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Abstract

Stochastic learning of Deep Neural Network (DNN) parameters is highly sensitive to the
training strategy, hyperparameters, and available training data. Many state-of-the-art so-
lutions use weight regularization to adjust parameter distributions, prevent overfitting, and
support the generalization of DNNs. None of the existing regularization techniques have
ever exploited a typical distribution of numerical data sets with respect to the first non-zero
(or significant) digit, called Benford’s Law (BL). In this paper, we show that the deviation
of the significant digit distribution of DNN weights from BL is closely related to the gener-
alization of the DNN. In particular, when the DNN is presented with limited training data.
To take advantage of this finding, we use BL to target the weight regularization of DNNs.
Extensive experiments are performed on image, table, and speech data, considering CNN
and Transformer-based architectures with varying numbers of parameters. We show that
the performance of DNNs improves by minimizing the distance between the significant digit
distributions of the DNN weights and the BL distribution alongside L2 regularization. The
CNN-based architecture gain up to 15% test accuracy over the L2 regularized network on
subsets of CIFAR 100.

1 Introduction

The advent of Deep Neural Networks (DNNs) has revolutionized various domains by leveraging their adapt-
ability and robust learning capabilities without necessitating complete model interpretability. A critical
aspect of DNNs is the learning of parameters, a process influenced by factors such as training data volume
and hyperparameter settings. While the number of large datasets in DNN research is constantly increasing,
many industrial applications must deal with smaller, manually collected data sizes. In addition, the choice
of hyperparameters significantly affects the training stability and overall performance of DNNs.
A notable area of research in DNNs is weight regularization. Over the years, numerous studies have shown
how explicit weight regularization described in Van Laarhoven (2017), such as L2 or L1 regularization, can
improve learning by imposing penalties to encourage smaller or sparser weight distributions. Implicit reg-
ularization techniques, such as Mixup by Zhang et al. (2018) or Cutmix by Yun et al. (2019), modify the
input data to achieve similar effects. These strategies highlight the importance of weight regularization in
improving the learning capabilities of DNNs. However, they are scale dependent, and to be finetuned for
individual domains.
This paper explores a compelling aspect of DNNs - the distribution of the first significant digits of their
weights, a phenomenon closely related to Benford’s Law (BL). Discovered independently by Newcomb (1881)
and Benford (1938), BL describes a counterintuitive but common pattern in numerical data across several
fields: Lower significant digits occur more frequently than higher ones.
This scale invariant pattern described by BL has been observed in various domains, such as physical constants
by Shao & Ma (2010) and stock market prices by Ley (1996). In machine learning, the properties of BL
have been exploited to detect anomalies in input data by O’Mahony et al. (2023) and synthetically generated
images by Bonettini et al. (2021), underlining its relevance in DNN research. Their motivation stems from
the observation that natural datasets tend to follow BL and synthetic data does not. Sahu et al. (2021)
show that the connection between BL and DNNs is based on their mutual relation to thermodynamics. In
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particular, the likelihood of energy states in closed systems, where smaller energy states are more likely to
occur than larger ones. The same pattern as in BL.
Despite the highlighted correlations between DNNs and the Benford distribution, ML research solely focused
on observing whether gathered significant digits from trained weights follow BL or not. In particular, the
authors of Sahu et al. (2021) propose to use the correlation between significant digits of DNN weights and
BL to estimate generalization error of DNNs. A high correlation is then used as stopping criterion for Early
Stopping, a mechanism to stop the training when the performance on a holdout validation dataset is not
increasing for a predefined number of successive epochs. This, in turn, eliminates the need for a validation
dataset, which can be used for training instead.
An explanation for this relation can be found in the already mentioned feature of BL. Namely, BL is often
used for the detection of any bias in numerical data such as synthetic images. In particular, data, especially
with limited quantity, is always biased as it represents a small snapshot of the real world. In the same way,
this bias if reflected in the weights of DNNs. Thus, we expect a DNN trained with limited training data to
deviate from BL. In addition, constraining the weights towards BL with a penalty added to the loss function
should improve its performance.
To the best of the authors notice, there is currently no research available that fosters BL as a regularization
technique. To analyze the effects of BL on DNNs weights regularization, this paper:

1. demonstrates the relation between ML datasets and BL

2. introduces a way to approximate BL via gradient-based optimization,

3. analyzes the effect of Benford regularization during the training of DNNs with reduced datasets.

