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Abstract

Mask-based pretraining has become a cornerstone of modern large-scale models
across language, vision, and recently biology. Despite its empirical success, its role
and limits in learning data representations have been unclear. In this work, we show
that the behavior of mask-based pretraining can be directly characterized by test
risk in high-dimensional minimum-norm ("ridge-less") linear regression, without
relying on further model specifications. Further analysis of linear models uncovers
several novel aspects of mask-based pretraining. The theoretical framework and
its implications have been validated across diverse neural architectures (including
MLPs, CNNs, and Transformers) applied to both vision and language tasks. Guided
by our theory, we propose an embarrassingly simple yet overlooked pretraining
scheme named Randomly Random Mask AutoEncoding (R2MAE), which enforces
capturing multi-scale features from data and is able to outperform optimal fixed
mask ratio settings in our linear model framework. We implement R2MAE in vision,
language, DNA sequence, and single-cell models, where it consistently outperforms
standard and more complicated masking schemes, leading to improvements for
state-of-the-art models. Our code is available at this URL.

1 Introduction

Mask-based pretraining has emerged as a unifying paradigm for self-supervised learning across
natural language [1–4], vision [5–13], and biological domains [14–22]. This approach is prevalent
particularly for data that cannot be presented sequentially, such as images and tabular data [23]. The
representations learned through masked-based pretraining have consistently yielded state-of-the-art
zero-shot and fine-tuning performances on diverse downstream tasks [1, 23, 24, 6, 16].

Despite the widespread success of masked autoencoding pretraining schemes, fundamental questions
remain about why and how it helps in learning meaningful data representations. Several theoretical
works [25–28] investigated its underlying mechanism using different frameworks, yet two critical
questions on the qualitative role of masking persist:

• (Universality across different contexts) The scheme proves effective across various data
domains, masking designs, and neural network architectures beyond transformers. This
suggests its underlying mechanism is fundamental and architecture-agnostic.

• (Diversity across domains and tasks) The optimal behavior of mask pretraining differs
significantly across contexts. In language modeling, BERT employs a moderate masking
ratio of 15% [1], while in vision, surprisingly high masking ratios (75%) can produce
superior representations despite removing most of the visual content [6]. Moreover, the
optimal masking ratio varies even across different downstream tasks for a single model [29].

The performance curves of models with different masking ratios have been explicitly characterized in
several works [6, 29], which serve as a foundation for several theoretical explanations [25, 28]. An
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intriguing phenomenon is the existence of a sweet-spot masking ratio that achieves optimal model
performance. Additionally, several interesting quantitative behaviors of the performance curve, such
as plateaus in the low-masking and near-optimal-masking regimes, appear in a number of cases [6].

To our knowledge, no previous work has proposed a theoretical framework general enough to address
the aforementioned qualitative challenges, nor have they successfully explained these quantitative
behaviors of mask pretraining schemes. Moreover, prior works do not explain the effect of model size
in determining the optimal mask ratio [29]. In this work, our main contributions are the following:

1. We introduce a novel theoretical framework based on a high-dimensional linear regression
setting tailored to mask prediction. We demonstrate that the test risk of this considered
model recapitulates both qualitative and quantitative behaviors of diverse pretrained neural
networks with respect to masking ratio in large-scale vision and language models.

2. We derive explicit expressions for the test risk under several cases using random matrix theory
[30–32] with novel theoretical contributions. Our results suggest that previous observations
on mask pretraining behaviors can be explained by solely bias-variance decomposition.

3. We identify and validate several aspects of mask-based pretraining—previously unexplained
or overlooked—in various architectures across vision and language tasks: 1) The scheme is
only beneficial in the overparametrized regime; 2) The optimal masking ratio is task and
model-size-dependent; 3) It enforces feature magnitude disparity.

4. Building on insights from the linear model, we propose R2MAE, a simple but novel
pretraining strategy that replaces fixed mask ratio with uniformly sampled mask ratios from
a predefined range. R2MAE yields consistent improvements in vision, language, DNA, and
single-cell pretraining, outperforming standard masking and various existing enhancement
strategies on downstream zero-shot, linear probing, and fine-tuning tasks. R2MAE enforces
models to capture different feature scales, and is able to outperform optimal fixed masking
ratio performance in real data and linear models under appropriate mask range settings.

2 Related works

Mask-based pretraining in language, vision, and biology. Mask pretraining has become a dominant
self-supervised learning approach in recent years, with significant developments in language modeling,
computer vision, and biology. In NLP, BERT introduced the Masked Language Model (MLM)
objective where random 15% tokens are corrupted and predicted from context [1]. MLM has
been adapted in numerous works with modifications [2–4]. Studies show optimal masking ratios
may exceed the 15% default and vary by task [29], while dynamic mask scheduling may improve
performance [33, 34]. Other approaches propose learnable masks during pretraining [35–37]. In
computer vision, researchers drew inspiration from BERT to devise masked image modeling methods,
explored in ViT and BEiT [5, 7]. He et al. [6] propose MAE, showing that images benefit from an
extremely high mask ratio of 75% to achieve state-of-the-art results in downstream tasks. This finding
sparked numerous empirical studies on evaluating and improving the MAE scheme [8–13, 38].

The mask-based pretraining paradigm has also made inroads into biological data science, in particular
for DNA sequences and single-cell gene expressions. Those DNA models are usually trained directly
by the BERT pretraining objective [39, 16], whereas variants of mask rates were explored for single-
cell self-supervised learning models ranging from 15% to 90% [18, 20, 21, 17, 40]. To the best
of our knowledge, there are currently no successful improvements of mask-pretraining schemes in
biological models beyond simply tuning masking rates. See Appendix A.1 for additional discussions.

Understanding neural networks through linear models. The connection between neural networks
and linear models in the proportional regime has been extensively studied in recent years. Here the
proportional regime refers to the asymptotic setting where the feature number d and the sample number
n both tend to infinity, with their limit ratio γ = d/n ∈ (0,∞). For instance, the double descent
phenomenon, where test error decreases with overparameterization was characterized empirically
in deep networks [41] and theoretically shown for high-dimensional ridge(-less) regression [42, 43].
Recent works also addressed generalized polynomial regimes where γ = d/nα ∈ (0,∞)[44–46].
The equivalence between nonlinear models and linear Gaussian models with matching moment
statistics, i.e., universality, have been demonstrated or conjectured in multiple settings [47–49].
Further background of high-dimensional linear models can be seen in Appendix A.2.
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Theoretical endeavors to understand mask pretraining. Recent theoretical investigations aimed to
provide insights into mask-based pretraining objectives. Cao et al. [26] analyzed MAE’s attention
mechanism through integral kernels and Pan et al. [50] demonstrated autoencoders’ capacity to
preserve semantic information. Zhang et al. [25] suggests that masking creates implicit positive pairs
relevant to contrastive learning. Yue et al. [27] reframed MAE as local contrastive learning where
reconstruction loss contrasts different image regions. Kong et al. [28] developed a latent variable
framework to explain the existence of optimal masking rate in MAE. To our knowledge, no prior
research has precisely characterized the quantitative phenomena observed in mask-based pretraining,
nor can these approaches be readily generalized across data domains and masking designs.

3 A theoretical framework for mask-based pretraining using
high-dimensional linear models

In this work, we formulate the feature-level mask autoencoding problem as follows. Let x =
(x1, . . . , xd+1) ∈ Rd+1 be an input sample, where indices {1, . . . , d + 1} denote features (tabular
data) or positions (image/language data). A binary mask z = (z1, . . . , zd+1) ∈ {0, 1}d+1 yields the
corrupted input x′ = x ⊙ z. The model fθ : Rd+1 → Rd+1 is trained to reconstruct the original
values xi for features where zi = 0. Denoting the set of masked indices as Sm = {i|zi = 0} and
using the Mean Squared Error (MSE) loss L(a, b) = ∥a− b∥2, the objective per sample is:∑

i∈Sm

L(fθ(x′)i, xi). (1)

The purpose of setting the feature dimensionality as d + 1 will become clear in the next section.
This approach, particularly when fθ employs a (transformer-based) encoder-decoder architecture,
aligns with prominent masked autoencoding methods like MAE (vision) [6], BERT (language/DNA)
[1, 14, 39, 16], and masked autoencoders for single-cell genomics [17, 18, 21].

3.1 Reduced linear model

To make exact analysis of this feature-level mask autoencoding problem feasible, we introduce two
primary simplifications. First, we assume the model fθ is linear in its input x′ and has no bias term.
Specifically, the reconstruction for the i-th original feature xi is given by:

fθ(x′)i = x′βi, where βi ∈ Rd+1 is a coefficient vector specific to feature i. (2)

Note that if xi is the feature being reconstructed (i.e., zi = 0), then the i-th component of the input
x′ is (x′)i = xizi = 0. Consequently, the i-th component of βi, (βi)i, does not contribute to the
prediction fθ(x′)i =

∑
j ̸=i(x

′)j(βi)j . Second, we assume the coefficient vectors {βi}d+1
i=1 are

independent sets of parameters across different target features i. This allows the problem to be treated
as d+ 1 parallel, though potentially coupled through data, regression-like tasks.

We next consider a stylized version of one such reconstruction task. Let y = (y1, ..., yn) ∈ Rn

represent an arbitrary single feature from the original sample that we aim to reconstruct (e.g., y = xk

for some k). We formulate its corresponding regression problem as follows, using n for the total
number of training samples. The feature dimension is now d as one feature is removed from x ∈ Rd+1.
Let X ∈ Rn×d be the matrix containing all n original, unmasked training samples with feature y
removed. We henceforth denote the j-th row of X as xj . We consider the following teacher model:

y = Xβ + ϵ. (3)

Here, β ∈ Rd is the ground-truth coefficient vector. The noise ϵ = (ϵ1, ..., ϵn) ∈ Rn with each entry
ϵj i.i.d. and E[ϵj ] = 0,E[ϵ2j ] = σ2. Each sample xj is assumed to have zero expectation E[x⊤

j ] = 0,
and covariance Σ = E[x⊤

j xj ]. We denote γ = d/n, r = ∥β∥, β̃ = β/∥β∥, and κ = σ2/r2.

In the random-mask autoencoding task, each feature chosen as a target is selected with probability p.
Thus, for the regression on y, the effective number of samples is ñ ∼ Binomial(n, p). We let ỹ ∈ Rñ

be the vector of these target values, and Xsub ∈ Rñ×d be the rows of X corresponding to these ñ
instances. By Hoeffding’s concentration inequality, we have ñ/n = p+ o(1) with high probability.
Since we only deal with the proportional regime, it suffices to assume the case of ñ/n = p for
establishing asymptotic risk quantities in our framework.
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The observed covariates are a randomly masked version of Xsub. Let Z ∈ {0, 1}ñ×d be a random
matrix where each entry zij is i.i.d. Bernoulli(1− p), with p the masking probability defined before.
Then the covariate matrix is X̃ = Xsub ⊙ Z ∈ Rñ×d. We consider the solution of the following
ridge-less regression in the proportional regime (d, ñ→ ∞, with d/ñ→ γ̃ ∈ (0,∞) constant):

β̂ = lim
λ→0+

argmin
β′

(
∥ỹ − X̃β′∥22 + λ∥β′∥22

)
= lim

λ→0+
(X̃⊤X̃ + λId)

−1X̃⊤ỹ. (4)

We are interested in the test risk of the model. For a new, unmasked sample x0 ∈ Rd, it is of form:

RX̃(β̂;β) = E
[
(x0β̂ − x0β)

2 | X̃
]
= E

[
∥β̂ − β∥2Σ | X̃

]
. (5)

Relation with standard ridge-less regression framework. Our setup diverges from the standard
ridge-less regression framework in two key aspects. First, the effective number of training samples,
ñ = np, is directly modulated by p. Second, the design matrix X̃ exhibits a level of induced sparsity
(or feature corruption) determined by p. As we will demonstrate, these two p-dependent factors lead
to complex and distinct behaviors in the bias and variance of the estimator, compared to classical
ridge-less regression. Further background and preliminaries are provided in Appendix A.2.

Test risk and model performance. The test risk for reconstructing a feature y can be viewed as a
feature-wise generalization error, analogous to validation loss. Here, y can represent latent features,
whose reconstruction error is connected to the validation loss in the original space through the model’s
decoding transformation. Therefore, this risk reflects the model’s feature learning ability, which
indicates its utility for downstream tasks like probing and fine-tuning. The correlation between MAE
validation loss and fine-tuning performance, as noted in [8], supports this interpretation.

Relation with real network optimization. Beyond the key linear simplification, complexities such
as mini-batch processing and multi-epoch training are not incorporated into our current setup. Our
goal in this study is to develop a minimal model that captures essential aspects of mask pretraining
behaviors. A more detailed characterization of these additional factors remains future research.

Next token prediction. Our linear model addresses an independent sample-wise prediction setting.
While it aligns well with the mask-based pretraining task, it cannot adequately model the other
prevalent pretraining procedure, i.e., autoregression, which is a token-wise prediction task with strong
contextual dependencies. We anticipate the latter task to exhibit distinct statistical behaviors, which
may be revealed through the analysis of a more complex high-dimensional linear model.

