 2, 3, ...,𝑚). 𝜇𝑖
denotes the hyperbolic center of the cluster 𝑖 . Each point e𝑖 will be
mapped to the tangent plane 𝑇𝝁𝒊H

𝑛
of its center 𝜇𝑖 . Let 𝑥𝑖 denote

the point after mapping to the tangent plane, it can be calculated

by:

𝑥𝑖 = log
𝜅
𝝁𝒊
(e𝑖 ) . (33)

If we consider all the points as being in the tangent plane to the

North Pole 𝑇𝑜H
𝑛
, then their corresponding coordinates are:

𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑚). (34)

For a curvature 𝜅𝑖 , if the following equation is satisfied:

log
𝜅𝑖
o (e𝑖 ) = PT

𝜅𝑜
𝑜→𝜇𝑖

(log𝜅𝑜o (e𝑖 )), (35)

then it is possible to transform the tangent planes from the various

centers to the tangent plane at the North Pole and unify them into

the Klein model. The mapping point 𝑘 is given by:

𝑘𝑖 = P
𝜅𝑜 (log𝜅𝑜o (e𝑖 ))

= P
𝜅𝑜 (PT𝜅𝑜𝜇𝑖→𝑜 (log𝝁𝒊

(e𝑖 )))
= P

𝜅𝑜 (PT𝜅𝑜𝜇𝑖→𝑜 (𝑥𝑖 ))
= 𝜋H→K (ei)
= P

𝜅𝑖 (log𝜅𝑖𝑜 (e𝑖 )) .

(36)

This implies that our approach essentially involves mathemati-

cally projecting points to approximate a Klein model comprising

multiple curvatures. The process represents a topological recon-

struction of the geometric space derived from the original graph

structure, thereby enhancing our ability to capture the geometric

properties inherent in the original user-item interaction graph.

A.3 Proof of the lack of additivity in the
package normal distribution

A.3.1 Description of symbols. B𝑑
𝜅 is a d-dimensional Poincaré Ball

space with curvature𝜅 . R𝑑 is a d-dimensional Euclidean space.G(z)
is the metric tensor of the hyperbolic space. d𝜅p is the hyperbolic

distance. We first introduce the expression of metric tensor G(z) in
hyperbolic space and the hyperbolic distance d𝜅p :

G(z) =
(
1 0

0

(
sinh(

√
𝜅𝑟 )√

𝜅𝑟

)
2

𝐼𝑑−1

)
, (37)
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Table 5: Summary of operations in the Poincaré ball manifold and the Lorentz manifold (𝜅 < 0)

Poincaré Ball Manifold Lorentz Manifold (Hyperboloid Manifold)

Notation B𝑛
𝜅 =

{
x ∈ R𝑛 : ⟨x, x⟩2 < − 1

𝜅

}
L𝑛
𝜅 =

{
x ∈ R𝑛+1 : ⟨x, x⟩L = 1

𝜅

}
Geodesics distance 𝑑𝜅B (x, y) = 1√

|𝜅 |
cosh

−1
(
1 − 2𝜅 ∥x−y∥2

2

(1+𝜅 ∥x∥2
2
) (1+𝜅 ∥y∥2

2
)

)
𝑑𝜅L (x, y) = 1√

|𝜅 |
cosh

−1 (𝜅 ⟨x, y⟩L )

Logarithmic map log
𝜅
x (y) = 2√

|𝜅 |𝜆𝜅x
tanh

−1
(√︁

|𝜅 | ∥ − x ⊕𝜅 y∥2
)

−x⊕𝜅y
∥−x⊕𝜅y∥2 log

𝜅
x (y) =

cosh
−1 (⟨x,y⟩L )

sinh(cosh−1 (𝜅 ⟨x,y⟩L ) ) (y − 𝜅 ⟨x, y⟩Lx)