Benford regularization is of particular interest for applications where either a complex dataset is too small
for a DNN or a DNN has limited capacity for a large dataset. To this end, our experiments use subsets of
common image (CIFAR10/100) and audio datasets to emphasize the bias in the dataset. In that way we
compare CNN-based architectures such as DenseNet and ResNext and Transformer architectures for small
datasets like tiny ViT and tiny Swin Transformer with respect to performance on random subsets.
The results show consistent improvements of the Benford regularization in combination with L2 regulariza-
tion over L2 regularization alone. In particular, the CNN-based architectures benefit from the additional
Benford regularization on subsets of the datasets with improvements up to 15%. The Transformer models
also improve with Benford and L2 regularization on the full dataset up to 3%. Additionally, we experiment
with small and hardware optimized MobileNetv3 models on the Imagenet1K dataset, where the larger capac-
ity model improves more with Benford regularization as the smaller one. The experiments show an interplay
of improved performance with Benford regularization , model capacity and data availability.
The rest of the manuscript is structured as follows. First, we investigate related research on weight regu-
larization and BL in connection to DNNs. Afterward, we outline the relation between BL and physics and
illustrate a close connection to DNNs. The proposed method introduces a differentiable approximation of
the Benford distribution and how BL can be approximated via gradient descent. The following experiments
are performed on the public image datasets CIFAR10/100 by Krizhevsky (2009) and Imagenet1K by Rus-
sakovsky et al. (2015) and evaluate the performance of well-known DNNs trained from scratch with different
dataset sizes. To complete the experiments, the regularizer is evaluated on different data domains, such as
speech and tabular data. After discussion of the experiments and their results, we assess the limitations of
the presented work. Finally, we present the conclusion and outlook of the paper.

2 Considered problem and related work

Research on weight regularization focuses on specific favorable weight distributions. The goal of these
approaches is to make the training of DNNs stable while ensuring robustness against overfitting and noise in
the data. This section discusses state-of-the-art research that employs regularization and data augmentation
for DNNs, and related work that features BL with respect to DNNs.

Regularization and data augmentation are of practical importance when training DNNs to avoid
overfitting and foster numerical stability. Weight regularization, like L2 or L1, aims to reduce the norm of
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the weights by adding a penalty to the loss function. L2 regularization is mainly implemented as weight
decay as described in Loshchilov & Hutter (2019). Alongside L2 regularization, the focus of seminal work is
on implicit regularization, such as data augmentation methods reviewed by Shorten & Khoshgoftaar (2019)
like Mixup by Zhang et al. (2018) or Cutmix by Yun et al. (2019). Such techniques do not directly constrain
the weights, but they affect their distribution. Data augmentation distorts the input data to make the
network robust against different conditions, such as lighting conditions for camera images, thus improving
generalization. To achieve this, Mixup fuses two training samples and their respective label via a convex
combination to learn smooth decision functions. Cutmix extends the approach and cuts out a patch from
an input image and replaces the patch with information from a different training sample. The targets are
adjusted proportionally to number of switched pixels. An alternative regularization method, SAM by Foret
et al. (2019), reduces sharpness of the loss landscape via second order gradient smoothing. Generalization
is achieved by finding parameters that lie in a neighborhood with a low loss instead of suboptimal sharp
minima. At last, Early Stopping is one of the most common methods in DNN research. It describes a
mechanism to stop the training when a monitored metric, like validation error, stops improving Yao et al.
(2007). In particular, Early Stopping does not change the weights by adding a penalty or changing the input
data, so it is of relevance for training DNNs in any data domain and is commonly used. In the work of Sahu
et al. (2021), the deviation to BL has been used as metric when to stop the training. This metric makes a
validation dataset obsolete, which in turn can be used as additional training data.

The distribution of significant digits has not yet been used to regularize the weights of DNNs via
gradient base optimization. So far, BL has been used to analyze the features and the liability of the data.
In Bonettini et al. (2021), the authors use the significant digits of the cosine transformation coefficients of
an image to detect whether it was generated by a Generative Adversarial Network (GAN). Similarly, BL has
been used in O’Mahony et al. (2023) to discriminate between natural and corrupted data, acting as a filter
to detect out-of-distribution data or anomalous data points. These methods monitor whether the collected
data or generated images follow BL and are motivated by the observation that natural datasets are known
to obey BL. Recently, Sahu et al. (2021) showed that the distribution of significant digits is a predictor of
the generalization of DNNs to the validation data and can be used as Early Stopping criterion. Up to now,
BL has not been incorporated into the optimization process, thus missing important features of the Benford
distribution.

