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Abstract

Label differential privacy (DP) is designed for learning problems with private labels1

and public features. Although various methods have been proposed for learning2

under label DP, the theoretical limits remain unknown. The main challenge is to3

take infimum over all possible learners with arbitrary model complexity. In this4

paper, we investigate the fundamental limits of learning with label DP under both5

central and local models. To overcome the challenge above, we derive new lower6

bounds on testing errors that are adaptive to the model complexity. Our analyses7

indicate that ϵ-local label DP only enlarges the sample complexity with respect to8

ϵ, without affecting the convergence rate over the sample size N , except the case9

with heavy-tailed label. Under the central model, the performance loss due to the10

privacy mechanism is further weakened, such that the additional sample complexity11

becomes negligible. Overall, our analysis validates the promise of learning under12

the label DP from a theoretical perspective and shows that the learning performance13

can be significantly improved by weakening the DP definition to only labels.14

1 Introduction15

Many modern machine learning tasks require sensitive training samples that need to be protected16

from leakage [1]. As a standard approach for privacy protection, differential privacy (DP) [2] has17

been extensively studied [3–9]. However, the learning performances under original DP definition18

are usually far from satisfactory [10–13]. Therefore, researchers attempt to design weakened DP19

requirements, under which the performances can be significantly improved, while still securing20

sensitive information. Under such background, label DP has emerged in recent years [14], which21

regards features as public, while only labels are sensitive and need to be protected. Such setting is22

realistic in many applications, such as computational advertising [15], recommendation systems [16]23

and medical diagnosis [17]. These tasks usually use some basic demographic information as features,24

which can be far less sensitive.25

Despite various approaches for learning with label DP [14, 18–21], the fundamental limits are26

still unknown. An interesting question is: By weakening the DP definitions to only labels, how27

much accuracy improvement is possible? From an information-theoretic perspective [22], the28

underlying limits of statistical problems are characterized by the minimax lower bound, which takes29

the supremum over all possible distributions from a general class, and infimum over all learners.30

Deriving minimax lower bounds for learning under the label DP is challenging in two aspects. Firstly,31

under label DP, each sample has both public (i.e. the feature) and private (i.e. the label) components.32

Directly applying the methods for original DP [23–27] treats all components as private, and thus does33

not yield tight results. Secondly, the classical packing method [47] is only suitable for fixed model34

structures with fixed dimensionality. However, to establish lower bounds, one needs to take infimum35

over all possible learners with arbitrary model complexity.36
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Classification Regression Regression
Bounded label noise Unbounded label noise

Local Õ((N(ϵ2 ∧ 1))
− β(γ+1)

2β+d ) Õ
(
(N(ϵ2 ∧ 1)

− 2β
d+2β )

)
O

(
(Nϵ2)

− 2β(p−1)
2pβ+d(p−1) ∨N

− 2β
2β+d

)
Central Õ

(
N

− β(γ+1)
2β+d + (ϵN)

− β(γ+1)
β+d

)
O
(
N

− 2β
2β+d + (ϵN)

− 2β
d+β

)
O

(
N

− 2β
2β+d + (ϵN)

− 2β(p−1)
pβ+d(p−1)

)
Local full O((N(ϵ2 ∧ 1))

− β(γ+1)
2β+2d ) O((N(ϵ2 ∧ 1))

− β
β+d ) O((N(ϵ2 ∧ 1))

− β(p−1)
pβ+d(p−1) )

Non-priv. O(N
− β(γ+1)

2β+d ) O(N
− 2β

2β+d ) O(N
− 2β

2β+d )

Table 1: Minimax rate of convergence under label differential privacy. d is the dimension of features.

In this paper, we investigate the theoretical limits of classification and regression problems under label37

DP. Our analysis involves both central and local models. For each problem, we derive the information-38

theoretic minimax lower bound of the risk function over a wide class of distributions satisfying the39

β-Hölder smoothness and the γ-Tsybakov margin assumption [28] (see Assumption 1 for details).40

The general idea is to convert the problem to multiple hypothesis testing. To overcome the challenges41

above, we provide a bound of Kullback-Leibler divergence over joint distributions of private and42

public random variables, which is tighter than the bound between fully private variables. Moreover,43

under the central model, instead of using the packing method, we develop a new lower bound on the44

minimum testing error for each pair of hypotheses based on the group privacy property [4], which45

is suitable for arbitrary model complexity. After deriving minimax lower bounds, we also propose46

algorithms with matching upper bounds to validate the tightness of our results.47

The results are shown in Table 1, in which the third row refers to the bounds under the original local48

DP definition, while the fourth row lists the non-private baselines. To the best of our knowledge,49

minimax rates under central DP have not been established, and are thus not listed here. The main50

findings are summarized as follows.51

• Under ϵ-local label DP, for classification and regression with bounded label noise, the52

sample complexity is larger by a factor of O(1/ϵ2). However, the convergence rate remains53

unaffected, which is in clear contrast with the original DP, under which the convergence rate54

is slower.55

• Under ϵ-local label DP constraint, for regression with heavy-tailed label noise, the conver-56

gence rate of risk over N becomes slower, indicating that heavy-tailed labels increase the57

difficulty of privacy protection.58

• Under ϵ-central label DP constraint, the performance loss caused by the privacy mechanism59

becomes further weakened. The risk only increases by a term that decays faster than the60

non-private rate, indicating that the additional sample complexity caused by the privacy61

mechanism becomes negligible with large N .62

In general, our analysis provides a theoretical perspective of understanding label DP. The result63

shows that by weakening the DP definition to protecting labels only, the learning performances can64

be significantly improved.65

2 Related Work66

Label DP. Under the local model, labels are randomized before training. The simplest method is67

randomized response [30]. An important improvement is proposed in [14], called RRWithPrior,68

which incorporates prior distribution. [19] proposes ALIBI, which further improves randomized69

response by generating soft labels through Bayesian inference. There are also several methods for70

regression under label DP [18, 31]. Under central label DP, [20] proposes a clustering approach. [19]71

proposes private aggregation of teacher ensembles (PATE), which is then further improved in [21].72

Minimax analysis for public data. Minimax theory provides a rigorous framework for the best73

possible performance of an algorithm given some assumptions. Classical methods include Le74

Cam [32], Fano [33] and Assouad [34]. Using these methods, minimax lower bounds have been75

widely established for both classification and regression problems [28, 29, 35–41]. If the feature76

vector has bounded support, then the minimax rate of classification and regression are O(N− β(γ+1)
2β+d )77

and O(N− 2β
2β+d ), respectively.78
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Minimax analysis for private data. Under the local model, [42] finds the relation between label DP79

and stochastic query. [23] and [24] develop the variants of Le Cam, Fano, and Assouad’s method80

under local DP. Lower bounds are then established for various statistical problems, such as mean81

estimation [43–46], classification [26] and regression [27]. Under central model, for pure DP, the82

standard approach is the packing method [47], which is then used in hypothesis testing [48], mean83

estimation [49,50], and learning of distributions [51–53]. There are also several works on approximate84

DP, such as [54, 55].85

This work studies the theoretical limits of label DP, under which each sample is a mixture of public86

feature and private labels, thus existing methods can not be directly applied here. Under the central87

model, the minimax analysis becomes more challenging, since the packing method is only suitable88

for fixed model structures (i.e. the dimensionality of model output is fixed), while we need to find the89

minimum possible error over all possible learners with arbitrary output dimensions. As a result, the90

lower bounds of general classification and regression problems have not been established even under91

the original DP definition. To overcome such challenge, we develop a new approach to bound the92

error of hypothesis testing (see Lemma 1 in Appendix D).93

3 Preliminaries94

In this section, we show some necessary definitions, background information, and notations.95

3.1 Label DP96

To begin with, we review the definition of DP. Suppose the dataset consists of N samples (xi, yi),97

i = 1, . . . , N , in which xi ∈ X is the feature vector, while yi ∈ Y ⊂ Rd is the label.98

Definition 1. (Differential Privacy (DP) [2]) Let ϵ ≥ 0. A randomized function A : (X ,Y)N → Θ99

is ϵ-DP if for any two adjacent datasets D,D′ ∈ (X ,Y)N and any S ⊆ Θ,100

P(A(D) ∈ S) ≤ eϵP(A(D′) ∈ S), (1)
in which D and D′ are adjacent if they differ only on a single sample, including both the feature101

vector and the label.102

In machine learning tasks, the output of A is the model parameters, while the input is the training103

dataset. Definition 1 requires that both features and labels are privatized. Consider that in some104

applications, the features may be much less sensitive, the notion of label DP is defined as follows.105

Definition 2. (Central label DP) A randomized function A is ϵ-label DP if for any two datasets D106

and D′ that differ on the label of only one training sample and any S ⊆ Θ, (1) holds.107

Compared with Definition 1, Definition 2 only requires the output to be insensitive to the replacement108

of a label. Therefore label DP is a weaker requirement. Correspondingly, the local label DP is defined109

as follows.110

Definition 3. (Local label DP) A randomized function M : (X ,Y) → Z is ϵ-local label DP if111

sup
y,y′∈Y

sup
S⊆Z

ln
P(M(x, y) ∈ S)

P(M(x, y′) ∈ S)
≤ ϵ. (2)

Definition 3 requires that each label is privatized locally before running any machine learning112

algorithms. It is straightforward to show that local label DP ensures central label DP. To be more113

precise, we have the following proposition.114

Proposition 1. Let zi = M(xi, yi) for i = 1, . . . , N . If A is a function of (xi, zi), i = 1, . . . , N ,115

then A is ϵ-label DP.116

3.2 Risk of Classification and Regression117

In supervised learning problems, given N samples (Xi, Yi), i = 1, . . . , N drawn from a common118

distribution, the task is to learn a function g : X → Y . For a loss function l : Y × Y → R, the goal119

is to minimize the risk function, which is defined as the expectation of loss function between the120

predicted value and the ground truth:121

R = E[l(Ŷ , Y )]. (3)
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The minimum risk among all function g is called Bayes risk, i.e. R∗ = ming E[l(g(X, Y ))]. In122

practice, the sample distribution is unknown, and we need to learn g from samples. Therefore, the123

risk of any practical classifiers is larger than Bayes risk. The gap R−R∗ is called excess risk, and we124

hope that R−R∗ to be as small as possible. Now we discuss classification and regression problems125

separately.126

1) Classification. For classification problems, the size of Y is finite. For convenience, we denote127

