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ABSTRACT
Ultra-high-definition (UHD) technology has attracted widespread
attention due to its exceptional visual quality, but it also poses new
challenges for low-light image enhancement (LLIE) techniques.
UHD images inherently possess high computational complexity,
leading existing UHD LLIE methods to employ high-magnification
downsampling to reduce computational costs, which in turn results
in information loss. The wavelet transform not only allows down-
sampling without loss of information, but also separates the image
content from the noise. It enables state space models (SSMs) to
avoid being affected by noise when modeling long sequences, thus
making full use of the long-sequence modeling capability of SSMs.
On this basis, we propose Wave-Mamba, a novel approach based on
two pivotal insights derived from the wavelet domain: 1) most of the
content information of an image exists in the low-frequency compo-
nent, less in the high-frequency component. 2) The high-frequency
component exerts a minimal influence on the outcomes of low-light
enhancement. Specifically, to efficiently model global content infor-
mation on UHD images, we proposed a low-frequency state space
block (LFSSBlock) by improving SSMs to focus on restoring the
information of low-frequency sub-bands. Moreover, we propose
a high-frequency enhance block (HFEBlock) for high-frequency
sub-band information, which uses the enhanced low-frequency in-
formation to correct the high-frequency information and effectively
restore the correct high-frequency details. Through comprehensive
evaluation, our method has demonstrated superior performance,
significantly outshining current leading techniques while main-
taining a more streamlined architecture. The code is available at
https://github.com/AlexZou14/Wave-Mamba.
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1 INTRODUCTION
The rapid advancements in imaging technology have enabled the
widespread adoption of Ultra-High Definition (UHD) across di-
verse applications. However, the increased pixel count and high-
resolution nature of UHD images introduce significant challenges.
UHD images are more susceptible to noise and lighting effects
during capture, degrading quality and impacting high-level vision
tasks. In this work, we focus on the crucial task of low-light image
enhancement (LLIE) for UHD images.

With the significant success of Convolutional Neural Networks
(CNNs) and Transformers [46, 48, 49] in the field of image restora-
tion, a lot of learning-based methods [2, 28, 32, 38, 47] have been
proposed to tackle the task of LLIE. Although these methods have
achieved remarkable performance on existing low-light datasets,
they are trained on the LOL [28] and SID [3] datasets, where all im-
ages have resolutions below 1K (1920×1080). Furthermore, existing
methods have sought higher performance through the design of
more complex networks and an increase in network parameters.
However, due to the discrepancy between the data distribution of
UHD images and that of existing datasets, these advanced methods
are not effectively applicable to 4K (3840×2160) scenarios. There-
fore, as UHD images become increasingly prevalent, the domain
of image restoration for UHD images is garnering more attention
from researchers.

With the release of some UHD LLIE datasets, such as UHD-LOL
[13] and UHD-LL [15], many methods [13, 15, 23, 31] tailored for
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Figure 1: Model parameters and performance comparison
and visual comparisons.

UHD LLIE have also been proposed. Among these, Wang et al. [13]
introduced an end-to-end UHD LLIE framework by incorporating
Transformers and UNet. Leveraging the exceptional ability of the
Transformer to capture long-distance information, the proposed
method achieved superior restoration performance. However, due
to the high computational cost of Transformers, this method could
not be efficiently implemented for full-resolution UHD image infer-
ence on edge devices. To enable full-resolution inference of UHD im-
ages on consumer-grade GPUs, Li et al. [15] reduced the resolution
of UHD images by 8× and embedded Fourier transform into a cas-
caded network, thus obtaining satisfactory results on real datasets.
On this basis, Wang et al. [23] proposed a correction-matching
Transformer module that utilizes high-resolution information to
correct low-resolution features, achieving impressive performance
through parallel enhancement of high and low-resolution. While
these methods have demonstrated remarkable performance, they
rely on significant downsampling to reduce computational costs,
inevitably leading to the loss of critical image information. This
process undoubtedly compromises the quality of image restoration.
Therefore, enhancing the ability of the network to augment
global information without sacrificing image detail is crucial.

Inspired by the property of state space models (SSMs) [6, 8, 22]
that long sequences can be modeled using linear complexity, it
makes it possible to model global information in UHD images. In
particular, the improvedMamba [6] has been successfully applied to
several computer vision tasks [18, 20, 41] and achieved significant
performance. However, the unidirectional modeling property of
SSMs makes it susceptible to noise, which hinders the application
of mamba to low-light scenes containing complex noise. Therefore,
how to effectively apply the long sequence modeling capability
of SSMs to UHD LLIE is a question worth exploring.

To address the challenges of UHD low-light imaging, we propose
an efficient method, called Wave-Mamba, that combines wavelet
transform with Mamba. Unlike existing UHD LLIE methods, our ap-
proach avoids traditional downsampling, instead employingwavelet
transform to prevent information loss. Additionally, the wavelet
transform separates image content from noise, overcoming the limi-
tations of standard SSMs, which are insensitive to noise. Particularly,
our method is designed based on two observations in the wavelet
domain of low-light noisy images: 1. In the wavelet domain, most
image information resides in the low-frequency component,
with only a minor portion of texture information in the high-
frequency component. 2. High-frequency information has a

minimal impact on the results of LLIE. Inspired by these in-
sights, our network design focuses on processing low-frequency
information, using enhanced low-frequency information to adjust
the high-frequency information, effectively saving computational
resources. Specifically, we developed a Low-Frequency State Space
Block (LFSSBlock) that leverages the robust global modeling capa-
bility of SSMs to effectively enhance the illumination and texture
information within the low-frequency component. For the high-
frequency component, we designed a High-Frequency Enhance
Block (HFEBlock), which utilizes the enhanced low-frequency in-
formation to match and correct the high-frequency data, achieving
accurate and clear textures. With the aforementioned design, our
Wave-Mamba significantly reduces computational costs while de-
livering outstanding performance, as illustrated in Figure 1.