Exponential map exp
𝜅
x (v) = x ⊕𝜅

(
tanh

(√︁
|𝜅 | 𝜆

𝜅
x ∥v∥2
2

)
v√

|𝜅 |∥v∥2

)
exp

𝜅
x (v) = cosh

(√︁
|𝜅 | ∥v∥L

)
x

Parallel transport 𝑃T𝜅
x→y (v) =

𝜆𝜅x
𝜆𝜅y

gyr[y, −x]v 𝑃T𝜅
x→y (v) = v − 𝜅 ⟨y,v⟩L

1+𝜅 ⟨x,y⟩L
(x + y)

Origin point 0𝑛

[
1√
|𝜅 |

, 0𝑛

]

d𝜅p (𝑧,𝑦) =
1

√
𝜅
cosh

−1
(
1 + 2𝜅

∥𝑧 − 𝑦∥2

(1 − 𝜅∥𝑧∥2) (1 − 𝜅∥𝑦∥2)

)
. (38)

Following the P-VAE (Nickel & Kiela, 2017) we can subsequently

derive the differential and integral operators. This derivation is ac-

complished by applying transformations using hyperbolic polar

coordinates and within the framework of Euclidean space. The re-

sulting operators will be expressed in terms of these transformed

coordinate systems, providing a different perspective on the math-

ematical operations in the given context:

𝑑𝑠2B𝑑
𝜅

= (𝜆𝜅𝑧 )2 (𝑑𝑧21 + · · · + 𝑑𝑧2
𝑑
) = 4

(1 − 𝜅∥𝑥 ∥2)2
𝑑𝑧2

=
4

(1 − 𝜅𝜌2)2
(𝑑𝜌2 + 𝜌2𝑑𝑠2

𝑆𝑑−1
),

(39)

let r = d𝜅p , we have

𝑟 =

∫ 𝜌

0

𝜆𝜅𝑡 𝑑𝑡 =

∫ 𝜌

0

2

1 − 𝜅𝑡2
𝑑𝑡 =

∫ √
𝜅𝜌

0

2

1 − 𝑡2
𝑑𝑡
√
𝜅

=
2

√
𝜅
tanh

−1 (
√
𝜅𝜌).

(40)

Then, following from our previous derivation, we can now es-

tablish the subsequent mathematical relationship. This relationship

is formally expressed by the equation presented below:

𝑑𝑠2B𝜅
=

4

(1 − 𝜅𝜌2)2
1

4

(1 − 𝜅𝜌2)2𝑑𝑟2 +
(
2

𝜌

1 − 𝜅𝜌2

)
2

𝑑𝑠2
𝑆𝑑−1

= 𝑑𝑟2 +
©­­«2

1√
𝜅
tanh(

√
𝜅 𝑟
2
)

1 − 𝜅
(

1√
𝜅
tanh(

√
𝜅 𝑟
2
)
)
2

ª®®¬
2

𝑑𝑠2
𝑆𝑑−1

= 𝑑𝑟2 +
(
1

√
𝜅
sinh(

√
𝜅𝑟 )

)
2

𝑑𝑠2
𝑆𝑑−1

,

(41)

when 𝜅 → 0, through this process, we are able to derive and recon-

struct the standard Euclidean line element, which is a fundamental

concept in geometry. This line element can be expressed mathe-

matically as:

ds2Rd = dr2 + r2ds2Sd−1 . (42)

Then, we proceed to the next step in our mathematical analysis,

which involves performing the integral calculation. This crucial

part of the process can be expressed as follows∫
B𝑑
𝜅

𝑓 (𝑧)𝑑M(𝑧) =
∫
B𝑑
𝜅

𝑓 (𝑧)
√︁
|𝐺 (𝑧) |𝑑𝑧

=

∫
T𝜇B𝑑

𝜅 �R𝑑
𝑓 (v)

√︁
|𝐺 (v) |𝑑v

=

∫
R+

∫
S𝑑−1

𝑓 (𝑟 )
√︁
|𝐺 (𝑟 ) |𝑑𝑟𝑟𝑑−1𝑑𝑠S𝑑−1

=

∫
R+

∫
S𝑑−1

𝑓 (𝑟 )
(
sinh(

√
𝜅𝑟 )

√
𝜅𝑟

)𝑑−1
𝑑𝑟𝑟𝑑−1𝑑𝑠S𝑑−1

=

∫
R+

∫
S𝑑−1

𝑓 (𝑟 )
(
sinh(

√
𝜅𝑟 )

√
𝜅

)𝑑−1
𝑑𝑟𝑑𝑠S𝑑−1 .

