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Abstract

Label differential privacy (DP) is designed for learning problems with private labels
and public features. Although various methods have been proposed for learning
under label DP, the theoretical limits remain unknown. The main challenge is to
take infimum over all possible learners with arbitrary model complexity. In this
paper, we investigate the fundamental limits of learning with label DP under both
central and local models. To overcome the challenge above, we derive new lower
bounds on testing errors that are adaptive to the model complexity. Our analyses
indicate that e-local label DP only enlarges the sample complexity with respect to
€, without affecting the convergence rate over the sample size IV, except the case
with heavy-tailed label. Under the central model, the performance loss due to the
privacy mechanism is further weakened, such that the additional sample complexity
becomes negligible. Overall, our analysis validates the promise of learning under
the label DP from a theoretical perspective and shows that the learning performance
can be significantly improved by weakening the DP definition to only labels.

1 Introduction

Many modern machine learning tasks require sensitive training samples that need to be protected
from leakage [1]]. As a standard approach for privacy protection, differential privacy (DP) [2] has
been extensively studied [3H9]. However, the learning performances under original DP definition
are usually far from satisfactory [[10-H13|]. Therefore, researchers attempt to design weakened DP
requirements, under which the performances can be significantly improved, while still securing
sensitive information. Under such background, label DP has emerged in recent years [14]], which
regards features as public, while only labels are sensitive and need to be protected. Such setting is
realistic in many applications, such as computational advertising [[15]], recommendation systems [[16]]
and medical diagnosis [[17]. These tasks usually use some basic demographic information as features,
which can be far less sensitive.

Despite various approaches for learning with label DP [[14}|18-21]], the fundamental limits are
still unknown. An interesting question is: By weakening the DP definitions to only labels, how
much accuracy improvement is possible? From an information-theoretic perspective [22], the
underlying limits of statistical problems are characterized by the minimax lower bound, which takes
the supremum over all possible distributions from a general class, and infimum over all learners.
Deriving minimax lower bounds for learning under the label DP is challenging in two aspects. Firstly,
under label DP, each sample has both public (i.e. the feature) and private (i.e. the label) components.
Directly applying the methods for original DP [23}27] treats all components as private, and thus does
not yield tight results. Secondly, the classical packing method [47]] is only suitable for fixed model
structures with fixed dimensionality. However, to establish lower bounds, one needs to take infimum
over all possible learners with arbitrary model complexity.
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Bh+1) 8 B
Non-priv. O(N~ 2h+d ) O(N_2§+d) O(N_ﬁ)

Table 1: Minimax rate of convergence under label differential privacy. d is the dimension of features.

In this paper, we investigate the theoretical limits of classification and regression problems under label
DP. Our analysis involves both central and local models. For each problem, we derive the information-
theoretic minimax lower bound of the risk function over a wide class of distributions satisfying the
[-Holder smoothness and the -Tsybakov margin assumption [28] (see Assumption|[I]for details).
The general idea is to convert the problem to multiple hypothesis testing. To overcome the challenges
above, we provide a bound of Kullback-Leibler divergence over joint distributions of private and
public random variables, which is tighter than the bound between fully private variables. Moreover,
under the central model, instead of using the packing method, we develop a new lower bound on the
minimum testing error for each pair of hypotheses based on the group privacy property [4]], which
is suitable for arbitrary model complexity. After deriving minimax lower bounds, we also propose
algorithms with matching upper bounds to validate the tightness of our results.

The results are shown in Table[T] in which the third row refers to the bounds under the original local
DP definition, while the fourth row lists the non-private baselines. To the best of our knowledge,
minimax rates under central DP have not been established, and are thus not listed here. The main
findings are summarized as follows.

* Under e-local label DP, for classification and regression with bounded label noise, the
sample complexity is larger by a factor of O(1/€?). However, the convergence rate remains
unaffected, which is in clear contrast with the original DP, under which the convergence rate
is slower.

* Under e-local label DP constraint, for regression with heavy-tailed label noise, the conver-
gence rate of risk over N becomes slower, indicating that heavy-tailed labels increase the
difficulty of privacy protection.

* Under e-central label DP constraint, the performance loss caused by the privacy mechanism
becomes further weakened. The risk only increases by a term that decays faster than the
non-private rate, indicating that the additional sample complexity caused by the privacy
mechanism becomes negligible with large N.

In general, our analysis provides a theoretical perspective of understanding label DP. The result
shows that by weakening the DP definition to protecting labels only, the learning performances can
be significantly improved.

2 Related Work

Label DP. Under the local model, labels are randomized before training. The simplest method is
randomized response [30]. An important improvement is proposed in [14], called RRWithPrior,
which incorporates prior distribution. [19] proposes ALIBI, which further improves randomized
response by generating soft labels through Bayesian inference. There are also several methods for
regression under label DP [18/31]]. Under central label DP, [20] proposes a clustering approach. [[19]
proposes private aggregation of teacher ensembles (PATE), which is then further improved in [21]].