3 Motivation

Regularization and data augmentation are practical techniques that improve the training and generalization
of DNNs. However, they need to be tailored to the data, resulting in a non-universal approach. In various
domains, it has been observed that the significant digits follow the pattern shown in Figure 1 or oscillate
around it, as described by Wang & Ma (2023). The proof for its origin is yet to be discovered Berger & Hill
(2011). In Hill (1995) the authors show that random samples of randomly selected distributions converge to
BL. This finding is also mentioned in the original work by Benford (1938), who describes that some datasets
deviate from BL, but their union is closely following it, underlining that unbiased data follows BL. To
emphasize these findings, we evaluate the frequency spectrum of several image datasets. The coefficients of
the Discrete Cosine Transformation (DCT) and Fast Fourier Transformation (FFT) are known to follow BL,
see Benford (2021). As shown in Figure 1, not all frequencies of common image datasets for DNN training
follow Benford’s distribution. However, the union of all datasets gets very close. This further illustrates that
data from various unbiased distributions obeys BL. Mathematically, the law is fulfilled when the frequency
P (d) of any significant digit d is given as

P (d) = logb(1 + 1
d

), (1)

where b is the base of the number system. Alternatively, the authors in Berger & Hill (2015) demonstrate that
a sequence satisfies BL if and only if “the fractional parts of its decimal logarithm are uniformly distributed
between zero and one", as shown in Eq.2

P (d) = log10(1 + 1
d

) iff log10(X) mod 1 ∼ U(0, 1). (2)
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The described law is of particular interest since it is scale- and base-invariant, as shown by Berger & Hill
(2021). To measure the deviation from BL, we compute the Kullback-Leibler (KL) divergence by Kullback
& Leibler (1951) between the significant distribution of the weights and BL (BL KL), formally defined in
Eq. 3

KL(Q ∥ BL) =
9∑

d=1
Q(d) log

(
Q(d)
P (d)

)
, (3)

where Q(d) is the observed frequency of the d-th significant digit in the DNN weights. In the experimental
section, we show that networks trained with more data have weights closer to BL
These observations are related to theoretical results from Iafrate et al. (2015) on the partitioning of numbers,
a topic of number theory, and its relation to BL.

A partitioning process describes how a fixed quantity is distributed. For example, partitioning describes
the energy states of particles in closed systems, see Iafrate et al. (2015) and is used in combinatorics to
describe the partitioning of an integer into positive smaller integers. Common DNN structures like CNNs
use fixed filters that partition the input and Transformers extract information from partitioned input data.
Formally, we define a quantity X that is divided into smaller parts:

X =
∑

j

njxj , (4)

with parts nj of size xj . The goal is to find the distribution p(n) that explains how often we ob-
serve a part of size x in the subset that adds up to X. Intuitively, it is obvious that smaller num-
bers occur more often, which can be easily verified by inspecting the subsets that add up to ten:
[{9, 1}, {8, 2}, {8, 1, 1}, ..., {1, ..., 1}]. An illustrative example from Kafri (2009) describes the system of Eq.
4 with a number X, represented as “boxes" with N non-interacting balls. The question is how many
boxes have exactly n balls, which in turn gives information about the probability of integers in a number.
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Figure 1: Comparison of significant digit distribution
of DCT/FFT coefficients in public image and speech
datasets, the union of datasets, and Benford’s Law.

The combination of different boxes then forms a
number. As the probability of a ball being in a
box is the same for all boxes, the distribution of
balls obeys BL. This result is further generalized by
Iafrate et al. (2015), showing that the distribution
of parts approximately follows a simple power law
p(n) ∼ 1/x. The significant digit distribution Pd of
the inverse power distribution obeys BL, as shown
in Eq. 5

Pd =
∫ (d+1)10p

d10p dx/x∫ 10p+1

10p dx/x
= ln(1 + 1/d)

ln(10) = log10

(
1 + 1

d

)
.