(43)

A.3.2 Proof. We introduce the concept of the probability density

distribution for the wrapped normal distribution, a circular proba-

bility distribution that arises from wrapping a normal distribution

around a circle. To adapt this distribution to a hyperbolic space, we

employ a mapping technique. This mapping process begins by con-

sidering the normal distribution in the tangent plane 𝑇𝜇Bd
𝜅 , which

is a flat space that touches the hyperbolic space at a single point.

We then use the exponential map, a mathematical function that

projects points from this tangent plane onto the curved surface of

the hyperbolic space. This projection effectively wraps the normal

distribution onto the hyperbolic geometry. To generate samples

from this mapped distribution, one can follow these steps:

z = exp
𝜅
𝜇

(
𝐺 (𝜇)−

1

2 𝑣

)
= exp

𝜅
𝜇

(
𝑣

𝜆𝜅𝜇

)
,with 𝑣 ∼ N(·|0, Σ) . (44)

A.3.3 Anisotropic. In anisotropic environments or settings, where

properties vary depending on direction, the probability density

of the phenomenon in question can be mathematically expressed

using the following equation:

NW

B𝑑
𝜅

(𝑧 |𝜇, Σ) = N
(
𝐺 (𝝁)1/2 log𝝁 (𝑧)

���0, Σ) ( √
𝜅𝑑𝜅𝑝 (𝝁, 𝑧)

sinh(
√
𝜅𝑑𝜅𝑝 (𝝁, 𝑧))

)𝑑−1

= N
(
𝜆𝜅𝜇 log𝜇 (𝑧)

���0, Σ) ( √
𝜅𝑑𝜅𝑝 (𝝁, 𝑧)

sinh(
√
𝜅𝑑𝜅𝑝 (𝝁, 𝑧))

)𝑑−1
.

(45)
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We can plug its density with introducing the variable 𝑣 = 𝑟𝛼 =

𝜆𝜅𝜇 log𝜇 (𝑧) and utilizing the metric tensor, and we have

∫
B𝑑
𝜅

NW
B𝑑
𝜅

(𝑧 |𝜇, Σ)𝑑M(𝑧)

=

∫
T𝜇B𝑑

𝜅 �R
𝑑
N(𝑣 |0, Σ)

( √
𝜅∥𝑣 ∥2

sinh(
√
𝜅∥𝑣 ∥2)

)𝑑−1 √︁
|𝐺 (𝑣) | 𝑑𝑣

=

∫
R𝑑

N(𝑣 |0, Σ)
( √

𝜅∥𝑣 ∥2
sinh(

√
𝜅∥𝑣 ∥2)

)𝑑−1 (
sinh(

√
𝜅∥𝑣 ∥2)√

𝜅∥𝑣 ∥2

)𝑑−1
𝑑𝑣

=

∫
R𝑑

N(𝑣 |0, Σ) 𝑑𝑣 .

Next, we derive whether the sum of two independent wrapped

normally distributed variables still satisfies the wrapped normal

distribution:

NW
B𝑑
𝜅

(𝑧1 |𝜇1, Σ1) ∗ NW
B𝑑
𝜅

(𝑧2 |𝜇2, Σ2)

=

∫
B𝑑
𝜅

NW
B𝑑
𝜅

(𝑧 − 𝑧2 |𝜇1, Σ1)NW
B𝑑
𝜅

(𝑧2 |𝜇2, Σ2)𝑑M(𝑧2)

=

∫
R𝑑

N(𝑣 − 𝑣2 |0, Σ1)N (𝑣2 |0, Σ2)
( √

𝜅∥𝑣 − 𝑣2∥2
sinh(

√
𝜅∥𝑣 − 𝑣2∥2)