Our key contributions are summarized as follows:
• We are the pioneers in introducing Mamba to the UHD LLIE
task, proposing a novel method named Wave-Mamba, in-
spired by unique characteristics observed in the wavelet
domain. Unlike existing UHD LLIE methods, our method ex-
ploits the wavelet transform to avoid information loss, and
to overcome the shortcomings of SSMs which are insensitive
to noise.

• We propose a Low-Frequency State Space Block (LFSSBlock)
that leverages the linear complexity and powerful informa-
tion modeling capabilities of State Space Models for enhance-
ment. This effectively balances performance with computa-
tional costs.

• We propose a High-Frequency Enhance Block (HFEBlock)
that employs enhanced low-frequency information formatch
correction, thereby effectively avoiding texture errors and
loss.

• The proposed Wave-Mamba exhibits extraordinary effec-
tiveness and efficiency in addressing the combined tasks of
illumination enhancement and noise removal in ultra-high-
definition images.

2 RELATEDWORK
2.1 Low-light Image Enhancement
It has seen substantial developments with the advent of various
innovative models and frameworks aimed at improving underex-
posed photos and videos. Wang et al. [25] introduced networks for
image-to-illumination mapping, while Zero-DCE [10], and its exten-
sion Zero-DCE++ [14] have made significant strides in enhancing
image brightness and visual appeal through image-specific curve
estimation trained with non-reference losses. Moreover, Wang et
al. [5] presented a dual-stage low-light image enhancement net-
work, FourLLIE, which enhances brightness by estimating ampli-
tude transformation mappings in the frequency domain. Feng et
al. [24] proposed a learnability enhancement strategy based on
noise modeling, which improves the denoising performance of raw
images in low-light conditions. Additionally, diffusion models, as
seen in DiffLL [12], utilize a sequence of denoising refinements
for realistic detail generation in LLIE tasks, showing potential for
low-light image enhancement. Despite these methods achieving
excellent results, the direct application to Ultra-High-Definition
(UHD) images is constrained by the high computational demand,
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marking a challenge for future research directions in efficiently
processing UHD content.

2.2 UHD Image Restoration
In recent years, UHD image restoration has emerged as a field of
growing interest, with significant contributions from researchers
[9, 16, 34, 45]. Zheng et al. [39, 40] pioneered the use of bilateral
learning for UHD image dehazing and High Dynamic Range (HDR),
leveraging the concept of learning local affine coefficients from
downscaled images to enhance images at their original resolution.
Innovations such as UHD-SFNet [29] and FourUHD [15] have ad-
vanced the field by focusing on enhancing underwater and low-light
UHD images within the Fourier domain, capitalizing on the insight
that illumination primarily resides in amplitude components.

To address the limitations imposed by the need for downsam-
pling in traditional UHD restoration techniques, NSEN [33] intro-
duced an innovative, spatially-variant, and reversible downsam-
pling method. This approach dynamically adapts the downsampling
rate to the image’s detail density, enhancing the detail preserva-
tion in the restoration process. Furthermore, LLFormer [13] repre-
sents the first attempt to employ a transformer-based model for the
UHD Low-Light Image Enhancement (UHD-LLIE) task. Despite its
pioneering status, LLFormer encounters challenges in executing
full-resolution inference on standard consumer GPUs.

2.3 State Space Models (SSMs)
Derived from control theory fundamentals, SSMs [7, 8, 22] have
advanced remarkably in deep learning, exhibiting extraordinary
efficiency in handling long-range dependencies due to their lin-
ear scalability with sequence length. Recently, the emergence of
Mamba [6], a selective, data-focused SSM optimized for hardware,
has outperformed Transformer models in NLP tasks, displaying lin-
ear scalability concerning input size. Furthermore, the application
of Mamba has extended to vision-related tasks, including image
classification [18, 41], image restoration [11, 21], and biomedical
image segmentation [20]. On this basis, some researchers [42–44]
combine linear representation with incremental learning to propose
efficient incremental learning methods. Currently, while Mamba-
based image restoration approaches show promise, they fall short
of direct application to UHD image restoration due to inference
challenges. Given the exceptional computational efficiency and
scalability of Mamba, this study aims to pioneer the application of
Mamba in UHD low-light image enhancement.

