
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISTRIBUTED EPIGRAPH FORM MULTI-AGENT SAFE
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Most existing safe multi-agent reinforcement learning (MARL) algorithms con-
sider the constrained Markov decision process (CMDP) problem, which targets
bringing the mean of constraint violation below a user-defined threshold. How-
ever, as observed by existing works albeit for the single-agent case, CMDP al-
gorithms suffer from unstable training when the constraint threshold is zero. This
paper proposes EFMARL, a novel MARL algorithm that improves upon the prob-
lems faced in the zero constraint threshold setting by extending the epigraph form,
a technique to perform constrained optimization, to the centralized training and
distributed execution (CTDE) paradigm. We validate our approach in different
Multi-Particle Environments and Safe Multi-agent MuJoCo environments with
varying numbers of agents. Simulation results show that our algorithm achieves
stable training and the best performance while satisfying constraints: it is as safe
as the safest baseline that has significant performance loss, and achieves similar
performance as baselines that prioritize performance but violate safety constraints.

1 INTRODUCTION

Multi-agent systems (MAS) play an integral role in our aspirations for a more convenient future with
examples such as autonomous warehouse operations (Kattepur et al., 2018), large-scale autonomous
package delivery (Ma et al., 2017), traffic routing (Wu et al., 2020), and power systems (Biagioni
et al., 2022). For MAS, distributed policies are desirable due to their ability to scale to a large
number of agents compared to centralized policies (Pereira et al., 2022; Saravanos et al., 2023). To
construct such policies, multi-agent reinforcement learning (MARL) (Zhang et al., 2021; Garg et al.,
2024) has emerged as an attractive method. While the learned policies must be safe for real-world
deployment, many MARL algorithms do not explicitly consider safety constraints (Sunehag et al.,
2017; Rashid et al., 2020b; Yang et al., 2020; Wang et al., 2020; Peng et al., 2021; Rashid et al.,
2020a), but instead optimizing for a single objective that must be designed to incorporate safety.
Although safe MARL methods have been developed in recent years (Gu et al., 2023; Liu et al.,
2021; Ding et al., 2023; Lu et al., 2021; Geng et al., 2023; Zhao et al., 2024), most of these methods
target the constrained Markov decision process (CMDP) (Altman, 2004) setting, which only asks for
the mean constraint violation to stay below a user-defined threshold. This is unacceptable for safety-
critical applications such as autonomous vehicles or human-robot interactions, where any constraint
violation can be fatal. While this can be addressed by setting the constraint violation threshold to
zero in the CMDP, in this setting the popular Lagrangian methods experience training instabilities
which result in sharp drops in performance during training, and non-convergence or convergence to
poor policies (So & Fan, 2023; He et al., 2023; Ganai et al., 2024; Huang et al., 2024).

These concerns have been identified recently, resulting in a series of works that enforce hard con-
straints (Zanon & Gros, 2020; Zhao et al., 2021; So & Fan, 2023; Ganai et al., 2024) using tech-
niques inspired by Hamilton-Jacobi reachability (Tomlin et al., 2000; Lygeros, 2004; Mitchell et al.,
2005; Margellos & Lygeros, 2011; Bansal et al., 2017) in deep reinforcement learning (RL) for the
single-agent case and have been shown to significantly improve safety compared to other safe RL
approaches. However, to the best of our knowledge, theories, and algorithms for safe RL are still
lacking for the multi-agent scenario, especially when policies are executed in a distributed manner.
While single-agent RL methods can be directly applied to the MARL setting by treating the MAS
as a centralized single agent, the joint action space grows exponentially with the number of agents,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

preventing these algorithms from scaling to scenarios with a large number of agents (Guestrin et al.,
2002; Sunehag et al., 2017; Foerster et al., 2018).

To tackle the problem of zero constraint violation in multi-agent scenarios with distributed policies1

while achieving high collaborative performance, we propose Epigraph Form MARL (EFMARL).
EFMARL directly tackles the multi-agent constrained optimal control problem (MACOCP), whose
solution satisfies zero constraint violation. To solve the MACOCP, EFMARL uses the epigraph
form technique (Boyd & Vandenberghe, 2004), which has previously been shown to result in better
policies compared to Lagrangian-based methods (So & Fan, 2023) in the single-agent setting. Con-
sidering the multi-agent setting, we propose an extension of the epigraph form that falls under the
centralized training distributed execution (CTDE) paradigm.

We validate EFMARL using various tasks from multi-particle environments (MPE) (Lowe et al.,
2017) and Safe Multi-agent MuJoCo (Gu et al., 2023) with varying numbers of agents and compare
its performance with existing safe MARL algorithms using the penalty and Lagrangian methods.
The results suggest that EFMARL achieves the best performance while satisfying constraints: it is
as safe as conservative baselines that achieve high safety but sacrifice performance, while matching
the performance of unsafe baselines that sacrifice safety for high performance. In addition, while the
baseline methods require different choices of hyperparameters to perform well in each environment
and suffer from unstable training because of zero constraint violation threshold, EFMARL is stable
in training using the same hyperparameters across all environments, indicative of the algorithm’s
robustness to environmental changes. To summarize, our contributions are presented below:

• Drawing on prior work that addresses the training instability of Lagrangian methods in the
zero-constraint violation setting, we extend the epigraph form method from single-agent RL to
MARL, improving upon the training instability of existing MARL algorithms.

• We present theoretical results showing that the outer problem of the epigraph form can be
decomposed and solved in a distributed manner during online execution. This allows EFMARL
to fall under the CTDE paradigm.

• We illustrate through extensive simulations that, without any hyperparameter tuning, EFMARL
achieves stable training and is as safe as the most conservative baseline while simultaneously
being as performant as the most aggressive baseline across all environments.

2 RELATED WORK

Shielding for Safe MARL One popular method of providing safety to learning-based methods
is using shielding or a safety filter (Garg et al., 2024). Here, an unconstrained learning method is
paired with a shield or safety filter using techniques such as predictive safety filters (Zhang et al.,
2019; Muntwiler et al., 2020), control barrier functions (Cai et al., 2021; Pereira et al., 2022) or
automata (ElSayed-Aly et al., 2021a; Xiao et al., 2023; Melcer et al., 2022). Such shields are often
constructed before learning begins and are used to modify either the feasible actions or the output of
the learned policy to maintain safety. One benefit is that safety can be guaranteed during both train-
ing and deployment since the shield is constructed before training. However, they require domain
expertise to build a valid shield, which can be challenging in the single-agent setting and even more
difficult for MAS (Garg et al., 2024). Other methods can automatically synthesize shields but face
scalability challenges (Melcer et al., 2022; ElSayed-Aly et al., 2021b). Another drawback is that the
policy after shielding might not consider the same objective as the original policy and may result in
noncollaborative behaviors or deadlocks (Qin et al., 2021; Zhang et al., 2023; 2024).

Unconstrained MARL Early works that approached the problem of safety for MARL focused
on navigation problems and collision avoidance (Chen et al., 2017b;a; Everett et al., 2018; Semnani
et al., 2020), where safety is achieved by a sparse collision penalty (Long et al., 2018), or a shaped
reward penalizing getting close to obstacles and neighboring agents (Chen et al., 2017b;a; Everett
et al., 2018; Semnani et al., 2020). However, adding a penalty to the reward function changes the
original objective, so the resulting policy may not be optimal for the original constraint optimization

1In this paper, the policies are distributed if each agent makes decisions using local information/sensor data
and information received via message passing with other agents (Garg et al., 2024), although this setting is
sometimes called “decentralized” in MARL (Zhang et al., 2018).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

problem. In addition, the satisfaction of collision avoidance constraints is not necessarily guaranteed
by even the optimal policy (Massiani et al., 2023; Everett et al., 2018; Long et al., 2018).

Constrained MARL In contrast to unconstrained MARL methods, which change the constraint
optimization problem to an unconstrained problem, constrained MARL methods explicitly solve the
CMDP problem. For the single-agent case, prominent methods for solving CMDPs include primal
methods (Xu et al., 2021), primal-dual methods using Lagrange multipliers (Borkar, 2005; Tessler
et al., 2019; He et al., 2023; Huang et al., 2024), and via trust-region-based approaches (Achiam
et al., 2017; He et al., 2023). These methods provide guarantees either in the form of asymptotic
convergence guarantees to the optimal (safe) solution (Borkar, 2005; Tessler et al., 2019) using
stochastic approximation theory (Robbins & Monro, 1951; Borkar, 2009), or recursive feasibility
of intermediate policies (Achiam et al., 2017; Satija et al., 2020) using ideas from trust region op-
timization (Schulman et al., 2015a). The survey (Gu et al., 2022) provides an overview of the
different methods of solving safety-constrained single-agent RL. In multi-agent cases, however, the
problem becomes more difficult because of the non-stationary behavior of other agents, and similar
approaches have been presented only recently (Gu et al., 2023; Liu et al., 2021; Ding et al., 2023;
Lu et al., 2021; Geng et al., 2023; Zhao et al., 2024; Chen et al., 2024). However, the CMDP setting
they handle makes it difficult for them to handle hard constraints, and results in poor performance
when the constraint violation threshold is zero (Ganai et al., 2024).

3 PROBLEM SETTING AND PRELIMINARIES

3.1 MULTI-AGENT CONSTRAINED OPTIMAL CONTROL PROBLEM

We consider the multi-agent constrained optimal control problem defined as follows. Consider a
homogeneous MAS with N agents. At time step k, the global state and control input is given
by xk ∈ X ⊆ Rn and uk ∈ U ⊆ Rm. The global control vector is defined by concatenation
uk := [uk1 ; . . . ;u

k
N], where uki ∈ Ui is the control input of agent i. We consider nonlinear discrete-

time dynamics for the MAS:
xk+1 = f(xk, uk), (1)

where f : X ×U → X is the global dynamics function. We consider the partially observable setting,
where each agent has a limited communication radius R > 0 and can only communicate with other
agents or observe the environment within its communication region. Denote oki = Oi(x

k) ∈ O ⊆
Rno as the vector of the information observed by agent i at the time step k, where Oi : X → O is
an encoding function of the information shared from neighbors of agent i and the observed data of
the environment. We allow multi-hop communication between agents, so an agent can communicate
with another agent outside its sensing region if a communication path exists between them.