)𝑑−1
𝑑𝑣2

NW
B𝑑
𝜅

(𝑧1 |𝜇1, Σ1) ∗ NW
B𝑑
𝜅

(𝑧2 |𝜇2, Σ2) ≁ NW
B𝑑
𝜅

(𝑧 |𝜇, Σ).
(46)

A.3.4 Isotropic. In the isotropic setting, the density of the wrapped
normal is given by:

NW

B𝜅
(𝑧 |𝝁, 𝜎2) = 𝑑𝜈W (𝑧 |𝝁, 𝜎2)

𝑑M(𝑧)

= (2𝜋𝜎2)−𝑑/2 exp
(
−
𝑑𝜅𝑝 (𝝁, 𝑧)2

2𝜎2

) ( √
𝜅𝑑𝜅𝑝 (𝝁, 𝑧)

sinh(
√
𝜅𝑑𝜅𝑝 (𝝁, 𝑧))

)𝑑−1
.

(47)

Its integral form can be given by:∫
B𝑑
𝜅

NW
𝐸𝑑𝜅

(𝑧 |𝝁, 𝜎2)𝑑M(𝑧)

=

∫
𝑅+

∫
𝑆𝑑−1

1

𝑍𝑅
𝑒
− 𝑟2

2𝜎2 𝑟𝑑−1𝑑𝑟𝑑𝑠𝑆𝑑−1 ,
(48)

where 𝑍𝑅
is the constant, and it is defined as

𝑍𝑅 = 𝜁

(
𝑑 − 1

𝑘

)
𝑒

(𝑑−1−2𝑘 )2
2

𝑐𝜎2

[
1 + erf

(
(𝑑 − 1 − 2𝑘)

√
𝑐𝜎

√
2

)]
,

𝜁 =
2𝜋𝑑/2

Γ(𝑑/2)

√︂
𝜋

2

𝜎
1

(2
√
𝑐)𝑑−1

𝑑−1∑︁
𝑘=0

(−1)𝑘 .

(49)

Thus, we can derive its additivity:

NW
B𝑑
𝜅

(𝑧1 |𝜇1, Σ1) ∗ NW
B𝑑
𝜅

(𝑧2 |𝜇2, Σ2)

=

∫
B𝑑
𝜅

NW
B𝑑
𝜅

(𝑧 − 𝑧2 |𝜇1, Σ1)NW
B𝑑
𝜅

(𝑧2 |𝜇2, Σ2)𝑑M(𝑧2)

=

∫
𝑅+

∫
𝑆𝑑−1

1

𝑍𝑅2
𝑒
− (𝑟−𝑟

2
)2

2𝜎2 (𝑟 − 𝑟2)𝑑−1𝛾𝜅𝑝 𝑒
− (𝑟

2
)2

2𝜎2 (𝑟2)𝑑−1𝑑𝑟𝑑𝑠𝑆𝑑−1

=

∫
𝑅+

∫
𝑆𝑑−1

1

𝑍𝑅2
𝑒
− (𝑟2−2𝑟𝑟

2
+2𝑟2

2
)

2𝜎2 (𝑟2 (𝑟 − 𝑟2))𝑑−1𝛾𝜅𝑝𝑑𝑟𝑑𝑠𝑆𝑑−1

𝛾𝜅𝑝 =

( √
𝜅𝑑𝜅𝑝 (𝝁1, 𝑧1)

sinh(
√
𝜅𝑑𝜅𝑝 (𝝁1, 𝑧1))

)𝑑−1
NW

B𝑑
𝜅

(𝑧1 |𝜇1, Σ1) ∗ NW
B𝑑
𝜅

(𝑧2 |𝜇2, Σ2) ≁ NW
B𝑑
𝜅

(𝑧 |𝜇, Σ).
(50)

Thus, we have demonstrated the lack of additivity in the wrapped

normal distribution.

A.4 Proof of Theorem 2
First, we derive the form of the probability distribution of the for-

ward diffusion process.