3 PRELIMINARIES: STATE SPACE MODELS
Structured State Space Models (S4), fundamentally based on con-
tinuous systems, explain the dynamic relationship between inputs
𝑥 (𝑡) and outputs 𝑦 (𝑡) within linear time-invariant frameworks. Es-
sentially, this system maps a one-dimensional function or sequence
𝑥 (𝑡) ∈ R𝐿 to 𝑦 (𝑡) ∈ R𝐿 via an implicit latent state ℎ(𝑡) ∈ R𝑁 . From
a mathematical perspective, this system is succinctly represented
by a linear ordinary differential equation (ODE), detailed as follows:

ℎ′ (𝑡) = Aℎ(𝑡) + B𝑥 (𝑡) (1)
𝑦 (𝑡) = Cℎ(𝑡) + D𝑥 (𝑡) (2)

where A ∈ R𝑁×𝑁 , B ∈ R𝑁×1, C ∈ R1×𝑁 are the parameters for a
state size 𝑁 , and D ∈ R1 denotes the skip connection.

To integrate SSMs within deep learning algorithms, researchers
have discretized the aforementioned ODE process and aligned the
model with the sample rate of the underlying signal present in
the input data. Typically, this discretization employs the zeroth-
order hold (ZOH) method, incorporating the time scale parameter
Δ to transition continuous parameters A and B into their discrete
counterparts Ā and B̄. This process is defined as follows:

ℎ′𝑡 = Āℎ𝑡−1 + B̄𝑥𝑡 (3)
𝑦𝑡 = Cℎ𝑡 + D𝑥𝑡 (4)

Ā = 𝑒ΔA (5)

B̄ = (ΔA)−1 (𝑒ΔA − 𝐼 ) · ΔB (6)

where Δ ∈ R𝐷 and B,C ∈ R𝐷×𝑁 .
The recently developed state space model, Mamba [19], has been

further improved to make the parameters B, C, and Δ dependent
on the input, thereby enabling dynamic feature representation. In
essence, Mamba adopts a similar recursive structure as seen in Eq.
(3), allowing it to process and retain information from exceptionally
long sequences. This capability ensures that a greater number of
pixels contribute to the restoration process. Additionally, Mamba
utilizes a parallel scan algorithm [19], mirroring the parallel pro-
cessing benefits outlined in Eq. (3), thereby optimizing the training
and inference process for efficiency.

4 METHODOLOGY
In this section, we first discuss the observation and method design
motivation when analyzing low-light images in the wavelet do-
main. Next, the structure of our proposed method and the proposed
modules were described in detail.

4.1 Observations in Wavelet Domain
Here, we provide additional discussion details on low-light images
in the wavelet domain to clarify our observations emphasized in
the Sec. 1, and provide a concise explanation in Figure 3.
Wavelet Transformation: Given an image 𝐼 ∈ R𝐻×𝑊 ×𝐶 , it is
decomposed into four frequency subbands by wavelet transform.

{𝑐𝐴, 𝑐𝐻, 𝑐𝑉 , 𝑐𝐷} = 𝐷𝑊𝑇 (𝐼 ) (7)

where 𝑐𝐴, 𝑐𝐻, 𝑐𝐻, 𝑐𝐷 ∈ R
𝐻
2 ×𝑊

2 ×𝐶 denote the low-frequency infor-
mation of the input image and the high-frequency information in
three different directions (vertical, horizontal, and diagonal direc-
tions), respectively. The 𝐷𝑊𝑇 (·) denotes the 2D discrete wavelet
transform operation. Subsequently, we can reconstruct the decom-
posed frequency subbands to the original map without any loss of
information by inverse wavelet transform 𝐼𝑊𝑇 (·), i.e.

𝐼 = 𝐼𝑊𝑇 (𝑐𝐴, 𝑐𝐻, 𝑐𝑉 , 𝑐𝐷) (8)

Therefore, leveraging this characteristic enables the execution
of multiple DWT on an image, effectively downsampling the image
while preserving information. This is one of the main reasons that
prompted us to use DWT for the UHD LLIE task.
Observations I: As illustrated Figure 3, we decompose both low-
light and normal-light images using a 2D wavelet transform. Sub-
sequently, the decomposed four frequency sub-bands are broadly
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Figure 2: The overall architecture of the proposedWave-Mamba. TheWave-Mamba performs up and down sampling by utilizing
the wavelet transform, and feature extraction and enhancement by using Low-Frequency State Space Block (LFSSBlock) and
High-Frequency Enhance Block (HFEBlock) for the low-frequency and high-frequency components, respectively.
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Figure 3: Observations in Wavelet Domain. As can be seen
from the figure, by exchanging the low-frequency compo-
nents of low and normal lighting image content changes dra-
matically, while changing the high-frequency components
does not effectively improve image quality.

categorized into low and high frequencies, and histograms for the
original image 𝐼𝑙𝑜𝑤 , 𝐼ℎ𝑖𝑔ℎ , low-frequency component 𝐼𝐿𝐹

𝑙𝑜𝑤
, 𝐼𝐿𝐹
ℎ𝑖𝑔ℎ

, and

high-frequency component 𝐼𝐻𝐹
𝑙𝑜𝑤

, 𝐼𝐻𝐹
ℎ𝑖𝑔ℎ

are generated. From the dia-
grams, it is evident that for both normal and low-light images, the
histogram of the low-frequency information more closely resem-
bles the histogram distribution of the input image. Additionally,
visualizations reveal that the information contained within the
high-frequency component is significantly less than that in the
low-frequency component. Hence, we can easily conclude: In the
wavelet domain, the majority of image information is found
in the low-frequency component, while a smaller fraction of
texture details resides in the high-frequency component.
Observations II: We further experimented with the reconstruc-
tion process during the inverse wavelet transformation. Specifi-
cally, we reconstructed the images by swapping the correspond-
ing low-frequency information and then generated the respective
histograms. As illustrated in Figure 3, images reconstructed with

different high-frequency sub-bands still maintain a histogram dis-
tribution similar to that of the original image, whereas those recon-
structed with different low-frequency sub-bands exhibit a signifi-
cant alteration in the image’s histogram distribution. From a visual
perspective, the content of the image is highly correlated with the
reconstructed low-frequency component. Therefore, compared to
the low-frequency sub-bands, the high-frequency sub-bands
have a lesser impact on LLIE.