(5)
Both approaches of Iafrate et al. (2015) and Kafri
(2009) assume equal probabilities for each ball to
fall in a box or the parts of each size. This as-
sumption is based on the maximum entropy prin-
ciple by Jaynes (1957). Whenever no further in-
formation about a probability distribution is given,
the maximum entropy principle is the most unbiased
assumption. Finding probability distributions that
maximize the entropy is used in Machine Learning
research for regularization in Haarnoja et al. (2018)
and Chiang et al. (2005). Similar to partitioning,
DNNs for classification follow a top-down strategy

that divides the input into a smaller feature space by partitioning it with the trained weights. In DNNs,
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the number of features represents the parts, and the weights represent their respective sizes. With sufficient
training data, we expect an unbiased partitioning of the input space into the feature space, resulting in
weights that are approximately Benford distributed. However, in the absence of training data, the parts
are biased towards fewer features with larger weights, leading to a deviation from BL. This provides an
explanation for the data obtained from Figure 2, where the lack of information in the training data leads to
less diversity in the feature space and, thus, to an increase in the distance to BL.
This motivates to find a way to exploit BL for weight regularization in DNNs. Specifically, we aim to con-
strain the significant digit distribution of weights closer to BL in order to improve the test error independently
of the task, focusing on smaller subsets of datasets. To the best of our knowledge, this is the first method
that incorporates BL into the optimization process of neural networks via gradient-based optimization.

4 Approach

This section presents a framework to incorporate BL into neural network regularization. To this end, we
propose a differential approximation of BL that can be used to optimize the significant digit distribution of
the DNN weights. The significant digits of the weights are updated via gradient descent to close the distance
to BL. To further improve the proposed approach, we use derived error functions on BL for exponential
random variables that relax the optimization problem.
The fractional part of any positive number x is defined as

frac(x) = x − ⌊x⌋, (6)

where ⌊x⌋ denotes the integer value of x. This function has discontinuities at zero and one, but the gradient
can be numerically approximated in those regions. To approximate the uniform distribution of the frac-
tional part with gradient optimization, we utilize quantile regression described in Koenker & Hallock (2001).
Quantile regression has been used lately in Reinforcement Learning (RL) to learn arbitrary distributions, like
Dabney et al. (2018). Specifically, we compare the quantiles of the neural network weights to the quantiles
of a uniform distribution U(0, 1). In terms of the cumulative distribution function (c.d.f.), the quantile p
defines the probability that a random variable X evaluates smaller or equal to a threshold x, as shown in
Eq. 7

FX(x) = Pr(X ≤ x) = p. (7)

The quantile function Q(p) is defined as the inverse c.d.f, presented in Eq. 8.

Q(p) = F −1
X (p) =

{
x(k), k = n(p) if n(p) is an integer
1
2 (x(k) + x(k+1)), k = ⌊n(p)⌋ if n(p) is not an integer

(8)

Here, x(1), x(2), . . . , x(n) denote the sorted weights in ascending order and n is their total number. The ⌊·⌋
denotes the floor function. The expression n(p) is the index of the p-th quantile, and the value of k is the
integer part of n(p). If n(p) is not an integer, the p-th quantile is defined as the average of the k-th and
(k + 1)-th ordered observations. The p-th quantile of the standard uniform distribution U(0, 1) is already
given by p. To measure the deviation from the standard uniform distribution, we compare the quantiles of
the weight distribution to the quantile value, as shown in Eq. 9

LBL(K, θ) = 1
K

K∑
k=1

|Q̂(k, θ) − k|, (9)

where K is the number of quantiles and Q̂(k, θ) denotes the k-th quantile of the weights θ. The number of
quantiles that are used for the regression is essential for an accurate approximation of the standard uniform
distribution. The best estimation can be achieved when the number of quantiles is equal to the number of
weights in the DNN. Due to the average complexity of O(n), this is infeasible for DNNs with millions of
parameters. Thus, whenever needed, the quantile regression is computed for each layer sequentially.
In Algorithm 1, we illustrate a Pytorch-style pseudocode of the quantile regression steps. Similar to other
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regularizers, the quantile regression loss is added to the objective function. The approach is, consequently,
not limited to classification tasks but can be used in any optimization process.
However, to improve the stability of the proposed loss, we incorporate the error function from Engel &
Leuenberger (2003). They show that exponential random variables oscillate around BL. The unnormalized
probability density of a classification network is defined as:

p(x, θ) = e(f(x,θ)/τ), (10)

where f(x) defines the neural network output and τ is the temperature. In Engel & Leuenberger (2003) the
authors show that exponential random variables of the form λe−λx obey BL within error bounds. The error
on BL for the exponential random variable is defined as:

Er(f) =
+∞∑
−∞

e−λd10n

(1 − e−λ10n

) − log10(1 + 1
d

). (11)

According to the computation in Engel & Leuenberger (2003), the error is bound within Er(f) ≤ 0.03. This
result can be incorporated into the proposed Benford regularizer, such that losses within the error bound
are neglected.