Y = [K], in which [K] := {1, . . . ,K}. In this paper, we use 0− 1 loss, i.e. l(Ŷ , Y ) = 1(Ŷ ̸= Y ),128

then R = P(Ŷ ̸= Y ). Define K functions η1, . . . , ηK as the conditional class probabilities:129

ηk(x) = P(Y = k|X = x), k = 1, . . . ,K. (4)

Under this setting, the Bayes optimal classifier and the corresponding Bayes risk is130

c∗(x) = argmax
j∈[K]

ηj(x), (5)

R∗
cls = P(c∗(X) ̸= Y ). (6)

2) Regression. Now we consider the case with Y having infinite size. We use ℓ2 loss in this paper, i.e.131

l(Ŷ , Y ) = (Ŷ − Y )2. Then the Bayes risk is132

R∗
reg = E[(Y − η(X))2]. (7)

Then the following proposition gives a bound of the excess risk for classification and regression133

problems.134

Proposition 2. For any classifier c : X → [K], the excess risk of classification is bounded by135

Rcls −R∗
cls =

∫
(η∗(x)− E[ηc(x)(x)])f(x)dx. (8)

For any regression estimate η̂ : X → Y , the excess risk of regression is bounded by136

Rreg −R∗
reg = E[(η̂(X)− η(X))2]. (9)

The proof of Proposition 2 is shown in Appendix A. Finally, we state some basic assumptions that137

will be used throughout this paper.138

Assumption 1. There exists some constants L, β, CT , γ, c, D and θ ∈ (0, 1] such that139

(a) For all j ∈ [K] and any x, x′, |ηj(x)− ηj(x
′)| ≤ L ∥x− x′∥β;140

(b) For any t > 0, P (0 < η∗(X)− ηs(X) < t) ≤ CT t
γ , in which ηs(x) is the second largest one141

among {η1(x), . . . , ηK(x)};142

(c) The feature vector X has a probability density function (pdf) f which is bounded from below, i.e.143

f(x) ≥ c;144

(d) For all r < D, Vr(x) ≥ θvdr
d, in which Vr(x) is the volume (Lebesgue measure) of B(x, r)∩X ,145

vd is the volume of a unit ball.146

Assumption 1 (a) requires that all ηj are Hölder continuous. This condition is common in literatures147

about nonparametric statistics [28]. (b) is generalized from the Tsybakov noise assumption for binary148

classification, which is commonly used in many existing works in the field of both nonparametric149

classification [29, 37, 40, 41] and differential privacy [26, 27]. If K = 2, then η∗ and ηs refer to the150

larger and smaller class conditional probability, respectively. An intuitive understanding of (b) is that151

in the majority of the support, the maximum value among {η1(x), . . . , ηK(x)} should have some152

gap to the second largest one. With sufficiently large sample size and model complexity, assumption153

(b) ensures that for test samples within the majority of the support X , the algorithm is highly likely to154

correctly identify the class with the maximum conditional probability. Therefore, in (b), we only care155

about η∗(x) and ηs(x), while other classes with small conditional probabilities can be ignored. (c)156

is usually called "strong density assumption" in existing works [39, 40], which is quite strong. It is157

possible to relax this assumption so that the theoretical analysis becomes suitable for general cases.158

However, we do not focus on such generalization in this paper. Assumption (d) prevents the corner of159

the support X from being too sharp. In the remainder of this section, denote Fcls as the set of all160

pairs (f, η) satisfying Assumption 1.161

4



4 Classification162

In this section, we derive the upper and lower bounds of learning under central and local label DP,163

respectively.164

4.1 Local Label DP165

1) Lower bound. The following theorem shows the minimax lower bound, which characterizes the166

theoretical limit.167

Theorem 1. Denote Mϵ as the set of all privacy mechanisms satisfying ϵ-local label DP (Definition168

3). Then169

inf
Ŷ

inf
M∈Mϵ

sup
(f,η)∈Fcls

(Rcls −R∗
cls) ≳

[
N
(
ϵ2 ∧ 1

)]− β(γ+1)
2β+d . (10)

Proof. (Outline) It suffices to derive (10) with K = 2. We convert the problem into multiple binary170

hypothesis testing problems. In particular, we divide the support into G bins. For some of them, we171

construct two opposite hypotheses such that they are statistically not distinguishable. Our proof uses172

some techniques in local DP [24] and some classical minimax theory [28]. The detailed proof is173

shown in Appendix B.174

In Theorem 1, (10) takes supremum over all joint distributions of (X, Y ), and infimum over all175

classifiers and privacy mechanisms satisfying ϵ-local label DP.176

2) Upper bound. We then show that the bound (10) is achievable. Let the privacy mechanism M(x, y)177

outputs a K dimensional vector, with each component being either 0 or 1, such that178

P(M(x, y)(j) = 1) =

{
e

ϵ
2

e
ϵ
2 +1

if y = j
1

e
ϵ
2 +1

if y ̸= j,
(11)

and P(M(x, y)(j) = 0) = 1− P(M(x, y)(j) = 1), in which M(x, y)(j) is the j-th component of179

M(x, y). For N random training samples (Xi, Yi), let Zi = M(Xi, Yi), and correspondingly, Zi(j)180

is the j-th component of Zi.181

Divide the support X into G bins, named B1, . . . , BG, such that the length of each bin is h.182

B1, . . . , BG are disjoint, and these bins form a covering of X , i.e. X ⊂ ∪G
l=1Bl. Then calcu-183

late184

Slj =
∑

i:Xi∈Bl

Zi(j), l = 1, . . . , G, j = 1, . . . ,K, (12)

The classification within the l-th bin is185

cl = argmax
j

Slj , (13)

such that the the prediction given x is c(x) = cl for all x ∈ Bl. The next theorem shows the privacy186

guarantee, as well as the bound of the excess risk.187

Theorem 2. The privacy mechanism M is ϵ-local label DP. Moreover, under Assumption 1, with188

h ∼
(
N(ϵ2 ∧ 1)/ lnK

)− 1
2β+d , the excess risk of the classifier described above can be upper bounded189

as follows:190

Rcls −R∗
cls ≲

(
N(ϵ2 ∧ 1)

lnK

)− β(γ+1)
2β+d

. (14)

Proof. (Outline) For privacy guarantee, we need to show that (11) is ϵ-local label DP:191

P(M(x, y) = z)

P(M(x, y′) = z)
= ΠK

j=1

P(M(x, y)(j) = z(j))

P(M(x, y′)(j) = z(j))

=
P(M(x, y)(y) = z(y))

P(M(x, y′)(y) = z(y))

P(M(x, y)(y′) = z(y′))

P(M(x, y′)(y′) = z(y′))

≤ e
ϵ
2 e

ϵ
2 = eϵ. (15)
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According to Definition 3, M is ϵ-local label DP. For the performance guarantee (14), according to192

Proposition 2, we need to bound η∗(x)−E[ηc(x)(x)] for each x. If η∗(x)− ηs(x) is large, then with193

high probability, c(x) = c∗(x), and then η∗(x) = ηc(x)(x). Thus we mainly consider the case with194

small η∗(x)− ηs(x). The details of proof are shown in Appendix C.195

The lower bound (10) and the upper bound (14) match up to a logarithm factor, indicating that the196

results are tight. Now we comment on the results.197

Remark 1. 1) Comparison with non-private bound. The classical minimax lower bound for non-198

private classification problem is N− β(γ+1)
2β+d . Therefore, the lower bound (10) reaches the non-private199

bound with ϵ ≳ 1. With small ϵ, N training samples with privatized labels roughly equals Nϵ2200

non-privatized samples in terms of performance.201

2) Comparison with local DP that protects both features and labels. In this case, the optimal202

excess risk is (Nϵ2)−β(γ+1)/(2β+2d) ∨N−β(γ+1)/(2β+d), which is worse than the right hand side of203

(10). Such result indicates that compared with classical DP, label DP incurs significantly weaker204

performance loss.205

3) Comparison with other baseline methods. If we use the randomized response method instead206

of the privacy mechanism (11), then the performance decreases sharply with the number of classes207

K. Several methods have been proposed to improve the randomized response method, such as208

RRWithPrior [14] and ALIBI [19]. However, these methods are not guaranteed in theory.209

4.2 Central Label DP210

1) Lower bound. The following theorem shows the minimax lower bound under the central label DP.211

Theorem 3. Denote Aϵ as the set of all learning algorithms satisfying ϵ-label DP (Definition 2).212

Then213

inf
A∈Aϵ

sup
(f,η)∈Fcls

(Rcls −R∗
cls) ≳ N− β(γ+1)

2β+d + (ϵN)−
β(γ+1)
β+d . (16)