Minimax analysis for public data. Minimax theory provides a rigorous framework for the best
possible performance of an algorithm given some assumptions. Classical methods include Le
Cam [32]], Fano [33]] and Assouad [34]]. Using these methods, minimax lower bounds have been

widely established for both classification and regression problems [28}29,35-41]]. If the feature
B(y+1)
vector has bounded support, then the minimax rate of classification and regression are O(N "~ 2 )

and O(N~ T ), respectively.
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Minimax analysis for private data. Under the local model, [42] finds the relation between label DP
and stochastic query. [23]] and [24] develop the variants of Le Cam, Fano, and Assouad’s method
under local DP. Lower bounds are then established for various statistical problems, such as mean
estimation [43-46], classification [26] and regression [27]. Under central model, for pure DP, the
standard approach is the packing method [47]], which is then used in hypothesis testing [48|], mean
estimation [49)50], and learning of distributions [51H53]]. There are also several works on approximate
DP, such as [54},53].

This work studies the theoretical limits of label DP, under which each sample is a mixture of public
feature and private labels, thus existing methods can not be directly applied here. Under the central
model, the minimax analysis becomes more challenging, since the packing method is only suitable
for fixed model structures (i.e. the dimensionality of model output is fixed), while we need to find the
minimum possible error over all possible learners with arbitrary output dimensions. As a result, the
lower bounds of general classification and regression problems have not been established even under
the original DP definition. To overcome such challenge, we develop a new approach to bound the
error of hypothesis testing (see Lemma [I]in Appendix [D).

3 Preliminaries
In this section, we show some necessary definitions, background information, and notations.

3.1 Label DP

To begin with, we review the definition of DP. Suppose the dataset consists of N samples (x;, y;),
i=1,...,N,in which x; € X is the feature vector, while y; € ) C R? is the label.

Definition 1. (Differential Privacy (DP) [2]) Let € > 0. A randomized function A : (X, V)N — ©
is e-DP if for any two adjacent datasets D, D' € (X,Y)N and any S C 6,

P(A(D) € S) <e‘P(A(D') € 9), (1)

in which D and D’ are adjacent if they differ only on a single sample, including both the feature
vector and the label.

In machine learning tasks, the output of A is the model parameters, while the input is the training
dataset. Definition [T requires that both features and labels are privatized. Consider that in some
applications, the features may be much less sensitive, the notion of label DP is defined as follows.

Definition 2. (Central label DP) A randomized function A is e-label DP if for any two datasets D
and D' that differ on the label of only one training sample and any S C O, (I)) holds.

Compared with Definition[T} Definition [2]only requires the output to be insensitive to the replacement
of a label. Therefore label DP is a weaker requirement. Correspondingly, the local label DP is defined
as follows.

Definition 3. (Local label DP) A randomized function M : (X,)) — Z is e-local label DP if

P(M(x,y) € S

sup sup In —( (x y/) ) <e. 2)
yyeyscz PM(x,y') €S)
Definition [3] requires that each label is privatized locally before running any machine learning
algorithms. It is straightforward to show that local label DP ensures central label DP. To be more
precise, we have the following proposition.
Proposition 1. Let z; = M (x;,y;) fori = 1,...,N. If Ais a function of (x;,2;), i = 1,...,N,
then A is e-label DP.

3.2 Risk of Classification and Regression

In supervised learning problems, given N samples (X;,Y;), i = 1,..., N drawn from a common
distribution, the task is to learn a function g : X — ). For a loss function [ : J x J — R, the goal
is to minimize the risk function, which is defined as the expectation of loss function between the
predicted value and the ground truth:

R=E[(Y,Y)] 3)
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The minimum risk among all function g is called Bayes risk, i.e. R* = ming E[l(¢(X,Y"))]. In
practice, the sample distribution is unknown, and we need to learn g from samples. Therefore, the
risk of any practical classifiers is larger than Bayes risk. The gap R — R* is called excess risk, and we
hope that R — R* to be as small as possible. Now we discuss classification and regression problems
separately.

1) Classification. For classification problems, the size of ) is finite. For convenience, we denote
Y = [K], in which [K] := {1,..., K}. In this paper, we use 0 — 1 loss, i.e. I(Y,Y)=1(Y #Y),
then R = P(Y # Y). Define K functions 7y, ...,k as the conditional class probabilities:

n(x) =P(Y =klX=x),k=1,..., K. (€))

Under this setting, the Bayes optimal classifier and the corresponding Bayes risk is

c"(x) = argmaxn;(x), )
JjelK]
as = PEX)#Y). ©)

2) Regression. Now we consider the case with ) having infinite size. We use ¢ loss in this paper, i.e.
I(Y,Y) = (Y — Y)2 Then the Bayes risk is

R, =E[(Y —n(X))?]. ©)

reg

Then the following proposition gives a bound of the excess risk for classification and regression
problems.