Let the avoid/unsafe set of agent i be Ai := {oi ∈ O : hi(oi) > 0}, for some function
hi : O → R. The global avoid set is then defined as A := {x ∈ X : h(x) > 0}, where
h(x) = maxi hi(oi) = maxi hi(Oi(x)). In other words, ∃i, s.t. oi ∈ Ai ⇐⇒ x ∈ A.
Given a global cost function l : X × U → R describing the task for the agents to accomplish 2 ,
we aim to find decentralized control policies πi : O → Ui such that starting from any given ini-
tial states x0 /∈ A, the policies keep the agents outside the avoid set A and minimize the infinite
horizon cost

∑∞
k=0 l(x

k, π(xk)). In other words, denoting π : X → U as the joint policy such
that π(x) = [π1(o1); . . . ;πN (oN)] = [π1(O1(x)); . . . ;πN (ON (x))], we aim to solve the following
infinite-horizon multi-agent constrained optimal control problem (MACOCP) for a given initial state
x0:

min
{πi}N

i=1

∞∑
k=0

l(xk, π(xk)) (2a)

s.t. hi(o
k
i) ≤ 0, oki = Oi(x

k), ∀i ∈ {1, . . . , N}, k ≥ 0, (2b)

xk+1 = f(xk, π(xk)), k ≥ 0. (2c)

Note that the safety constraint (2b) differs from the average constraints considered in CMDPs (Alt-
man, 2004). Consequently, instead of allowing safety violations to occur as long as the mean con-

2The cost function l is not the cost in CMDP. Rather, it corresponds to the negation of the reward in CMDP.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

straint violation is below a threshold, this formulation disallows any constraint violation. From
hereon after, we omit the dynamics constraint (2c) for conciseness.

3.2 EPIGRAPH FORM

Existing methods are unable to solve (2) well. This has been observed previously in the single-agent
setting (Zanon & Gros, 2020; Zhao et al., 2021; So & Fan, 2023; Ganai et al., 2024). We show later
that the poor performance of methods that tackle the CMDP setting to the constrained problem (2)
also translates to the multi-agent setting, as we observe a similar phenomenon in our experiments
(Section 5). Namely, although unconstrained MARL can be used to solve (2) using the penalty
method (Nayak et al., 2023), this does not perform well in practice, where a small penalty results
in policies that violate constraints, and a large penalty results in higher total costs. The Lagrangian
method (Gu et al., 2023) can solve the problem theoretically, but it suffers from unstable training and
has poor performance in practice when the constraint violation threshold is zero (So & Fan, 2023;
Ganai et al., 2024). In this section, we introduce a new method of solving (2) that can mitigate the
above problems by extending prior work (So & Fan, 2023) to the multi-agent setting.

Given a constrained optimization problem with objective function J (e.g., J =
∑∞
k=0 l as in (2a)),

and constraints h (e.g., (2b)):

min
π

J(π) s.t. h(π) ≤ 0, (3)

its epigraph form (Boyd & Vandenberghe, 2004) is given as

min
π,z

z s.t. h(π) ≤ 0, J(π) ≤ z, (4)

where z ∈ R is an auxiliary variable. In other words, we add a constraint to enforce z as an upper
bound of the cost J(π), then minimize the upper bound z. The solution to (4) is identical to the
original (3) (Boyd & Vandenberghe, 2004). Furthermore, (4) is equivalent (So & Fan, 2023) to

min
z

z (5a)

s.t. min
π
Jz(π, z) ≤ 0, Jz(π, z) := max{h(π), J(π)− z} (5b)

As a result, the original constrained problem (3) is decomposed into the following two subproblems:

1. An unconstrained inner problem (5b), where, given an arbitrary desired cost upper bound z, we
find π such that Jz(π, z) is minimized, i.e., best satisfies the constraints h ≤ 0 and J ≤ z.

2. A 1-dimensional constrained outer problem (5a) over z to find the smallest cost upper bound z
such that z is a cost upper bound (J ≤ z) and the constraints h(π) ≤ 0 holds.

Comparison with the Lagrangian method. Another popular way to solve MACOCP (2) is the
Lagrangian method (Gu et al., 2023). However, it suffers from unstable training when considering
the zero constraint violation (So & Fan, 2023; He et al., 2023) setting. More specifically, this refers
to the case with constraints

∑∞
k=0 c(x

k) ≤ 0 for c : X → R≥0 non-negative. Since h can be
negative, we can convert our problem setting (3) to the zero constraint violation setting by taking
c(x) := max{0, h(x)}. Then, (3) reads as

min
π

J(π) s.t.

∞∑
k=0

max{0, h(xk)} ≤ 0. (6)

The Lagrangian form of (6) is then

max
λ≥0

min
π

Jλ(π, λ) := J(π) + λ

∞∑
k=0

max{h(xk), 0}, (7)

where λ is the Lagrangian multiplier and is updated with gradient ascent. However, ∂
∂λJλ(π, λ) =∑∞

k=0 max{h(xk), 0} ≥ 0, so λ continuously increases and never decreases. As ∂
∂πJλ(π, λ) scales

linearly in λ when h(xk) > 0 for some k, a large value of λ causes a large gradient w.r.t x, and
makes the training unstable. Note that for the epigraph form, since z does not multiply with the
cost function J but is added to J in (5b), the gradient ∂

∂πJz(π, z) does not scale with the value of z
resulting in more stable training. We validate this in our experiments (Section 5).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EPIGRAPH FORM MULTI-AGENT REINFORCEMENT LEARNING

In this section, we propose the Epigraph Form MARL (EFMARL) algorithm to solve MACOCP
(2) using MARL. First, we transfer MACOCP (2) to its epigraph form with an auxiliary variable z
to model the desired cost upper bound. To fit the CTDE paradigm, we propose a centralized inner
problem to jointly train the agents’ policies given the desired cost upper bound z, and a distributed
outer problem in execution to find the smallest cost upper bound z that ensures safety.

4.1 EPIGRAPH FORM FOR MACOCP

To rewrite MACOCP (2) into its epigraph form (5), we first define the cost-value function V l for a
joint policy π using the standard optimal control notation (Bertsekas, 2012):

V l(xτ ;π) :=
∑
k≥τ

l(xk, π(xk)). (8)

We also define the constraint-value function V h as the maximum constraint violation:

V h(xτ ;π) := max
k≥τ

h(xk) = max
k≥τ

max
i
hi(o

k
i) = max

i
max
k≥τ

hi(o
k
i) = max

i
V hi (o

τ
i ;π). (9)

Here, we interchange the max to define the local per-agent functions V hi (o
τ
i ;π) = maxk≥τ hi(o

k
i).

Each V hi uses only the agent’s local observation and thus is distributed. We now introduce the
auxiliary variable z for the desired upper bound of V l, allowing us to restate (2) concisely as

min
{πi}N

i=1

V l(x0;π) s.t. V h(x0;π) ≤ 0. (10a)

The epigraph form (5) of (10) then takes the form

min
z

z (11a) s.t. min
{πi}N

i=1

max
{
max
i
V hi (o

τ
i ;π), V

l(xτ ;π)− z
}

︸ ︷︷ ︸
:=V (x0,z;π)

≤ 0. (11b)

By interpreting the left-hand side of (11b) as a new policy optimization problem, we define the total
value function V as the objective function to (11b). This can be simplified as

V (xτ , z;π) = max{max
i
V hi (o

τ
i ;π), V

l(xτ ;π)− z} (12a)

= max
i

max{V hi (oτi ;π), V l(xτ ;π)− z} = max
i
Vi(x

τ , z;π), (12b)

Again, we interchange the max to define Vi(xτ , z;π) = max{V hi (oτi ;π), V l(xτ ;π) − z} as the
per-agent total value function. Using this to rewrite (11) then yields

min
z

z (13a) s.t. min
π

max
i
Vi(x

0, z;π) ≤ 0. (13b)

This decomposes the original problem (2) into an unconstrained inner problem (13b) over policy π
and a constrained outer problem over z. During offline training, we solve the inner problem (13b):
for parameter z, find the optimal policy π(·, z) to minimize V (x0, z;π). Note that the optimal policy
of the inner problem depends on z. During execution, we solve the outer problem (13a) online to get
the minimal z that satisfies constraint (13b). Using this z in the z-conditioned policy π(·, z) found
in the inner problem gives us the optimal policy for the overall EF-MACOCP.