Proof. (Outline) Lower bounds under central DP are usually constructed by packing method [47],214

which works for fixed output dimensions. However, to achieve a desirable bias and variance tradeoff,215

the model complexity needs to increase with N . In our proof, we still divide the support into G bins216

and construct two hypotheses for each bin, but we develop a new tool (see Lemma 1) to give a lower217

bound of the minimum error of hypothesis testing. We then use the group privacy property [4] to get218

the overall lower bound. The details can be found in Appendix D.219

2) Upper bound. Now we show that (16) is achievable. Similar to the local label DP problem, now220

divide the support into G bins, such that the length of each bin is h. Now the classification within the221

l-th bin follows a exponential mechanism [56]:222

P(cl = j|X1:N , Y1:N ) =
eϵnlj/2∑K
k=1 e

ϵnlk/2
, (17)

in which nlj =
∑N

i=1 1(Xi ∈ Bl, Yi = j). Then let c(x) = cl for x ∈ Bl. The excess risk is223

bounded in the next theorem.224

Theorem 4. The privacy mechanism (17) is ϵ-label DP. Moreover, under Assumption 1, if h scales as225

h ∼ (lnK/ϵN)
1

β+d + (lnK/N)
1

2β+d , then the excess risk can be bounded as follows:226

R−R∗ ≲

(
N

lnK

)− β(γ+1)
2β+d

+

(
ϵN

lnK

)− β(γ+1)
β+d

. (18)

Proof. (Outline) The privacy guarantee of the exponential mechanism has been analyzed in [4].227

Following these existing analyses, it can be shown that (17) is ϵ-label DP. It remains to show (18).228

Note that if η∗(x) − ηs(x) is large, then the difference between the largest and the second largest229

one from {nlj |j = 1, . . . ,K} will also be large. From (17), the following inequality holds with high230

probability: cl = argmaxjnlj = argmaxjηj(x) = c∗(x), which means that the classifier makes231
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optimal prediction. Hence we mainly consider the case with small η∗(x)− ηs(x). The details of the232

proof can be found in Appendix E.233

The upper and lower bounds match up to logarithmic factors. In (18), the first term is just the234

non-private convergence rate, while the second term (ϵN)−
β(γ+1)
β+d can be regarded as the additional235

risk caused by the privacy mechanism. It decays faster with N compared with the first term, thus the236

additional performance loss caused by the privacy mechanism becomes negligible as N increases.237

This result is crucially different from the local model, under which the privacy mechanism always238

induces higher sample complexity by a factor of O(1/(ϵ2 ∧ 1)).239

5 Regression with Bounded Noise240

Now we analyze the theoretical limits of regression problems under local and central label DP.241

Throughout this section, we assume that the label is restricted within a bounded interval.242

Assumption 2. Given any x ∈ X , P(|Y | < T |X = x) = 1.243

Assumption 1 remains the same here. In the remainder of this section, denote Freg1 as the set of244

(f, η) that satisfies Assumption 1 and 2.245

5.1 Local Label DP246

1) Lower bound. Theorem 5 shows the minimax lower bound.247

Theorem 5. Denote Mϵ as the set of all privacy mechanisms satisfying ϵ-label DP. Then248

inf
η̂

inf
M∈Mϵ

sup
(f,η)∈Freg1

(Rreg −R∗
reg) ≳ (N(ϵ2 ∧ 1))−

2β
d+2β . (19)

The proof of Theorem 5 is similar to that of Theorem 1, except for some details in hypotheses249

construction and the final bound of excess risk. The details are shown in Appendix F.250

2) Upper bound. The privacy mechanism is Z = Y + W , in which W ∼ Lap(2T/ϵ). Then the251

privacy mechanism satisfies ϵ-label DP. In this case, the real regression function η(x) can be estimated252

using the nearest neighbor approach. Let253

η̂(x) =
1

k

∑
i∈Nk(x)

Zi, (20)

in which Nk(x) is the set of k nearest neighbors of x among X1, . . . ,XN .254

Theorem 6. The method described above is ϵ-local label DP. Moreover, with k ∼ N
2β

d+2β (ϵ∧1)−
2d

d+2β ,255

then under Assumption 1 and 2,256

Rreg −R∗
reg ≲ (N(ϵ2 ∧ 1))−

2β
d+2β . (21)

Proof. (Outline) Since |Y | < T , W ∼ Lap(2T/ϵ), it is obvious that Z = Y +W is ϵ-local label257

DP. For the performance (21), the bias can be bounded by the k nearest neighbor distances based on258

Assumption 1(a). The variance of η̂(x) scales inversely with k. An appropriate k can be selected to259

achieve a good tradeoff between bias and variance. The details are shown in Appendix G.260

From standard minimax analysis on regression problems, the non-private convergence rate is261

N−2β/(d+2β). From Theorem 5 and 6, the privatization process makes sample complexity larger by262

a O(1/ϵ2) factor.263

5.2 Central Label DP264

1) Lower bound. The following theorem shows the minimax lower bound.265

Theorem 7. Let Aϵ be the set of all algorithms satisfying ϵ-central DP. Then266

inf
A∈Aϵ

sup
(f,η)∈Freg1

(Rreg −R∗
reg) ≳ N− 2β

2β+d + (ϵN)−
2β

d+β . (22)
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2) Upper bound. For each bin Bl, let nl =
∑N

i=1 1(Xi ∈ Bl) be the number of samples in Bl. If267

nl > 0, then268

η̂l =
1

nl

N∑
i=1

1(Xi ∈ Bl)Yi +Wl, (23)

in which Wl ∼ Lap(2/(nlϵ)). If nl = 0, i.e. no sample falls in Bl, then just let η̂l = 0. For all269

x ∈ Bl, let η̂(x) = η̂l. The excess risk can be bounded with the following theorem.270

Theorem 8. (23) is ϵ-label DP. Moreover, under Assumption 1 and 2, if h scales as h ∼ N− 1
2β+d +271

(ϵN)−
1

d+β , then the excess risk is bounded by272

R−R∗ ≲ N− 2β
2β+d + (ϵN)−

2β
d+β . (24)

The upper and lower bounds match, indicating that the results are tight. Again, the second term in273

(24) converges faster than the first one with respect to N , the performance loss caused by privacy274

constraints becomes negligible as N increases.275

6 Regression with Heavy-tailed Noise276

In this section, we consider the case such that the noise has tails. We make the following assumption.277

Assumption 3. For all x ∈ X , E[|Y |p|X = x] ≤ Mp for some p ≥ 2.278

Instead of requiring |Y | < T for some T , now we only assume that the p-th order moment is bounded.279

For non-private cases, given fixed noise variance, the tail does not affect the mean squared error of280

regression. As a result, as long as p ≥ 2, the convergence rate of regression risk is the same as the281

case with bounded noise. However, the label DP requires the output to be insensitive to the worst282

case replacement of labels, which can be harder if the noise has tails. To achieve ϵ-DP, the clipping283

radius decreases with ϵ, thus the noise strength needs to grow faster than O(1/ϵ). As a result, the284

convergence rate becomes slower than the non-private case. In the remainder of this section, denote285

Freg2 as the set of (f, η) that satisfies Assumption 1 and 3.286

6.1 Local Label DP287

1) Lower bound. In earlier sections about classification and regression with bounded noise, the impact288

of privacy mechanisms is only a polynomial factor on ϵ, while the convergence rate of excess risk289

with respect to N is not changed. However, this rule no longer holds when the noise has heavy tails.290

Theorem 9. Denote Mϵ as the set of all privacy mechanisms satisfying ϵ-label DP. Then for small ϵ,291

inf
η̂

inf
M∈Mϵ

sup
(f,η)∈F

(Rreg −R∗
reg) ≳ (N(eϵ − 1)2)−

2β(p−1)
2pβ+d(p−1) +N− 2β

2β+d . (25)

2) Upper bound. Since now the noise has unbounded distribution, without preprocessing, the292

sensitivity is unbounded, thus simply adding noise to Y can no longer protect the privacy. Therefore,293

a solution is to clip Y into [−T, T ], and add noise proportional to T/ϵ to achieve ϵ-local label DP.294

Such truncation will inevitably introduce some bias. To achieve a tradeoff between clipping bias and295

sensitivity, the value of T needs to be tuned carefully. Based on such intuition, the method is precisely296

stated as follows. Let Zi = YTi+Wi, in which YTi is the truncation of Yi, i.e. YTi = (Yi∧T )∨(−T ),297

and W ∼ Lap(2T/ϵ). The result is shown in the next theorem.298

Theorem 10. The method above is ϵ-local label DP. Moreover, with k ∼ (Nϵ2)
2pβ

2pβ+d(p−1) ∨N
2β

2β+d ,299

and T ∼ (kϵ2)
1
2p , the risk is bounded by300

Rreg −R∗
reg ≲ (Nϵ2)−

2β(p−1)
2pβ+d(p−1) +N− 2β

2β+d . (26)

Proof. (Outline) It can be shown that the clipping bias scales as T 2(1−p). To meet the ϵ-label DP, an301

additional error that scales as T/ϵ is needed. By averaging over k nearest neighbors, the variance302

caused by noise W scales with T 2/(kϵ2). From standard analysis on nearest neighbor methods [29],303

the non-private mean squared error scales as 1/k+(k/N)2β/d. Put all these terms together, Theorem304

10 can be proved. Details can be found in Appendix K.305
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With the limit of p → ∞, the problem reduces to the case with bounded noise, and the growth rate of306

k and the convergence rate of risk are the same as those in Theorem 6. For finite p, 2β(p− 1)/(2pβ+307

d(p− 1)) < 2β/(2β + d), thus the convergence rate becomes slower due to the privacy mechanism.308

6.2 Central Label DP309

1) Lower bound. The minimax lower bound is shown in Theorem 11.310

Theorem 11. The minimax lower bound is311

inf
A∈Aϵ

sup
(f,η)∈Freg2

(Rreg −R∗
reg) ≳ N− 2β

2β+d + (ϵN)−
2β(p−1)

pβ+d(p−1) (27)

2) Upper bound. Now we derive the upper bound. To restrict the sensitivity, instead of estimating312

with (23) directly, now we calculate an average of clipped label values:313

η̂l =
1

nl

N∑
i=1

1(Xi ∈ Bl) Clip(Yi, T ) +Wl, (28)

in which Wl ∼ Lap(2T/(nlϵ)). Then for all x ∈ Bl, let η̂(x) = η̂l. The following theorem bounds314

the excess risk.315

Theorem 12. (28) is ϵ-label DP. Moreover, under Assumption 1 and 3, if h and T scales as h ∼316