3.2 Isotropic model

Here we present our main theoretical results regarding the test risk of the considered high-dimensional
linear model. We first consider the simplest case where the covariance matrix Σ = I .

Theorem 1 (Isotropic model). When Σ = I , the test risk (5) can be asymptotically expressed as:

lim
n,d→∞

RX̃(β̂;β)/r2 =


(p+κ)γ

(1−p)(p−γ) , γ̃ < 1 (γ < p);

1− p
γ + p(p+κ)

(1−p)(γ−p) , γ̃ > 1 (γ > p).
(6)

The proof of the theorem, provided in Appendix B.2, extends well-known results from standard
high-dimensional linear regression [43] by employing an isotropic local law for sample covariance
matrices [30]. According to the formula, in the underparameterized regime (γ̃ < 1), the test risk
is a monotonically increasing function of p. In the overparameterized regime (γ̃ > 1), the test risk
exhibits non-monotonic behavior with respect to p, achieving its minimum at some p∗ ∈ (0, 1).
Depending on the value of γ, the test risk curve will either monotonically increase regarding p
(γ > 1), or exhibit a transition at the threshold at γ = p (γ < 1). These predictions, including the
phase transition phenomenon, are validated by simulations as shown in Fig. 1A.

Nevertheless, this outcome is largely unconstructive, as the minimal risk achieved does not offer a
substantial reduction compared to that of a null prediction (i.e., β̂ = 0, for which Rx(0;β) = r2).
In the following sections, we will demonstrate that the benefit of masking is due to the conditional
dependence between unmasked and masked features, a key component missing in this setting.
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3.3 Spiked covariance model

Identity covariance represents a special case without feature dependency, whose characterization
effectively reduces to the standard ridge-less case. If the covariance involves interaction terms, a
non-trivial standalone treatment would be required. Below, we consider a spiked covariance model,
Σ = I + δvv⊤, where v ∈ Rd is a vector and δ > 0 is a scalar. Below we denote the masked data
covariance as Σ̃ = (1 − p)2Σ + p(1 − p) diag(Σ). We characterize the limiting test risk of this
rank-1 spiked covariance model in the overparametrized regime:
Corollary 1 (Limiting test risk of spiked covariance model). The test risk (5) has the following limit:

lim
n→∞

RX̃(β̂;β)

r2
→ lim

n→∞

(
ϕβ + c2(1− ϕv) + δ(c(1− ϕv)− ψ)2 + u

(
σ2

r2
+ p+ cpβ̃⊤v

))
,

(7)

where c =
pδ · v⊤β̃

1 + δ(1− p)
, ϕβ = λ⋆β̃

⊤(λ⋆I + Σ̃)−1β̃, ϕv = λ⋆v
⊤(λ⋆I + Σ̃)−1v,

ψ = λ⋆β̃
⊤(λ⋆I + Σ̃)−1v, u =

Tr(ΣΣ̃(λ⋆I + Σ̃)−2)

ñ− Tr(Σ̃2(λ⋆I + Σ̃)−2)
,

(8)

and λ⋆ is the unique non-negative solution of the fixed point equation ñ = Tr
(
Σ̃(Σ̃+ λ⋆I)

−1
)
.

The result is a corollary of Theorem 2, which characterizes the asymptotics of the test risk in this
setup. Theorem 2 and its proof are presented in Appendix B.3, along with a moderate delocalization
assumption required for the proof. The validity of our derived test risk expression is confirmed by
numerical experiments (Fig. 1B). Intuitively, when the spike level δ is small, the setting effectively
reduces to the identity covariance case, where the test risk does not significantly descend. When δ is
large, the behavior of the bias term is mostly characterized by the quadratic term δ(c(1− ϕv)− ψ)2.
In this case, there can exist a "sweet-spot" masking ratio that minimizes the quadratic term achieving
near-zero bias and near-optimal risk, especially when δ is large. This yields the desired descent
behavior in real-world mask pretraining curves and is validated via simulations (Figs. 1C, 3).

According to the quadratic term, the test risk and the optimal masking ratio both depend on the feature
strength, defined as the alignment between β and Σ (reducing to β⊤v in this case). A stronger
feature strength results in a steeper test risk descent and a higher optimal masking ratio (Figs. 1B-C,
3). Finally, we empirically observed that higher masking leads to a greater disparity in prediction
magnitude, E

[
∥Xβ̂∥2|X̃

]
, between βs aligned with Σ and those that are not (Figs. 1D, 3).

3.4 General covariance models recapitulate real-world mask pretraining curves

For general covariance matrices, an analytic expression of test risk remains infeasible. Nevertheless,
when β is an eigenvector of Σ, the behavior of bias and variance terms can be revealed through
a simplified form of the test risk, presented as Theorem 3 in Appendix B.4. Similar to the spiked
covariance case, the test risk displays a descent with respect to the masking ratio p due to cancellation
in the bias term. To verify our results, we simulated covariance models constructed by orthonormal
projections of various spectrum distributions (Fig. 1E, see Appendix for details). The non-monotonic
pattern of the test risk emerges in all models, with stronger effects and higher optimal masking ratios
for stronger signal βs (those corresponding to higher eigenvalues in Σ, Fig. 1E). We also observed a
comparable transition threshold where the minimum test risk gains an advantage over null prediction
(Fig. 1E), which may suggest a form of universality that warrants further theoretical investigation.

We further compared our results with real language models (BERT) pretrained by MLM with different
masking ratios [29]. Even for the same set of models, the behavior of mask pretraining curves varies
with respect to the evaluation dataset (Fig. 1F). The resulting family of curves aligns well with our
observations in linear models (Fig. 1E). In vision MAE models [6], the mask pretraining curve can
exhibit unusual behavior with two plateaus: 1) Before the performance improves with respect to
masking ratio, the model performance remains relatively stable; 2) A range of masking ratios where
the model achieves similar near-optimal. Interestingly, with another latent space model (see Appendix
for details), we faithfully reproduced the observed two plateaus in real mask pretraining curves (Fig.
1G). Notably, another sample from the model results in a different curve aligning with MAE linear
probing performance (Fig. 4). Together, these comparisons suggest a connection between real-world
mask pretraining and our linear model framework, which we will further validate in the next section.
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Figure 1: A-B. Plots of theoretical test risk and simulations (showing mean and standard deviation
from 50 samples) against the masking ratio p for the identity covariance model Σ = I (A) and the
spiked covariance model Σ = δvv⊤ + I (B). For the former model, n = 2000 (left), 4000 (right).
For the latter model, each entry in v is i.i.d. sampled from U(0, 1) and then scaled to ensure ∥v∥ = 1.
n = 200, γ = 5, δ = 10. C-D. Plots of mean simulation test risk (C) and mean magnitude ratio
(D, defined as E

[
∥Xβ̂0∥2|X̃

]
/E
[
∥Xβ̂1∥2|X̃

]
between cos(β1,v) = 1 and cos(β0,v) = 0) over

50 samples in the spiked covariance model. n = 200, γ = 5. E. Normalized test risk of different
covariance models plotted against masking ratio p, where β was selected as different eigenvectors of
the covariance matrix Σ (Upper). Histogram of covariance spectrum densities for each model above
(Lower). The threshold where the minimal risk becomes smaller than the null risk is highlighted
by a dashed blue line. F. Transformed error rates of fine-tuned BERT models evaluated on different
benchmark tasks [29] (See Appendix C for details). G. Plots of MAE fine-tuning accuracy on
ImageNet-1K [6] and the normalized test risk of a latent space model against masking ratio.

3.5 Validating insights from linear models in real neural networks

Apart from reproducing existing observations, a successful theory should also provide hypotheses that
can be empirically validated. Here we summarize main predictions from our theoretical framework:

1. Mask-based pretraining is only beneficial in the overparametrized regime. This is because
it reduces risk through the bias term, which only appears in the overparametrized case.
Moreover, for these overparametrized models, the optimal masking ratio should be dependent
on the model parameter size, which determines the limit ratio γ thus also the test risk.
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Figure 2: A. Linear probing classification accuracy of MLPs in parameter-insufficient (left) and
sufficient (right) settings on MNIST. B. Pixel-level reconstruction error without masking for CNN
models trained on CelebA. C. Impact of masking ratio on different RoBERTa model sizes (large >
base > medium). Adapted from [29] licensed CC-BY 4.0. y axes were flipped for consistency. D.
Effective rank of MNIST embedding in overparametrized MLP models of different settings.

2. The performance curve regarding the mask ratio can differ by evaluation tasks even for the
same set of pretrained models, due to different features required for the downstream task.

The most decisive support of our theory would be on the first point that cannot be explained via
previous arguments centered on training data [25, 27, 28]. We validate these points on MultiLayer
Perceptrons (MLPs) trained on MNIST, convolutional neural networks (CNNs) trained on CelebA,
and large-scale RoBERTa transformer models [29]. For the former two setups, we pretrained encoder-
decoder architectures by pixel-level mask reconstruction tasks. We refer to extensive comparisons
performed in [29] for effects of mask ratio and RoBERTa model size on pretraining performance. We
implemented both parameter-insufficient and sufficient settings for MNIST, whereas the latter was
used for evaluating CNNs and transformers. In MLPs, the linear probing error rate exhibits a descent
for all parameter-sufficient models, while the error rate first fluctuates then monotonically increases
for parameter-insufficient models (Fig. 2A). The transition observed in parameter-insufficient models
can be explained by the test risk of underparametrized linear models (γ < 1, Fig. 1A).

For CNNs, the optimal reconstruction of original images was observed for different sets of intermedi-
ate masking ratios across model sizes (Fig. 2B). As for linear probing, all models suddenly improve
after the masking ratio increases to a model-size-specific threshold (Figs. 5-7). Together, different
CNN model sizes exhibit distinct optimal masking ratios (0.6, 0.7, 0.8 for 8, 16, 32 base channels
respectively). For RoBERTa, larger models correspond to higher optimal masking ratio, which is
further altered by the evaluation task (Fig. 2C). These evaluations provide strong support for our first
prediction, which would not be addressed by existing explanations. Differences of optimal masking
ratio across evaluation tasks for CNNs and RoBERTa models further support the second point.

We then explored whether the increased feature magnitude disparity in spiked covariance models
(Fig. 1D) appears in real neural networks. Specifically, we evaluated the effective rank (ER) of
MNIST image embeddings in MLP models. ER is defined as the entropy of sum-normalized matrix
singular values and measures spectrum uniformity [51]. Except for the extremely small embedding
case (dim=16), all parameter-sufficient models indeed exhibit a decrease of ER with respect to the
masking ratio (Fig. 2D), with curve patterns resembling those in Fig. 1D, confirming our hypothesis.
This also aligns with the previously observed decrease of ER during training in vision MAEs [25].
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4 R2MAE for universal representation learning

As a final contribution of our work, we aim to employ our gained understanding to improve current
mask pretraining schemes. Our theoretical framework highlights that different masking ratios
selectively emphasize features of varying strength. Therefore, we conclude that it is essential to
expose the model to a range of masking ratios during pretraining. We propose the simplest pretraining
method that serves the purpose, which can be described and implemented in one line:

Expose the model to data corrupted with a uniformly sampled masking ratio p ∼ U(pmin, pmax).

We term this scheme as Randomly Random Mask AutoEncoding (R2MAE). Despite its simplicity, it
has not been implemented in prior works to our knowledge. Existing works focused on improving the
mask-based pretraining objective mostly aim to learn adaptive masks during pretraining [38, 37, 52]
or perform (deterministic) mask rate scheduling during training [33, 34]. Technically, the closest
variant of R2MAE may be the training phase of a mask diffusion language model (MDLM) [53, 54],
which reconstructs tokens in unmasked to completely masked samples, constituting a special case of
(pmin, pmax) = (0, 1). Nevertheless, MDLMs are used for generation instead of fine-tuning related
tasks, and fine-tuning standard BERT models with MDLM does not affect/improve downstream task
performance [54]. The issue of setting (pmin, pmax) = (0, 1) for feature learning is apparent with
our theoretical framework, as the test risk either degenerates or explodes when p ≈ 0/1.

4.1 Evaluation of R2MAE on vision and language modeling

We first evaluated R2MAE on well-studied image and language pretraining tasks. Our implementa-
tions closely follow established practices [6, 29]. For vision pretraining, we implemented different
mask ratio settings on the same ViT-base MAE model as in [6]. The considered settings include:
1. Default MAE with constant masking ratio 0.75; 2. R2MAE with masking rate p ∼ U(0.6, 0.9);
3. the training phase of MDLM [54] with masking rate p ∼ U(0, 1); 4. Dynamic MR [34] that
linearly decreases masking ratio from 0.9 to 0.6; 4. High (0.9) and low (0.5) mask ratios. We trained
all models for 150 epochs. While the training is shorter than default 800-epoch experiments in [6],
their evaluation shows predictable improvements from 100 to 1600 epochs in ViT-Large models.
Therefore, we anticipate our results to be comparable across different settings despite suboptimal
absolute accuracy. All models were then fine-tuned for classification for 100 epochs following [6].