To solve the inner problem (13b), the total value function V must be amenable to dynamic program-
ming, which we show in the following proposition.
Proposition 1. Dynamic programming can be applied to EF-MACOCP (13), resulting in

V (xk, zk;π) =
�
�min
uk

max{h(xk), V (xk+1, zk+1;π)}, zk+1 = zk − l(xk, π(xk)). (14)

The proof of Proposition 1 is provided in Appendix A. In other words, for a given cost upper bound
zk, the value function V at the current state xk can be computed using the value function at the next
state xk+1 but with a different cost upper bound zk+1 = zk− l(xk, π(xk)) which itself is a function
of zk. This can be interpreted as a “dynamics” for the cost upper bound z. Intuitively, if we wish
to satisfy the upper bound zk but suffer a cost l(xk, π(xk)), then the upper bound at the next time
step should be smaller by l(xk, π(xk)) so that the total cost from xk remains upper bounded by zk.
Additional discussion on Proposition 1 is provided in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝑜!", 𝑧"
𝑜!#, 𝑧#

𝑜$", 𝑧"
𝑜$#, 𝑧#	

𝑥#%! = 𝑓 𝑥#, 𝜋 𝑥, 𝑧

𝑧#%! = 𝑧# − 𝑙 𝑥#, 𝑢#

Centralized cost-value function
𝑉& 𝑥, 𝑧

𝜋! ⋅, 𝑧! 𝜋$ ⋅, 𝑧$ 𝜋' ⋅, 𝑧'

𝑜'" , 𝑧" 𝑜'# , 𝑧#	

⋯ ⋯

⋯

Centralized training

𝑉!(𝑜!, 𝑧 𝑉$(𝑜$, 𝑧 𝑉'(𝑜', 𝑧⋯

Distributed constraint-value
functions (𝑉)(≤ 0 ⇒Safe)

MSE

Total value function
𝑉 = max max

)
𝑉)(𝑜), 𝑧 , 𝑉& 𝑥, 𝑧 − 𝑧	

𝜋! ⋅, 𝑧

𝜋$ ⋅, 𝑧⋯

𝜋' ⋅, 𝑧

MSE

𝑧)# = argmin
*

𝑧

s. t. 	 𝑉)(⋅, 𝑧 ≤ 0

𝜋) = 𝜋) ⋅, 𝑧)#

⇒

PPO policy loss

Data collection

Distributed execution

𝑧!

Figure 1: EFMARL algorithm. Randomly sampled initial states and z0 are used to collect trajec-
tories in x and z using the current policy π. In the centralized training (orange blocks), distributed
constraint-value functions V hi and policies πi and a centralized cost-value function V l are jointly
trained. During distributed execution (green blocks), the distributed V hi are used to solve the outer
problem (15b) to compute the optimal zi, which is used in each agent’s z-conditioned policy.

Remark 1 (Effect of z on the learned policy). From (12), for a fixed x and π, observe that for z
large enough (i.e., V l(x;π)−z is small enough), then V (x, z;π) = V h(x;π). Consequently, taking
a gradient step on V (x, z;π) equals to gradient steps on V h(x;π), reducing the constraint violation
possibly in exchange for an increase in the total cost V l(x;π). Otherwise, V (x, z;π) = V l(x;π).
Taking gradient steps on V (x, z;π) equals to gradient steps on V l(x;π), reducing the total cost
possibly in exchange for larger constraint violation.

4.2 SOLVING THE INNER PROBLEM USING MARL

Following So & Fan (2023), we solve the inner problem using centralized training with proximal
policy optimization (PPO) (Schulman et al., 2017). We use a graph neural network (GNN) back-
bone for the z-conditioned policy πθ(oi, z), cost-value function V lϕ(x, z), and the constraint-value
function V hψ (oi, z) with parameters θ, ϕ, and ψ, respectively. Note that other NN structures can be
used as well. The implementation details are introduced in Appendix E.

Policy and value function updates During centralized training, the NNs are trained to solve the
inner problem (13b), i.e., for a randomly sampled z, find policy π(·, z) that minimizes the total
value function V (x0, z;π). We follow MAPPO (Yu et al., 2022a) to train the NNs with advantage
decomposition (Gu et al., 2023). Specifically, when calculating the advantage for i-th agent, Ai
(Schulman et al., 2017), with the generated advantage estimation (GAE) (Schulman et al., 2015b)
for each agent, instead of using the cost function V l (Yu et al., 2022a), we apply the decomposed
total value function max{V hψ (oi, z), V lϕ(x, z) − z}. We perform trajectory rollouts following the
dynamics for x (1) and z (14) using the learned policy πθ, starting from random sampled x0 and
z0. After collecting the trajectories, we train the cost-value function V lϕ and the constraint-value
function V hψ via regression and use the PPO policy loss to update the z-conditioned policy πθ.

4.3 SOLVING THE OUTER PROBLEM DURING DISTRIBUTED EXECUTION

During execution, we solve the outer problem of EF-MACOCP (13) online. However, the outer
problem is still centralized because the constraint (13b) requires the centralized cost-value function
V l. To achieve a distributed policy during execution, we introduce the following theoretical result:
Theorem 1. The outer problem of EF-MACOCP (5a) is equivalent to the following problem:

z = max
i
zi (15a)

s.t. zi = argmin z′ s.t. V hi (oi;π(·, z′)) ≤ 0, i = 1, · · · , N. (15b)

The proof is provided in Appendix B. Theorem 1 enables computing z without the use of the cen-
tralized V l during execution. Specifically, each agent i solves the local problem (15b) for zi, which

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Agent Goal/landmark Obstacle Target positions Agent-agent/obstacle Agent-goal

Target Spread Formation Line Corridor ConnectSpread

Safe HalfCheetah(2x3) Safe Coupled HalfCheetah(4x3)

Figure 2: Simulation Environments. Visualizations of the (top) modified MPE Lowe et al. (2017)
and (bottom) Safe Multi-agent MuJoCo Gu et al. (2023) environments we consider.

is a 1D optimization problem and can be efficiently solved using root-finding methods (e.g., Chan-
drupatla (1997)) as in So & Fan (2023), then communicates zi among the other agents to obtain the
maximum (15a). One challenge is that this maximum may not be computable if the agents are not
connected. However, in our problem setting, if one agent is not connected, it does not appear in the
observations o of the connected agent. Therefore, it would not contribute to the V h of other agents.
As a result, it is sufficient for only the connected agents to communicate their zi. Furthermore, we
observe experimentally that the agents can achieve low cost while maintaining safety even if zi is
not communicated (see Section 5.3). Thus, we do not include zi communication for our method.

Since there may be errors estimating V h using NN, we can reduce the resulting safety violation by
modifying h to add a buffer region. Specifically, for a constant ν > 0, we modify h such that h ≥ ν
when the constraints are violated and h ≤ −ν otherwise. We then modify (15b) to V hψ (oi, zi) ≤ −ξ,
where ξ ∈ [0, ν] is a hyperparameter (where we want ξ ≈ ν to emphasize more on safety). This
makes z more robust to estimation errors of V h. We study the importance of ξ in Section 5.3.

5 EXPERIMENTS

In this section, we design experiments to answer the following research questions:

1. Does EFMARL satisfy safety constraints and achieve low cost with constant hyperparameters
across all environments?

2. How does EFMARL behave compared with baselines with different hyperparameters consid-
ering performance, safety, and training stability?

3. Does EFMARL maintain high performance and safety with an increasing number of agents?

Details for the implementation, environments, and hyperparameters are provided in Appendix E.

5.1 SETUP

We evaluate EFMARL in two sets of environments: a modified MPE (Lowe et al., 2017), and Safe
Multi-agent MuJoCo (Gu et al., 2023) (see Figure 2). In MPE, the agents are assumed to have
double integrator dynamics with bounded continuous action spaces [−1, 1]2. We provide the full
details of all tasks in Appendix E. To increase the difficulty of the tasks, we add 3 static obstacles
to these environments. For Safe Multi-agent MuJoCo environments, we consider HalfCheetah 2x3
and Coupled HalfCheetah 4x3. The agents must collaborate to make the cheetah run as fast as
possible without colliding with a moving wall in front. To design the constraint function h, we let
ν = 0.5 in all our experiments and ξ = 0.4 when solving the outer problem.

Baselines We compare our algorithm with the state-of-the-art (SOTA) MARL algorithm Infor-
MARL (Nayak et al., 2023) with a constraint-penalized cost l′(x, u) = l(x, u) + βmax{h(x), 0},

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Target

0.0 0.5 1.0
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Spread

0.0 0.5 1.0
Cost

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Formation

200 400
Cost

0.5

1.0

Sa
fe

ty
 ra

te

HalfCheetah 2x3

0.0 0.5 1.0
Cost

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Line

0.5 1.0 1.5
Cost

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Corridor

0.5 1.0
Cost

0.8

0.9

1.0

Sa
fe

ty
 ra

te

ConnectSpread

200 400 600
Cost

0.25

0.50

0.75

1.00

Sa
fe

ty
 ra

te

Coupled HalfCheetah 4x3

EFMARL (ours)
InforMARL (0.02)

InforMARL (0.1)
InforMARL (0.5)

InforMARL-L (1)
InforMARL-L (5)

InforMARL-L (lr)

Figure 3: Comparison on modified MPE (N = 3) and Safe Multi-agent MuJoCo. EFMARL
is consistently closest to the top-left corner in all environments, achieving low cost with near 100%
safety rate. The dots show the mean values and the error bar shows one standard deviation.

where β ∈ {0.02, 0.1, 0.5} is a penalty parameter, and denote this baseline as InforMARL (β).
We also consider the SOTA safe MARL algorithm MAPPO-Lagrangian (Gu et al., 2021; 2023)3.
In addition, because the learning rate of the Lagrangian multiplier λ is tiny (10−7) in the official
implementation4 of MAPPO-Lagrangian (Gu et al., 2023), the value of λ during training will be
largely determined by the initial value λ0 of λ. We thus consider two λ0 ∈ {1, 5}. Moreover, to
compare the training stability, we consider increasing the learning rate of λ in MAPPO-Lagrangian
to 3 × 10−3.5 For a fair comparison, we reimplement MAPPO-Lagrangian using the same GNN
backbone as used in EFMARL and InforMARL, denoted as InforMARL-L (λ0) and InforMARL-L
(lr) for the increased learning rate one. All algorithms use an RNN for the final layer.

Evaluation criteria Following the goal of the MACOCP, we use the cost and safety rate as the
evaluation criteria for the performances of all algorithms. The cost is the cumulative cost over the
trajectory

∑T
k=0 l(x

k, uk). The safety rate is defined as the ratio of agents that remain safe over the
entire trajectory, i.e., hi(oki) ≤ 0,∀k, over all agents. Unlike the CMDP setting, we do not report
the mean of constraint violations over time but the violation of the hard safety constraints.