4.2 Framework Overview
The above observations and analyses of low-light images in the
wavelet domain have inspired us to design an efficient framework
using wavelet transform for the UHD LLIE task, named Wave-
Mamba, as shown in Figure 2. Specifically, we have introduced an
effectiveMamba architecture to create a Low-Frequency State Space
Block (LFSSBlock), targeting the information-rich low-frequency
component. This enables the network to enhance and repair global
information with linear complexity. Additionally, we propose a
High-Frequency Enhance Block (HFEBlock) that utilizes the en-
hanced low-frequency component to correct high-frequency infor-
mation, ensuring the network accurately captures high-frequency
texture information. We provide the overall pipeline of our method
and further details on the critical components of our approach
below.

Figure 2 shows our overall framework of Wave-Mamba. Our
Wave-Mamba is constructed using a multi-scale UNet structure. In
the downsampling phase, we employ DWT to prevent the informa-
tion loss encountered with traditional downsampling operations.
In line with the observations made in Sec. 4.1, we specifically ap-
ply DWT downsampling to the low-frequency component, which
contains a greater amount of information, thus effectively reducing
computational costs. Regarding the high-frequency component, we
employ the enhanced low-frequency component for the correction
and restoration of high-frequency information.
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Figure 4: The architecture of the 2D selective scanning mod-
ule (2D-SSM) in the VSS Module.

Specifically, given UHD low-light image 𝐼𝑖𝑛 ∈ R𝐻×𝑊 ×3, we
first apply a 3×3 convolution to obtain low-level embeddings 𝐹0 ∈
R𝐻×𝑊 ×𝐶 , where 𝐻,𝑊 , and 𝐶 denotes height, width, and channel,
respectively. Then the hierarchical encoding is achieved through
three layers of DWT downsampling and LFSS blocks. The low-
frequency feature 𝐹𝐿1, 𝐹𝐿2 and 𝐹𝐿3, processed by DWT downsam-
pling at different layers, are downsampled to size 𝐻

2 × 𝑊
2 , 𝐻4 × 𝑊

4 ,
and 𝐻

8 × 𝑊
8 respectively. To fully utilize the input image informa-

tion, we also fused obtained 𝑖-th layer of low-frequency feature
𝐹𝐿𝑖 with the corresponding downsampled input image 𝐼↓×2𝑖 and
the enhanced low-frequency features 𝐹𝑒

𝐿𝑖
are obtained by adjusting

the global information through the stack LFSS blocks. The high-
frequency features 𝐹𝐻1, 𝐹𝐻2, and 𝐹𝐻3 of each layer are first reduced
from channel 3 ∗ 𝐶 to channel 𝐶 by Selective Kernel Feature Fu-
sion (SKFF) [36], thus facilitating correction by the HFEBlock using
the low-frequency components. Subsequently, the enhanced high-
frequency features undergo further refinement in conjunction with
the enhanced low-frequency features, employing the LFSSBlock and
the HFEBlock, respectively. The restored features are progressively
upsampled using the wavelet inverse transform through each layer.
Finally, we use the element-wise sum to obtain the high-quality
(HQ) output image 𝐼ℎ𝑖𝑔ℎ .

4.3 Low-Frequency State Space Block
The LFSSBlock is employed to extract and model low-frequency
information flows from the spatial domain of feature embedding,
as illustrated in Figure 2 right. Given the input low-frequency fea-
ture 𝐹 𝑖

𝐿
∈ R𝐻×𝑊 ×𝐶 , we initially apply Layer Normalization (LN),

followed by the Vision State Space Module (VSSM), to capture the
spatial long-term dependencies. Additionally, it incorporates a Gate
Feed-Forward Network (GFFN) to improve the efficiency of channel
information flow. This process can be formulated as follows:

𝑍 = 𝑉𝑆𝑆𝑀 (𝐿𝑁 (𝐹 𝑖𝐿)) + 𝛽 · 𝐹𝐿 (9)

𝐹 𝑖+1
𝐿 = 𝐺𝐹𝐹𝑁 (𝑍 ) + 𝛾 · 𝑍 (10)

where 𝑉𝑆𝑆𝑀 (·) and 𝐺𝐹𝐹𝑁 (·) denote VSSM and GFFN function,
respectively. 𝐿𝑁 (·) denotes the operation of layer normalization.
𝑍 denotes the intermediate hidden variable of LFSSBlock. 𝛽 and 𝛾
represent the learnable scale factor.
Vision State Space Module: Inspired by the achievements of
Mamba in modeling long-range dependencies with linear complex-
ity, we have incorporated the VSSM into the UHD LLIE task. The
VSSM can effectively model long-range dependencies with the state
space equation. The architecture of VSSM is shown in Figure 2 right.
Building upon prior work [18], the input feature 𝑋 ∈ R𝐻×𝑊 ×𝐶

is processed through two parallel branches. In the first branch, a
linear layer expands the feature channel to 𝜆𝐶 , with 𝜆 being a prede-
termined channel expansion factor. This expansion is succeeded by
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Figure 5: (a) High-Frequency Enhance Block. (b) Frequency
Matching Transformation.