As shown in Table 1, R2MAE marginally outperforms the best alternatives (default MAE and dynamic
MR) and does not suffer from suboptimal MR as observed in high and low masking baselines. Across
our experiments, R2MAE yields its smallest improvement for ViT-MAE, potentially for two reasons:
1) Its training involves significantly longer epochs with augmentation, which deviates from other
experimental settings and our theoretical framework; 2) R2MAE’s pre-training loss in ViT-MAE
fluctuates, likely due to variable-length of unmasked token sequences, warranting future improvement.

Table 1: Fine-tuning accuracies of ViT-base MAE models [6] on ImageNet classification. In our
benchmarks, masking scheme metrics outperforming optimal fixed MR settings are labeled red.

Metric MR 0.75 (default) MR 0.9 MR 0.5 MDLM Dynamic MR R2MAE (Ours)

Top1 Acc. 81.97 81.20 81.80 81.02 81.97 82.00
Top5 Acc. 96.02 95.68 95.93 95.60 96.04 96.05

For language modeling, we trained RoBERTa-base and RoBERTa-medium (named following [29])
models on the FineWeb dataset for 10B tokens, and fine-tuned them on GLUE benchmarks. The
reported accuracy for each task is the average of three runs with different random seeds, consistent
with [29]. Similar to vision experiments, we evaluated: 1. Default MLM (MR 0.15); 2. R2MAE
(p ∼ U(0.15, 0.4)); 3. Dynamic MR [34] (0.4 to 0.15); 4. MLM with a fixed 0.4 MR. Our fine-tuning
accuracies are comparable to those in [29]. In both models, R2MAE achieves best performance in
three tasks (MNLI, QQP, SST-2), achieving best overall rank, followed by dynamic MR (Table 2).

4.2 Evaluation of R2MAE on DNA sequence and gene expression modeling

One focus of R2MAE is on biological data including DNA sequences and single-cell gene expression
data, where the standard mask-based pretraining scheme remains the prevalent choice [16–18, 21],
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Table 2: GLUE fine-tuning accuracies of RoBERTa models with different pretraining settings.
RoBERTa-Medium (52M) RoBERTa-Base (125M)

Method MNLI QQP SST-2 QNLI Rank MNLI QQP SST-2 QNLI Rank

MLM default 80.8 89.8 89.9 86.3 3.25 81.5 90.7 91.7 87.8 3.00
Fixed MR 0.4 80.3 89.7 90.1 86.6 3.75 81.7 90.7 91.2 88.5 3.25
MDLM 79.4 89.8 89.3 85.4 4.50 80.3 90.3 91.4 87.7 4.50
Dynamic MR 80.8 90.1 90.5 87.1 1.50 81.8 90.7 91.4 89.1 2.00
R2MAE (Ours) 80.9 90.1 90.6 86.7 1.25 81.9 90.8 91.9 88.6 1.25

and improving the scheme is a pressing need. We evaluated a 12-layer BERT style model for
DNA sequence (GPN-MSA [16]), and a 5-layer MLP encoder-decoder model for single-cell gene
expression respectively. Apart from R2MAE, we implemented standard MLM/MAE with different
masking ratios, MDLM [54], dynamic MR [34], and learnable mask (named as CL-MAE following
[38], which effectively covers AutoMAE [52]). We also compared alternative DNA sequence and
single-cell models [55–59, 39, 17, 21]. To evaluate if other masking strategies synergize with R2MAE,
we further implemented the combination of R2MAE with Dynamic MR or CL-MAE. After training,
DNA models are evaluated through zero-shot missense/regulatory (Clinvar/OMIM) variant prediction
tasks [60–62]. Gene expression models are evaluated using linear probing performances in predicting
cell type, disease, and age across donors in lung and brain atlas datasets [63, 64].

As shown in Tables 3–4 and 6, R2MAE achieves the best overall performance in both DNA and
single-cell tasks. The only tasks without clear advantage are DNA missense variant prediction (where
all best models achieved near-optimal performance) and cell type classification (where the target label
is artificially curated). Together, among all tested model domains (vision, language, DNA, single-cell),
R2MAE is the only scheme that consistently outperforms standard MLM/MAE with best mask ratios,
among the default value and min/max ratios used in R2MAE. The consistent improvement in our
well-controlled comparisons highlights robustness and generalizability of R2MAE.

Interestingly, for the cases where Dynamic MR and CL-MAE outperform the baseline setting,
combining them with R2MAE results in a disadvantage compared to R2MAE alone. For better
understanding, we inspected specific DNA sequence classes with different prediction performances.
The combination of R2MAE with CL improves classification of harder variants including 3’UTR
and ncRNA, but not the easier 5’UTR variants (Table 3). These results demonstrate that combining
R2MAE with additional designs may bring advantages in certain cases but not overall improvement.

Table 3: Comparison on DNA variant effect prediction. pAUROC, partial AUROC.
Clinvar (Missense) OMIM (Regulatory) OMIM subset class AUPRC

Methods AUROC AUPRC pAUROC AUPRC 5’UTR 3’UTR ncRNA

NT 0.601 0.652 0.500 0.001 0.010 0.001 0.000
phastCons-100v 0.883 0.848 0.514 0.006 0.081 0.005 0.005
phyloP-241m 0.912 0.913 0.590 0.028 0.175 0.015 0.028
phyloP-100v 0.927 0.937 0.574 0.038 0.251 0.029 0.039
CADD 0.966 0.967 0.595 0.048 0.279 0.010 0.090

GPN-MSA (MLM) 0.970 0.974 0.644 0.127 0.331 0.044 0.102
– MR 5% 0.967 0.970 0.647 0.134 0.330 0.048 0.171
– MR 30% 0.970 0.974 0.645 0.131 0.335 0.047 0.081
MDLM 0.970 0.974 0.647 0.131 0.341 0.048 0.110
Dynamic MR 0.970 0.973 0.645 0.132 0.332 0.054 0.082
CL-MAE 0.968 0.972 0.644 0.117 0.328 0.056 0.128
R2MAE (Ours) 0.969 0.973 0.649 0.148 0.339 0.050 0.136
+ Dynamic MR 0.970 0.974 0.649 0.138 0.324 0.045 0.106
+ CL 0.967 0.971 0.643 0.139 0.330 0.058 0.192
+ CL (k = 0) 0.965 0.969 0.649 0.140 0.325 0.051 0.208
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Table 4: Comparison for different single-cell models trained on brain SEA-AD dataset.
Cell state Alzheimers AUROC Age Spearman r Avg performance

Methods BAcc. F1macro Cell Donor Cell Donor Score Rank

Normalized exp. 0.798 0.738 0.571 0.611 0.129 0.511 0.560 9.00
scGPT 0.784 0.693 0.549 0.556 0.065 0.272 0.486 12.67
scVI 0.826 0.740 0.631 0.731 0.201 0.502 0.605 7.00

MAE (MR 25%) 0.841 0.737 0.667 0.699 0.483 0.575 0.667 4.33
– MR 10% 0.837 0.726 0.543 0.536 0.449 0.399 0.582 10.67
– MR 50% 0.839 0.738 0.574 0.591 0.516 0.536 0.632 6.17

MDLM 0.831 0.719 0.667 0.686 0.543 0.622 0.678 6.83
Dynamic MR 0.838 0.735 0.662 0.694 0.444 0.446 0.636 7.50
CL-MAE 0.838 0.729 0.687 0.722 0.462 0.484 0.654 5.83
R2MAE (Ours) 0.840 0.737 0.687 0.716 0.572 0.628 0.697 2.17
+ Dynamic MR 0.834 0.735 0.642 0.682 0.551 0.545 0.665 6.67
+ CL 0.836 0.730 0.684 0.719 0.570 0.559 0.683 4.83
+ CL (k = 0) 0.837 0.734 0.676 0.707 0.511 0.506 0.662 6.17

4.3 R2MAE enforces learning multi-scale features and can outperform optimal MR

We further investigated the mechanism underlying the improvement of R2MAE. On real single-cell
data, R2MAE achieves near-optimal reconstruction performance across its entire masking range,
whereas models trained with a single, fixed MR are effective only within a narrower range (Tables 7–
8). This observation aligns with the intuition that R2MAE enforces learning multi-scale features,
thereby enhancing downstream task performance. Intriguingly, at low masking ratios (e.g., 10%),
R2MAE can even outperform a model trained specifically at that fixed MR on the reconstruction task.
In our linear model framework, we found that with appropriate (pmin, pmax) settings, R2MAE can
surpass optimal fixed MR in terms of test risk across different covariance settings in most cases, even
when the optimal MR is mildly misaligned with R2MAE masking range (Tables 5,9). These findings
suggest additional beneficial properties of R2MAE that warrant future theoretical research.

Table 5: Normalized test risk of R2MAE (MR range 0.5-0.6) against optimal fixed MR and mean
MR settings across different random seeds for Beta covariance and latent space models. The ground
truth signal β is set to be the first eigenvector of covariance Σ in all cases. n = 200, γ = 5.

Beta Covariance Model Latent Space Model

Seed Best MR Min Risk MR 55% R2MAE Best MR Min Risk MR 55% R2MAE

2 0.55 0.520 0.520 0.504 0.55 0.611 0.611 0.599
12 0.53 0.606 0.612 0.599 0.65 0.641 0.673 0.662
22 0.58 0.626 0.631 0.615 0.36 0.662 0.667 0.653
32 0.51 0.543 0.563 0.549 0.59 0.640 0.659 0.634
42 0.53 0.649 0.658 0.645 0.38 0.640 0.643 0.629

5 Conclusions

In this work, we introduced and analyzed a theoretical framework to elucidate mask-based pretraining
in large-scale deep learning models. Motivated by this framework, we propose an extremely simple
approach R2MAE, which is shown to improve upon state-of-the-art self-supervised image, vision,
DNA sequence, and single-cell models by solely modifying the pretraining objective.

Limitations. Explicit characterization of the test risk in more complex model settings (e.g., R2MAE)
requires new analysis tools and remains a direction for future research. Potential improvements of
R2MAE with dedicated domain-specific designs also remains to be explored.

Broader impact. We envision that our theoretical framework will serve as a basis for better
understanding self-supervised pretraining, one of the most important components in modern deep
learning and foundation models. Furthermore, our work addresses a pressing need for building better
models towards universal representations, with immediate impact for the (biological) AI community.
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A Additional text

A.1 Further discussions on alternative mask pretraining schemes

Approaches to improving mask-based pretraining can be broadly divided into two categories. The first
category focuses on refining the masking scheme itself, i.e., optimizing the selection of pixels/tokens
to be masked to maximize pretraining efficacy or downstream performance. Numerous efforts have
explored this direction [35, 3, 36, 65]. A number of these schemes assume specific data structures,
such as sequential information in text, and thus may not readily generalize across all data domains. A
prominent recent direction in this category involves learning the masks themselves during training,
for instance, by optimizing them to enhance the pretraining objective or, conversely, to adversarially
challenge it [52, 38]. Apart from these general enhancement strategies, several works specifically
design masking procedures to emphasize specific downstream tasks [66–68].

Wettig et al. [29] conducted an extensive evaluation of different masking strategies for BERT masked
language models, including a number of those cited above. Their findings highlight that while the
optimal masking ratio might vary across strategies, simple uniform random masking often suffices to
achieve peak performance. In the single-cell genomics context, Richter et al. [24] evaluated various
structured masking schemes (e.g., gene program and transcriptional factor-based masking) against
uniform masking, all at a fixed masking ratio. They observed no consistent overall advantage for the
more complex, structured masking schemes over uniform random masking. These results from both
language and genomics domains align, suggesting that highly sophisticated, domain-specific masking
strategies may not always be necessary for effective pretraining. The comparable performance
achieved by different masking schemes may serve as a support for the general applicability of our
theoretical framework, which is established based on uniform masking.

The second category of approaches focuses on altering the masking rate. Wettig et al. [29] observed
that higher masking ratios generally boost masked language modeling performance, particularly for
larger models. Ankner et al. [34] further demonstrated that a dynamic masking schedule, gradually
reducing the masking rate from 40% to 15%, improves performance, while the reverse schedule does
not. A key insight from the influential Masked Autoencoders (MAE) work [6] is that an extremely high
masking rate for images can force the model to learn robust and generalizable representations through
the reconstruction task, leading to improved downstream performance. Notably, our theoretical
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framework highlights a potential limitation of existing mask pretraining schemes: employing a
single, static masking strategy—whether it involves carefully designed masking pattern or masking
ratio—may not be sufficient to optimally capture the diverse spectrum of features present in data.