N− 1
2β+d + (ϵN)−

1
pβ+d(p−1) , and T ∼ (ϵNhd)1/p, then the excess risk can be bounded by317

Rreg −R∗
reg ≲ N− 2β

2β+d + (ϵN)−
2β(p−1)

pβ+d(p−1) . (29)

The proof of Theorem 11 and 12 follow that of Theorem 7 and 8. The details are shown in Appendix318

L and M respectively. With p = 2, the right hand side of (29) becomes (ϵ ∧ 1)−
2β

2β+d , indicating that319

the privacy constraint blows up the sample complexity by a constant factor. With larger p, the second320

term in (29) becomes negligible compared with the first one.321

The theoretical analyses in this section are summarized as follows. In general, with fixed noise322

variance, if the label noise is heavy-tailed, while the non-private convergence rates remain unaffected,323

the additional risk caused by privacy mechanisms becomes significantly higher, indicating the324

difficulty of privacy protection for heavy-tailed distributions.325

7 Conclusion326

In this paper, we have derived the minimax lower bounds of learning under label DP for both central327

and local models. Furthermore, we propose methods whose upper bounds match these lower bounds.328

The results indicate the theoretical limits of learning under the label DP. From these results, it is329

discovered that under local label DP constraints, the sample complexity blows up by a factor of at least330

O(1/ϵ2). Under central label DP requirements, the additional error caused by privacy mechanisms331

is significantly smaller. Finally, it is shown that for regression problem with heavy-tailed label332

distribution, the additional risk induced by privacy requirement becomes inevitably higher.333

Limitations: The limitations of our work include the following aspects. Some assumptions can334

be weakened. For example, current analysis assumes that feature distributions have bounded sup-335

ports, which may be extended to the unbounded case. One can let the bin splitting and nearest336

neighbor method be adaptive in the tails of features, such as [41]. Moreover, the bounds derived in337

this paper require that samples increase exponentially with dimensionality. However, in practice,338

the performance of learning under the label DP can be quite well even in high dimensions. The339

discrepancy can be explained by the fact that the minimax lower bound considers the worst-case340

distribution over a wide range of distributions. However, in most realistic cases, the distributions341

satisfy significantly better properties. A better modeling is to assume that these samples lie on a low342

dimensional manifold [57, 58]. In this case, it is possible to achieve a much better convergence rate.343

Finally, it is not sure whether approximate DP (i.e. (ϵ, δ)-DP) can improve the convergence rates.344
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A Proof of Proposition 2477

From (5) and (6), the Bayes risk is478

R∗
cls = P(Y ̸= c∗(X)) =

∫
P(Y ̸= c∗(x)|X = x)f(x)dx =

∫
(1− η∗(x))f(x)dx. (30)

The risk of classifier c is479

Rcls = P(Y ̸= c(X)) = E
[∫ (

1− ηc(x)(x)
)
f(x)dx

]
. (31)

From (31) and (6),480

Rcls −R∗
cls =

∫
(η∗(x)− E[ηc(x)(x)])f(x)dx. (32)

The proof is complete.481

B Proof of Theorem 1482

In this section, we prove the minimax lower bound of multi-class classification. The problem with K483

classes with K > 2 is inherently harder than that with K = 2. Therefore, we just need to prove the484

lower bound for binary classification, in which Y = {1, 2}. Let485

η(x) = η2(x)− η1(x). (33)

Since η1(x) + η2(x) = 1 always holds, we have486

η1(x) =
1− η(x)

2
, η2(x) =

1 + η(x)

2
. (34)

Therefore, η(x) captures the conditional distribution of Y given x.487

Find G disjoint cubes B1, . . . , BG ⊂ X , such that the length of each cube is h. Denote c1, . . . , cG488

as the centers of these cubes. Let ϕ(u) be some function supported at [−1/2, 1/2]d, such that489

0 ≤ ϕ(u) ≤ 1. (35)

Let f(x) = c over x ∈ X . For v ∈ V := {−1, 1}m, let490

ηv(x) =

m∑
k=1

vkϕ

(
x− ck

h

)
hβ . (36)

It can be proved that if for some constant CM ,491

m ≤ CMhγβ−d, (37)

then for any η = ηv, η1 and η2 satisfies Assumption 1(b). Denote492

v̂k = argmax
s∈{−1,1}

∫
Bk

ϕ

(
x− ck

h

)
1(sign(η̂(x)) = s)f(x)dx. (38)

Then the excess risk is bounded by493

R−R∗ =

∫
|ηv(x)|P(sign(η̂(x)) ̸= sign(ηv(x)))f(x)dx

≥
m∑

k=1

∫
Bk

|ηv(x)|P(sign(η̂(x)) ̸= sign(ηv(x)))f(x)dx

=

m∑
k=1

hβ

∫
Bk

ϕ

(
x− ck

h

)
P(sign(η̂(x)))f(x)dx. (39)

If v̂k ̸= vk, then from (38),494 ∫
Bk

ϕ

(
x− ck

h

)
1(sign(η̂(x)))f(x)dx ≥

∫
Bk

ϕ

(
x− ck

h

)
1(sign(η̂(x)) = vk)f(x)dx. (40)
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Therefore495 ∫
Bk

ϕ

(
x− ck

h

)
1(sign(η̂(x)) ̸= vk)f(x)dx ≥ 1

2

∫
Bk

ϕ

(
x− ck

h

)
f(x)dx ≥ 1

2
chd ∥ϕ∥1 . (41)

Hence496

R−R∗ ≥ 1

2
chβ+d ∥ϕ∥1

m∑
k=1

P(v̂k ̸= vk)

=
1

2
chβ+d ∥ϕ∥1 E[ρH(v̂,v)], (42)

in which ρH denotes the Hamming distance. Then497

inf
Ŷ

inf
M∈Mϵ

sup
(f,η)∈P

(R−R∗) ≥ 1

2
hβ+d ∥ϕ∥1 inf

v̂
inf

M∈Mϵ

max
v∈V

E[ρH(v̂,v)]. (43)

Define498

δ = sup
M∈Mϵ

max
v,v′:ρH(v,v′)=1

DKL(P(X,Z)1:N |v||P(X,Z)1:N |v′), (44)

in which P(X,Z)1:N |v denotes the distribution of (X1, Z1), . . . , (XN , ZN ) with η = ηv. DKL499

denotes the Kullback-Leibler divergence. Then from [28], Theorem 2.12(iv),500

inf
v̂
inf
M

max
v∈V

E[ρH(v̂,v)] ≥ m

2

(
1

2
e−δ, 1−

√
δ

2

)
. (45)

It remains to bound δ. Without loss of generality, suppose v1 ̸= v′1, and vi = v′i for i ̸= 1. Then501

DKL(P(X,Z)1:N |v||P(X,Z)1:N |v′)
(a)
= NDKL(PX,Z|v||PX,Z|v′)

(b)
= N

∫
B1

f(x)DKL(PZ|X=x,v||PZ|X=x,v′)dx

(c)

≤ N

∫
B1

f(x)(eϵ − 1)2TV2(PZ|X=x,v, PZ|X=x,v′)dx

= N

∫
B1

f(x)(eϵ − 1)2η2v(x)dx

= N(eϵ − 1)2
∫
B1

f(x)ϕ2

(
x− c1

h

)
h2βdx

(d)
= N(eϵ − 1)2h2β+d ∥ϕ∥22 . (46)

In (a), PX,Z|v denotes the distribution of a single sample with privatized label (X,Z), with η = ηv.502

In (b), PZ|X=x,v denotes the conditional distribution of Z given X = x, with η = ηv. (c) uses [24],503

Theorem 1. In (d), ∥ϕ∥22 =
∫
ϕ2(u)du, which is a constant. Moreover,504

DKL(PX,Z|v||PX,Z|v′)
(a)

≤ DKL(PX,Y |v||PX,Y |v′)

=

∫
B1

f(x)

[
P(Y = 1|v) ln P(Y = 1|v)

P(Y = 1|v′)
+ P(Y = −1|v) ln P(Y = −1|v)

P(Y = −1|v′)

]
dx

=

∫
B1

f(x)

[
1 + ηv(x)

2
ln

1 + ηv(x)

1− ηv(x)
+

1− ηv(x)

2
ln

1− ηv(x)

1 + ηv(x)

]
dx

(b)

≤ 3

∫
B1

f(x)η2v(x)dx

≤ 3h2β+d ∥ϕ∥22 . (47)

For (a), note that Z is generated from Y . From data processing inequality, (a) holds. For (b), without505

loss of generality, suppose that v1 = 1, thus ηv(x) ≥ 0 in B1. Then ln(1 + ηv(x)) ≤ ηv(x). From506

(35) and (36), |ηv(x)| ≤ 1/2. Therefore, − ln(1− ηv(x)) ≤ 2ηv(x). Therefore (b) holds.507
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From (46) and (47),508

δ ≤ N
[
(eϵ − 1)2 ∧ 3

]
h2β+d ∥ϕ∥22 . (48)

Let509

h ∼
(
N
(
ϵ2 ∧ 1

))− 1
2β+d . (49)

Then δ ≲ 1. From (45), with m ∼ hγβ−d,510

inf
v̂

inf
M∈Mϵ

max
v∈V

E[ρH(v̂,v)] ≳ hγβ−d. (50)

Hence511

inf
Ŷ

inf
M∈Mϵ

sup
(f,η)∈P

(R−R∗) ≳ hβ+dhγβ−d ∼ hβ(γ+1) ∼
[
N
(
ϵ2 ∧ 1

)]− β(γ+1)
2β+d . (51)

The proof is complete.512

C Proof of Theorem 2513

Denote514

nl =

N∑
i=1

1(Xi ∈ Bl), (52)

and for Z = M(X, Y ), let515

η̃j(x) := E[Z(j)|X = x]