a depth-wise convolution and SiLU activation function, in conjunc-
tion with a 2D Selective Scan Module (2D-SSM) and LayerNorm.
In the second branch, channel expansion to 𝜆𝐶 is achieved using
a linear layer, then activated by SiLU. Following this, a Hadamard
product combines the outputs of both branches. To finalize, chan-
nels are reduced back to 𝐶 , producing an output 𝑋𝑜𝑢𝑡 same as the
input dimensions. It can be written as follows:

𝑋1 = 𝐿𝑁 (2D-SSM(𝑆𝑖𝐿𝑈 (𝐷𝑊𝐶𝑜𝑛𝑣 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑋 ))))) (11)
𝑋2 = 𝑆𝑖𝐿𝑈 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑋 )) (12)

𝑋𝑜𝑢𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 (𝑋1 ⊙ 𝑋2) (13)

where 𝐷𝑊𝐶𝑜𝑛𝑣 (·) and 𝐿𝑖𝑛𝑒𝑎𝑟 (·) denote depth-wise convolution
and linear projection. ⊙ denotes the Hadamard product.
Gate Feed-Forward Network: In our framework, the Gated Fea-
ture Fusion Network (GFFN) employs a nonlinear gating mecha-
nism to regulate information flow, enabling individual channels
to concentrate on fine details that complement those from other
layers. The operation of the GFFN is defined as follows:

𝐹𝑜𝑢𝑡 =𝑊 3
𝑝 (𝛿𝑁𝐺 (𝑊 2

𝑑3𝑊
2
𝑝 (LN(𝐹𝑖𝑛)))) (14)

where 𝛿𝑁𝐺 (·) is the function of non-linear gate mechanism. Similar
to SimpleGate [4], the non-linear gate mechanism divides the input
along the channel dimension into two features F1, F2 ∈ R𝐻×𝑊 ×𝐶

2 .
The output is then calculated by non-linear gating as 𝛿𝑁𝐺 (F’) =
𝐺𝐸𝐿𝑈 (F1) ⊙ F2, where 𝐺𝐸𝐿𝑈 (·) denotes the activation function.
The 𝐹𝑖𝑛 and 𝐹𝑜𝑢𝑡 denote the input and output of GFFN.
2D Selective Scan Module (2D-SSM): The original Mamba pro-
cesses input data causally, efficiently handling the sequential data
typical of NLP tasks but encountering difficulties with non-sequential
data like images. To adeptly manage 2D spatial information, we
adopt the approach from [38] and deploy the 2D-SSM. As depicted
in Figure 4, this technique transforms a 2D image feature into a lin-
ear sequence by scanning across four distinct orientations: top-left
to bottom-right, bottom-right to top-left, top-right to bottom-left,
and bottom-left to top-right. It then captures the extensive range
dependencies for each sequence via the discrete state space equa-
tion. Subsequently, a summative merging of all sequences, followed
by a reshaping process, reinstates the original 2D framework.
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4.4 High-Frequency Enhance Block
To enhance the feature representation within the high-frequency
components more effectively, we propose the construction of a
feature transformation from the low-frequency component to the
high-frequency component. This transformation aims to enhance
the high-frequency components by leveraging similar information
in the low-frequency component. To accomplish this goal, we intro-
duce the High-Frequency Enhance Block (HFEBlock), as illustrated
in Figure 5 (a). The HFEBlock enriches the missing information
in high-frequency components by selecting more representative
high-frequency similarity features in low-frequency components.
This process is achieved through Frequency Matching Transfor-
mation (FMT), depicted in Figure 5 (b). Each HFEBlock contains
a Frequency Matching Transformation Attention (FMTA) and a
Frequency Correction Forward Network (FCFN), which are used
to explore frequency matching and correction within the attention
mechanism and forward network, respectively:

𝐹 ′𝐻 = 𝐹𝑀𝑇𝐴(𝐿𝑁 (𝐹 𝑖𝑛𝐻 ), 𝐹𝐿) + 𝐹 𝑖𝑛𝐻 (15)

𝐹𝑜𝑢𝑡𝐻 = 𝐹𝐶𝐹𝑁 (𝐿𝑁 (𝐹 ′𝐻 ), 𝐹𝐿) + 𝐹 ′ (16)

where 𝐹 𝑖𝑛
𝐻

and 𝐹𝑜𝑢𝑡
𝐻

denote the input and output high-frequency
features of HFEBlock. 𝐹𝑀𝑇𝐴(·, ·) and 𝐹𝐶𝐹𝑁 (·, ·) represent the op-
eration of FMTA and FCFN, respectively.
Frequency Matching Transformation Attention: Drawing
on previous work [23], the impact of a more potent query can be
substantial on the outcomes. We enhance the query by substituting
it with the refined and improved low-frequency features 𝐹𝑒