5.2 RESULTS

We train all algorithms with 3 different random seeds and test the converged policies on 32 different
initial conditions. As discussed in Section 4.3, we disable the communication of zi between agents
(investigated in Section 5.3). The safety rate (y-axis) and cumulative cost (x-axis) for each algorithm
are plotted in Figure 3. Thus, the closer an algorithm is to the top-left corner, the better it performs.
In both MPE and safe Multi-agent MuJoCo environments, EFMARL is always closest to the top-
left corner, maintaining a low cost while having near 100% safety rate. While InforMARL with
β = 0.02 and InforMARL with λ0 = 1 generally have low costs, they also have frequent constraint
violations. With β = 0.5 or λ0 = 5, they prioritize safety but at the cost of high cumulative costs.
EFMARL, however, maintains a safety rate similar to the most conservative baselines (InforMARL
(0.5) and InforMARL-L (5)) but has much lower costs. We point out that no single baseline method
behaves considerably better on all the environments: the performance of the baseline methods varies
wildly between environments, demonstrating the sensitivity of these algorithms to the choice of

3We omit the comparison with MACPO (Gu et al., 2021; 2023) as it was shown to perform similarly to
MAPPO-Lagrangian but have significantly worse time complexity and wall clock time for training.

4https://github.com/chauncygu/Multi-Agent-Constrained-Policy-Optimisation
5This is the smallest learning rate for λ that does not make MAPPO-Lagrangian ignore the safety constraint.

8

https://github.com/chauncygu/Multi-Agent-Constrained-Policy-Optimisation

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Agent Goal/landmark Obstacle Target positions Agent-agent/obstacle Agent-goal

EFMARL (ours) InforMARL(0.02) InforMARL(0.5) InforMARL-L(1) InforMARL-L(5)

Figure 4: Converged states in Corridor. EFMARL achieves the global minimum, while other
baselines converge to a different optimum (partly) due to training using a different cost function.

0.0 0.5 1.0
Step 1e5

0.0

0.5

1.0

1.5

C
os

t

Target

0.0 0.5 1.0
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Target

0.0 0.5 1.0
Step 1e5

0.0

0.5

1.0

C
os

t

Spread

0.0 0.5 1.0
Step 1e5

0.25

0.50

0.75

1.00

Sa
fe

ty
 ra

te

Spread

EFMARL (ours) InforMARL-L (lr)

Figure 5: Training Curves in Target and Spread. EFMARL has a smoother, more stable training
curve compared to InforMARL-L (lr). We plot the mean and shade the ±1 standard deviation.

hyperparameters. EFMARL, using a single set of constant hyperparameters, performs best in all
environments, demonstrating its insensitivity to the choice of hyperparameters.

An important observation is that for InforMARL (β) and InforMARL-L with a non-optimal λ, the
cost function optimized in their training process is different from the original cost function. Con-
sequently, they can have different optimal solutions compared to the original problem. Therefore,
even if their training converges, they may not reach the optimal solution of the original problem.
In Figure 4, the converged states of EFMARL and four baselines are shown. EFMARL reaches
the original problem’s global optimum and covers all three goals. On the contrary, the optimums
of InforMARL (0.02) and InforMARL-L (1) are changed by the penalty term, so they choose to
leave one agent behind to have a lower safety penalty. With an even more significant penalty, the
optimums of InforMARL (0.5) and InforMARL-L (5) are changed dramatically, and they forget the
goal entirely and only focus on safety.

To compare the training stability of EFMARL and InforMARL-L, we plot the cost and safety rate
of EFMARL and InforMARL-L (lr) during training in Figure 5. EFMARL has a smoother curve
compared to InforMARL-L (lr), supporting our theoretical analysis in Section 3.2. Due to space
limits, the plots for other environments and other baseline methods are provided in Appendix E.5.

To evaluate the performance of EFMARL in environments with more agents, we also train the
algorithms with 5 and 7 agents in the Formation and the Line environments. The results are shown
in Figure 6. Because InforMARL-L (lr) has the worst performance in MPE withN = 3, we omit it in
this experiment. EFMARL is closest to the upper left corner in all environments, and its performance
does not decrease with an increasing number of agents.

5.3 ABLATION STUDIES

Is communicating zi necessary? As introduced in Section 4.3, theoretically, all connected agents
should communicate and reach a consensus on z = maxi zi. However, we observe in Section 5.2
that the agents can perform well even if agents take z ← zi without communicating to compute the
maximum. We perform experiments on Line (N = 3) to understand the impact of this approximation
in Table 1 and see that using the approximation does not result in much performance difference
compared to communicating zi and using the maximum.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.5
Cost

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Formation (N=5)

0.2 0.4
Cost

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Formation (N=7)

0.25 0.50 0.75
Cost

0.7

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Line (N=5)

0.25 0.50
Cost

0.7

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Line (N=7)

EFMARL (ours)
InforMARL (0.02)
InforMARL (0.1)
InforMARL (0.5)
InforMARL-L (1)
InforMARL-L (5)

Figure 6: Comparison on modified MPE (N = 5, N = 7). EFMARL remains in the top-left
corner even when the number of agents is increased with similar performance across both N = 5
and N = 7. The dots show the mean and the error bar shows one standard deviation.

Table 1: Effect of zi communication (Section 4.3) in different environments.

Environment No communication (z ← zi) Communication (z = maxi zi)
Safety rate Cost Safety rate Cost

Target 97.9± 1.5 0.196± 0.108 96.9± 3.0 0.214± 0.141
Spread 99.0± 0.9 0.162± 0.144 98.6± 1.3 0.171± 0.128

Formation 98.3± 1.0 0.123± 0.940 98.3± 1.8 0.126± 0.100
Line 98.6± 0.5 0.117± 0.540 98.3± 0.5 0.121± 0.630

Corridor 97.9± 1.8 0.247± 0.390 98.6± 1.9 0.255± 0.470
ConnectSpread 97.9± 1.7 0.324± 0.187 99.0± 0.8 0.339± 0.201

Table 2: Effect of varying ξ (Section 4.3) for Line (N=3) with fixed ν = 0.5.

ξ 0.5 0.4 0.2 0.0

Safety rate 100.0± 0.0 98.6± 0.5 96.5± 0.5 93.4± 0.020
Cost 0.127± 0.061 0.117± 0.540 0.108± 0.044 0.102± 0.035

Varying ξ in the outer problem To robustify our approach against estimation errors in V h, we solve
for a zi that is slightly more conservative by modifying (15b) to V hψ (oi, zi) ≤ −ξ (Section 4.3). We
now perform experiments to study the effect of different choices of ξ (Table 2). The results show that
higher values of ξ result in higher safety rates and slightly higher costs, while the reverse is true for
smaller ξ. This matches our intuition that modifying (15b) can help improve constraint satisfaction
when the learned V h has estimation errors. We thus recommend choosing ξ close to ν.

6 CONCLUSION

This paper introduces EFMARL for the multi-agent constrained optimal control problem. EFMARL
extends the epigraph form method from single-agent RL to MARL and addresses the training insta-
bility of Lagrangian methods in the zero-constraint violation setting. We decompose the epigraph
form problem into a centralized inner problem solved in centralized training, and a distributed outer
problem solved during online execution. Experimental results on MPE and the safe Multi-agent
MuJoCo suggest that, unlike baseline methods, EFMARL uses a constant set of hyperparameters
across all environments, and achieves a safety rate similar to the most conservative baseline and
similar performance to the baselines that prioritize performance but violate safety constraints.

Limitations The theoretical analysis in Section 4.3 suggests that the connected agents must com-
municate z and reach a consensus. If the communication on z is disabled, although our experiments
show that the agents still perform similarly, the theoretical optimality guarantee may not be valid. In
addition, the framework does not consider noise, disturbances in the dynamics, or communication
delays between agents. Finally, as a safe RL method, although safety can be theoretically guaranteed
under the optimal value function and policy, this does not hold under inexact minimization of the
losses. We leave tackling these issues as future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31. PMLR, 2017.

Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. Learning transferable cooperative
behavior in multi-agent team. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’2020). IFMAS, 2020.

Eitan Altman. Constrained Markov decision processes. Routledge, 2004.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242–2253. IEEE, 2017.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scien-
tific, 2012.

David Biagioni, Xiangyu Zhang, Dylan Wald, Deepthi Vaidhynathan, Rohit Chintala, Jennifer King,
and Ahmed S Zamzam. Powergridworld: A framework for multi-agent reinforcement learning
in power systems. In Proceedings of the Thirteenth ACM International Conference on Future
Energy Systems, pp. 565–570, 2022.

Vivek S Borkar. An actor-critic algorithm for constrained markov decision processes. Systems &
Control Letters, 54(3):207–213, 2005.

Vivek S Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint, volume 48. Springer,
2009.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Zhiyuan Cai, Huanhui Cao, Wenjie Lu, Lin Zhang, and Hao Xiong. Safe multi-agent rein-
forcement learning through decentralized multiple control barrier functions. arXiv preprint
arXiv:2103.12553, 2021.

Tirupathi R Chandrupatla. A new hybrid quadratic/bisection algorithm for finding the zero of a
nonlinear function without using derivatives. Advances in Engineering Software, 28(3):145–149,
1997.

Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware motion planning with
deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1343–1350. IEEE, 2017a.

Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 285–292. IEEE, 2017b.

Ziyi Chen, Yi Zhou, and Heng Huang. On the duality gap of constrained cooperative multi-agent
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=wFWuX1Fhtj.

Philip Dames, Pratap Tokekar, and Vijay Kumar. Detecting, localizing, and tracking an unknown
number of moving targets using a team of mobile robots. The International Journal of Robotics
Research, 36(13-14):1540–1553, 2017.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient generalized lagrangian policy optimization for safe multi-agent reinforcement learning.
In Learning for Dynamics and Control Conference, pp. 315–332. PMLR, 2023.

Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and Lu Feng.
Safe multi-agent reinforcement learning via shielding. arXiv preprint arXiv:2101.11196, 2021a.

Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and Lu Feng.
Safe multi-agent reinforcement learning via shielding. AAMAS ’21, 2021b.

11

https://openreview.net/forum?id=wFWuX1Fhtj

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Everett, Yu Fan Chen, and Jonathan P How. Motion planning among dynamic, decision-
making agents with deep reinforcement learning. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3052–3059. IEEE, 2018.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Herbert, and Sicun Gao. Iterative reachability
estimation for safe reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

Kunal Garg, Songyuan Zhang, Oswin So, Charles Dawson, and Chuchu Fan. Learning safe control
for multi-robot systems: Methods, verification, and open challenges. Annual Reviews in Control,
57:100948, 2024.

Nan Geng, Qinbo Bai, Chenyi Liu, Tian Lan, Vaneet Aggarwal, Yuan Yang, and Mingwei Xu. A
reinforcement learning framework for vehicular network routing under peak and average con-
straints. IEEE Transactions on Vehicular Technology, 2023.

Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian,
Jun Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained policy optimisation. arXiv
preprint arXiv:2110.02793, 2021.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022.

Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. Artificial In-
telligence, 319:103905, 2023.

Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
ICML, volume 2, pp. 227–234. Citeseer, 2002.

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 aaai fall symposium series, 2015.

Tairan He, Weiye Zhao, and Changliu Liu. Autocost: Evolving intrinsic cost for zero-violation rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 14847–14855, 2023.

Weidong Huang, Jiaming Ji, Chunhe Xia, Borong Zhang, and Yaodong Yang. Safedreamer: Safe
reinforcement learning with world models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=tsE5HLYtYg.

Ajay Kattepur, Hemant Kumar Rath, Anantha Simha, and Arijit Mukherjee. Distributed optimiza-
tion in multi-agent robotics for industry 4.0 warehouses. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, pp. 808–815, 2018.

Chenyi Liu, Nan Geng, Vaneet Aggarwal, Tian Lan, Yuan Yang, and Mingwei Xu. Cmix: Deep
multi-agent reinforcement learning with peak and average constraints. In Machine Learning and
Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13–17, 2021, Proceedings, Part I 21, pp. 157–173. Springer, 2021.

Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan. Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6252–6259. IEEE, 2018.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

12

https://openreview.net/forum?id=tsE5HLYtYg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Başar, and Lior Horesh. Decentralized policy
gradient descent ascent for safe multi-agent reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 8767–8775, 2021.

John Lygeros. On reachability and minimum cost optimal control. Automatica, 40(6):917–927,
2004.

Hang Ma, Jiaoyang Li, TK Kumar, and Sven Koenig. Lifelong multi-agent path finding for online
pickup and delivery tasks. arXiv preprint arXiv:1705.10868, 2017.

Kostas Margellos and John Lygeros. Hamilton–jacobi formulation for reach–avoid differential
games. IEEE Transactions on automatic control, 56(8):1849–1861, 2011.

Pierre-François Massiani, Steve Heim, Friedrich Solowjow, and Sebastian Trimpe. Safe value func-
tions. IEEE Transactions on Automatic Control, 68(5):2743–2757, 2023.

Daniel Melcer, Christopher Amato, and Stavros Tripakis. Shield decentralization for safe multi-
agent reinforcement learning. In Advances in Neural Information Processing Systems, 2022.

Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent hamilton-jacobi formu-
lation of reachable sets for continuous dynamic games. IEEE Transactions on automatic control,
50(7):947–957, 2005.

Simon Muntwiler, Kim P Wabersich, Andrea Carron, and Melanie N Zeilinger. Distributed model
predictive safety certification for learning-based control. IFAC-PapersOnLine, 53(2):5258–5265,
2020.

Siddharth Nayak, Kenneth Choi, Wenqi Ding, Sydney Dolan, Karthik Gopalakrishnan, and Hamsa
Balakrishnan. Scalable multi-agent reinforcement learning through intelligent information aggre-
gation. In International Conference on Machine Learning, pp. 25817–25833. PMLR, 2023.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gra-
dients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Marcus A Pereira, Augustinos D Saravanos, Oswin So, and Evangelos A Theodorou. Decentral-
ized safe multi-agent stochastic optimal control using deep fbsdes and admm. arXiv preprint
arXiv:2202.10658, 2022.

Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-agent
control with decentralized neural barrier certificates. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=P6_q1BRxY8Q.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020b.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathemat-
ical Statistics, pp. 400–407, 1951.

Augustinos D Saravanos, Yuichiro Aoyama, Hongchang Zhu, and Evangelos A Theodorou. Dis-
tributed differential dynamic programming architectures for large-scale multiagent control. IEEE
Transactions on Robotics, 2023.

Harsh Satija, Philip Amortila, and Joelle Pineau. Constrained markov decision processes via back-
ward value functions. In International Conference on Machine Learning, pp. 8502–8511. PMLR,
2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897. PMLR,
2015a.

13

https://openreview.net/forum?id=P6_q1BRxY8Q

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Samaneh Hosseini Semnani, Hugh Liu, Michael Everett, Anton De Ruiter, and Jonathan P How.
Multi-agent motion planning for dense and dynamic environments via deep reinforcement learn-
ing. IEEE Robotics and Automation Letters, 5(2):3221–3226, 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Oswin So and Chuchu Fan. Solving stabilize-avoid optimal control via epigraph form and deep
reinforcement learning. In Proceedings of Robotics: Science and Systems, 2023.

Oswin So, Cheng Ge, and Chuchu Fan. Solving minimum-cost reach avoid using reinforcement
learning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=jzngdJQ2lY.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2019.

Claire J Tomlin, John Lygeros, and S Shankar Sastry. A game theoretic approach to controller design
for hybrid systems. Proceedings of the IEEE, 88(7):949–970, 2000.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and Dapeng Oliver Wu.
Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks.
IEEE Transactions on Vehicular Technology, 69(8):8243–8256, 2020.

Wenli Xiao, Yiwei Lyu, and John Dolan. Model-based dynamic shielding for safe and efficient
multi-agent reinforcement learning. arXiv preprint arXiv:2304.06281, 2023.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pp.
11480–11491. PMLR, 2021.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022a.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International conference on machine learning, pp. 25636–25655. PMLR, 2022b.

Mario Zanon and Sébastien Gros. Safe reinforcement learning using robust mpc. IEEE Transactions
on Automatic Control, 66(8):3638–3652, 2020.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized multi-
agent reinforcement learning with networked agents. In International conference on machine
learning, pp. 5872–5881. PMLR, 2018.

14

https://openreview.net/forum?id=jzngdJQ2lY

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pp. 321–
384, 2021.

Songyuan Zhang, Kunal Garg, and Chuchu Fan. Neural graph control barrier functions guided
distributed collision-avoidance multi-agent control. In Conference on Robot Learning, pp. 2373–
2392. PMLR, 2023.

Songyuan Zhang, Oswin So, Kunal Garg, and Chuchu Fan. Gcbf+: A neural graph control barrier
function framework for distributed safe multi-agent control. arXiv preprint arXiv:2401.14554,
2024.

Wenbo Zhang, Osbert Bastani, and Vijay Kumar. Mamps: Safe multi-agent reinforcement learning
via model predictive shielding. arXiv preprint arXiv:1910.12639, 2019.

Weiye Zhao, Tairan He, and Changliu Liu. Model-free safe control for zero-violation reinforcement
learning. In 5th Annual Conference on Robot Learning, 2021.

Youpeng Zhao, Yaodong Yang, Zhenbo Lu, Wengang Zhou, and Houqiang Li. Multi-agent first order
constrained optimization in policy space. Advances in Neural Information Processing Systems,
36, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION 1

Proof. Under the dynamics xk+1 = f(xk, π(xk)), we have

V (xk, zk;π) =
�
�min
uk

max

max
p≥k

h(xp),
∑
p≥k

l(xp, π(xp))− zk

=
�
�min
uk

max

max{h(xk), max
p≥k+1

h(xp)},
∑
p≥k+1

l(xp, π(xp)) + l(xk, π(xk))− zk

=
�
�min
uk

max

max{h(xk), max
p≥k+1

h(xp)},
∑
p≥k+1

l(xp, π(xp))−
[
zk − l(xk, π(xk))

]
︸ ︷︷ ︸

:=zk+1

=

�
�min
ūk

max

h(xk),max

 max
p≥k+1

h(xp),
∑
p≥k+1

l(xp, π(xp))− zk+1

=
�
�min
ūk

max
{
h(xk), V (xk+1, zk+1;π)

}
,

(16)
where we have defined zk+1 = zk − l(xk, π(xk)) in the third equation.

B PROOF OF THEOREM 1

To prove Theorem 1, first, we prove several lemmas:

Lemma 1. For any fixed state x, let z∗ denote the solution of (15), i.e.,

min
z

z, (17a)

s.t. V h(x;π(·, z)) ≤ 0, (17b)

and let π∗ denote π(·, z∗), i.e., it is the optimal policy for z∗:

π∗ = argmin
π

V (x, z∗;π). (18)

Then, no other safe policy π̃ exists that has a strictly lower cost than π∗ while satisfying the
constraints, i.e.,

V h(x; π̃) ≤ 0 (19a)

V l(x; π̃) < V l(x;π∗). (19b)

In other words, π∗ is the optimal solution of the original constrained optimization problem

min
π

V l(x;π), (20a)

s.t. V h(x;π) ≤ 0. (20b)

Before proving this lemma, we first prove the following lemma.