=
e

ϵ
2

e
ϵ
2 + 1

ηj(x) +
1

e
ϵ
2 + 1

(1− ηj(x)) (53)

as the number of training samples whose feature vectors fall in Bl, and516

vlj :=
1

nl

∑
i:Xi∈Bl

η̃j(Xi). (54)

Recall (12) that defines Slj . From Hoeffding’s inequality,517

P (|Slj − nlvlj | > t|X1:N ) ≤ 2 exp

[
−2t2

nl

]
, (55)

in which X1:N denotes X1, . . . ,XN .518

Define519

v∗l := max
j

vlj , (56)

and520

c∗l := argmax
j

vlj . (57)

Now we bound P(v∗l − vlcl > t), in which cl is defined in (13). cl can be viewed as the prediction at521

the l-th bin. We would like to show that the even if the prediction is wrong, the value (i.e. conditional522

probability) of the predicted class is close to the ground truth. v∗l − vlcl > t only if ∃j, v∗l − vlj > t,523

and Slj > Slc∗l
. Therefore either Slj − nlvlj > t/2 or Slc∗l

− nlv
∗
l > t/2 holds. Hence524

P (v∗l − vlcl ≥ t) ≤ P
(
∃j, |Slj − nlvlj | ≥

1

2
nlt

)
≤ 2K exp

(
−1

2
nlt

2

)
. (58)

Define525

t0 =

√
2 ln(2K)

nl
. (59)
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Then526

v∗l − E[vlcl |X1:N ] =

∫ 1

0

P(v∗l − vlcl > t)dt

≤ t0 +

∫ ∞

t0

2K exp

(
−1

2
nlt

2

)
dt

(a)

≤ t0 + 2

√
2π

nl
K exp

(
−1

2
nlt

2
0

)

=

√
2 ln(2K)

nl
+

√
2π

nl

≤ 3

√
ln(2K)

nl
. (60)

In (a), we use the inequality527 ∫ ∞

t

e−
u2

2σ2 du ≤
√
2πσe−

t2

2σ2 . (61)

Now we bound the excess risk.528

R−R∗ =

∫ (
η∗(x)− E[ηc(x)(x)]

)
f(x)dx

=

G∑
l=1

∫
Bl

(
η∗(x)− E[ηc(x)(x)]

)
f(x)dx. (62)

We need to bound
∫
Bl

(
η∗(x)− E[ηc(x)(x)]

)
f(x)dx for each l. From Assumption 1(a), for any529

x,x′ ∈ Bl, the distance is bounded by ∥x− x′∥ ≤
√
dL. Thus530

|ηj(x)− ηj(x
′)| ≤ Ldh

β , (63)

in which Ld is defined as Ld := L
√
d. From (63) and (53),531

|η̃j(x)− η̃j(x
′)| ≤ e

ϵ
2 − 1

e
ϵ
2 + 1

Ldh
β . (64)

Define532

η̃∗(x) = max
j

η̃j(x), (65)

then533

η∗(x)− E[ηcl(x)|X1:N ] ≤ e
ϵ
2 + 1

e
ϵ
2 − 1

(η̃∗(x)− E[η̃cl(x)|X1:N ])

≤ e
ϵ
2 + 1

e
ϵ
2 − 1

(v∗l − E[vlcl |X1:N ]) + 2Ldh
β

≤ 3
e

ϵ
2 + 1

e
ϵ
2 − 1

√
2 ln(2K)

nl
+ 2Ldh

β . (66)

Take integration over cube Bl, we get534 ∫
Bl

(η∗(x)− E[ηcl(x)]) f(x)dx

≤ P
(
nl <

1

2
Np(Bl)

)∫
Bl

(
η∗(x)− E[ηcl(x)|nl <

1

N
p(Bl)]

)
f(x)dx

+

∫
Bl

(
η∗(x)− E[ηcl(x)|nl ≥

1

N
p(Bl)]

)
f(x)dx

≤ p(Bl)e
− 1

2 (1−ln 2)Np(Bl) +

[
3
e

ϵ
2 + 1

e
ϵ
2 − 1

√
2 ln(2K)

Np(Bl)
+ 2Ldhβ

]
p(Bl), (67)
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in which p(Bl) = P(X ∈ Bl) is the probability mass of Bl. Moreover, define535

∆l = inf
x∈Bl

(η∗(x)− ηs(x)) , (68)

and536

∆̃l = inf
x∈Bl

(η̃∗(x)− η̃s(x)) =
e

ϵ
2 − 1

e
ϵ
2 + 1

∆l, (69)

in which the η̃s is the second largest value of η̃j among j = 1, . . . ,K, which follows the definition537

of ηs.538

If ∆l > 0, then c∗(x) is the same over Bl. Then either v∗l − vlcl = 0 or v∗l − vlcl ≥ ∆l holds. Hence539

η̃∗(x)− E[η̃cl(x)|X1:N ]

=

∫ 1

0

P (η̃∗(x)− η̃cl(x) > t|X1:N ) dt

≤
∫ 1

0

P
(
v∗l − vlcl > t− 2Ldh

β e
ϵ
2 + 1

e
ϵ
2 − 1

|X1:N

)
dt

≤
∫ ∆̃l+2Ldh

β

0

P(v∗l − vlcl ≥ ∆l)dt+

∫ ∞

∆̃l+2Ldhβ

2K exp

[
−1

2
nl(t− 2Ldh

β)2
]
dt

≤ 2K exp

(
−1

2
nl∆̃

2
l

)
(∆̃l + 2Ldh

β e
ϵ
2 + 1

e
ϵ
2 − 1

) + 2K

√
2π

nl
exp

(
−1

2
nl∆̃

2
l

)
=

[
2K

(
∆̃l + 2Ldh

β e
ϵ
2 + 1

e
ϵ
2 − 1

)
+ 2K

√
2π

nl

]
exp

(
−1

2
nl∆̃

2
l

)
. (70)

Take expectation over X1:N , we get540 ∫
Bl

(η∗(x)− E[ηcl(x)])f(x)dx ≤ p(Bl)e
− 1

2 (1−ln 2)Np(Bl)

+2Kp(Bl)

(
∆l + 2Ldh

β +
e

ϵ
2 + 1

e
ϵ
2 − 1

√
2π

Np(Bl)

)
exp

[
−1

2
Np(Bl)∆

2
l

(
e

ϵ
2 − 1

e
ϵ
2 + 1

)2
]
.(71)

Define541

al =

[
3
e

ϵ
2 + 1

e
ϵ
2 − 1

√
2 ln(2K)

cNhd
+ 2Ldh

β

]
p(Bl), (72)

and542

bl = 2Kp(Bl)

(
∆l + 2Ldh

β +
e

ϵ
2 + 1

e
ϵ
2 − 1

√
2π

cNhd

)
exp

[
−1

2
cNhd∆2

l

(
e

ϵ
2 − 1

e
ϵ
2 + 1

)2
]
. (73)

From Assumption 1(c), p(Bl) ≥ cNhd. Therefore, from (67) and (71)543

R−R∗ ≤
G∑
l=1

[
p(Bl)e

− 1
2 (1−ln 2)Np(Bl) +min{al, bl}

]
≤ e−

1
2 (1−ln 2)cNhd

+

G∑
l=1

min{al, bl}. (74)

It remains to bound
∑G

l=1 min{al, bl}. Note that for all x ∈ Bl, η∗(x) − ηs(x) ≤ ∆l + 2Ldh
β .544

Thus545 ∑
l:∆l≤u

p(Bl) ≤ P
(
η∗(X)− ηs(X) ≤ u+ 2Ldh

β
)
≤ M(u+ 2Ldh

β)γ . (75)
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Let546

∆0 =
e

ϵ
2 + 1

e
ϵ
2 − 1

√
2 ln(2K)

cNhd
, (76)

and547

I0 = {l|∆l ≤ ∆0}, (77)

Ik = {l|2k−1∆0 < ∆l ≤ 2k∆0}, k = 1, 2, . . . (78)

Then548

min
l∈I0

{al, bl} ≤
∑
l∈I0

al

≤

 ∑
l:∆l≤∆0

p(Bl)

[3e ϵ
2 + 1

e
ϵ
2 − 1

√
2 ln(2K)

cNhd
+ 2Ldh

β

]

≤ M(∆0 + 2Ldh
β)γ

[
3
e

ϵ
2 + 1

e
ϵ
2 − 1

√
2 ln(2K)

cNhd
+ 2Ldh

β

]

≲

(
1

ϵ2 ∧ 1

lnK

Nhd

) γ+1
2

+ hβ(γ+1). (79)

For Ik with k ≥ 1,549

min
l∈Ik

{al, bl} ≤
∑
l∈Ik

bl

≤

 ∑
l:∆l≤2k∆0

p(Bl)

 · 2K
(
2k∆0 + 2Ldh

β +∆0

)
exp

[
−1

2

(
e

ϵ
2 − 1

e
ϵ
2 + 1

)2

cNhd22k−2∆2
0

]

≤ M(2k∆0 + 2Ldh
β)γ

(
(2k + 1)∆0 + 2Ldh

β
)
(2K)−22k−2+1

≤ M(∆0 + 2Ldh
β)γ+12kγ+k−22k−2+2. (80)

It is obvious that there exists a finite constant C ′ < ∞ that depends on γ, such that550

∞∑
k=1

2kγ+k−22k−2+2 ≤ C ′. (81)

Therefore551

∞∑
k=1

∑
l∈Ik

min{al, bl} ≲

(
1

ϵ2 ∧ 1

lnK

Nhd

) γ+1
2

+ hβ(γ+1). (82)

Combine (74), (79) and (82),552

R−R∗ ≲

(
1

ϵ2 ∧ 1

lnK

Nhd

) γ+1
2

+ hβ(γ+1). (83)