A.2 Background on high-dimensional linear regression

The major theoretical focus in this work is the linear model

y = Xβ + ε, ε ∼ N(0, σ2In),

where X ∈ Rn×d is the design matrix and β ∈ Rd the true parameter. For an estimator β̂, the
out-of-sample prediction risk at a fresh covariate x0 admits the bias–variance decomposition

RX(β̂;β) = (E[β̂|X]− β)TΣ(E[β̂|X]− β)︸ ︷︷ ︸
Bias2

+Tr
[
Cov(β̂|X)Σ

]︸ ︷︷ ︸
Variance

,

where Σ = E[x0x
T
0 ] is the population covariance.

In the proportional regime d/n→ γ ∈ (0,∞), the ridge regression estimator is of form

β̂λ = (XTX + λI)−1XTy.

For fixed X , its bias and variance are

Bias2 = λ2 βT (XTX + λI)−1 Σ (XTX + λI)−1 β,

Variance =
σ2

n
Tr
[
Σ(XTX + λI)−2XTX

]
.

A streamlined way to capture asymptotics in proportional models is via the theory of deterministic
equivalents [69, 32]. Two sequences of (possibly random) matrices An,Bn ∈ Rn×n are declared
asymptotically equivalent (denoted An ≍ Bn) if for every sequence Θn bounded in trace norm,

Tr
[
Θn(An −Bn)

]
−→ 0, n→ ∞.

Within this framework, Rubio and Mestre [70] showed that the resolvent of the sample covariance
(Σ̂ − zI)−1 is equivalent to a deterministic matrix (anΣ − zI)−1, where an solves an explicit
fixed-point equation. Such equivalences yield precise control over traces of analytic functions of
random matrices and underpin modern high-dimensional risk calculations. The limiting risk of
high-dimensional ridge regression has been extensively studied in the past. As a representative result,
the exact asymptotic risk has been established in [71]. We refer to [30, 31] for more results on the
local law, which asserts the convergence of the resolvent entrywise under high probability bounds, at
scales finer than the global limit.

In [43], the authors study the behavior of ridgeless least squares interpolation in high-dimensional
settings, where the model interpolates the training data perfectly analogous to overparametrized neural
networks. Surprisingly, they show that such interpolating solutions can theoretically generalize well
under certain conditions. Their work derives exact asymptotic expressions for the bias and variance
of minimum-norm interpolators in the overparameterized regime, using tools from random matrix
theory and the theory of deterministic equivalents. The results serve as a basis for understanding
neural network behavior from the lens of high-dimensional linear regression theory.

A.3 Implementations of CL and R2MAE + CL

Inspired by recent curriculum learning (CL) approaches in MAE [38, 52], which often involve an
adversarial mask generator and an easy-to-hard progression (e.g., by scheduling a gradient coefficient
k for the mask generator [38]), we evaluated whether these approach improves self-supervised learning
for our biological data settings. Given that our DNA sequence and single-cell gene expression models
process entire input sequences rather than patches, we implemented CL by introducing learnable,
positive coefficients that modulate the element-wise reconstruction loss for each feature. These
coefficients are constrained to have a mean of one. We then applied a gradient scheduling mechanism
to these loss coefficients: one setting used a constant gradient multiplier of 1 (termed the k = 0
setting, which learns an easy mask with the smallest loss value throughout pretraining), while another
employed a dynamic multiplier decreasing from 1 to −1 to simulate an easy-to-hard progression.
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Our initial evaluations showed that the k = 0 fixed curriculum led to severe learning degeneration
and hampered performance (Tables 3, 5), which would be an anticipated outcome.

To address this and integrate these CL principles with our R2MAE framework, we propose to randomly
sample masking ratios from a predefined discrete set of l values, e.g., [min_ratio, . . . ,max_ratio]. For
each of the l discrete masking ratios, we learn an adaptive, positive weight vector wj ∈ Rd

+ (where d
is the feature dimension), which form the columns of a weight matrix W ∈ Rd×l

+ . These weights
dynamically adjust the importance of reconstructing each feature under that specific masking ratio
j. To ensure balanced learning across features and masking ratios, we impose mass-conservation
constraints on W such that:

∀i ∈ {1, . . . , d},
l∑

j=1

Wij = l; ∀j ∈ {1, . . . , l},
d∑

i=1

Wij = d, (9)

This approach aims to provide, on average, the same learning signal magnitude per feature, while
still allowing each masking ratio to prioritize different feature subsets. In practice, these constraints
are efficiently enforced using a few iterations of the differentiable Sinkhorn algorithm on an initial
positive matrix W0 [72]. W0 itself is generated by a small MLP applied to the full uncorrupted
data features (for single-cell models) or the transformer’s masked token representations (for DNA
sequence models). Notably, this R2MAE-CL approach effectively resolved the learning degeneration
observed in the simpler k = 0 setting without requiring additional regularizations [38] (Tables 1–4,6).

B Additional theoretical results and proofs

In this section, with a slight abuse of notation, we denote Xsub as X for brevity.

B.1 Statement and proof of technical lemmas

Lemma 1 (Bias-variance decomposition for general covariance model). The test risk RX̃(β̂,β) :=

E
[
||β̂ − β||2Σ|X̃

]
has the following decomposition RX̃(β̂,β) = BX̃(β̂,β) + VX̃(β̂,β) outside a

negligible set, which can be expressed as:

BX̃(β̂,β) = ∥Π̃β + X̃+u∥2Σ, (10)

VX̃(β̂,β) =

d∑
i,j=1

βiβj

ñ∑
a=1

((X̃⊤)+ΣX̃+)aaw
ij
a + σ2Tr

(
(X̃⊤X̃)+Σ

)
, (11)

where we denote the projection matrix Π̃ = Σ̂+Σ̂− I , Σ̂ = X̃⊤X̃ , as well as

Za = {j ∈ [d]|Zaj = 1}, Zc
a = {j ∈ [d]|Zaj = 0}, ∀a ∈ [ñ]; (12)

u ∈ Rñ, ui = X̃i,Zi
Σ−1

ZiZi
ΣZiZc

i
βZc

i
, ∀i ∈ [ñ]; (13)

wij
a = 1X̃ai=0,X̃aj=0

(Σij −ΣiZa
Σ−1

ZaZa
ΣZaj), ∀a ∈ [ñ], i, j ∈ [d]. (14)

Proof. From the definition, our test error is given by

RX̃(β̂;β) = E
[
(x⊤

0 β̂ − x⊤
0 β)

2 | X̃
]
= E

[
∥β̂ − β∥2Σ | X̃

]
,

where ∥x∥2Σ = x⊤Σx. Note that we have the bias-variance decomposition

RX̃(β̂;β) = ∥E(β̂|X̃)− β∥2Σ︸ ︷︷ ︸
BX̃(β̂;β)

+Tr[Cov(β̂|X̃)Σ]︸ ︷︷ ︸
VX̃(β̂;β)

. (15)

Since β̂ = (X̃⊤X̃)+X̃⊤y = (X̃⊤X̃)+X̃⊤(Xβ + ϵ), We have

E[β̂|X̃]− β = E[((X̃⊤X̃)+X̃⊤X − I)β|X̃] = Π̃β + (X̃⊤X̃)+X̃⊤E[(X − X̃)|X̃]β, (16)

Tr Cov(β̂|X̃) = Tr(E[(β̂ − E[β̂|X̃])(β̂ − E[β̂|X̃])⊤|X̃]). (17)
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Here, X − X̃ = X ⊙ (1−Z). We notice that the event {X̃ij = 0} is the same as {Zij = 0} except
for a negligible set, so in the following proof, we take them as two identical events. In this case, we
have the following two relations: for any sample i,

(X−X̃)i,Zi |X̃i· = 0 ; (X−X̃)i,Zc
i
|X̃i· ∼ N (ΣZc

i ZiΣ
−1
ZiZi

X̃i,Zi ,ΣZc
i Zc

i
−ΣZc

i ZiΣ
−1
ZiZi

ΣZiZc
i
).

(18)
Therefore

X̃⊤E[(X−X̃)|X̃] =
∑
i

X̃⊤
i· E[(X−X̃)i·|X̃i·] =

∑
i

U i, U i
Zi,Zc

i
= X̃⊤

i,Zi
X̃i,Zi

Σ−1
ZiZi

ΣZiZc
i
.

(19)
The remaining entries of U i are equal to zero. For the bias term, we have that

BX̃(β̂,β) = ∥E(β̂|X̃)− β∥2Σ = ∥Π̃β + (X̃⊤X̃)+
∑
i

U iβ∥2Σ. (20)

The latter term can further be simplified as

(X̃⊤X̃)+
∑
i

U iβ = X̃+u, u ∈ Rñ, ui = X̃i,ZiΣ
−1
ZiZi

ΣZiZc
i
βZc

i
. (21)

For the variance term, we have

E[(X − X̃)ββ⊤(X − X̃)⊤|X̃] =
∑
i,j

βiβjE[(X − X̃)·i(X − X̃)·j |X̃] =

d∑
i,j=1

βiβjW
ij ,

W ij = diaga(w
ij
a ) : = diaga(1X̃ai=0,X̃aj=0

(Σij −ΣiZaΣ
−1
ZaZa

ΣZaj)).

(22)
With this relation, we have

VX̃(β̂,β) = Tr[Cov(β̂|X̃)Σ]

= Tr(E[(β̂ − E[β̂|X̃])(β̂ − E[β̂|X̃])⊤Σ|X̃])

= Tr
(
X̃+

(
E[(X − X̃)ββ⊤(X − X̃)⊤|X̃] + σ2I

)
(X̃⊤)+Σ

)
= Tr

σ2(X̃⊤X̃)+Σ+

 d∑
i,j=1

βiβjW
ij

 (X̃⊤)+ΣX̃+


=

d∑
i,j=1

βiβj

ñ∑
a=1

((X̃⊤)+ΣX̃+)aaw
ij
a + σ2Tr

(
(X̃⊤X̃)+Σ

)
.

(23)

Combining all results above, we get the final expressions for BX̃(β̂,β) and VX̃(β̂,β).

Lemma 2 (Deterministic Equivalence For Trace-class Statistics). For the model Σ = δvv⊤ + I ,
with ∥v∥2 = 1, we have the following holds with high probability: for a, b ∈ {β̃,v}, and any ϵ > 0,
there exists some constant C independent of n, d,∣∣∣∣a⊤Σ̂+Σ̂b−

∫
s

s+ µ⋆
dGab

d (s)

∣∣∣∣ ≤ Cn−1/2+ϵ, (24)∣∣∣∣∣Tr(Σ̂+Σ)−

∫
s

(s+µ⋆)2
dH̃d(s) + δ

∫
s

(s+µ⋆)2
dGvv

d (s)

ñ
d −

∫
s2

(s+µ⋆)2
dH̃d(s)

∣∣∣∣∣ ≤ Cn−1/2+ϵ. (25)

Proof. Since X̃ has i.i.d. rows and each row is ∥Σ̃∥-subgaussian, by the deterministic equivalent
of resolvent for random sub-gaussian sample covariance matrices, see e.g. [32, Theorem 4], for
any two given D,K > 0, we have that the following holds with probability at least 1− Cñ−D for
λ = Ω(ñ−K):∣∣∣∣λa⊤ (X̃⊤X̃/ñ+ λI

)−1

b− λ⋆a
⊤(λ⋆I + Σ̃)−1b

∣∣∣∣ ≲ polylog(ñ)√
ñ(λñ)5/2

· λ⋆|a⊤(Σ̃+ λ⋆)
−1b| , (26)
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where λ⋆ is the unique solution of the fixed point equation

ñ− λñ

λ⋆
= Tr

(
Σ̃(Σ̃+ λ⋆I)

−1
)
.

We also notice that for the eigenvalue decomposition X̃⊤X̃/ñ = UDX̃U⊤,∣∣∣λa⊤(X̃⊤X̃/ñ+ λI)−1b− a⊤(I − Σ̂+Σ̂)b
∣∣∣ ≤ λ|a⊤U(λI +DX̃)−1

1DX̃>0U
⊤b| ≤ λ

σmin(X̃)2/ñ
,

(27)

where σmin represents the smallest non-zero singular value. It is standard using concentration
on random subgaussian matrices, see e.g. [73], to get σmin(X̃)/

√
ñ ≥ C(σmin(Σ̃), γ/p) with

overwhelming probability for d/ñ = γn/p → γ/p strictly different with 1. Therefore, combining
the above results, we get

∣∣λ⋆a⊤(λ⋆I + Σ̃)−1b− a⊤(I − Σ̂+Σ̂)b
∣∣ ≲ polylog(ñ)

λ5/2ñ3/2
+ λ . (28)

On the other hand, while λñ→ 0+, the above fixed point equation still makes sense, and λ⋆ → µ⋆

such that

Tr
(
Σ̃(Σ̃+ µ⋆)

−1
)
= ñ .