A.4.1 Definition: The folded normal distribution. If the probabil-
ity distribution of 𝑌 follows the Gaussian distribution, with 𝑌 ∼
𝑁 (𝜇, 𝜎2), thus, 𝑍 = |𝑌 |, satisfies 𝑍 ∼ N𝐹 (𝜇, 𝜎2), where N𝐹 (𝜇, 𝜎2)
denotes the folded normal distribution with mean 𝜇 and variance

𝜎 . The density of 𝑍 is given by

𝑓 (z) = 1

√
2𝜋𝜎2

[
𝑒
− 1

2𝜎2
(z−𝜇 )2 + 𝑒−

1

2𝜎2
(z+𝜇 )2

]
. (51)

The density can be written in a more attractive form

𝑓 (z) =
√︂

2

𝜋𝜎2
𝑒
− (z2+𝜇2 )2

2𝜎2
cosh

( 𝜇z
𝜎2

)
. (52)

Specifically, when 𝜇 = 0, the density can be represented by

𝑓 (z) =
√︂

2

𝜋𝜎2
𝑒
− z2

2𝜎2 , (53)

which is also named the half-normal distribution.

A.4.2 Definition. The random variable 𝑍 obeys the probability

distribution 𝑁𝑓 (𝜇, 𝜎) if and only if the density of 𝑍 can be given by

𝑓 (z) =


√︃
2

𝜋𝜎2
𝑒
− (z−𝜇)2

2𝜎2 , z ≥ 𝜇

0, z < 𝜇
(54)

A.4.3 Proof. Now,we can prove this Theorem, the angle-constrained

noise 𝑛 in the forward diffusion process is given by Eq. (12). For

the convenience of the later derivation, it can be assumed that

sgn(logmap
𝜅
𝑜 (e𝑚)) = 1 Thus, according to the definition of the

folded normal distribution, it follows that:

𝑛 ∼ N𝐹 (0, 𝐼 ), (55)

Similarly, it can be easily obtained from Eq. (13) and Eq. (55) that

the density of z𝑡 in the diffusion process can be written by:

𝑓 (z𝑡 ) =


√︃
2

𝜋𝜎2

𝑡

𝑒
− (z−𝜇𝑡 z0 )2

2𝜎2

𝑡 , z ≥ 𝜇𝑡 z0
0, z < 𝜇𝑡 z0

(56)

13



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

(a) ML-1M (b) Amazon-Book (c) Yelp2020

Figure 5: The variation of model performance across three datasets as diffusion steps and inference steps change.

where 𝜇𝑡 =
√
𝛼𝑡 + 𝛿 tanh[

√
𝜅𝜆𝜅𝑜 (𝑡)/𝑇0], and 𝜎𝑡 = (1 − 𝛼𝑡 )𝐼 .

Thus, the probability density distribution of z𝑡 satisfies:

𝑝 (z𝑡 |z0) = 𝑁𝑓 (𝜇𝑡 , 𝜎𝑡 ) . (57)

and

lim

𝑡→∞
z𝑡 ∼ 𝑁𝑓 (𝛿z0, 𝐼 ). (58)

B EXPERIMENTS
B.1 Experimental Settings
B.1.1 Baselines. The detailed information of the baselines is as

follows:

Classic Collaborative Filtering Methods:
• BPRMF [35]: This is a typical collaborative filtering method that

optimizes MF with a pairwise ranking loss.

• LightGCN [12]: This is an effective GCN-based collaborative

filtering method, which improves performance by eliminating

non-linear projection and activation.

Auto-Encoders Recommender Methods:
• CDAE [54]: This is a collaborative filtering method that applies

denoising auto-encoders with user-specific latent factors to im-

prove top-N recommendation performance.

• MultiDAE [24]: This is a variational autoencoder approach with

partial regularization and multinomial likelihood for collabora-

tive filtering on implicit feedback data

Diffusion Recommender Methods:
• CODIGEM [47]: This method employs a simple CL approach

that avoids graph augmentations and introduces uniform noise

into the embedding space to generate contrastive views.