Algorithm 1: PyTorch-style pseudocode of computing the quantile loss for Benford regularization
# W - model weights Nx1
def quantile_loss_BL(W):

#
n_quantiles = W.shape[0]
# Compute fractional part
W = remainder(log10(W),1)
# Define quantile steps between 0 and 1
quantile_steps = linspace(start=0, end=1, steps=n_quantiles)
# Compute quantiles for the weights
W_quantiles = quantile(W, quantile_steps)
# Uniform quantiles are the quantile steps
uniform_quantiles = quantile_steps
# Compare the quantiles with Mean Squared Error
bl_loss = mse_loss(W_quantiles, uniform_quantiles)

return bl-loss

5 Experiments

In this section, we assess the Benford regularization on different datasets and model architectures. The
baseline are networks trained with L2 regularization. The Benford regularizer is evaluated on top of the L2
regularization which aids for numerical stability.
To this end we train all networks from scratch on subsets of publicly available image datasets such as
MNIST (LeCun (1998)), CIFAR 10/100 (Krizhevsky (2009)) and ImageNet1K (Russakovsky et al. (2015)).
In order to show invariance to different model architectures, we evaluate the Benford regularizer on CNN
and Transformer models. The Transformer models used throughout the experiments have 3 times more
parameters than the CNN-based networks, making them prune to overfit on small datasets. At the same
time, they have a larger capacity which is relevant when the experiments use the full dataset. Besides
images, the experiments evaluate the performance of the M5 model from Dai et al. (2017) on the Google
Speech Commands dataset (Warden (2018)) and a two-layer MLP on the tabular Iris dataset (Fisher (1936)).
The hyperparameters used for training are defined in the respective sections. All reported results for CIFAR
10/100 are obtained from 15 different seeds and the mean and standard deviation is reported in the respective
tables. The results from ImageNet1K are obtained from 3 different seeds. We illustrate the mean and
standard deviation on the validation performance. Afterward, the table presents the test accuracy of the

6



Under review as submission to TMLR

0.00

0.25

0.50

0.75

test  error in %

0 20 40 60 80 100
epochs

0.02

0.04

0.06

0.08

0.10
BL KL

100% L2
100% L2+BL

10% L2
10% L2+BL

1% L2
1% L2+BL

Figure 2: Comparing the test error in % and BL
KL of L2 and L2 with Benford regularization when
training LeNet on 100%, 10% and 1% of the MNIST
dataset.
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Figure 3: Comparison between Benford’s Law and
significant digits of DenseNet121 weights trained
with L2 and Benford regularization and with L2 reg-
ularization alone on CIFAR 10.

model with the highest validation performance.
The implementation is based on Pytorch™ v2.0 Paszke et al. (2019) and as processing unit, we used two
NVIDIA® Tesla® A30 GPUs. The implementation is publicly available. 1

5.1 MNIST experiments

To show that less training data leads to a larger KL divergence and thus a larger deviation from BL, we
evaluated LeNet Lecun et al. (1998) in combination with Benford and L2 regularization on different data
subsets. The Benford regularizer is scaked by 0.1 and we presented the average test error curves across 5
seeds in Figure 2. The results highlight that fewer data leads to more improvement that can be achieved
with Benford regularization. Besides the clearly improved test performance when training only on 1% of
the training data, the improvement decreases with more training data. Regarding the deviation to BL, the
proposed regularization successfully reduces the BL KL but the regularization cannot compensate for the
missing data. The network with lower BL KL shows superior performance. Especially, when using 10%
and 1% of the data, the BL regularized network converges faster. However, the BL KL becomes similar for
both networks during training. This shows a clear connection between the BL KL and test error and the
importance of the proposed regularizer for convergence speed.