We next claim that

|λ⋆a⊤(λ⋆I + Σ̃)−1b− µ⋆a
⊤(µ⋆I + Σ̃)−1b| ≤ Cλ , (29)

while we notice that the the fixed point equation can be equivalently be written as

1− p

γ
= − pλ

γλ⋆
+

∫
λ⋆

s+ λ⋆
dH̃d(s) := f(λ⋆;λ), (30)

where H̃d represents the empirical spectral distribution of Σ̃. As a direct consequence, it is not hard to
see supp(H̃d) ⊆ [(1−p)2, 1+δ]. From [31, Lemma 2.2], λ⋆ is nonnegative and monotone increasing
in λ. Therefore, f(x;λ) is non-decreasing on (0,∞) for any λ ≥ 0 with limx→∞ f(x;λ) = 1,
limx→0 f(x; 0) = 0, limx→0 f(x;λ) = −∞ for any λ > 0. We also have the natural upper and
lower bound as f(x;λ) ≤ f(x;λ) ≤ f̄(x;λ), where f(x;λ) is the same as f(x;λ) while changing
H̃d to the dirac measure at (1− p)2, and f̄(x;λ) is the same as f(x;λ) while changing H̃d to the
dirac measure at 1 + δ. So there exists some constant C > 0, such that C−1 ≤ µ⋆ ≤ λ⋆ ≤ C. This
further implies that ∂λf(x;λ) is uniformly bounded. Finally

∂xf(x;λ) =
pλ

γx2
+

∫
s

(x+ s)2
dH̃d(s), (31)

for s ∈ [(1 − p)2, 1 + δ] and x ∈ [C−1, C], the above is bounded away from zero and above.
Therefore, there exists another constant C̃ such that C̃−1 ≤ ∂xf(x;λ) ≤ C̃. To be concise, we
replace C by max{C, C̃}. Utilizing the implicit function theorem, we can get |∂λf(x;λ)| ≤ C for
λ ∈ [0, 1], and therefore |λ⋆ − µ⋆| ≤ Cλ. Combining all the above arguments, we would have

|λ⋆a⊤(λ⋆I + Σ̃)−1b− µ⋆a
⊤(µ⋆I + Σ̃)−1b| ≤ Cλ . (32)

Taking λ = ñ−1−ϵ/3, the right-hand side turns to 0 with the speed at least ñ−1/2+ϵ, so we can get
the final control ∣∣∣a⊤Σ̂+Σ̂b− a⊤Σ̃(µ⋆I + Σ̃)−1b

∣∣∣ ≤ Cn−1/2+ϵ. (33)

The remaining part of the proof for Tr(Σ̂+Σ) is analogous to the result above using [32, Theorem 4,
(46)], so we omit the full proof here.
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B.2 Proof of Theorem 1

Proof. One important observation here is that the bias term and the variance term are homogeneous
for ∥β∥2, so below we assume ∥β∥ = 1 without loss of generality. Since we are under the isotropic
setting, ΣZZc = 0 for any indices set Z . Also, X̃ has i.i.d. elements with variance 1− p. By Lemma
1, the bias term is simply given by

BX̃(β̂,β) = ∥Π̃β∥22 = β⊤(Σ̂+Σ̂− I)β, (34)

while for the variance term, direct calculation shows wij
a = 1X̃ai=0,X̃aj=0

δij . Therefore,

VX̃(β̂,β) =

d∑
i,j=1

βiβj

ñ∑
a=1

((X̃⊤)+X̃+)aa1X̃ai=0,X̃aj=0
δij + σ2Tr

(
(X̃⊤X̃)+

)
(35)

=

d∑
i=1

β2
i

ñ∑
a=1

(X̃X̃⊤)+aa1X̃ai=0︸ ︷︷ ︸
(I)

+σ2Tr
(
(X̃X̃⊤)+

)
. (36)

To deal with the first term (I) in variance, we use the isotropic local law [30, Theorem 2.5]. De-
fine Rñ(λ) = λ(X̃X̃⊤/ñ + λI)−1, Qñ(λ) = X̃X̃⊤/n(X̃X̃⊤/ñ + λI)−2/n, then Qñ(λ) =

∂λRñ(λ)/n. and we consider λ such that 0 < Im(−λ) < 1, Re(λ) > ñ−2/3+ϵ′ for some ϵ′ > 0. we
have the following with high probability that

|Rñ(λ)aa −m(λ)| ≤

√
Im(m(λ))

Im(−λ)
· ñ−1+ϵ , (37)

uniformly for all a ∈ [ñ]. Using the similar argument as in [43, A.3], for all real λ ≥ ñ−2/3+ϵ′ , we
get

|Qñ(λ)aa − ∂λm(λ)/n| ≤ λ−2ñ−(3−ϵ)/2 , (38)
the following holds with high probability∣∣∣∣ d∑
i=1

β2
i ·

ñ∑
a=1

(Qñ(λ)aa − ∂λm(λ)/n)1X̃ai=0

∣∣∣∣ ≤ ñ∑
a=1

|Qñ(λ)aa − ∂λm(λ)/n| ≤ ñ−(1−ϵ)/2λ−2.

(39)
Hoeffding’s inequality shows that for arbitrary small ϵ > 0, with probability at least 1−2d exp(−ñϵ),∣∣∣∣ ñ∑

a=1

1X̃ai=0 − pñ

∣∣∣∣ ≤ ñ(1+ϵ)/2,

and as a direct consequence,∣∣∣∣ d∑
i=1

β2
i ·

ñ∑
a=1

1X̃ai=0 − pñ

d∑
i=1

β2
i

∣∣∣∣ ≤ d∑
i=1

β2
i ·
∣∣∣∣ ñ∑
a=1

1X̃ai=0 − pñ

∣∣∣∣ ≤ ñ(1+ϵ)/2.

Combined with these, we have the following with some absolute constant C:∣∣∣∣ d∑
i=1

β2
i ·

ñ∑
a=1

Qñ(λ)aa1X̃ai=0 − pTr(Qñ(λ))

∣∣∣∣ ≤ Cñ−(1−ϵ)/2λ−2. (40)

similarly as (27), we have that there exists a constant C only depend on γn, p, such that with high
probability,

∣∣∣Tr (Qñ(λ))− Tr
(
(X̃X̃⊤)+

)∣∣∣ ≤ Cλ. Finally, up to some constant, we can bound

the difference between (I) and pTr
(
(X̃X̃⊤)+

)
by λ+ Cñ−(1−ϵ)/2λ−2, which converges to 0 for

λ = ñ−(1−ϵ)/6. To sum up, based on Lemma 2 with δ = 0 and λ = ñ−2/3+ϵ′ , we get that∣∣∣∣BX̃(β̂,β)

r2
−
∫

µ⋆

s+ µ⋆
dGββ

d (s)

∣∣∣∣ ≤ Cn−2/3+ϵ′ , (41)
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where µ⋆ is the solution of ñ = Tr((1 + µ⋆)
−1) = d/(1 + µ⋆), that is, µ⋆ = (1− p)(γn/p− 1)+.

Also, Gββ
d (s) is the dirac measure at 1− p. This suggests BX̃(β̂,β)/r2 → (γ − p)/γ almost surely

when γ > p, and BX̃(β̂,β)/r2 → 0 when γ < p. It is almost the same for us to use Lemma 2 to get
that with high probability,∣∣∣∣VX̃(β̂,β)

r2
− γ(p+ κ)(1− p)

p(1− p+ µ⋆)2 − γ(1− p)2

∣∣∣∣→ 0,

which leads to our final result.

B.3 Statement and proof of Theorem 2

In this section, we first provide the delocalized signal assumption and several definitions, then present
the statement and proof of Theorem 2.
Assumption 1 (Delocalized signal). ∃α > 0, such that ∥v∥44 = O(d−α) and ∥β̃∥44 = O(d−α).

Here we assume that v and the direction of β should not be too sparse in order to establish concentra-
tion properties of the masking process on our signals. This is purely technical, and we can select α
sufficiently small to accommodate specific scenarios in the application.
Definition 1 (Spiked Covariance Structure). For Σ = I + δvv⊤, where δ > 0 and ∥v∥2 = 1, denote
the masked covariance Σ̃ = (1− p)2Σ+ p(1− p) diag(Σ). In other words, Σ̃ = (1− p)I + (1−
p)2δvv⊤ + p(1− p)δ diag(v⊙ v). Suppose Σ̃ =

∑d
i=1 δ̃iχiχ

⊤
i is the spectral decomposition of Σ̃

with 1 + δ ≥ δ̃1 ≥ δ̃2 ≥ . . . ≥ δ̃d ≥ (1 − p)2. We use H̃d(s) :=
1
d ·
∑d

i=1 1s≥δ̃i
to represent the

empirical spectral distribution of Σ̃. We also denote the following (signed) empirical measures as

Gββ
d (s) =

d∑
i=1

⟨β̃,χi⟩21s≥δ̃i
, Gβv

d (s) =

d∑
i=1

⟨β̃,χi⟩⟨v,χi⟩1s≥δ̃i
, Gvv

d (s) =

d∑
i=1

⟨v,χi⟩21s≥δ̃i
.

Denote µ⋆ to be the unique non-negative solution of

1− p

γ
=

∫
µ⋆

s+ µ⋆
dH̃d(s), (42)

We then define the predicted bias and variance by

B(H̃d, G
ββ
d , Gβv

d , Gvv
d ) :=

∫
µ⋆

s+ µ⋆
dGββ

d (s) +

(
pδ · v⊤β̃

1 + δ(1− p)

)2

·
∫

s

s+ µ⋆
dGvv

d (s)

+ δ ·

(
−
∫

µ⋆

s+ µ⋆
dGβv

d (s) +
pδ · v⊤β̃

1 + δ(1− p)

∫
s

s+ µ⋆
dGvv

d (s)

)2

,

(43)

V(H̃d, G
βv
d , Gvv

d ) :=

(
κ+ p+

p2δ · (v⊤β̃)2

1 + δ(1− p)

)
·

∫
s

(s+µ⋆)2
dH̃d(s) + δ

∫
s

(s+µ⋆)2
dGvv

d (s)

ñ
d −

∫
s2

(s+µ⋆)2
dH̃d(s)

.

(44)

Theorem 2 (Spiked covariance model). The test risk (5) can be decomposed as RX̃(β̂;β) =

BX̃(β̂;β) + VX̃(β̂;β) with forms of the two terms available in Lemma 1. Suppose Assumption 1
holds, and for some arbitrary ϵ > 0 that sufficiently small, assume δ = O(d(α−3ϵ)/2) for α given in
Assumption 1. then with overwhelming probability,∣∣∣∣∣BX̃(β̂,β)

r2
− B(H̃d, G

ββ
d , Gβv

d , Gvv
d )

∣∣∣∣∣ ≤ Cd−ϵ; (45)∣∣∣∣∣VX̃(β̂,β)

r2
− V(H̃d, G

βv
d , Gvv

d )

∣∣∣∣∣ ≤ Cd−ϵ. (46)

Furthermore, if we assume H̃d ⇒ H , Gββ
d ⇒ Gββ , Gβv

d ⇒ Gβv , Gvv
d ⇒ Gvv , then almost surely

RX̃(β̂;β)

r2
→ B(H̃,Gββ , Gβv, Gvv) + V(H̃,Gβv, Gvv). (47)
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Proof. One important observation here is that the bias term and the variance term are homogeneous
to ∥β∥2, so below we assume ∥β∥ = 1 without loss of generality.

Here, we have Σ = δvv⊤ + I . In this case, we have

ΣZiZi
= δvZi

v⊤
Zi

+ IZi
; Σ−1

ZiZi
= IZi

− δ

1 + δ∥vZi
∥2

vZi
v⊤
Zi
. (48)

ui = X̃i,Zi
Σ−1

ZiZi
ΣZiZc

i
βZc

i
= X̃i,Zi

(IZi
− δ

1 + δ∥vZi
∥2

vZi
v⊤
Zi
)δvZi

v⊤
Zc

i
βZc

i

= X̃i,Zi

δ

1 + δ∥vZi
∥2

vZi
v⊤
Zc

i
βZc

i
=

δ

1 + δ∥vZi
∥2

((1−Zi)⊙ v)
⊤
β · X̃iv, (49)

So

X̃+u = X̃+ diagi

(
δ ((1−Zi)⊙ v)

⊤
β

1 + δ∥vZi∥2

)
X̃v. (50)

For β and v satisfies Assumption 1, utilizing Hoeffding’s inequality, we know that with probability
1− exp(−dϵ), ∣∣∣∣∣δ ((1−Zi)⊙ v)

⊤
β

1 + δ∥vZi
∥2

− pδ · v⊤β

1 + δ(1− p)∥v∥2

∣∣∣∣∣ ≤ C · d−(α−ϵ)/2.