To minimize the overall excess risk, let553

h ∼
(
N(ϵ2 ∧ 1)

lnK

)− 1
2β+d

, (84)

then554

R−R∗ ≲

(
N(ϵ2 ∧ 1)

lnK

)− β(γ+1)
2β+d

. (85)

Compare to the simple random response method, the bin splitting avoids the polynomial decrease555

over K.556
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D Proof of Theorem 3557

We still divide the support as the local label DP setting, except that the value of h is different, which558

will be specified later in this section. Note that (42) still holds here. Let V takes values from559

{−1, 1}m randomly with equal probability, and Vk is the k-th element. Then ηV(x) is a random560

function. The corresponding random output of hypothesis testing is denoted as V̂k, which is calculated561

by (38). Then562

inf
A∈Aϵ

sup
(f,η)∈Fcls

(R−R∗) ≥ 1

2
chβ+d ∥ϕ∥1 inf

A∈Aϵ

max
v∈V

m∑
k=1

P(v̂k ̸= vk)

≥ 1

2
hβ+d ∥ϕ∥1 inf

A∈Aϵ

m∑
k=1

P(V̂k ̸= Vk)

=
1

2
hβ+d ∥ϕ∥1

m∑
k=1

inf
A∈Aϵ

P(V̂k ̸= Vk), (86)

in which the last step holds since V̂k for different k are calculated independently.563

It remains to give a lower bound of P(V̂k ̸= Vk). Denote nk as the number of samples falling in Bk,564

Ȳk as the average label values in Bk:565

nk :=

N∑
i=1

1(Xi ∈ Bk), (87)

Ȳk :=
1

nk

N∑
i=1

Yi1(Xi ∈ Bk). (88)

Moreover, define566

ak :=
1

nk

N∑
i=1

|η(Xi)|1(Xi ∈ Bk)

=
hβ

nk

N∑
i=1

ϕ

(
Xi − ck

h

)
1(Xi ∈ Bk), (89)

in which the last step comes from (36). Then567

E[Ȳk|X1:N , Vk] = Vkak, (90)

in which X1:N means X1, . . . ,XN . We then show the following lemma.568

Lemma 1. If 0 ≤ t ≤ ln 2/(ϵnk), and nkt is an integer, then569

P(V̂k = 1|X1:N , Ȳk = −t) + P(V̂k = −1|X1:N , Ȳk = t) ≥ 2

3
. (91)

Proof. Construct D′ by changing the label values of l = nkt items from these nk samples falling in570

Bk, from −1 to 1. Then the average label values in Bk is denoted as Ȳ ′
k after such replacement. V̂k571

also becomes V̂ ′
k . Then from the ϵ-label DP requirement,572

P(V̂k = 1|X1:N , Ȳk = −t)
(a)

≥ e−lϵP
(
V̂ ′
k = 1|X1:N , Ȳ ′

k = −t+
2l

nk

)
(b)

≥ e−lϵP
(
V̂k = 1|X1:N , Ȳk = −t+

2l

nk

)
≥ e−nktϵ

[
1− P

(
V̂k = −1|X1:N , Ȳk = −t+

2l

nk

)]
≥ 1

2

[
1− P

(
V̂k = −1|X1:N , Ȳk = t

)]
. (92)
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in which (a) uses the group privacy property. The Hamming distance between D and D′ is l, thus the573

ratio of probability between D and D′ is within [e−lϵ, elϵ]. (b) holds because the algorithm does not574

change after changing D to D′. Similarly,575

P(V̂k = −1|X1:N , Ȳk = t) ≥ 1

2

[
1− P

(
V̂k = 1|X1:N , Ȳk = −t

)]
. (93)

Then (91) can be shown by adding up (92) and (93).576

Now we use Lemma 1 to bound the excess risk. With sufficiently large nk, Ŷk will be close to577

Gaussian distribution with mean ak. To be more rigorous, by Berry-Esseen theorem [?], for some578

absolute constant CE ,579

P
(
Ȳk ≤ ak|X1:N , Vk = 1

)
≥ 1

2
− CE√

nk
. (94)

Similarly,580

P
(
Ȳk ≥ −ak|X1:N , Vk = −1

)
≥ 1

2
− CE√

nk
. (95)

We first analyze cubes with581

nk > 16C2
E , ak <

ln 2

ϵnk
. (96)

Under condition (96), the right hand side of (94) and (95) are at least 1/4. Therefore582

P(V̂k ̸= Vk|X1:N ) =
1

2
P(V̂k = 1|X1:N , Vk = −1) +

1

2
P(V̂k = −1|X1:N , Vk = 1)

≥ 1

8
P
(
V̂k = 1|X1:N , Ȳk ≥ − ln 2

ϵnk

)
+

1

8
P
(
V̂k = −1|X1:N , Ȳk ≤ ln 2

ϵnk

)
≥ 1

12
. (97)

From (86),583

inf
A∈Aϵ

sup
(f,η)∈Fcls

(R−R∗) ≥ 1

2
hβ+d ∥ϕ∥1

m∑
k=1

1

12
P
(
ak <

ln 2

ϵnk
, nk > 16C2

E

)
(98)

From (35), (89) and (87), ak ≤ hβ . Therefore584

inf
A∈Aϵ

sup
(f,η)∈Fcls

(R−R∗) ≥ 1

24
hβ+d ∥ϕ∥1

m∑
k=1

P
(
16C2

E < nk <
ln 2

ϵhβ

)
. (99)

Recall that each cube has probability mass chd. Select h such that585

2Nchd =
ln 2

ϵhβ
. (100)

From Chernoff inequality, 16C2
E < nk < ln 2/(ϵhβ) holds with high probability. (100) yields586

h ∼ (ϵN)−
1

d+β . (101)

Recall the bound of m in (37). Let m ∼ hγβ−d, then (99) becomes587

inf
A∈Aϵ

sup
(f,η)∈Fcls

(R−R∗) ≳ hβ(γ+1)

≳ (ϵN)−
β(γ+1)
d+β . (102)

Moreover, the standard lower bound for classification [28] is588

inf
A∈Aϵ

sup
(f,η)∈Fcls

(R−R∗) ≳ N− β(γ+1)
2β+d . (103)

Therefore589

inf
A∈Aϵ

sup
(f,η)∈Fcls

(R−R∗) ≳ N− β(γ+1)
2β+d + (ϵN)−

β(γ+1)
d+β . (104)
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E Proof of Theorem 4590

Denote591

n∗
l = max

j
nlj , (105)

592

nl :=

K∑
j=1

nlj =

N∑
i=1

1(Xi ∈ Bl). (106)

For all j such that n∗
l − nlj > t,593

P(cl = j|X1:N , Y1:N ) =
eϵnlj/2∑K
k=1 e

ϵnlk/2

≤ eϵn
∗
l /2∑K

k=1 e
ϵnlk/2

e−
1
2 ϵt

≤ e−
1
2 ϵt. (107)

Therefore594

P(n∗
l − nlcl > t) =

∑
j:n∗

l −nlj>t

P(cl = j|X1:N , Y1:N ) ≤ Ke−
1
2 ϵt. (108)

Hence595

E[n∗
l − nlcl ] =

∫ ∞

0

P(n∗
l − nlj > t)dt

≤
∫ 2 lnK/ϵ

0

1dt+

∫ ∞

2 lnK/ϵ

Ke−
1
2 ϵtdt

=
2

ϵ
(lnK + 1). (109)

Define596

vlj =
1

nl

N∑
i=1

1(Xi ∈ Bl)ηj(Xi), (110)

then597

E[nlj |X1:N ] = nlvlj . (111)
From Hoeffding’s inequality,598

P(|nlj − nlvlj | > t) ≤ 2e
− 1

2nl
t2
. (112)

Thus599

E
[
max

j
|nlj − nlvlj |

]
=

∫ ∞

0

P
(
∪K
j=1 {|nlj − nlvlj | > t}

)
dt

≤
∫ ∞

0

min
(
1, 2Ke

− 1
2nl

t2
)
dt

=
√

2nl ln(2K) +

∫ ∞

√
2nl ln(2K)

2Ke
− 1

2nl
t2
dt

< 2
√

2nl ln(2K), (113)

in which the last step uses the inequalit
∫∞
t

e−u2/(2σ2)du ≤
√
2πσe−t2/(2σ2). Then600

E[v∗l − vlcl |X1:N ] =
1

nl
E[nlv

∗
l − nlvlcl ]

=
1

nl
E [n∗

l − nlcl + nlv
∗
l − n∗

l + nlcl − nlvlcl ]

≤ 1

nl
E[n∗

l − nlcl ] +
2

nl
E
[
max

j
|nlj − nlvlj |

]

≤ 2

ϵnl
(lnK + 1) + 4

√
2 ln(2K)

nl
. (114)
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By Hölder continuity assumption (Assumption 1(a)), for x ∈ Bl,601

|vlj − ηj(x)| ≤
1

nl

N∑
i=1

1(Xi ∈ Bl)|ηj(Xi)− ηj(x)| ≤ Ldh
β , (115)

in which Ld = L
√
d, L is the constant in Assumption 1(a). Thus602

E[η∗(x)− ηcl(x)|X1:N ] ≤ 2

ϵnl
(lnK + 1) + 4

√
2 ln(2K)

nl
+ 2Ldh

β . (116)

Now take integration over Bl.603 ∫
Bl

(η∗(x)− E[ηcl(x)]) f(x)dx

≤ P
(
nl <

1

2
Np(Bl)

)∫
Bl

(
η∗(x)− E

[
ηcl(x)|nl <

1

2
Np(Bl)

])
f(x)dx

+

∫
Bl

(
η∗(x)− E

[
ηcl(x)|nl ≥

1

2
Np(Bl)

])
f(x)dx

≤ p(Bl) exp

[
−1

2
(1− ln 2)Np(Bl)

]
+

[
2(lnK + 1)

ϵNp(Bl)
+ 4

√
2 ln(2K)