𝐿
, thereby

imbuing the query with more significant content. We introduce
the Feature-Modified Transformer Attention (FMTA) to achieve
this enhancement of the query representation, thereby optimizing
the attention mechanism. The FMTA initially produces the query
(Q), key (K), and value (V) projections from the normalized high-
frequency features 𝐹 𝑖𝑛

𝐻
through 1x1 convolution𝑊𝑝 and 3x3 depth-

wise convolution𝑊𝑑 , followed by executing the FMT between Q
and 𝐹𝑒

𝐿
. Subsequently, FMTA applies attention as follows:

𝐹𝑀𝑇𝐴(𝐹 𝑖𝑛𝐻 , 𝐹𝑒𝐿) = A(𝐹𝑀𝑇 (Q, 𝐹𝑒𝐿),K,V) (17)

whereQ, K, V = 𝑆𝑝𝑙𝑖𝑡 (𝑊𝑑𝑊𝑝 (𝐹 𝑖𝑛𝐻 ));A(Q,K,V) = V·𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (K·Q
𝛼 ).

Here, 𝐹𝑀𝑇 (·, ·), 𝑆𝑝𝑙𝑖𝑡 (·), and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) mean the operation of
FMT, split, and softmax. 𝛼 is a learnable scaling parameter to control
the magnitude of the dot product of K and Q.
Frequency Correction Forward Network: Initially, the Feed-
Forward Network (FFN) is composed of a layer normalization, a
1x1 convolution, and a 3x3 depth-wise convolution. Similar to the
FMTA, we incorporate the corresponding FMT within the FFN to
facilitate enhanced augmentation of high-frequency component
information. This process is represented as follows:

𝐹𝐶𝐹𝑁 (𝐹 ′𝐻 , 𝐹
𝑒
𝐿) = 𝐹𝑀𝑇 (𝑊𝑑𝑊𝑝 (𝐿𝑁 (𝐹 ′𝐻 )), 𝐹𝑒𝐿) (18)

Frequency Matching Transformation: The FMT, depicted in
Fig. 3(a), is designed to convert low-frequency features into high-
frequency ones, thereby supplying the high-frequency component
with more descriptive features through a correlation matching
scheme to achieve superior enhancement. Initially, we compute a
similarity matrixM between the high-frequency and low-frequency

components. Subsequently, we select the𝑇𝑜𝑝 −1 vector 𝐷 . The sim-
ilar channels in the low-frequency component are then selected as
the output based on the indices of vector𝐷 , which can be expressed
as follows:

M = 𝑆𝑖𝑚(𝐹𝐿, 𝐹𝐻 ) (19)
𝐷 = 𝑇𝑜𝑝1 (𝑀) (20)

𝑌𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = 𝑆𝑒𝑙𝑒𝑐𝑡 (𝐹𝐿 |𝐼𝑛𝑑𝑖𝑐𝑒𝑠 (𝐷)) (21)

where 𝑆𝑖𝑚(·, ·) denotes the operation of the computer similarity,
which is measured in terms of Euclidean distances. 𝑆𝑒𝑙𝑒𝑐𝑡 (·|·) and
𝐼𝑛𝑑𝑖𝑐𝑒𝑠 (·) represent the select feature and obtain indices value
operation.

Finally, the selected features 𝑌𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 are concatenated with the
original high-frequency features, and a parallel branch is utilized to
fuse the high-frequency features. Specifically, one branch calculates
an attention map using a 1 × 1 convolution 𝑊𝑝 and a Sigmoid
function. The other branch undergoes a 3 × 3 convolution𝑊𝑑 . The
outputs of both branches are then multiplied and merged through
another 1 × 1 convolution𝑊𝑝 to produce the output features 𝐹𝑜𝑢𝑡

𝐻
.

𝑌𝑐𝑜𝑛𝑐𝑎𝑡
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

= 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑌𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝐹𝐻 ) (22)

𝐹𝑜𝑢𝑡𝐻 =𝑊𝑝 (𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑝 (𝑌𝑐𝑜𝑛𝑐𝑎𝑡
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

)) ⊙𝑊𝑑 (𝑌𝑐𝑜𝑛𝑐𝑎𝑡
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

)) (23)

5 EXPERIMENTS
5.1 Implementation Details
The number of LFSSBlocks is [1, 2, 4] and the number of HFEBlocks
is [1, 1, 1] at each layer in the network encoder and decoder. The
number of attention heads is 8, and the number of channels 𝐶 is
32. We train models using AdamW [19] optimizer with the initial
learning rate 5×10−4 gradually reduced to 1×10−7 with the cosine
annealing for a total 500k iterations. We use random rotations of
90, 180, 270, random flips, and random cropping to 512 × 512 size
for the augmented training data. To constrain the training of Wave-
Mamba, we use the 𝐿1 loss function. All experiments are conducted
on two NVIDIA 3090 GPUs.

5.2 Datasets
Our experiments leverage three prominent benchmarks for evalu-
ating low-light image enhancement algorithms:

The UHD-LL dataset [23] is a real-world, paired image collection
that contains 2,150 pairs of 4K ultra-high-definition (UHD) data
saved in 8-bit sRGB format. This dataset is split into 2,000 training
pairs and 115 test pairs.