Therefore, denote c := pδ · v⊤β/(1 + δ(1− p)) and take a union bound, we have the following
holds with high probability that∥∥∥∥X̃+u− pδ · v⊤β

1 + δ(1− p)
Σ̂+Σ̂v

∥∥∥∥ ≤ Cd−(α−ϵ)/2∥Σ̂+Σ̂v∥ ≤ Cd−(α−ϵ)/2. (51)

Therefore we have

BX̃(β̂,β) =

∥∥∥∥∥Π̃β + (X̃⊤X̃)+
∑
i

U iβ

∥∥∥∥∥
2

δvv⊤+I

=
∥∥∥Π̃β

∥∥∥2 + ∥∥∥X̃+u
∥∥∥2 + δ

(
v⊤(Π̃β + X̃+u)

)2
,

(52)

and by Lemma 2, we have that for a, b ∈ {β,v},∣∣∣∣a⊤Σ̂+Σ̂b−
∫

s

s+ µ⋆
dGab

d (s)

∣∣∣∣ ≤ Cn−(1−ϵ′)/2, (53)

This leads to the fact that∣∣∣∣∥∥∥Π̃β
∥∥∥2 − ∫ µ⋆

s+ µ⋆
dGββ

d (s)

∣∣∣∣ ≤ Cn−(1−ϵ′)/2, (54)∣∣∣∣∣∣
∥∥∥X̃+u

∥∥∥2 −( pδ · v⊤β̃

1 + δ(1− p)

)2

·
∫

s

s+ µ⋆
dGvv

d (s)

∣∣∣∣∣∣ ≤ C(n−(1−ϵ′)/2 + d−(α−ϵ)/2), (55)

δ

∣∣∣∣∣∣
(
v⊤(Π̃β + X̃+u)

)2
−

(
−
∫

µ⋆

s+ µ⋆
dGβv

d (s) +
pδ · v⊤β̃

1 + δ(1− p)

∫
s

s+ µ⋆
dGvv

d (s)

)2
∣∣∣∣∣∣ (56)

≤ Cδ(n−(1−ϵ′)/2 + d−(α−ϵ)/2). (57)

Combined with the result above, for δ = O(d(α−3ϵ)/2), we finally get∣∣∣∣∣BX̃(β̂,β)

r2
− B(H̃d, G

ββ
d , Gβv

d , Gvv
d )

∣∣∣∣∣ ≤ Cd−ϵ. (58)

We next consider the variance term. For this Σ model, we have that

1X̃ai=0,X̃aj=0
(Σij −ΣiZaΣ

−1
ZaZa

ΣZaj) = 1X̃ai=0,X̃aj=0

(
δij +

δvivj
1 + δ∥vZa∥2

)
. (59)
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Therefore, using Lemma 1, we have

VX̃(β̂,β) =

d∑
i,j=1

βiβj

ñ∑
a=1

((X̃⊤)+ΣX̃+)aaw
ij
a + κTr

(
(X̃⊤X̃)+Σ

)

=

d∑
i,j=1

βiβj

ñ∑
a=1

((X̃⊤)+ΣX̃+)aa1X̃ai=0,X̃aj=0

(
δij +

δvivj
1 + δ∥vZa

∥2

)
+ κTr

(
(X̃⊤X̃)+Σ

)

=

ñ∑
a=1

((X̃⊤)+ΣX̃+)aa

d∑
i=1

β2
i 1X̃ai=0

+ δ

ñ∑
a=1

((X̃⊤)+ΣX̃+)aa

∑d
i,j=1 βiβj1X̃ai=0,X̃aj=0

vivj

1 + δ∥vZa
∥2

+ κTr
(
(X̃⊤X̃)+Σ

)
=

ñ∑
a=1

((X̃⊤)+ΣX̃+)aa

(
δ
(
(1−Za)

⊤(β ⊙ v)
)2

1 + δZ⊤
a (v ⊙ v)

+ (1−Za)
⊤(β ⊙ β)

)
+ κTr

(
(X̃⊤X̃)+Σ

)
.

(60)

Hoeffding’s inequality gives∣∣∣∣∣δ
(
(1−Za)

⊤(β ⊙ v)
)2

1 + δZ⊤
a (v ⊙ v)

− δp2(β⊤v)2

1 + δ(1− p)

∣∣∣∣∣ ≤ Cd−(α−ϵ)/2,

as well as |(1 − Za)
⊤(β ⊙ β) − p| ≤ d−(α−ϵ)/2, which holds uniformly for every a ≤ ñ with

probability 1− exp(−dϵ). Therefore, with high probability,∣∣∣∣Tr[Cov(β̂|X̃)Σ]− Tr
(
Σ̂+Σ

)(
κ+ p+

δp2(β⊤v)2

1 + δ(1− p)

)∣∣∣∣ ≤ Tr
(
Σ̂+Σ

)
· d−(α−ϵ)/2, (61)

Note that by Lemma 2, we have the following with overwhelming probability that∣∣∣∣∣Tr(Σ̂+Σ)−

∫
s

(s+µ⋆)2
dH̃d(s) + δ

∫
s

(s+µ⋆)2
dGvv

d (s)

ñ
d −

∫
s2

(s+µ⋆)2
dH̃d(s)

∣∣∣∣∣ ≤ Cñ−1/2+ϵ, (62)

To sum up, we have

|Tr[Cov(β̂|X̃)Σ]− V(H̃d, G
βv
d , Gvv

d )| ≤ Cd−(α−ϵ)/2 , (63)
which is equivalent to ∣∣∣∣∣VX̃(β̂,β)

r2
− V(H̃d, G

βv
d , Gvv

d )

∣∣∣∣∣ ≤ Cd−ϵ. (64)

As a direct consequence, if we have H̃d ⇒ H , Gββ
d ⇒ Gββ , Gβv

d ⇒ Gβv , Gvv
d ⇒ Gvv , then by the

definition of weak convergence, almost surely we have

R(β̂,β)

r2
→ B(H̃,Gββ , Gβv, Gvv) + V(H̃,Gβv, Gvv). (65)

Here we are able to tell the weak convergence of the (signed) measure Gβv
d because the total variation

of this measure is given by |Gβv
d | =

∑d
i=1 |⟨β,χi⟩⟨v,χi⟩| ≤

√∑d
i=1⟨β,χi⟩2 ·

∑d
i=1⟨v,χi⟩2 = 1,

so the sequence of Gβv
d is also tight. See e.g. [74] for detailed argument.

B.4 Statement and proof of Theorem 3

Theorem 3 (General covariance model). For general Σ, assume β is an eigenvector of Σ with
eigenvalue η. The test risk R(β̂,β) := E

[
||β̂ − β||2Σ|X̃

]
can be expressed as:

RX̃(β̂;β) = ∥(X̃+X̃ ′ − I)β∥2Σ︸ ︷︷ ︸
Bx(β̂;β)

+
∑
i,j

βiβj

ñ∑
a=1

((X̃⊤)+ΣX̃+)aaw
ij
a + σ2Tr

(
(X̃⊤X̃)+Σ

)
︸ ︷︷ ︸

Vx(β̂;β)

.

(66)
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Here we denote

Za = {j|Zaj = 1}, Zc
a = {j|Zaj = 0}; (67)

X̃ ′ ∈ Rñ×d, X̃ ′
a,Za

= ηX̃a,Za
Σ−1

ZaZa
, X̃ ′

a,Zc
a
= 0; (68)

wij ∈ Rn, wij = diaga(1X̃ai=0,X̃aj=0
(Σij −ΣiZaΣ

−1
ZaZa

ΣZaj)). (69)

Proof. For the bias term, we have that

∥E(β̂|X̃)− β∥2Σ = ∥Π̃β + X̃+u∥2Σ, u ∈ Rñ, ui = X̃i,Zi
Σ−1

ZiZi
ΣZiZc

i
βZc

i
. (70)

In our case, we consider β to be an eigenvector of Σ with eigenvalue η. That is, we have

∀Zi, ΣZiZi
βZi

+ΣZiZc
i
βZc

i
= ηβZi

. (71)

Substituting ΣZiZc
i
βZc

i
with ηβZi

−ΣZiZi
βZi

in u leads to

ui = ηX̃i,Zi
Σ−1

ZiZi
βZi

− X̃i,Zi
βZi

. (72)

Thus we can define u′ ∈ Rñ, with u′
i = ηX̃i,Zi

Σ−1
ZiZi

βZi
. Then we have

u = u′ − X̃β. (73)

Plugging u′ in the bias term, we have that

∥E(β̂|X̃)− β∥2Σ = ∥X̃+u′ − β∥2Σ. (74)

That is, the term X̃+X̃β is canceled in the bias term. Furthermore, we define X̃ ′ ∈ Rñ×d, such that
X̃ ′

i,Zi
= ηX̃i,Zi

Σ−1
ZiZi

, X̃ ′
i,Zc

i
= 0. Then the bias term can be written as:

∥E(β̂|X̃)− β∥2Σ = ∥(X̃+X̃ ′ − I)β∥2Σ. (75)

The variance term can be directly obtained due to Lemma 1.

Remark 1. Comparing the risk terms with standard ridge-less regression, we see that the masking
introduces additional variance through the term:

ñ∑
a=1

((X̃⊤)+ΣX̃+)aaw
ij
a (76)

Herewij
a can be interpreted as the sum of covariances for pair-wise masked features in X̃ conditioning

on remaining unmasked features. As for the bias term, for eigenvectors β with large eigenvalues η,
replacing X̃ with X̃ ′ cancels the shrinkage effect in the projection matrix X̃+X̃ , which effectively
reduces the bias term. In summary, if there are significant dependency between features in X resulting
in small wij , then a reduced risk of the masked regression compared to ordinary ridgeless regression
is anticipated due to the bias term.

C Experimental details

C.1 Simulations

Across all simulations, input data matrices X ∈ Rn×d had rows sampled i.i.d. from N (0,Σ), where
the specific covariance Σ and dimensions (n, d) varied by experiment. Target values y ∈ Rn were
generated as y = Xβ + ϵ, with noise ϵi ∼ N (0, 0.04). The ground-truth coefficient vector β ∈ Rd

was also experiment-specific. For each masking probability p ∈ {0.05, 0.10, . . . , 0.95}, masked data
X̃ and targets ỹ were constructed as per our problem formulation. Regression estimates β̂ were
obtained either via the pseudo-inverse X̃+ỹ (Figs. 1B–D, 3) or by solving (X̃⊤X̃ + λId)

−1X̃⊤ỹ
with λ = 10−6 (other figures), with negligible empirical difference between methods. Test risk
was computed using 10n new test samples, and β̂ was calculated with 50 repetitions per p through
sampling different X̃ from X . All error bars shown in this work indicate standard deviations.
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Fig. 1A Here, Σ = Id. The vector β was sampled from a uniform distribution and normalized to
∥β∥22 = 1. We evaluated two settings: 1) Overparametrized: n = 2000, d = 5n = 10000 (γ = 5);
2) Underparametrized: n = 4000, d = 0.5n = 2000 (γ = 0.5). The theoretical risk was calculated
using the formula in Theorem 1.

Figs. 1B–D and 3 The covariance was Σ = Id + δvv⊤, where v ∈ Rd was a uniformly sampled
vector (Fig. 1B-D) or a all-ones vector, both scaled to have norm 1 (Fig. 3), and δ ∈ {1, 10, 100}
controlled spike strength. Coefficients β with norm 1 were generated with β = cos θv + sin θu,
where u ∝ b −

(
b⊤v

)
v is the normalized component of a uniformly sampled vector b after

removing its projection onto v. Parameters were n = 200, d = 5n = 1000. For theoretical risk
calculation in these figures, λ⋆ was first obtained from ñ− λreg/λ⋆ = Tr(Σ̃(Σ̃+ λ⋆Id)

−1), where
Σ̃ = (1 − p)2Σ + p(1 − p) diag(Σ) and λreg = 10−8. Then, parameters (ϕβ , ϕv, ψ, u, c) were
calculated using Eq. (8), and the final risk via Corollary 1 .

Fig. 1E The covariance Σ ∈ Rd×d was constructed by one of three methods. In all cases, n =
500, d = 5n = 2500. For each Σ, β was an eigenvector of Σ corresponding to an eigenvalue at a
specific quantile of its spectrum.

• Uniform: Σ = Qdiag(λ1, . . . , λd)Q
⊤, with λi ∼ U(1, 10) and Q a random orthogonal

matrix generated via QR decomposition of a randomly sampled Gaussian matrix.
• Beta distributed: Similar to ‘uniform’, except that the eigenvalues were sampled from a
Beta(2, 6) distribution then scaled to have min 1 and max 10.

• Latent space model: Σ = Id+WW⊤, with W ∈ Rd×q (q = 0.5d) having i.i.d. Gaussian
entries ∼ N(0, (10− 1)/(

√
d+

√
q)2). This construction ensures that the eigenvalues of Σ

approximately range from 1 to 10.

Figs. 1G and 4 The covariance was Σ = Id + WW⊤. W ∈ Rd×q = QDR⊤,
where Q ∈ Rd×d and R ∈ Rq×q were random orthogonal matrices (Haar distribution via
scipy.stats.ortho_group.rvs), and D ∈ Rd×q was a diagonal matrix with its q non-zero
entries set to a specified eigenvalue (e.g., 100). Coefficients were β = W (Iq +W⊤W )−1θ for a
uniformly sampled vector θ ∈ Rq . Parameters were n = 100, d = 5000, q = 50.