Np(Bl)
+ 2Ldh

β

]
p(Bl),

(117)

in which p(Bl) = P(X ∈ Bl) =
∫
Bl

f(x)dx. (117) is the central label DP counterpart of (67). The604

remainder of the proof follows arguments of the local label DP. We omit detailed steps. The result is605

R−R∗ ≲

(
lnK

ϵNhd
+

√
lnK

Nhd
+ hβ

)γ+1

. (118)

Let606

h ∼
(
lnK

ϵN

) 1
β+d

+

(
lnK

N

) 1
2β+d

, (119)

then607

R−R∗ ≲

(
lnK

ϵN

) β(γ+1)
β+d

+

(
lnK

N

) β(γ+1)
2β+d

. (120)

The proof is complete.608

F Proof of Theorem 5609

Find G cubes in the support and the length of each cube is h. Let ϕ(u) be the same as the classification610

case shown in appendix B. For v ∈ V := {−1, 1}G, let611

ηv(x) =

K∑
k=1

vkϕ

(
x− ck

h

)
hβ . (121)

Let P(Y = 1|x) = (1 + ηv(x))/2, P(Y = −1|x) = (1− ηv(x)), then η(x) = E[Y |x] = ηv(x).612

The overall volume of the support is bounded. Thus, we have613

G ≤ CGh
−d (122)

for some constant CG.614

Denote615

v̂k = sign

(∫
Bk

η̂(x)ϕ

(
x− ck

h

)
f(x)dx

)
, (123)
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then the excess risk is bounded by616

R = E
[
(η̂(X)− ηv(X))

2
]

=

K∑
k=1

∫
Bk

E
[
(η̂(x)− ηv(x))

2
]
f(x)dx. (124)

If v̂k ̸= vk, from (123),617 ∫
Bk

(
η̂(x)− vkϕ

(
x− ck

h

)
hβ

)2

f(x)dx ≥
∫
Bk

(
η̂(x) + vkϕ

(
x− ck

h

)
hβ

)2

f(x)dx. (125)

Therefore, if v̂k ̸= vk, then618 ∫
Bk

(η̂(x)− ηv(x))
2
dx ≥ 1

2

∫
Bk

ϕ2

(
x− ck

h

)
h2βf(x)dx =

1

2
ch2β+d ∥ϕ∥22 . (126)

Therefore619

R−R∗ ≥ E
[
1

2
ch2β+d ∥ϕ∥22 1(v̂k ̸= vk)

]
=

1

2
ch2β+d ∥ϕ∥22 E[ρH(v̂,v)]. (127)

Similar to the classification problem analyzed in Appendix B, let620

h ∼
(
N(ϵ ∧ 1)2

)− 1
2β+d , (128)

then δ ≲ 1, and621

inf
v̂

sup
M∈Mϵ

max
v∈V

E[ρH(v̂,v)] ≳ G ∼ h−d. (129)

Thus622

inf
η̂

inf
M∈Mϵ

sup
PX,Y ∈Freg1

R ≳ h2η+dh−d ∼ h2β ∼ (N(ϵ ∧ 1)2)−
2β

2β+d . (130)

G Proof of Theorem 6623

According to Assumption 2, |Y | < T with probability 1, thus Var[Y |x] ≤ T 2 for any x. A Laplacian624

distribution with parameter λ has variance 2λ2, thus625

Var[W ] = 2λ2 = 2

(
2T

ϵ

)2

=
8T 2

ϵ2
. (131)

Hence626

Var[Z] = Var[Y ] + Var[W ] ≤ T 2

(
1 +

8

ϵ2

)
. (132)

Now we analyze the bias first.627

E[η̂(x)] = E

1
k

∑
i∈Nk(x)

Zi

 = E

1
k

∑
i∈Nk(x)

η(Xi)

 . (133)
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Thus628

|E[η̂(x)]− η(x)| ≤ E

1
k

∑
i∈Nk(x)

|η(Xi)− η(x)|


≤ E

1
k

∑
i∈Nk(x)

min
{
L ∥Xi − x∥β , 2T

}
≤ E

1
k

∑
i∈Nk(x)

min
{
Lρβ(x), 2T

}
≤ 2TP(ρ(x) > r0) + Lrβ0

≤ 2Te−(1−ln 2)k + L

(
2k

Ncvdθ

) β
d

≤ C1

(
k

N

) β
d

, (134)

for some constant C1.629

It remains to bound the variance.630

Var[η̂(x)] = E [Var [η̂(x)|X1, . . . ,XN ]] + Var[E[η̂(x)]|X1, . . . ,XN ]. (135)

For the first term in (135),631

Var[η̂(x)|X1, . . . ,XN ] = Var

1
k

∑
i∈Nk(x)

Zi|X1, . . . ,XN


=

1

k2

∑
i∈Nk(x)

Var[Zi|X1, . . . ,XN ]

≤ 1

k
T 2

(
1 +

8

ϵ2

)
. (136)

For the second term in (135),632

Var[E[η̂(x)|X1, . . . ,XN ]] = Var

1
k

∑
i∈Nk(x)

η(Xi)


≤ E


1

k

∑
i∈Nk(x)

η(Xi)− η(x)

2


=
1

k

∑
i∈Nk(x)

E
[
(η(Xi)− η(x))2

]
≤ 1

k

∑
i∈Nk(x)

E
[
min

{
L2 ∥Xi − x∥2β , 4T 2

}]
≤ 4T 2e−(1−ln 2)k + L2r2β0

≤ C2
1

(
k

N

) 2β
d

. (137)

Therefore (135) becomes633

Var[η̂(x)] ≤ 1

k
T 2

(
1 +

8

ϵ2

)
+ C2

1

(
k

N

) 2β
d

. (138)
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Combine the analysis of bias and variance,634

E[(η̂(x)− η(x))2] ≤ 1

k
T 2

(
1 +

8

ϵ2

)
+ 2C2

1

(
k

N

) 2β
d

. (139)

Therefore the overall risk is bounded by635

R = E[(η̂(X)− η(X))2] ≲
1

k
T 2

(
1 +

8

ϵ2

)
+ 2C2

1

(
k

N

) 2β
d

. (140)

The optimal growth rate of k over N is636

k ∼ N
2β

d+2β (ϵ ∧ 1)−
2d

d+2β . (141)

Then the convergence rate of the overall risk becomes637

R ≲ (N(ϵ ∧ 1)2)−
2β

d+2β . (142)

H Proof of Theorem 7638

From (127),639

R−R∗ ≥ 1

2
ch2β+d ∥ϕ∥22 E[ρH(V̂,V)]

=
1

2
ch2β+d ∥ϕ∥22

G∑
k=1

P(V̂k ̸= Vk). (143)

Follow the analysis of lower bounds of classification in Appendix D, let h scales as (101), then640

P(V̂k ̸= Vk) ≳ 1. Moreover, G ∼ h−d. Hence641

inf
A∈Aϵ

sup
(f,η)∈Freg1

(R−R∗) ≳ h2β ∼ (ϵN)−
2β

d+β . (144)

Moreover, note that the non-private lower bound of regression is642

inf
A∈Aϵ

sup
(f,η)∈Freg1

(R−R∗) ≳ N− 2β
2β+d . (145)

Combine (144) and (145),643

inf
A∈Aϵ

sup
(f,η)∈Freg1

(R−R∗) ≳ N− 2β
2β+d + (ϵN)−

2β
d+β . (146)

I Proof of Theorem 8644

1) Analysis of bias. Note that645

E[η̂l|X1:N ] = E[Y |X ∈ Bl] =
1

p(Bl)

∫
η(u)f(u)du. (147)

Therefore, for all x ∈ Bl,646

|E[η̂l|X1:N ]− η(x)| ≤ 1

p(Bl)

∫
|η(u)− η(x)|f(u)du

≤ Ldh
β . (148)

Therefore for all x ∈ Bl,647

|E[η̂l]− η(x)| ≤ Ldh
β . (149)

2) Analysis of variance. If nl > 0,648

Var

[
1

nl

N∑
i=1

1(Xi ∈ Bl)Yi|X1:N

]
=

1

nl
Var[Y |X ∈ Bl] ≤

1

nl
. (150)
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Therefore649

Var

[
1

nl

N∑
i=1

1(Xi ∈ Bl)Yi

]
≤ P

(
nl <

1

2
Np(Bl)

)
+ P

(
nl ≥

1

2
Np(Bl)

)
2

Np(Bl)

≤ exp

[
−1

2
(1− ln 2)Np(Bl)

]
+

2

Nchd
. (151)

Similarly,650

Var[Wl] ≤ P
(
nl <

1

2
Np(Bl)

)
1

ϵ2
+ P

(
nl ≥

1

2
Np(Bl)

)
8(

1
2Np(Bl)

)2
ϵ2

≲
1

N2h2dϵ2
. (152)

The mean squared error can then be bounded by the bounds of bias and variance.651

E
[
(η̂(x)− η(x))2

]
≲ h2β +

1

Nhd
+

1

N2h2dϵ2
. (153)

Let652

h ∼ N− 1
2β+d + (ϵN)−

1
d+β . (154)

Then653

R−R∗ ≲ N− 2β
2β+d + (ϵN)−

2β
d+β . (155)

J Proof of Theorem 9654

Now we prove the minimax lower bound of nonparametric regression under label DP constraint. We655

focus on the case in which ϵ is small.656

Similar to the steps of the proof of Theorem 5 in Appendix F, we find B cubes in the support. The657

definition of ηv, v̂k are also the same as (121) and (123). Compared with the case with bounded658

noise, now Y can take values in R.659

For given x, let660

Y =


T with probability 1

2

(
Mp

Tp + ηv(x)
T

)
0 with probability 1− Mp

Tp

−T with probability 1
2

(
Mp

Tp − ηv(x)
T

)
.