5.2 CIFAR experiments

We first show the effectiveness of the Benford regularizer on the CIFAR 10 and CIFAR 100 datasets. Both
consist of 50,000 training images and 10,000 test images with 10 and 100 different classes respectively. A
subset of 10,000 images from the training data is used for validation. During the evaluation of different
dataset sizes, the validation and test data size stays the same. To this end, we present the results of CNN-
and Transformer-based models introduced by Vaswani et al. (2017). For this, the DenseNet by Huang
et al. (2017) with depths 121 and ResNext with 29 layers by Xie et al. (2017) represent the CNN family.
Furthermore, the tiny version of the Swin Transformer by Liu et al. (2021) and the Vision Transformer (ViT)
for small datasets proposed by Lee et al. (2021) represent the Transformer models. The input images are

1The code is published on Github upon acceptance.
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Table 1: Average test error in % (↓) and standard deviation on CIFAR 10. An evaluation of the L2
regularization with (L2+BL) and without Benford regularization on the full dataset and random subsets of
80%, 60%, 40%, and 10%. We highlight the respective results in bold when the performance difference is at
least one standard deviation.

Subset
Reg. 100% 80% 60% 40% 10%

Swin L2 15.70 ± 0.35 17.44 ± 0.48 20.39 ± 0.46 24.61 ± 0.55 42.72 ± 0.72
Transformer L2+BL 15.17 ± 0.42 16.66 ± 0.59 19.94 ± 0.41 24.55 ± 0.50 41.72 ± 0.53
Tiny ViT L2 18.91 ± 0.35 21.21 ± 0.35 23.86 ± 0.22 28.48 ± 0.41 42.34 ± 0.59

L2+BL 17.97 ± 0.40 19.51 ± 0.31 21.66 ± 0.22 26.6 ± 0.36 41.75 ± 0.59
DenseNet121 L2 5.61 ± 0.24 10.74 ± 0.81 12.86 ± 0.27 16.30 ± 0.80 33.65 ± 0.47

L2+BL 5.71 ± 0.245 7.6 ± 0.61 9.01 ± 0.27 12.04 ± 0.74 27.62 ± 0.64
ResNext29 L2 6.03 ± 0.19 12.88 ± 2.85 16.55 ± 0.35 22.10 ± 0.55 43.23 ± 0.39
2x64 L2+BL 6.03 ± 0.11 9.04 ± 0.29 10.49 ± 0.38 13.3 ± 0.55 32.35 ± 0.39

normalized 32 × 32 images with a random crop and random horizontal flip during training. For testing, the
images are only normalized. We use an SGD optimizer with 0.9 momentum and 5 ·10−4 weight decay and an
initial learning rate of 0.001 for the CNN models and the Adam optimizer by Kingma & Ba (2014) with an
initial learning rate of 0.0001 with a cosine annealing learning rate schedule for the Transformer models. Each
network is trained for 200 epochs and the learning rate of the CNNs is divided by 5 after [60, 120] epochs,
following the settings in DeVries & Taylor (2017). For all models, we compute the quantile regression loss
for each layer and add the average as regularization with a scaling factor of 0.1. Figure 3 illustrates that the
proposed Benford regularizer not only minimizes the BL KL but tweaks the significant digits of the DNN
weights towards BL, while the same network optimized with L2 regularization only deviates from BL. The
results in Table 1 and Table 2 report the mean and standard deviation of the test error obtained over 15
seeds. The results show that the proposed Benford regularizer improves the network performance when the
number of data samples is limited. As an additional illustration, Figure 4 show the improvements of the tiny
ViT’s and DenseNet121’s test performance on the subsets of CIFAR 10 and CIFAR 100 with the additional
use of Benford regularization.
We want to highlight that the ViT trained with L2 and Benford regularization on 80% of CIFAR 10, achieves
similar performance as the ViT trained on the full dataset. In general, the ViT benefits from the L2 and
Benford regularization on all dataset sizes. Since, the Transformers are much larger than the tested CNN
models, the overall test accuracy is lower but the disparity between model size and dataset diversity explains
why the ViT benefits on subsets and the full dataset. On the other end, the effect of Benford regularization
vanishes when the dataset is too complex for the available amount of data and model complexity, as shown
by the performance of ViT on 10% of CIFAR 100.
In contrast, the CNN models improve up to 15% on the subsets of CIFAR 100 and up to 10% on subsets of
CIFAR 10. In addition, the Benford regularization has limitations on the full dataset for the CNN models,
where their performance is near optimum for the respective architecture.