Tables 5 and 9 The covariance matrices were the same as those constructed for the Beta-distributed
and latent space models in Fig. 1E. In the linear model, the implementation of R2MAE is as follows.
We first sample a row-wise masking ratio pi ∼ U(pmin, pmax). This ratio pi is then used to sample
the mask for each row of the data matrix. The resulting masked matrix Xsub is further used to
construct X̃ and calculate β̃. Note that the removal probability for each row depends on 1− pi, so
the simplification of sample size as np from fixed MR settings is no longer applicable. Therefore, to
ensure a fair comparison, in the corresponding fixed MR settings, we sample each row with a constant
probability equal to the fixed MR. Finally, we test five random seeds for generating the model and
masking matrices. Similar to previous experiments, the normalized test risks shown are the average
values over 50 runs. For fixed MR settings, we tested MR values {0, 0.01, 0.02, · · · , 0.99}. We
confirmed that the R2MAE results exactly match those of the fixed MR setting when pmin = pmax

and the same random seed is used.

C.2 Evaluations on trained BERT and MAE models

For Fig. 1F, BERT fine-tuning accuracies at different masking ratios were obtained from [29] (data
sourced from the GitHub repository). These reported accuracies were transformed as follows. First,
error rates were calculated as (1 - accuracy). To normalize the y-intercepts, each curve was linearly
extrapolated to a masking ratio of zero using its values at masking ratios 0.15 and 0.3; each curve was
then vertically shifted so that its extrapolated value at 0% masking ratio became zero. Subsequently,
each curve was multiplied by a unique scaling factor to ensure all curves shared a common slope for
the line segment connecting their points at masking ratios 0.4 and 0.8. For Figs. 1G and 4, MAE
fine-tuning and linear probing accuracies were directly obtained from [6].

C.3 MNIST

Dataset and model architecture. We used the standard MNIST dataset that consists of 60,000
training and 10,000 test grayscale images of handwritten digits at 28× 28 pixels. We implemented a

26



three-layer MLP with 784-dimensional input (flattened images), a first hidden layer with variable
size (16 for underparameterized setting, 512 for overparametrized setting), a second hidden layer of
variable size (16, 32, 64, 256, or 1024 units), and a 784-dimensional output layer. Each hidden layer
uses ReLU activation with batch normalization, and the output layer uses sigmoid activation. The
training objective is mean squared error (MSE) calculated on the masked pixels.

Training procedure. For each model setting, we tested masking ratios {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}. Models were trained for 15 epochs using Adam optimizer (learning rate 0.003, batch
size 128). All experiments used PyTorch on a NVIDIA A6000 GPU with fixed random seeds. Each
experiment was finished in several minutes.

Evaluation. We performed digit classification for each pretrained model through linear probing.
Specifically, we froze the first two layers of each pretrained model and trained only a new classification
layer (mapping from the second hidden layer to 10 output classes) using cross-entropy loss. The
linear probing classifier was trained for 15 epochs using Adam optimizer (learning rate 0.003).

C.4 CelebA

Dataset and model architecture. The CelebA dataset contains over 200,000 celebrity face images
with 40 attribute annotations. Images were resized to 128 × 128 pixels using the official train-
ing/validation/test split. We used a U-Net with four downsampling blocks in the encoder, a bottleneck,
and four upsampling blocks in the decoder with skip connections. Each convolutional block contains
two 3×3 convolutional layers with batch normalization and ReLU activation. The training objective
is mean squared error (MSE) calculated on the masked pixels.

Training procedure. We tested base channel counts of {8, 16, 32} with masking ratios {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Each model was trained for 10 epochs using Adam optimizer (learning
rate 0.001, batch size 256). All experiments used a NVIDIA 6000 GPU with fixed random seeds.
Each experiment was finished in one hour.

Evaluation. We tested representation performance through inputting uncorrupted images and
evaluating the reconstruction MSE of the output. For linear probing, we extracted the U-Net encoder
and bottleneck, froze their weights, and trained a classifier for the 40 CelebA attributes. The classifier
included global average pooling, a shared feature extraction layer (512 units with dropout), and 40
independent linear output heads. For each setting, the linear probing classifier was trained for 10
epochs using Adam optimizer (learning rate 0.001) and binary cross-entropy loss.

C.5 ViT MAE models

Dataset and model architecture. We used the ViT-base MAE model and the ImageNet-1K training
split as pretraining data, following the MAE codebase [6].

Mask pretraining schemes. The patch tokens in the MAE input sequence are masked by one of the
following strategies:

• Fixed MR. A constant fraction ρ of patch tokens in the sequence is masked. We tested MR
values of {0.5, 0.75, 0.9}. MR 0.75 is the MAE default.

• Dynamic MR. The masking ratio follows a linear decay: ρt =
max {ρmin, ρmax − ρmax t λdecay}. Here, t represents the number of training epochs. We
set ρmax = 0.9, ρmin = 0.6, and λdecay is chosen such that ρt linearly decays throughout
the training. This mimics the scheme proposed in [34].

• MDLM. For every mini-batch, a masking ratio ρ ∼ U(0, 1) is sampled. We use mean token
mask loss for each MR (for all experiments), which is equivalent to wt = 1/k in the ELBO
of [54]. The implementation is very similar to the standard log-linear schedule of α(t) [54].

• R2MAE. For every mini-batch, a masking ratio ρ ∼ U(0.6, 0.9) is sampled.

Training procedure and evaluation. We trained all models for 150 epochs with 10 warmup epochs.
All models were later fine-tuned on the ImageNet-1K training split and evaluated on the validation
split. Other pretraining and fine-tuning configurations exactly follow the instructions in the MAE
codebase. Each experiment was performed on one NVIDIA H100 GPU with the same fixed random
seed, and each epoch took approximately 0.3 hours.
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C.6 RoBERTa models

Dataset and model architecture. We used the HuggingFace RoBERTa-medium and RoBERTa-base
models, and the 10B token subset of FineWeb (sample-10BT, downloaded from HuggingFace) [75]
as the training set. Although our implementation differs from [29] in its training set and layer-norm
design, we found the fine-tuning accuracies to be overall comparable.

Mask pretraining schemes. The tokens in the input sequence are masked by one of the following
strategies:

• Fixed MR. A constant fraction ρ of tokens in the sequence is masked. We tested MR values
of {0.15, 0.4}. MR 0.15 is the MLM default, and an MR of 0.4 is recommended in [29].

• Dynamic MR. The masking ratio follows a linear decay: ρt =
max {ρmin, ρmax − ρmax t λdecay}. Here, t represents the number of training steps.
We set ρmax = 0.4, ρmin = 0.15, and λdecay is chosen such that ρt linearly decays
throughout the training.

• MDLM. For every mini-batch, a masking ratio ρ ∼ U(0, 1) is sampled.

• R2MAE. For every mini-batch, a masking ratio ρ ∼ U(0.15, 0.4) is sampled.

Training procedure and evaluation. RoBERTa-base follows the HuggingFace default setting, while
RoBERTa-medium overrides the following parameters: vocab_size=50265, hidden_size=512,
num_hidden_layers=8, num_attention_heads=8, intermediate_size=2048,
max_position_embeddings=514. We used AdamW optimizer, a max sequence length of
128, an effective batch size of 2048, a weight decay of 0.01, a warmup ratio of 0.03, a learning rate of
7e-4/3e-4 for the RoBERTa-medium/base models, and default linear learning rate decay. Fine-tuning
was performed on the GLUE datasets (MNLI, QQP, SST-2, QNLI) for 5 epochs with a learning rate
of 2e-5 and a batch size of 32. The average accuracy of three fine-tuning runs was reported as the
final accuracy, following [29]. Each experiment was performed on one NVIDIA H100 GPU with
fixed random seeds, and finished in one day.

C.7 DNA sequence models

Dataset and model architecture. We adopted the GPN-MSA [16] framework, which is a 12-layer
transformer model with 12 attention heads per transformer layer. Benegas et al. [16] curated a training
set comprising multiple-sequence alignment (MSA) from human DNA and 89 other species, with
careful filtering and biological considerations; please refer to [16] for more details on the model and
the training set. Each training sample consists of a 128-base pair (bp) window of human genome
and its corresponding MSA, and the pretraining task is to predict the token (A/C/G/T) in the masked
locations of human DNA, based on the input of other unmasked locations and the auxiliary MSA
information.

Mask pretraining schemes. Before encoding, the raw input X is corrupted as Xmask by one of the
following strategies:

• Fixed MR. A constant fraction ρ of base pairs in the sequence is masked. ρ = 15%
corresponds to GPN-MSA default [16].

• Dynamic MR. Same as the fixed MR case, except that the masking ratio follows a linear
decay ρt = max {ρmin, ρmax − ρmax t λdecay}. Here t represents the number of training
steps. We set ρmax = 0.30, ρmin = 0.15 and choose λ such that ρt linearly decays
throughout training.

• MDLM. For every mini-batch, a masking ratio ρ ∼ U(0, 1) is sampled.

• R2MAE. For every mini-batch, a masking ratio ρ ∼ U(0.05, 0.3) is sampled.

• R2MAE + Dynamic MR. For every mini-batch, we sample the masking ratio ρ ∼
U(ρt, 0.3), where ρt = max {ρmin, ρmax − ρmax t λdecay}. To match masking ratio expec-
tation with the Dynamic MR setting, we set ρmax = 0.30, ρmin = 0.00 and choose λ such
that ρt linearly decays throughout training. Although we applied early stopping criteria
based on validation loss to all models, only this model triggered an early stop, occurring at a
masking ratio of ρt = 0.10.
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For CL approaches, we first describe their combinations with R2MAE, as their standalone implemen-
tation results from straightforward simplification of R2MAE + CL schemes.

• R2MAE + CL (k=0). We implement a token-wise MLP layer with hidden space [128,128]
and ReLU activation that projects the transformer-learned masked location representations
to output P̃ ∈ Rnmask×l. Here l = 10 represents the length of the pre-defined mask ratio
vector. We further implement a row-wise projection layer with sigmoid activation plus 0.5
to obtain strictly positive entries (and to improve optimization stability), which we term
as P ∈ RR×l. Finally, we apply K = 10 iterations of the non-square Sinkhorn operator
described in Appendix A.3: M(y) = Sinkhorn(K)

(
σ(P )

)
. For every mini-batch, we now

sample the mask ratio in [0.05, ..., 0.30] with length 10, and select the column of M(y)
based on the selected mask ratio index. Then we multiply this column of M(y) to the
element-wise loss for the masked locations. The newly implemented layers are optimized
together with the main reconstruction model, after being fixed for 5000 initial training steps.

• R2MAE + CL. Apart from the additional components described above, we employed
a dynamic multiplier to the gradient received by these additionally implemented layers,
decreasing from 1 to −1 throughout its training with a linear decay.

• CL. The setting is effectively implemented by always selecting one fixed masking ratio
(15%) in the R2MAE + CL setting.

Training procedure. Models were trained for 30000 steps using the defaults in [16] with AdamW
optimizer, learning rate 1e-4, and effective batch size 2048. All experiments used PyTorch on 4
NVIDIA 6000 Ada GPUs with fixed random seeds. Each experiment takes 6.5 hours to complete.

Evaluation. We evaluated different models’ performance in zero-shot predictions of pathological
missense (Clinvar pathologic versus GnomAD common) and regulatory (OMIM pathologic versus
GnomAD common) variants [60–62]. The inference was performed by vep.inference imple-
mented in [16]. The evaluation sets as well as the scores of alternative models shown in Table 1
[55–59, 39] are provided by the original GPN-MSA work on Huggingface. Partial AUROC (max
FPR 0.001) was used in the OMIM evaluation to account for high imbalance of positive and negative
classes.

C.8 Single-cell gene expression models

Dataset. We employed the Human Lung Cell Atlas dataset [63] and human brain MTG SEA-AD
dataset [64]. Both datasets were downloaded from the CellXGene portal and were subsetted to 5000
highly variable genes (HVGs) using the default procedure in Scanpy [76]. For the HLCA dataset,
we further filtered out cells that have fewer than 20 of these HVGs. After preprocessing, these
datasets have 2161082 and 1378211 cells respectively, along with metadata of fine-grained cell types,
disease/Alzheimer status (Alzheimer’s Disease Neuropathologic Change, ADNC), and age labels.

Model architecture. For all settings that require pretraining from scratch, we implemented a 5-layer
MLP encoder-decoder based architecture described as follows. The model receives corrupted count
matrix Xmask ∈ Rncells×ninput as input, where ninput = 5000:

• Latent encoder Ez (3-layer-MLP with nhidden units and ReLU activations, the final layer
being a linear projection from nhidden to nlatent) maps logarithmically transformed (cor-
rupted) counts together with the dataset batch covariate to the latent space.

• Decoder D (2-layer-MLP with nhidden units and ReLU activations, the final layer being a
projection from nhidden to ninput with softmax activation) receives the embedding, observed
library size, and batch covariates and produces negative-binomial parameters (µg, θg) for
every gene g [77]. Batch normalizations are used in both encoders and decoders.

• Objective. The objective is defined as the average negative reconstruction likelihood for the
masked genes in the input data: L = − 1

|mask|
∑

g∈mask log NB(xg | µg, θg).