• DiffRec [50]: This method uses LightGCN as the backbone and

incorporates a series of structural augmentations to enhance

representation learning.

• DDRM [66]: This is a plug-in denoising diffusion model that en-

hances robust representation learning for existing recommender

systems by iteratively injecting and removing noise from user

and item embeddings.

Hyperbolic Recommender Methods:
• HyperML [46]: This method is the first to propose using hyper-

bolic margin ranking loss for predicting user preferences toward

items.

• HGCF [41]: This method is the first hyperbolic GCN model for

collaborative filtering that can be effectively learned using a

margin ranking loss.

• HICF [57]: This method adapts hyperbolic margin ranking learn-

ing by making the pull and push procedures geometric-aware,

aiming to provide informative guidance for the learning of both

head and tail items.

B.1.2 Hyper-parameter Settings. We determine the optimal hyper-

parameters based on the Recall@20 metric evaluated on the valida-

tion set. For our Hyperbolic model, we tune these key parameters.

The learning rate is varied among {1𝑒−4, 5𝑒−4, 1𝑒−3, 5𝑒−3} , while
the curvature c is set to either -1 or 1. We explore GCN architectures

with {2, 3, 4} layers, and weight decay values of {0.001, 0.005, 0.01}.
The margin is tested at {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. For
the diffusion model, we investigate diffusion steps 𝑇 ranging from

{10, 20, 30, 40, 50, 60}. The noise schedule is bounded between 1𝑒−4

and 1𝑒−2. We explore loss balance factors 𝜆 from {0.1, 0.2, ..., 0.6},
and denoising weight factors 𝛾 from {0, 0.05, 0.1, 0.2, ..., 0.9}. All
experiments are conducted using PyTorch on a server equipped

with 16 Intel Xeon CPUs @2.10GHz and an NVIDIA RTX 4090 GPU,

ensuring efficient training and evaluation of our models across this

extensive hyperparameter space.

B.2 More Experimental Results
B.2.1 Diffusion Step Analysis. Here is further analysis of the diffu-
sion steps. Figure 5 illustrates how the model performance metric

N@10 changes across three datasets as the diffusion steps and

inference steps vary.

B.2.2 Embedding Visualization. Figures 6, 7, and 8 present t-SNE

visualizations of item embeddings learned by DDRM, HICF, and

HDRM on the ML-1M, Amazon-Book, and Yelp2020 datasets, of-

fering insights into our model’s capability to address distribution

shifts. We categorize items based on their popularity in the training

set. For ML-1M and Yelp2020, the top 50% most popular items are

designated as "popular", while the bottom 50% are labeled "unpopu-

lar". Due to its larger size, the Amazon-Book dataset uses a 20-80

split for popular and unpopular items, respectively.

The visualizations reveal that DDRM’s learned embeddings for

popular and unpopular items maintain a noticeable separation in
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Figure 6: Visualize the distribution of item embeddings on the ML-1M dataset using DDRM, HICF, and HDRM. HDRM ensures
that popular and unpopular items have representations with almost the same positions in the same space. .
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Figure 7: Visualize the distribution of item embeddings on the Amazon-Book dataset using DDRM, HICF, and HDRM. HDRM
ensures that popular and unpopular items have representations with almost the same positions in the same space.
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Figure 8: Visualize the distribution of item embeddings on the Yelp2020 dataset using DDRM, HICF, and HDRM. HDRM ensures
that popular and unpopular items have representations with almost the same positions in the same space.
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the representation space. In contrast, HDRM achieves a more uni-

form distribution of both types of embeddings within the same

space. This observation suggests that HDRM effectively mitigates

the tendency of recommender systems to over-recommend pop-

ular items at the expense of niche selections. Interestingly, HICF

demonstrates a more pronounced differentiation between the two

embedding categories. This characteristic can be attributed to the

curvature of hyperbolic space, which allows for exponential growth

of representational capacity within a finite area. Consequently, this

property naturally amplifies item distinctions, particularly in terms

of popularity.
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