5.3 Imagenet experiments

In the last set of image classification experiments, we increased the complexity of the task using the Ima-
geNet1K (Russakovsky et al. (2015)) dataset. In this set of experiment, the focus is on the MobileNetv3
networks by Howard et al. (2019) that are optimized for mobile applications. In contrast to the previous
experiments, this section focuses on reduced models for large datasets. To this end, we train the small and
large version of MobileNetv3 on the Imagenet1K dataset with default data augmentation, like horizontal
flipping, random cropping and color jittering. We scale the Benford regularization loss with a factor of 10−6,
which gives the best results. The networks were trained for 90 epochs, which was the convergence limit,
with an initial learning rate of 0.1 which was divided by 10 after 30 and 60 epochs. Due to limited resources
we train the networks with a batch size of 256 images, while the networks proposed in Howard et al. (2019)
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(b) ViT CIFAR 10
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Figure 4: The distribution of DenseNet121’s test accuracy in % (↑) trained on subsets of CIFAR 10 (a)
and CIFAR 100 (c) shows that it improves with BL regularization on all subsets but achieves the same
performance as L2 regularization on the full dataset, respectively. The distribution of tiny ViT’s test accuracy
on CIFAR 10 (b) and CIFAR 100 (d) improves on the subsets and on the full dataset over L2 regularization.
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Table 2: Average test error in % (↓) and standard deviation on CIFAR 100. An evaluation of the L2
regularization with (L2+BL) and without Benford regularization on the full dataset and random subsets
using 80%, 60%, 40% and 10% of the training data. We highlight the respective results in bold when the
performance difference is at least one standard deviation.

Subset
Reg. 100% 80% 60% 40% 10%

Swin L2 45.96 ± 0.44 50.33 ± 1.82 54.94 ± 1.47 61.11 ± 1.13 78.08 ± 0.40
Transformer L2+BL 44.08 ± 0.47 48.09 ± 0.46 52.41 ± 0.77 58.87 ± 0.70 77.65 ± 0.34
Tiny ViT L2 46.26 ± 0.53 49.64 ± 0.52 54.21 ± 0.81 60.2 ± 0.40 76.33 ± 0.43

L2+BL 43.88 ± 0.36 48.43 ± 0.58 51.64 ± 0.80 57.89 ± 0.27 76.28 ± 0.47
DenseNet121 L2 22.71 ± 0.70 39.25 ± 0.47 44.55 ± 0.48 53.18 ± 0.49 77.09 ± 0.60

L2+BL 23.36 ± 0.08 29.7 ± 0.23 32.88 ± 0.46 39.51 ± 0.64 66.43 ± 0.72
ResNext29 L2 22.97 ± 0.14 43.02 ± 0.33 49.81 ± 0.39 59.11 ± 0.44 80.38 ± 0.31
2x64 L2+BL 22.62 ± 0.13 29.99 ± 0.35 35.28 ± 0.9 42.61 ± 0.46 74.5 ± 0.37

50% 100%
subset

83

84

85

86

te
st

 a
cc

ur
ac

y

Audio + L2 + BL
Audio + L2

Figure 5: Distribution of the test accuracy in % (↑)
trained on 100% and 50% subsets of Google Speech
Commands (Audio) dataset.
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Figure 6: Distribution of the test accuracy in % (↑)
trained on 100% and 50% subsets of the tabular IRIS
dataset.

are trained with a batch size of 4096. In Figure 7 we illustrate the mean and standard deviation of the
validation error over three runs. The best validation performance of each network was used for testing.
The test accuracy in Table 3 and the validation error curve show a significant improvement of the proposed
regularization method.

Table 3: Imagenet1K test accuracy in % (↑) for the MobileNetv3 networks.

Regularization
MobileNetv3 Large L2 66.96

L2+BL 67.82
MobileNetv3 Small L2 59.3

L2+BL 59.77

10
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5.4 Speech and tabular datasets

To further demonstrate the effectiveness of the Benford regularizer, we propose the evaluation of differ-
ent data domains. For this purpose, we train the M5 model of Dai et al. (2017) on the Google Speech
Commands dataset (Warden (2018)). The datasets contain recordings for a total of 85,511 training,
10,102 validation, and 4,890 test recordings. For training, we use the Adam optimizer with a weight
decay of 0.01 and an initial learning rate of 0.1 and scale the Benford regularizer by a factor of 0.1.
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Figure 7: Validation accuracy (↑) of MobileNetv3
small and large. Both models benefit from the Benford
regularization.