Lemma 2. Suppose that such a π̃ exists. Then, there exists a z† := V l(x; π̃)−V h(x; π̃) for which
the optimal policy π† for z† satisfies the conditions for π̃ in (19a) and (19b), i.e.,

V h(x;π†) ≤ V h(x; π̃) ≤ 0, (21a)

V l(x;π†) ≤ V l(x; π̃) < V l(x;π∗). (21b)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Since π† is optimal for z†, we have that

V (x, z†;π†) ≤ V (x, z†; π̃). (22)

This implies that, by definition of z†,

max
{
V h(x;π†), V l(x;π†)− z†

}
≤ max

{
V h(x; π̃), V l(x; π̃)− z†

}
, (23)

= V h(x; π̃). (24)

In particular,
V h(x;π†) ≤ V h(x, π̃), (25)

and

V l(x;π†)−
(
V l(x; π̃)− V h(x; π̃)

)
≤ V h(x, π̃), (26)

=⇒ V l(x;π†) ≤ V l(x; π̃). (27)

which proves (21a) and (21b).

We are now ready to prove Lemma 1.

Proof of Lemma 1. We prove this by contradiction.

Suppose that such a π̃ exists. By Lemma 2, there exists z† and π† that satisfies the conditions for
π̃ in (19a) and (19b). Since π∗ is optimal for z∗, this implies that

max
{
V h(x;π∗), V l(x;π∗)− z∗

}
≤ max

{
V h(x;π†), V l(x;π†)− z∗

}
. (28)

We now consider two cases depending on the value of the max on the right.

Case 1 (V h(x;π†) ≤ V l(x;π†) − z∗): For this case, max
{
V h(x;π†), V l(x;π†) − z∗

}
=

V l(x;π†)− z∗. This implies that

V l(x;π∗)− z∗ ≤ V l(x;π†)− z∗ ⇐⇒ V l(x;π∗) ≤ V l(x;π†). (29)

However, this contradicts our assumption that V l(x;π†) ≤ V l(x; π̃) < V l(x;π∗) from (19b).

Case 2 (V h(x;π†) > V l(x;π†) − z∗): For this case, max
{
V h(x;π†), V l(x;π†) − z∗

}
=

V h(x;π†). This implies that
V h(x;π∗) ≤ V h(x;π†) (30)

and
V l(x;π∗)− z∗ ≤ V h(x;π†) =⇒ V l(x;π∗)− V h(x;π†) ≤ z∗. (31)

However, if we examine the definition of z†, we have that

z† = V l(x; π̃)− V h(x; π̃) (32)

≤ V l(x; π̃)− V h(x;π†) (from (21a) and (30)) (33)

< V l(x;π∗)− V h(x;π†) (from (19b)) (34)
≤ z∗ (from (31)). (35)

This contradicts our definition of z∗ being the optimal solution of (17), since z† satisfies
V h(x;π(·, z†)) ≤ 0 but is also strictly smaller than z∗.

Since both cases lead to a contradiction, no such π̃ can exist.

We can now prove Theorem 1, which follows as a consequence of Lemma 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof of Theorem 1. Since V h(x;π) = maxi V
h
i (xi, oi;π), Lemma 1 implies that Equation (13)

is equivalent to

min
z

z (36a)

s.t. V hi (xi, oi;π(·, z)) ≤ 0, ∀i. (36b)

This is equivalent to (15).

C DISCUSSION ON IMPORTANCE OF PROPOSITION 1

Establishing Proposition 1 is key to EFMARL. Namely,

1. Satisfying dynamic programming implies that the value function is Markovian. In other
words, for a given z0, the value at the kth timestep is only a function of zk and xk instead
of the z0 and the entire trajectory up to the kth timestep.

2. Consequently, this implies that the optimal policy will also be Markovian and is only a
function of zk and xk.

3. Rephrased differently, since the value function is Markovian, this implies that, for a given
z0 and x0, the value at the kth timestep is equal to the value (at the initial timestep) of a
new problem where we start with z̃0 = zk and x̃0 = xk.

4. Since we relate the value function of consecutive timesteps, given a value function estima-
tor, we can now control the bias-variance tradeoff of the value function estimate by using
k-step estimates instead of the Monte Carlo estimates.

5. Instead of only using the k-step estimates for a single choice of k, we can compute a
weighted average of the k-step estimates as in GAE to further control the bias-variance
tradeoff.

D EFMARL ALGORITHM

We describe the centralized training process of EFMARL in Algorithm 1 and the decentralized
execution process in Algorithm 2.

Algorithm 1 EFMARL Centralized Training

Initialize: Policy NN πθ, cost value function NN V lϕ, constraint value function NN V hψ .
while Training not end do

Randomly sampling initial conditions x0, and the initial z0 ∈ [zmin, zmax].
Use πθ to sample trajectories {x0, . . . , xT }, with z dynamics (14).
Calculate the cost value function V lϕ(x, z) and the constraint value function V hψ (oi, z).
Calculate GAE with the total value function (12).
Update the value functions V lϕ and V hψ using TD error.
Update the z-conditioned policy πθ(·, z) using PPO loss.

end while

E EXPERIMENTS

E.1 COMPUTATION RESOURCES

The experiments are run on a 13th Gen Intel(R) Core(TM) i7-13700KF CPU with 64GB RAM and
an NVIDIA GeForce RTX 3090 GPU. The training time is around 6 hours (105 steps) for EFMARL
and InforMARL-L, and around 5 hours for InforMARL.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 EFMARL Decentralized Execution

Input: Learned policy NN πθ, constraint value function NN V hψ .
for k = 0, . . . , T do

Get zi for each agent by solving the decentralized EF-MACOCP outer problem (15b).
if z communication enabled then

The connected agents j communicate zj and reach a consensus z = maxj zj .
Set zi = z for all agents in the connected graph.

end if
Get decentralized policy πi(·) = πθ(·, zi).
Execution control uki = πi(o

k
i).

end for

E.2 ENVIRONMENTS

E.2.1 MULTI-PARTICAL ENVIRONMENTS (MPE)

We use directed graphs G = (V, E) to represent MPE, where V is the set of nodes containing the
objects in the multi-agent environment (e.g., agents Va, goals Vg , landmarks Vl, and obstacles Vo).
E ⊆ {(i, j) | i ∈ Va, j ∈ V} is the set of edges, denoting the information flow from a sender node
j to a receiver agent i. An edge (i, j) exists only if the communication between node i and j can
happen, which means the distance between node i and j should be within the communication radius
R in partially observable environments. We define the neighborhood of agent i asNi := {j | (i, j) ∈
E}. The node feature vi includes the states of the node xi and a one-hot encoding of the type of
the node i (e.g., agent, goal, landmark, or obstacle), e.g., [0, 0, 1]⊤ for agent nodes, [0, 1, 0]⊤ for
goal nodes, and [1, 0, 0]⊤ for obstacle nodes. The edge feature eij includes the information passed
between the sender node j and the receiver node i (e.g., relative positions and velocities).

We consider 6 MPE: Target, Spread, Formation, Line, Corridor, and ConnectSpread. In each envi-
ronment, the agents need to work collaboratively to finish some tasks:

Target (Nayak et al., 2023): Each agent tries to reach its preassigned goal.

Spread (Dames et al., 2017): The agents are given a set of (not preassigned) goals to cover.

Formation (Agarwal et al., 2020): Given a landmark, the agents should spread evenly on a circle
with the landmark as the center and a given radius.

Line (Agarwal et al., 2020): Given two landmarks, the agents should spread evenly on the line
between the landmarks.

Corridor: A set of agents and goals are separated by a narrow corridor, whose width is smaller than
4r where r is the radius of agents. The agents should go through the corridor and cover the goals.

ConnectSpread: A set of agents and goals are separated by a large obstacle with a diameter larger
than the communication radiusR. The agents should cover the goals without colliding with obstacles
or each other while also maintaining the connectivity of all agents.

We consider n = 3 agents for all environments and n = 5 and 7 agents in the Formation and Line
environments. To make the environments more difficult than the original ones (Nayak et al., 2023),
we add 3 static obstacles in the first 4 environments.

In our modified MPE, the state of the agent i is given by xi = [pxi , p
y
i , v

x
i , v

y
i]

⊤, where [pxi , p
y
i]

⊤ :=
p ∈ R2 is the position of agent i, and [vxi , v

y
i] is the velocity. The control inputs are given by

ui = [axi , a
y
i]

⊤, i.e., the acceleration along each axis. The joint state is defined by concatenation:
x = [x1; . . . ;xN]. The agents are modeled as double integrators with dynamics

ẋi =
[
vxi vyi axi ayi

]⊤
. (37)

The agents’ control inputs are limited by [−1, 1], and the velocities are limited by [−1, 1]. The
agents have a radius ra = 0.05, and the communication radius is assumed to be R = 0.5. The area
side length L is 1.0 for the Corridor and the ConnectSpread environments and 1.5 for other environ-
ments. The radius of the obstacles ro is 0.4 in the Corridor environment, 0.25 in the ConnectSpread

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2
Distance

0.5

0.0

0.5

h
va

lu
e

Figure 7: h value with respect to distance.

environment, and 0.05 for other environments. All environments use a simulation time step of 0.03s
and a total horizon of T = 128.