The UHD-LOL benchmark [13] consists of two subsets - UHD-
LOL4K and UHD-LOL8K - featuring 4K and 8K resolution images
captured under low-light conditions, respectively. For our study,
we utilize the UHD-LOL4K subset, which encompasses a total of
8,099 image pairs. Of these, 5,999 pairs are allocated for training,
and the remaining 2,100 pairs are reserved for testing.

In addition, we also evaluate our method on the widely adopted
LOL dataset [28], which is a standard benchmark for low-light im-
age enhancement algorithms. The LOL dataset contains 500 image
pairs in total, with 485 pairs used for training and 15 pairs set aside
for testing. We also used LOLv2-Real to test model performance.
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Table 1: Comparison of quantitative results on UHD-LOL4K and UHD-LL datasets. The best and second best values are indicated
with bold text and underlined text respectively.

Type Method Venue UHD-LOL4K UHD-LL Average Parameter↓PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

non-UHD

Zero-DCE [10] CVPR’20 17.19 0.850 0.193 17.08 0.663 0.513 17.14 0.757 0.353 79.416K
Zero-DCE++ [14] TPAMI’21 15.58 0.835 0.222 16.41 0.630 0.530 16.00 0.733 0.376 10.561K

RUAS [17] CVPR’22 14.68 0.758 0.274 13.56 0.749 0.460 14.12 0.754 0.367 3.438K
Uformer [27] CVPR’22 29.99 0.980 0.034 19.28 0.849 0.356 24.64 0.915 0.195 20.628M
Restormer [35] CVPR’22 36.91 0.988 0.023 22.25 0.871 0.289 29.58 0.930 0.156 26.112M
DiffLL [12] Siggraph’23 36.95 0.989 0.022 21.36 0.872 0.239 29.15 0.930 0.131 17.29M

UHD

LLFormer [13] AAAI’23 37.33 0.989 0.020 22.79 0.853 0.264 30.06 0.921 0.142 13.152M
UHDFour [15] ICLR’23 36.12 0.990 0.021 26.22 0.900 0.239 31.17 0.945 0.130 17.537M

UHDFormer [23] AAAI’24 36.28 0.989 0.020 27.11 0.927 0.245 31.69 0.958 0.130 339.3K
Wave-Mamba (Ours) - 37.43 0.990 0.019 27.35 0.913 0.185 32.39 0.952 0.102 1.258M

(a) Input (b) GT (c) Restormer (d) LLFormer (e) UHDFour (f) UHDFormer (g) Wave-Mamba
(Ours)

Figure 6: Visual comparison results on the UHDLOL4K dataset. The proposed method produces visually more pleasing results.
(Zoom in for the best view)

Table 2: Comparison of quantitative results on LOLv1 and
LOLv2-Real datasets. The best and second best values are
indicated with bold text and underlined text respectively.

Type Method LOLv1 LOLv2-Real
PSNR SSIM PSNR SSIM

non-UHD

Uformer [27] 18.55 0.721 18.44 0.759
Restormer [35] 22.37 0.816 24.91 0.851

Retinexformer [2] 25.16 0.845 22.80 0.840
MambaIR [11] 22.31 0.826 21.25 0.831

RetinexMamba [1] 24.03 0.827 22.45 0.844
MambaLLIE [30] - - 22.95 0.847

DiffLL [12] 26.34 0.845 28.86 0.876

UHD
LLFormer [13] 23.65 0.816 27.75 0.861
UHDFour [15] 23.09 0.871 21.78 0.870

Wave-Mamba (Ours) 26.54 0.883 29.04 0.901

5.3 Comparisons with State-of-the-Art Methods
In this section, we compare our proposed Wave-Mamba quantita-
tively and qualitatively with the current State-of-the-Art methods.
We use the PSNR, SSIM [26], and LPIPS [37] to evaluate our method.
PSNR measures the quality of reconstructed images by comparing
pixel intensity differences, SSIM evaluates image quality based on
luminance, contrast, and structure, and LPIPS assesses perceptual
similarity using deep learning models.
Quantitative Results: To validate the effectiveness of our method
on the UHD dataset, we compared it with state-of-the-art (SOTA)
low-light enhancement methods, including Zero-DCE [10], Zero-
DCE++ [14], RUAS [17], Uformer [27], Restormer [35], LLFormer
[13], UHDFour [15], and UHDFormer [23]. Given that the vast
majority of existing methods are not designed to handle the full
resolution of UHD images, we employ a sliding window approach to

generate the final enhanced image. This way involves chunking the
input UHD image into patches, inference each patch independently,
and then stitching the predictions back together to obtain the output.
Table 1 shows the performance of our Wave-Mamba and other
methods. As shown in Table 1, our approach achieves the best PSNR
performance results with few parameters on all UHD datasets. In
addition to this, our method is also far better in terms of perceptual
metrics than the current most superior UHDFormer.