The model is trained for 100 epochs, and the learn-
ing rate is divided by 10 after 20 epochs, as de-
scribed in Dai et al. (2017). For the experiments
on the IRIS dataset Fisher (1936), we use a neu-
ral network consisting of two fully connected layers
with 10 and 3 neurons and a ReLu activation func-
tion (MLP). The dataset consists of 150 samples,
randomly divided into 73 for training, 32 for valida-
tion, and 45 for testing. The model is trained for
1000 epochs with the Adam optimizer and an initial
learning rate of 0.001. The Benford regularization
is scaled by a factor of 0.001. The results in Table 4
show that the Benford regularization also improves
the performance of DNNs regardless of the data do-
main. Looking at Figure 5, in the case of the more
complex audio dataset, the Benford regularization
improves the average performance of the model re-
gardless of the dataset size. The gain when trained
on only 50% of the audio data is significant with 1%
on average and a smaller variance. For the simpler
IRIS dataset, Figure 6 shows that the 50% subset
performance improves with Benford and L2 regular-
ization, while the performance is almost identical for
the full dataset. Here, the network is near optimum.

Table 4: Average test error (↓) and standard deviation on tabular and speech datasets. An evaluation of the
Benford regularization on the full datasets and a random subset of 50%.

Subset
Regularization 100% 50%

M5 (Audio) L2 14.12 ± 0.39 17.14 ± 0.38
Benford 14.11 ± 0.31 16.04 ± 0.35

MLP (IRIS) L2 3.43 ± 0.049 5.5 ± 0.05
Benford 3.12 ± 0.046 4.22 ± 0.03

6 Limitations

The experimental results clearly highlight how regularizing the DNN weights towards BL improves the
overall performance. Especially when the training data is limited, the proposed regularization consistently
improves in addition to L2 regularization. In Figure 2 and Figure 3 we have seen that the network weights
can be optimized such that they are almost identical to BL. Since BL is scale invariant, there are infinitely
many ways to approximate BL, which has been the reason to use L2 and Benford regularization together.
Further, the experiments have shown that the Benford regularization is bounded by the amount of data, data
complexity and model capacity. In general, when the model fails to learn reasonable features, the Benford
regularization is not able to compensate that. Additionally, when the network is presented with sufficient
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data and it is near optimum, the Benford regularization has limited effect on distribution of the weights,
because it is already closely following BL.
Since the applied error bounds are related to the softmax function, the experiments were conducted on
classification tasks. The same setup is not directly transferable to generative modeling or regression problems
and further analysis remains to be done.

7 Conclusion and future work

While previous approaches only observed whether obtained data follows BL, this paper is the first to propose
the Benford regularization, where BL is learned via gradient-based optimization. The motivation is based
on commonalities between DNNs, BL and thermodynamics and the intriguing features of BL. It is scale
invariant, thus independent of the data domain and is commonly used to detect bias and anomalies in
measured datasets. The proposed method applies Benford and L2 regularization for numerical stability and
presents substantial improvements. Extensive experiments were conducted on random subsets of common
image datasets CIFAR 10/100 with CNN and Transformer-based models of varying number of parameters.
The addition of Benford regularization boosted the performance up to 15% on subsets of CIFAR 10 and up
to 10% improvement on CIFAR 100 subsets. The limitations are observed when the model either reaches the
optimum or the dataset is too complex for the limited amount of data. In these cases, the performance is
the same as training with L2 regularization alone. Consequently, experiments on low capacity MobileNetv3
models are evaluated on the large and complex ImageNet1k dataset. As expected, the larger capacity network
benefits more from the additional Benford regularization as the smaller version due to the larger amount of
available data. This observation is further shown by additional experiments on the tabular Iris and Google
Speech commands datasets.
To summarize, our experiments demonstrate an interplay between model and dataset complexity, revealing
that Benford regularization yields the most significant improvements when a large-capacity model is paired
with limited data or a lower-capacity model is paired with abundant data. However, we observe that there
are limits to this approach, as overly complex models for simple data (e.g., Swin Transformer) or low-capacity
models for complex data (e.g., MobileNetv3 Small) cannot effectively leverage this regularization.
These results not only provide insights about model capacity but have practical implications for industrial
DNN applications where data collection is challenging and model sizes are constrained by hardware design.
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