The observation of the agents oi includes the node features of itself, its neighbors j ∈ Ni, and the
edge features of the edge connecting agent i and its neighbors. The node features include neighbors’
states xj and its type ([0, 0, 1] for agents, [0, 1, 0] for goals and landmarks, and [1, 0, 0]⊤ for the
obstacles). The edge features are the relative states eij = xi − xj .
The constraint function h contains two parts for all environments except for ConnnectSpread, in-
cluding agent-agent and agent-obstacles collisions. In the ConnectSpread environment, another
constraint regarding the connectivity of the agent graph is considered. For the agent-agent collision,
we use the h function defined as

ha(oi) = 2ra − min
j∈Ni

∥pi − pj∥+ νsign

(
2ra − min

j∈Ni

∥pi − pj∥
)
, (38)

where sign is the sign function, and ν = 0.5 in all our experiments. This represents a linear function
w.r.t. the inter-agent distance with a discontinuity at the safe-unsafe boundary (Figure 7). For the
agent-obstacle collision, we use

ho(oi) = ra + ro − min
j∈No

i

∥pi − pj∥+ νsign

(
ra + ro − min

j∈No
i

∥pi − pj∥
)
, (39)

where N o
i is the observed obstacle set of agent i. Then, the total h function is defined as h(oi) =

max{ha(oi), ho(oi)} for environments except for ConnectSpread. For ConnectSpread, we also
consider the connectivity constraint

hc(oi) = max
i

min
j∈No

i

∥pi − pj∥ −R′ + νsign

(
max
i

min
j∈No

i

∥pi − pj∥ −R′
)
, (40)

where R′ = 0.45 is the required maximum distance for connected agents such that if the distance
between two agents is larger than R′, they are considered disconnected. Note that this cost is only
valid with agent number N ≤ 3. For a larger number of agents, the second largest eigenvalue of the
graph Laplacian matrix can be used. Still, since we only use this environment with 3 agents, we use
this cost to decrease the complexity. Then, the total h function of the ConnectSpread environment
is defined as h(oi) = max{ha(oi), ho(oi), hc(oi)}.
Two types of cost functions are used in the environments. The first type is the Target cost used in
the Target environment, which is defined as

l(x, u) =
1

N

N∑
i=1

(
0.01∥pi − pgoali ∥+ 0.001sign

(
ReLU(∥pi − pgoali ∥ − 0.01)

)
+ 0.0001∥ui∥2

)
.

(41)

The first term penalizes the agents if they cannot reach the goal, the second term penalizes the agents
if they cannot reach the goal exactly, and the third term encourages small controls. The second type

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

is the Spread cost used in all other environments, defined as

l(x, u) =
1

N

N∑
j=1

min
i∈Va

(
0.01∥pi − pgoalj ∥+ 0.001sign

(
ReLU(∥pi − pgoalj ∥ − 0.01)

)
+0.0001∥uj∥2

)
. (42)

Instead of matching the agents to their preassigned goals, each goal finds its nearest agent and
penalizes the whole team with the distance between them. In this way, the optimal policy of the
agents is to cover all goals collaboratively.

E.2.2 SAFE MULTI-AGENT MUJOCO ENVIRONMENTS

We also test on the Safe HalfCheetah(2x3) and Safe Coupled HalfCheetah(4x3) tasks from the Safe
Multi-Agent Mujoco benchmark suite Gu et al. (2023). Each agent controls a subset of joints and
must cooperate to maximize the reward while avoiding violating safety constraints. The task is
parametrized by the two numbers in the parenthesis, where the first number denotes the number of
agents, while the second number denotes the number of joints controlled by each agent. The goal
for the Safe HalfCheetah and Safe Coupled HalfCheetah tasks is to maximize the forward velocity
but avoid colliding with a wall in front that moves forward at a predefined velocity.

Note: Although this is not a homogeneous MAS, since each agent has the same control space
(albeit with different dynamics), we can convert this into a homogeneous MAS by augmenting the
state space with a one-hot vector to identify each agent, then augmenting the dynamics to use the ap-
propriate per-agent dynamics function. This is the approach taken in the official implementation
of Safe Multi-Agent Mujoco 6 from Gu et al. (2023).

For more details, see Gu et al. (2023).

E.3 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We parameterize the z-conditioned policy πθ(oi, z), cost-value function V lϕ(x, z), and the constraint-
value function V hψ (oi, z) using graph transformers (Shi et al., 2020) with parameters θ, ϕ, and ψ,
respectively. Note that the policy and the constraint-value function are decentralized and take only
the local observation oi as input, while the cost-value function is centralized. In each layer of the
graph transformer, the node features are updated with v′i = W1vi +

∑
j∈Ni

αij(W2vj +W3eij),
where Wi are learnable weight matrices, and the αij is the attention weight between agent i and
agent j computed as αij = softmax(1√

c
(W4xi)

⊤(W5xj)), where j is the first dimension of Wi. In
this way, the observation oi is encoded. If the environment allows M -hop information passing, we
can apply the node feature update M times so that agent i can receive information from its M -hop
neighbors. After the information passing, the updated node features v′i are concatenated with the
encoded z vector W7z then passed to another NN or a recurrent neural network (RNN) (Hausknecht
& Stone, 2015) to obtain the outputs. πθ and V hψ have the same structure as introduced above
with different output dimensions because they are decentralized. For the centralized V l(x, z), the
averaged node features after information passing are concatenated with the encoded z and passed to
the final layer (NN or RNN) to obtain the global cost value for the whole MAS.

When updating the neural networks, we follow the PPO (Schulman et al., 2017) structure. First, we
calculate the target cost-value function V ltarget and the target constraint-value function V htarget using
GAE estimation (Schulman et al., 2015b), and then backpropagate the following mean-square error

6https://github.com/chauncygu/Safe-Multi-Agent-Mujoco/blob/
2e6e82c92bafd3183bf9a939fb9de35412c41d9a/safety_multi_agent_mujoco/
safety_ma_mujoco/safety_multiagent_mujoco/mujoco_multi.py#L205-L218

21

https://github.com/chauncygu/Safe-Multi-Agent-Mujoco/blob/2e6e82c92bafd3183bf9a939fb9de35412c41d9a/safety_multi_agent_mujoco/safety_ma_mujoco/safety_multiagent_mujoco/mujoco_multi.py#L205-L218
https://github.com/chauncygu/Safe-Multi-Agent-Mujoco/blob/2e6e82c92bafd3183bf9a939fb9de35412c41d9a/safety_multi_agent_mujoco/safety_ma_mujoco/safety_multiagent_mujoco/mujoco_multi.py#L205-L218
https://github.com/chauncygu/Safe-Multi-Agent-Mujoco/blob/2e6e82c92bafd3183bf9a939fb9de35412c41d9a/safety_multi_agent_mujoco/safety_ma_mujoco/safety_multiagent_mujoco/mujoco_multi.py#L205-L218

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

to update the value function parameters ϕ and ψ:

LV l(ϕ) =
1

M

M∑
k=1

∥V lϕ(xk, zk)− V ltarget(xk, zk)∥2, (43)

LV h(ψ) =
1

MN

M∑
k=1

N∑
i=1

∥V hψ (oki , zk)− V htarget(oki , zk)∥2, (44)

where M is the number of samples. Then, we calculate the advantages Ai for each agent with the
total value function Vi(x, z) = max{V lϕ(x, z) − z, V hψ (oi, z)} following the same process as in
PPO by replacing V l with V , and backpropagate the following PPO policy loss to update the policy
parameters θ:

Lπ(θ) =
1

MN

M∑
k=1

N∑
i=1

[
min

{
πθ(o

k
i , z

k)

πold(oki , z
k)
Ai(x

k, zk),

clip

(
πθ(o

k
i , z

k)

πold(oki , z
k)
, 1− ϵclip, 1 + ϵclip

)
Ai(x

k, zk)

}]
.

(45)

Most of the hyperparameters of EFMARL are shared with InforMARL and InforMARL-L. The
values of the share hyperparameters are provided in Table 3.

Table 3: Shared hyperparameters of EFMARL, InforMARL, and InforMARL-L.

Hyperparameter Value Hyperparameter Value

policy GNN layers 2 RNN type GRU
massage passing dimension 32 RNN data chunk length 16
GNN output dimension 64 RNN layers 1
number of attention heads 3 number of sampling environments 128
activation functions ReLU gradient clip norm 2
GNN head layers (32, 32) entropy coefficient 0.01
optimizer Adam GAE λ 0.95
discount γ 0.99 clip ϵ 0.25
policy learning rate 3e-4 PPO epoch 1
V l learning rate 1e-3 batch size 16384
network initialization Orthogonal layer normalization True

Apart from the shared hyperparameters, EFMARL has additional hyperparameters, as shown in
Table 4. In addition, zmin and zmax are the lower and upper bound of z while sampling z in training.
Since zmin represents an estimate of the minimum cost incurred by the MAS, we set it to a small
negative number −0.5. We set zmax differently depending on the complexity of the environment.
For MPE, with maximum simulation timestep T , we estimate it in the MPE environments using the
following equation:

zmax = l̃max ∗ T, (46)

l̃max = initdistmax wdistance + wreach + umaxwcontrol, (47)

where l̃max is a conservative estimate of the maximum cost l. This is conservative in the sense
that this reflects the case where 1) the agents and goals are initialized with the maximum possi-
ble distance (initdistmax); 2) the agents do not reach their goal throughout their trajectory; 3) the
agents incur the maximum control cost for all timesteps. wdistance, wreach, and wcontrol denote
the corresponding weights of the different cost terms in the cost function l in (41) and (42). For
the multi-agent MuJoCo environments, we first train the agents with (unconstrained) MAPPO with
different random seeds, record the largest cost incurred, double it, and then use that as zmax.