For further validation of the effectiveness of our methods, we
additionally compare these methods on the LOLv1 and LOLv2-Real
datasets, as shown in Table 2. Due to the low-resolution images in
the LOLv1 and LOLv2-Real datasets, the downsampling operation in
the existing UHD LLIE methods can cause information loss, which
leads to poor results. In contrast, benefiting from the information
preservation feature of the wavelet transform, our method can also
achieve state-of-the-art results on low-resolution datasets. All these
results clearly suggest the outstanding effectiveness and efficiency
advantage of our Wave-Mamba.
Qualitative Results: To complement the quantitative assessments,
we also conduct qualitative comparisons of our proposed method.
As shown in Figures 6 and 7, existing UHD LLIE methods that rely
on high-magnification downsampling suffer from the issue of intro-
ducing artifacts in the restored images. Furthermore, in comparison
to the state-of-the-art UHDFormer approach, our Wave-Mamba
method can achieve results that are closer to the true colors and
textural details. Our Wave-Mamba demonstrates its capabilities
in enhancing low-visibility and low-contrast regions, reliably re-
moving noise without introducing unwanted artifacts, and robustly
preserving the original color information. More results are provided
in the supplementary material.
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(a) Input (b) GT (c) Restormer (d) LLFormer (e) UHDFour (f) UHDFormer (g) Wave-Mamba
(Ours)

Figure 7: Visual comparison results on the UHDLL dataset. The proposed method produces visually more pleasing results.
(Zoom in for the best view)

Table 3: Ablation studies of different components.
Experiment LFSSBlock HFEBlock FMT PSNR SSIM
Setting1 ✔ 10.14 0.301
Setting2 ✔ ✔ 12.35 0.346
Setting3 Residual Block 24.66 0.845
Setting4 ✔ 25.94 0.887
Setting5 ✔ ✔ 26.41 0.903
Setting6 ✔ ✔ 27.13 0.908

Full Model ✔ ✔ ✔ 27.35 0.913

Table 4: Ablation studies on different numbers of LFSSBlocks
and HFEBlocks.

Experiment LFSSBlocks HFEBlocks PSNR SSIM Params
1 [1,1,4] [1,1,1] 26.48 0.904 1.2M
2 [1,2,4] [1,1,1] 27.35 0.913 1.3M
3 [1,1,4] [1,1,2] 26.67 0.909 2.2M
4 [1,2,4] [1,1,2] 27.41 0.922 2.3M
5 [1,1,2,4] [1,1,1,1] 27.38 0.913 2.3M

(a) Input/GT (b) w/o LFSSBlock

(c) w/o HFSSBlock (d) Ours

Figure 8: Visual effect on our proposed blocks. (Zoom in for
the best view)

5.4 Ablation Study
In this section, we utilize the UHD-LL dataset to perform an ablation
study evaluating the key design choices in our Wave-Mamba model.
More results are provided in the supplementary material.
Effectiveness of Proposed Blocks: We present ablation stud-
ies to demonstrate the effectiveness of the main component in
our design, including LFSSBlock, HFEBlock, and FMT. The exper-
imental results are shown in Table 3. As shown in the results of
Setting 1 and 2 in Table 3, the lack of restoration and enhancement
of low-frequency information is unable to improve image qual-
ity. Furthermore, we conducted a comparative experiment using

Residual Blocks and LFSSBlocks with similar parameters, which
demonstrates that our proposed LFSSBlock, leveraging its power-
ful global modeling capability through SSMs, can achieve better
performance. Additionally, the ablation study on the HFEBlock
indicates that while high-frequency information cannot primarily
determine the quality of the restored image, it does have some
influence on the restoration results. Therefore, compared to simply
stacking high-frequency information, the addition of the HFEBlock
with FMT in our method allows us to achieve optimal performance.
The visualization in Figure 8 also shows that our proposed method
recovers clearer images. The above experiments fully demonstrate
the effectiveness of the modules we proposed.
Tradeoff Study of Performance Versus Parameters: To find
out the influence of the computation resources, we explore differ-
ent numbers of LFSSBlocks and HFEBlocks to construct network
structures of different depths. The detailed experimental results are
shown in the Table 4. As can be seen in Table 4, the HFEBlocks have
a greater impact on the parameters of the model compared to the
LFSSBlocks, but the performance improvement is relatively small.
Furthermore, during the process of increasing the number of LFSS-
Blocks, we found that increasing the number of the second-level
LFSSBlocks leads to a greater performance boost than increasing
the number of the last-level LFSSBlocks. To verify the impact of in-
creasing the second-level LFSSBlocks on performance, we compared
Experiments 2 and 3, and found that performance did not increase
as the number of modules grew. Considering the balance between
performance and computational cost, we adopted the configuration
of Experiment 2 as our final setting.

6 CONCLUSION
In this paper, inspired by the characteristics of real low-light images
in the wavelet domain, we propose a novel paradigm called Wave-
Mamba that leverages state space models (SSMs) for the UHD LLIE
task. Specifically, we employ wavelet-based downsampling to avoid
the information loss issues associated with high-magnification
downsampling. Additionally, we introduce Mamba to propose a
low-frequency state space block (LFSSBlock), which relies on the
excellent global modeling capability of SSMs to obtain excellent
recovery results. Furthermore, to exploit the similarities between
different frequency components, we design a high-frequency en-
hance block (HFEBlock) that utilizes the low-frequency information
to correct the high-frequency details. Owing to these unique de-
signs targeting the different frequency components in the wavelet
domain, our Wave-Mamba outperforms state-of-the-art methods
in UHD LLIE with appealing efficiency.
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