(156)

In Appendix F about the case with bounded noise, T is a fixed constant. However, here T is not fixed661

and will change over N . It is straightforward to show that the distribution of Y in (156) satisfies662

Assumption 3:663

E[|Y |p|x] = Mp. (157)

Moreover, by taking expectation over Y , it can be shown that ηv is still the regression function:664

E[Y |x] = ηv(x). (158)

Let665

T =

(
1

2
Mph

−β

) 1
p−1

. (159)

Here we still define666

δ = sup
M∈Mϵ

max
v,v′:ρH(v,v′)=1

D(P(X,Z)1:N |v||P(X,Z)1:N |v′). (160)
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Without loss of generality, suppose that v1 = v′1 for i ̸= 1. Then667

D(P(X,Z)1:N |v||P(X,Z)1:N |v′) = ND(PX,Z|v||PX,Z|v′)

= N

∫
B1

f(x)D(PZ|X,v||PZ|X,v′)dx

≤ N

∫
B1

f(x)(eϵ − 1)2TV2
(
PZ|X,v, PZ|X,v′

)
dx

= N

∫
B1

f(x)(eϵ − 1)2η2v(x)
1

T 2
dx

= N(eϵ − 1)2
h2β

T 2

∫
B1

f(x)ϕ2

(
x− c1

h

)
dx

= N(eϵ − 1)2h2β+d ∥ϕ∥22 T
−2

= N(eϵ − 1)2 ∥ϕ∥22

(
1

2
Mp

)− 2
p−1

h2β+d+ 2β
p−1 . (161)

Let668

h ∼ (N(eϵ − 1)2)−
p−1

2pβ+d(p−1) , (162)

then δ ≲ 1. Hence669

inf
η̂

inf
M∈Mϵ

sup
(f,η)∈F

R ≳ h2β ∼ (N(eϵ − 1)2)−
2β(p−1)

2pβ+d(p−1) . (163)

K Proof of Theorem 10670

Define671

ηT (x) := E[YT |x]. (164)

Then672

η̂(x)− η(x) = ηT (x)− η(x) + E[η̂(x)]− ηT (x) + η̂(x)− E[η̂(x)]. (165)

Therefore673

E
[
(η̂(x)− η(x))

2
]

≤ 3(ηT (x)− η(x))2 + 3(E[η̂(x)]− ηT (x))
2 + 3Var[η̂(x)]

:= 3(I1 + I2 + I3). (166)

Now we bound I1, I2 and I3 separately.674

Bound of I1. We show the following lemma (which will also be used later).675

Lemma 2.

|ηT (x)− η(x)| ≤ Mp

p− 1
T 1−p. (167)

Proof. Firstly, we decompose ηT (x) and η(x):676

ηT (x) = E[YT |x] = E[Y 1(−T ≤ Y ≤ T )|x] + TP(Y > T |x)− TP (Y < T |x), (168)
677

η(x) = E[Y |x] = E[Y 1(−T ≤ Y ≤ T )|x] + E[Y 1(Y > T )|x]− E[Y 1(Y < T )|x]. (169)

The first term is the same between (168) and (169). Therefore we only need to compare the second678

and the third term.679

E[Y 1(Y > T )|x] =

∫ T

0

P(Y > T |x)dt+
∫ ∞

T

P(Y > T |x)dt

≤ TP(Y > T |x) +
∫ ∞

T

Mpt
−pdt

= TP(Y > T |x) + Mp

p− 1
T 1−p. (170)
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Therefore680

E[Y 1(Y > T )|x]− TP(Y > T |x) ≤ Mp

p− 1
T 1−p. (171)

Similarly,681

TP (Y < T |x)− E[Y 1(Y < T )|x] ≤ Mp

p− 1
T 1−p. (172)

A Combination of these two inequalities yields the (167).682

With Lemma 2,683

I1 ≤
M2

p

(p− 1)2
T 2(1−p). (173)

Bound of I2. Follow the steps in (134),684

I2 ≤ C2
1

(
k

N

) 2β
d

. (174)

Bound of I3. We decompose Var[η̂(x)] as following:685

Var[η̂(x)] = E[Var[η̂(x)|X1, . . . ,XN ]] + Var[E[η̂(x)|X1, . . . ,XN ]]. (175)

For the first term in (175), from Assumption 3, E[|Y |p|x] ≤ Mp. Since p ≥ 2, we have E[Y 2|x] =686

M
2
p
p . Therefore687

Var[Zi|X1, . . . ,XN ] = Var[YT ] + Var[W ] ≤ M
2
p
p +

8T 2

ϵ2
. (176)

Recall (20), we have688

Var[η̂(x)|X1, . . . ,XN ] =
1

k2

∑
i∈Nk(x)

Var[Zi|X1, . . . ,XN ]

≤ 1

k

(
M

2
p
p +

8T 2

ϵ2

)
. (177)

For the second term in (175), (137) still holds, thus689

Var[E[η̂(x)|X1, . . . ,XN ]] ≤ C2
1

(
k

N

) 2β
d

, (178)

and690

I3 ≤ 1

k

(
M

2
p
p +

8T 2

ϵ2

)
+ C2

1

(
k

N

) 2β
d

. (179)

Plug (173), (174) and (179) into (166), and take expectations, we get691

R = E[(η̂(X)− η(X))2]

≲ T 2(1−p) +
1

k
+

T 2

kϵ2
+

(
k

N

) 2β
d

. (180)

Let692

T ∼ (kϵ2)
1
2p , k ∼ (Nϵ2)

2pβ
d(p−1)+2pβ ∨N

2β
2β+d , (181)

then693

R ≲ (Nϵ2)−
2β(p−1)

d(p−1)+2pβ ∨N− 2β
2β+d . (182)
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L Proof of Theorem 11694

Let Y be distributed as (156). Recall Lemma 1 for the problem of classification and regression with695

bounded noise.696

Now we show the corresponding lemma for regression with unbounded noise.697

Lemma 3. If 0 ≤ t ≤ T ln 2/(ϵnk), and nkt/T is an integer, then698

P(V̂k = 1|X1:N , Ȳk = −t) + P(V̂k = −1|X1:N , Ȳk = t) ≥ 2

3
. (183)

Here we briefly explain the condition nkt is an integer. Recall the definition of Ȳk in (88). Now since699

Y take values in {−T, 0, T}, nkȲk/T must be an integer. Therefore, in Lemma 3, we only need to700

consider the case such that nkt/T is an integer.701

Proof. The proof follows the proof of Lemma 1 closely. We provide the proof here for completeness.702

Construct D′ by changing the label values of l = nkt/T items from these nk samples falling in Bk,703

from −T to T . Then the average label values in Bk is denoted as Ȳ ′
k after such replacement. V̂k also704

becomes V̂ ′
k . Then from the ϵ-label DP requirement,705

P(V̂k = 1|X1:N , Ȳk = −t)
(a)

≥ e−lϵP
(
V̂ ′
k = 1|X1:N , Ȳ ′

k = −t+
2l

nk

)
(b)

≥ e−lϵP
(
V̂k = 1|X1:N , Ȳk = −t+

2l

nk

)
≥ e−nktϵ

[
1− P

(
V̂k = −1|X1:N , Ȳk = −t+

2l

nk

)]
≥ 1

2

[
1− P

(
V̂k = −1|X1:N , Ȳk = t

)]
. (184)

in which (a) uses the group privacy property. The Hamming distance between D and D′ is l, thus the706

ratio of probability between D and D′ is within [e−lϵ, elϵ]. (b) holds because the algorithm does not707

change after changing D to D′. Similarly,708

P(V̂k = −1|X1:N , Ȳk = t) ≥ 1

2

[
1− P

(
V̂k = 1|X1:N , Ȳk = −t

)]
. (185)

Then (183) can be shown by adding up (184) and (185).709

We then follow the proof of Theorem 3 in Appendix D. (101) becomes710

h ∼
(
ϵN

T

)− 1
d+β

. (186)

In (156), note that P(Y = T ) ≥ 0 and P(Y = −T ) ≥ 0. Therefore Mp/T
p ≥ ηv(x)/T . This711

requires hβT p−1 ≤ Mp. Let T ∼ h− β
p−1 , then712

h ∼ (ϵN)−
1

d+β h
β

(d+β)(p−1) , (187)

i.e.713

h ∼ (ϵN)−
p−1

pβ+d(p−1) . (188)

Combine with standard minimax rate, the lower bound of regression with unbounded noise is714

inf
A∈Aϵ

sup
(f,η)∈Freg2

(R−R∗) ≳ N− 2β
2β+d + (ϵN)−

2β(p−1)
pβ+d(p−1) . (189)
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M Proof of Theorem 12715

1) Analysis of bias. Note that Lemma 2 still holds here. Moreover, recall (149). Therefore716

|E[η̂l]− η(x)| ≤ |E[η̂l − ηT (x)]|+ |ηT (x)− η(x)| ≤ Ldh
β +

Mp

p− 1
T 1−p. (190)

2) Analysis of variance. Similar to (151), it can be shown that717

Var

[
1

nl

N∑
i=1

1(Xi ∈ Bl)Yi

]
≲

1

Nhd
. (191)

Moreover, the noise variance can be bounded by718

Var[Wl] ≲
T 2

N2h2dϵ2
. (192)

The mean squared error is then bounded by719

E
[
(η̂(x)− η(x))

2
]
≲ h2β + T 2(1−p) +

T 2

N2h2dϵ2
+

1

Nhd
. (193)

Let T ∼ (ϵNhd)1/p, then720

R−R∗ = E
[
(η̂(X)− η(X))2

]
≲ h2β +

1

Nhd
+ (ϵNhd)−2(1−1/p). (194)

To minimize (194), let721

h ∼ N− 1
2β+d + (ϵN)−

p−1
pβ+d(p−1) , (195)

then722

R−R∗ ≲ N− 2β
2β+d + (ϵN)−

2β(p−1)
pβ+d(p−1) . (196)
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