All the hyperparameters remain the same in all environments or are pointed out in the tables except
for the training steps. The training step is 105 in the Target and the Spread environments, 1.5× 105

in the Line environment, and 2×105 in other MPE. For the safe multi-agent MuJoCo environments,
we set the training step to 7× 103.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 4: Hyperparameters of EFMARL

Hyperparameter Value

V h GNN layers 2 for ConnectSpread, 1 for others
z encoding dimension 8
outer problem solver Chandrupatla’s method (Chandrupatla, 1997)
���zmin ��-0.5

���zmax
((((((((((((((

(0.01(
√
2l)− 0.001− 0.0001)T

0.0 0.5 1.0
Step 1e5

0

1

C
os

t

Target

0.0 0.5 1.0
Step 1e5

0.5

1.0
Sa

fe
ty

 ra
te

Target

0.0 0.5 1.0
Step 1e5

0

1

C
os

t

Spread

0.0 0.5 1.0
Step 1e5

0.5

1.0

Sa
fe

ty
 ra

te

Spread

0 1 2
Step 1e5

0.0

0.5

1.0

C
os

t

Formation

0 1 2
Step 1e5

0.5

1.0

Sa
fe

ty
 ra

te

Formation

0 1
Step 1e5

0.0

0.5

1.0
C

os
t

Line

0 1
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Line

0 1 2
Step 1e5

0

1

C
os

t

Corridor

0 1 2
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Corridor

0 1
Step 1e5

0

1

C
os

t

ConnectSpread

0 1
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

ConnectSpread

EFMARL (ours)
InforMARL (0.02)

InforMARL (0.1)
InforMARL (0.5)

InforMARL-L (1)
InforMARL-L (5)

Figure 8: Cost and safety rate of EFMARL and the baselines during training in MPE.

E.4 IMPLEMENTATION OF THE BASLINES

The implementation of the baseline follows their original implementations:

• InforMARL: https://github.com/nsidn98/InforMARL (MIT license)

• MAPPO-L: https://github.com/chauncygu/Multi-Agent-Constrained-Policy-Optimisation
(MIT License)

E.5 TRAINING CURVES

To show the training stability of EFMARL, we have shown the cost and safety rate of EFMARL and
InforMARL-L (lr) during training in the Target and Spread environments in the main pages (Fig-
ure 5). Due to page limits, we provide the plots for other environments here in Figure 8, Figure 9,
and Figure 10. The figures show that EFMARL achieves stable training in all environments. Specif-
ically, as shown in Figure 9, while InforMARL-L (lr) suffers from training instability because the
constraint violation threshold is zero (as discussed in Section 3.2), EFMARL is much more stable.

23

https://github.com/nsidn98/InforMARL
https://github.com/chauncygu/Multi-Agent-Constrained-Policy-Optimisation

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0
Step 1e5

0

1
C

os
t

Target

0.0 0.5 1.0
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Target

0.0 0.5 1.0
Step 1e5

0.0

0.5

1.0

C
os

t

Spread

0.0 0.5 1.0
Step 1e5

0.5

1.0

Sa
fe

ty
 ra

te

Spread

0 1 2
Step 1e5

0.0

0.5

1.0

C
os

t

Formation

0 1 2
Step 1e5

0.5

1.0

Sa
fe

ty
 ra

te

Formation

0 1
Step 1e5

0.0

0.5

1.0

C
os

t

Line

0 1
Step 1e5

0.5

1.0

Sa
fe

ty
 ra

te

Line

0 1 2
Step 1e5

0

1

C
os

t

Corridor

0 1 2
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

Corridor

0 1
Step 1e5

0

1

C
os

t

ConnectSpread

0 1
Step 1e5

0.0

0.5

1.0

Sa
fe

ty
 ra

te

ConnectSpread

EFMARL (ours) InforMARL-L (lr)

Figure 9: Cost and safety rate of EFMARL and InforMARL-L (lr) during training in MPE.

0 5
Step 1e3

0

200

400

C
os

t

HalfCheetah 2x3

0 5
Step 1e3

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

HalfCheetah 2x3

0 5
Step 1e3

0

200

400

600

800

C
os

t

Coupled HalfCheetah 4x3

0 5
Step 1e3

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

Coupled HalfCheetah 4x3

EFMARL (ours)
InforMARL (0.02)

InforMARL (0.1)
InforMARL (0.5)

InforMARL-L (1)
InforMARL-L (5)

InforMARL-L (lr)

Figure 10: Cost and safety rate of EFMARL and all baselines during training in safe Multi-agent
MuJoCo environments.

E.6 MORE COMPARISON WITH THE LAGRANGIAN METHOD

In this section, we provide more comparisons between EFMARL and the Lagrangian method, where
we change the constraint-value function of the Lagrangian method from the sum-over-time (SoT)
form to the max-over-time (MoT) form. Using the MoT form, the constraint-value function of the
Lagrangian method becomes the same as the one used in EFMARL (Equation (9)). We create 3
more baselines using this approach with different learning rates (lr) of the Lagrangian multiplier λ,
where lr(λ) ∈ {0.1, 0.2, 0.3}. The baselines are called InforMARL-L-MoT. We compare EFMARL
with the new baselines in the Target environment, and the results are presented in Figure 11. We
can observe that the Lagrangian method has very different performance with different learning rates
of λ. With lr(λ) = 0.1, the learned policy is unsafe, and with lr(λ) = 0.2 or 0.3, the training is
unstable and the cost of the converged policy is much higher than EFMARL. In addition, we also
plot the λ values during training in Figure 11. It shows that λ keeps increasing without converging
to some value, which also suggests the instability of the Lagrangian method.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 50000 100000
Step

0.0

0.5

1.0

1.5

C
os

t

0 50000 100000
Step

0.2

0.4

0.6

0.8

1.0

Sa
fe

ty
 ra

te

0 50000 100000
Step

0

5

10

15

20
EFMARL (ours)

InforMARL-L-MoT
(lr() = 0.1)

InforMARL-L-MoT
(lr() = 0.2)

InforMARL-L-MoT
(lr() = 0.3)

Figure 11: Cost and safety rate of EFMARL and InforMARL-L-MoT with different learning rates
of λ during training in the Target environment, and the λ values during training.

E.7 SENSITIVITY ANALYSIS ON THE CHOICE OF zmax

In Appendix E.3, we have introduced how to determine the sampling interval of z. Here, we perform
experiments in the Spread environment to study the sensitivity of EFMARL on the choice of zmax.
In this experiment, we scale the value of zmax used for sampling z, and denote by zmax,orig the
original value used in the experiments in the main pages, i.e., zmax/zmax,orig = 1.0 uses the same
value as in the main pages. We report the safety rates and the costs of the EFMARL policies trained
with different zmax in Table 5. We see both safety and costs do not change much even when our
estimate of the maximum cost zmax changes by up to 50%. If zmax is too large (e.g., 2 zmax,orig),
the policy becomes too conservative because not enough samples of z that are near z∗ are observed,
reducing the sample efficiency. On the other hand, when zmax is too small (e.g., 0.25 zmax,orig),
there may be states where the optimal z∗ does not fall within the sampled range. This causes the
rootfinding step to be inaccurate, as V h will be queried at values of z that were not seen during
training, resulting in safety violations.

Table 5: Safety and Cost of EFMARL policies trained with different zmax.

zmax/zmax,orig Safety rate Cost

0.25 93.8± 2.4 0.152± 0.100
0.5 98.0± 1.4 0.155± 0.104
1.0 99.0± 0.9 0.162± 0.144
1.5 99.0± 0.0 0.165± 0.100
2.0 99.0± 0.1 0.228± 0.109

E.8 CODE

The code of our algorithm and the baselines are provided in the ‘efmarl.zip’ file in the supplementary
materials.

F CONVERGENCE

In this section, we analyze the convergence of the inner RL problem (13b) to a locally optimal policy.

Since we solve the inner RL problem (13b) in a centralized fashion, it can be seen as an instantiation
of single-agent RL, but with a per-agent independent policy. Define the augmented state x̃ ∈ X̃ :=
X × R as [x, z], which follows the dynamics f̃ : X̃ × U → X̃ defined as

f̃
(
[xk, zk], uk

)
=

[
f(xk, uk), zk − l(xk, uk)

]
. (48)

The inner RL problem (13b) can then be stated as
min
π

max
k≥0

h(xk, π(x̃k)) (49a)

s.t. x̃k+1 = f̃(x̃k, π̃(x̃k)), k ≥ 0. (49b)
This is an instance of a single-agent RL avoid problem. Consequently, applying the results from
(Yu et al., 2022b, Theorem 5.5) or (So et al., 2024, Theorem 4) gives us that the policy π converges
almost surely to a locally optimal policy.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G ON THE EQUIVALENCE OF THE MACOCP AND ITS EPIGRAPH FORM

In Section 3.2, we state that the Epigraph form (5) of a constrained optimization problem is equiva-
lent to the original problem (3). This has been proved in So & Fan (2023). To make this paper more
self-contained, we also include the proof here.

Proof. For a constrained optimization problem (3), its epigraph form (Boyd & Vandenberghe, 2004,
pp 134) is given by

min
π,z

z, (50a)

s.t. h(π) ≤ 0, (50b)
J(π) ≤ z, (50c)

where z ∈ R is an auxiliary variable. Here, (50b) and (50c) can be combined, which leads to the
following problem:

min
π,z

z, (51a)

s.t. max {h(π), J(π)− z} ≤ 0. (51b)

Using this form, So & Fan (2023, Theorem 3) shows that the minimization of x can be moved into
the constraint, which yields

min
z

z, (52a)

s.t. min
π

max {h(π), J(π)− z} ≤ 0. (52b)

This is the same as (5).

26

	Introduction
	Related work
	Problem setting and preliminaries
	Multi-agent constrained optimal control problem
	Epigraph form

	Epigraph form multi-agent reinforcement learning
	Epigraph form for MACOCP
	Solving the inner problem using MARL
	Solving the outer problem during distributed execution

	Experiments
	Setup
	Results
	Ablation studies

	Conclusion
	Proof of Proposition 1
	Proof of Theorem 1
	Discussion on Importance of thm: dynamic-program
	EFMARL Algorithm
	Experiments
	Computation resources
	Environments
	Multi-partical environments (MPE)
	Safe multi-agent MuJoCo environments

	Implementation details and hyperparameters
	Implementation of the baslines
	Training curves
	More comparison with the Lagrangian method
	Sensitivity analysis on the choice of zmax
	Code

	Convergence
	On the equivalence of the MACOCP and its epigraph form