In all implemented models, we set nhidden = 2000 and nlatent = 1000. These are much higher
values than those of typical scVI models [78, 77] and are comparable to latent space sizes in recent
single-cell foundation models [17, 21].
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Mask pretraining schemes. Before encoding, the raw count matrix X is converted to the masked
matrix Xmask by one of following strategies:

• Fixed MR. A constant fraction ρ of gene columns in the count matrix sampled once per
mini-batch is replaced by zero.

• Dynamic MR. Same as the fixed MR case, except that the masking ratio follows a linear
decay ρt = max {ρmin, ρmax − ρmax t λdecay}. Here t represents the number of training
steps. Here ρmax = 0.5 and ρmin = 0.1, with λ an dataset-specific parameter to enforce
linear decay throughout training (1/300000 for HLCA, 1/150000 for SEA-AD).

• MDLM. For every mini-batch, a masking ratio ρ ∼ U(0, 1) is sampled.
• R2MAE. For every mini-batch, a masking ratio ρ ∼ U(0.1, 0.5) is sampled.
• R2MAE + Dynamic MR. For every mini-batch, we sample the masking ratio ρ ∼
U(ρt, ρmax), where ρt = max {ρmin, ρmax − ρmax t λdecay}, with the same parameter
selections as the Dynamic MR setting.

For CL approaches, we first describe their combinations with R2MAE, as their standalone implemen-
tation results from straightforward simplification of R2MAE + CL schemes.

• R2MAE + CL (k=0). We implement an MLP layer that projects the original count matrix
(we pass a transformed version, log((X/20) + 1) in practice) to a two-layer MLP with
hidden dims [128, 256] and ReLU activations, reshaped to output P̃ ∈ Rninput×64. We
further implement a row-wise projection layer with sigmoid activation plus 1e-9 to obtain
strictly positive entries, which we term as P ∈ Rninput×l. Finally, we applyK = 4 iterations
of the non-square Sinkhorn operator so that each row sums to l and each column to ninput:
M(y) = Sinkhorn(K)

(
σ(P )

)
. For every mini-batch, we now sample the mask ratio in the

length-l vector [0.10, 0.15, ..., 0.50], and select the column of M(y) based on the sampled
mask ratio index. Then the element-wise negative log-likelihood is multiplied by this column
of M(y) as the training objective. The newly implemented layers are optimized together
after being fixed for 5000 training steps.

• R2MAE + CL. Apart from the settings in R2MAE + CL (k=0), we employed a dynamic
multiplier to the gradient received by these additionally implemented layers, decreasing
from 1 to −1 throughout its training with a linear decay from 30000 to 120000 training
steps.

• CL (k=0), CL. These settings are effectively implemented by always selecting one fixed
masking ratio in the above R2MAE + CL (k=0) and R2MAE + CL settings respectively.

• scVI. In this setting, we no longer mask the data, and instead formulate variational posteriors
and train the model using the evidence lower bound (ELBO) objective [78, 77].

Training procedure. Models were trained for 50 epochs using Adam optimizer (learning rate 1e-3,
weight decay 1e-4, batch size 400). 90% of data were selected as the training set and the remaining
10% was set as the validation set. All experiments used PyTorch on an NVIDIA 6000 GPU with
fixed random seeds. Each experiment takes 1-2 hours to complete.

Evaluation. We evaluated different model embeddings’ performance in identifying key metadata
across donors through linear probing. Apart from previously described models, we used pretrained
scGPT and UCE models to output zero-shot embeddings of the preprocessed datasets [17, 21]. For
scGPT, the dataset is further log-normalized according to the instructions [17]. We also evaluated
the linear probing performance of the log-normalized expression itself. We selected all cells from
randomly sampled ⌊0.6× Total donors⌋ donors in the dataset as the training set, and the remaining
cells as the test set. Reference control donors from the SEA-AD datasets were removed. We
further removed data without corresponding metadata for the respective regression/classification
tasks. Specifically, we removed cells whose cell type was labeled as Unknown for the fine-grained
cell state classification task (HLCA), and removed cell types that do not contain Alzheimer-specific
subtypes in the SEA-AD dataset; we removed cells without age labels (HLCA) or containing broad
categories instead of exact ages (SEA-AD) for the age regression task. After each removal, we
subset the training and test sets so that each donor comprises a maximum of 200000

ndonor
in the set ( 100000ndonor

numbers for cell type classification task in SEA-AD), to further balance cell numbers across donors.
The training and test sets for cell type classification in HLCA is obtained by removal after subsetting.
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We performed ridge regression for regression tasks and logistic regression for classification tasks.
GridSearchCV was utilized for selecting the best regularization parameters (np.logspace(0,8,20)
to minimize regression MSE, np.logspace(-6,2,10) to maximize classification balanced accu-
racy), and the training samples were separated by donors for five-fold cross-validation.

Finally, for classification tasks, we evaluated balanced accuracy and macro F1 score on the test set.
For regression tasks, we evaluated both cell and donor level (obtained through averaging cell-level
score per donor) Spearman r. The only exception is for the ADNC classification, where all methods
perform poorly in terms of balanced accuracy and macro F1 scores. Therefore, we instead evaluated
macro AUROC on both cell and donor levels.

For those models trained from scratch, we additionally evaluated their performance in reconstructing
randomly masked genes in the pretraining validation set. The masking ratios evaluated are [0.1,
0.2, 0.3, 0.5, 0.7]. We calculated Pearson r between the model output µg and log-normalized gene
expression per cell, and then averaged the Pearson r over all cells in the validation set (which stays
the same across all methods tested).
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Figure 5: Median scaled accuracy of U-Net models (base channel = 8) on CeleBA classification tasks.
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Figure 6: Median scaled accuracy of U-Net models (base channel = 16) on CeleBA classification
tasks.
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Figure 7: Median scaled accuracy of U-Net models (base channel = 32) on CeleBA classification
tasks.
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Original (Label: 7) Masked (Ratio: 0.40)
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mask ratio= 0.1
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Comparing Different Model Configurations on the Same Random Mask Test Set

Model Hidden Dimensions: [256, 256, 256, 256, 256]

Figure 8: Comparison of overparametrized MLP reconstructions on MNIST data across different
training mask ratios. Original digits (first column) and their masked versions (second column) are
followed by reconstructions from models with identical architecture but varying mask ratios during
training. The second layer hidden dim = 256 for all models.
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Original Masked (Ratio: 0.79) Mask: 0.1 Mask: 0.3 Mask: 0.5 Mask: 0.7 Mask: 0.9

Original Masked (Ratio: 0.30) Mask: 0.1 Mask: 0.3 Mask: 0.5 Mask: 0.7 Mask: 0.9

Original Masked (Ratio: 0.59) Mask: 0.1 Mask: 0.3 Mask: 0.5 Mask: 0.7 Mask: 0.9

Original Masked (Ratio: 0.18) Mask: 0.1 Mask: 0.3 Mask: 0.5 Mask: 0.7 Mask: 0.9

Original Masked (Ratio: 0.48) Mask: 0.1 Mask: 0.3 Mask: 0.5 Mask: 0.7 Mask: 0.9

Comparing Different Model Configurations on the Same Random Mask Test Set

Model Base Channels: [16, 16, 16, 16, 16]

Figure 9: Comparison of U-net reconstructions on CeleBA across different training mask ratios. Orig-
inal images (first column) and their masked versions (second column) are followed by reconstructions
from models with identical architecture but varying mask ratios during training. All models have
base channel = 16.
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E Appendix Tables

Table 6: Comparison for different single-cell gene expression models trained on Human Lung
Cell Atlas (HLCA). BAcc, Balanced Accuracy. For each specific task, pretraining scheme metrics
outperforming optimal fixed masking ratio settings are labeled red.

Cell state Disease Age Spearman r Avg performance

Methods BAcc. F1macro BAcc. F1macro Cell Donor Score Rank

Normalized exp. 0.834 0.774 0.675 0.489 0.470 0.574 0.636 12.50
scGPT (Lung) 0.813 0.717 0.624 0.401 0.429 0.523 0.584 15.67
scGPT (All) 0.834 0.711 0.629 0.403 0.438 0.500 0.586 15.00
scGPT (CP) 0.816 0.696 0.613 0.389 0.431 0.521 0.578 16.67
UCE (4L) 0.808 0.702 0.631 0.417 0.436 0.518 0.585 15.50
UCE (33L) 0.800 0.699 0.619 0.419 0.447 0.540 0.587 15.50
scVI 0.897 0.804 0.767 0.626 0.556 0.618 0.711 9.67

MAE (MR 25%) 0.908 0.830 0.834 0.604 0.586 0.623 0.731 6.50
– MR 10% 0.915 0.802 0.851 0.635 0.582 0.609 0.732 5.67
– MR 50% 0.909 0.833 0.837 0.604 0.587 0.601 0.729 6.33
MDLM 0.903 0.806 0.829 0.560 0.577 0.622 0.716 8.83
Dynamic MR 0.919 0.829 0.850 0.651 0.571 0.597 0.736 5.00
CL-MAE 0.907 0.825 0.843 0.635 0.589 0.648 0.741 4.50
CL-MAE (k = 0) 0.801 0.667 0.773 0.493 0.530 0.563 0.638 13.83
R2MAE (Ours) 0.915 0.812 0.853 0.651 0.595 0.641 0.744 2.83
+ Dynamic MR 0.914 0.842 0.835 0.597 0.616 0.658 0.744 4.17
+ CL 0.911 0.817 0.837 0.618 0.572 0.619 0.729 6.67
+ CL (k = 0) 0.911 0.805 0.840 0.630 0.590 0.646 0.737 5.00

Table 7: Comparison of random masking reconstruction Pearson r across different single-cell gene
expression models trained on brain MTG SEA-AD dataset. MR, Masking Ratio.

Methods MR 10% MR 20% MR 30% MR 50% MR 70%

scVI 0.834 0.834 0.829 0.815 0.781
MAE (MR 25%) 0.843 0.847 0.846 0.840 0.819
MAE (MR 10%) 0.842 0.844 0.841 0.832 0.797
MAE (MR 50%) 0.841 0.845 0.843 0.842 0.830
MDLM 0.840 0.844 0.842 0.840 0.827
Dynamic MR 0.842 0.845 0.842 0.834 0.800
CL-MAE 0.841 0.844 0.845 0.838 0.817
R2MAE (Ours) 0.846 0.847 0.845 0.842 0.826
+ Dynamic MR 0.844 0.847 0.846 0.841 0.824
+ CL 0.836 0.839 0.839 0.836 0.825
+ CL (k = 0) 0.844 0.846 0.845 0.840 0.823
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Table 8: Comparison of random masking reconstruction Pearson r across different single-cell gene
expression models trained on Human Lung Cell Atlas (HLCA). MR, Masking Ratio.

Methods MR 10% MR 20% MR 30% MR 50% MR 70%

scVI 0.712 0.744 0.746 0.733 0.698
MAE (MR 25%) 0.743 0.774 0.780 0.777 0.747
MAE (MR 10%) 0.733 0.770 0.777 0.769 0.733
MAE (MR 50%) 0.744 0.770 0.779 0.781 0.760
MDLM 0.729 0.760 0.766 0.764 0.739
Dynamic MR 0.742 0.772 0.777 0.772 0.737
CL-MAE 0.736 0.768 0.776 0.776 0.756
CL-MAE (k = 0) 0.174 0.131 0.109 0.090 0.086
R2MAE (Ours) 0.746 0.773 0.782 0.778 0.752
+ Dynamic MR 0.743 0.774 0.781 0.779 0.753
+ CL 0.731 0.763 0.772 0.770 0.746
+ CL (k = 0) 0.733 0.767 0.777 0.770 0.742

Table 9: Normalized test risk of R2MAE (MR range 0.4-0.5) against optimal fixed MR and mean
MR settings across different random seeds for Beta covariance and latent space models. The ground
truth signal β is set to be the 10th quantile eigenvector of covariance Σ in all cases. n = 200, γ = 5.

Beta Covariance Model Latent Space Model

Seed Best MR Min Risk MR 45% R2MAE Best MR Min Risk MR 45% R2MAE

2 0.43 0.859 0.865 0.855 0.45 0.826 0.826 0.823
12 0.43 0.863 0.865 0.859 0.42 0.832 0.837 0.830
22 0.54 0.862 0.898 0.890 0.37 0.848 0.851 0.842
32 0.43 0.817 0.822 0.814 0.33 0.852 0.865 0.859
42 0.36 0.817 0.830 0.819 0.43 0.814 0.818 0.806
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims made in the abstract and introduction do accurately reflect
the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have specified limitations of the work with a limitation section at the final
of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have provided full set of assumptions and correct proofs in our work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We do fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of
the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and instructions are provided at https://github.com/
MingzeDong/r2mae. Detailed instructions are also provided in Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do specify all the training and test details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments. All error bars in this work
represent standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources needed to repro-
duce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We described potential societal impacts of our work in the "Broader impacts"
section. We do not see particular negative societal impacts in our work.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not present data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credited assets. The license and terms of use are explicitly
mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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