Proposition 2. For any classifier ¢ : X — [K], the excess risk of classification is bounded by

Rots = Rigy = [ (0 (0) = Bl () (). ®)
For any regression estimate 1) : X — ), the excess risk of regression is bounded by
Ryeg — Ryeq = E[(1(X) — 1(X))?]. ©)

The proof of Proposition 2]is shown in Appendix [A] Finally, we state some basic assumptions that
will be used throughout this paper.

Assumption 1. There exists some constants L, 8, Cr, v, ¢, D and 6 € (0, 1] such that
n;(x) = (x)] < Lx—x|%
(b) Forany t > 0, P (0 < n*(X) — ns(X) < t) < Crt", in which ns(x) is the second largest one
among {n1(x),...,nx(x)};

(c) The feature vector X has a probability density function (pdf) f which is bounded from below, i.e.
fx) ze¢

(d) Forall v < D, V,.(x) > Ovgr?, in which V,.(x) is the volume (Lebesgue measure) of B(x,7) N X,
vq is the volume of a unit ball.

(a) For all j € [K] and any x, X/,

Assumption T] (a) requires that all 7); are Holder continuous. This condition is common in literatures
about nonparametric statistics [28]. (b) is generalized from the Tsybakov noise assumption for binary
classification, which is commonly used in many existing works in the field of both nonparametric
classification [29,37,40.141]] and differential privacy [26,27]]. If K = 2, then n* and 7, refer to the
larger and smaller class conditional probability, respectively. An intuitive understanding of (b) is that
in the majority of the support, the maximum value among {7 (X), ..., 7k (x)} should have some
gap to the second largest one. With sufficiently large sample size and model complexity, assumption
(b) ensures that for test samples within the majority of the support X, the algorithm is highly likely to
correctly identify the class with the maximum conditional probability. Therefore, in (b), we only care
about n*(x) and 71, (x), while other classes with small conditional probabilities can be ignored. (c)
is usually called "strong density assumption” in existing works [|39,/40], which is quite strong. It is
possible to relax this assumption so that the theoretical analysis becomes suitable for general cases.
However, we do not focus on such generalization in this paper. Assumption (d) prevents the corner of
the support X from being too sharp. In the remainder of this section, denote ;5 as the set of all
pairs (f,n) satisfying Assumption
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4 Classification

In this section, we derive the upper and lower bounds of learning under central and local label DP,
respectively.

4.1 Local Label DP

1) Lower bound. The following theorem shows the minimax lower bound, which characterizes the
theoretical limit.

Theorem 1. Denote M. as the set of all privacy mechanisms satisfying e-local label DP (Definition
B). Then

_ B+
inf inf  sup (Ras — Ri,) 2 [N (2 A1)] 2F7 . (10)
v MeMe(fmyeFa, : [V ( )

Proof. (Outline) It suffices to derive with K = 2. We convert the problem into multiple binary
hypothesis testing problems. In particular, we divide the support into G bins. For some of them, we
construct two opposite hypotheses such that they are statistically not distinguishable. Our proof uses
some techniques in local DP [24] and some classical minimax theory [28]]. The detailed proof is
shown in Appendix B} O

In Theorem |1} (T0) takes supremum over all joint distributions of (X,Y’), and infimum over all
classifiers and privacy mechanisms satisfying e-local label DP.

2) Upper bound. We then show that the bound (I0) is achievable. Let the privacy mechanism M (x, y)
outputs a K dimensional vector, with each component being either 0 or 1, such that

€

2 if y=j
P(M(x,y)(j) =1) =4 i1 . Y77 (11)
g it y#j,

and P(M (x,y)(j) =0) =1 —-P(M(x,y)(j) = 1), in which M (x,y)(j) is the j-th component of
M (x,y). For N random training samples (X;, Y;), let Z; = M (X;,Y;), and correspondingly, Z,(j)
is the j-th component of Z,.

Divide the support X into G bins, named Bji,..., Bg, such that the length of each bin is h.

Bi, ..., Bg are disjoint, and these bins form a covering of X, i.e. X C UlelBl. Then calcu-
late
Si= Y. Zi(j)l=1,...Gj=1,.. K, (12)
: X, EB;

The classification within the [-th bin is

¢; = arg maxSy;, (13)
J

such that the the prediction given x is ¢(x) = ¢; for all x € B;. The next theorem shows the privacy
guarantee, as well as the bound of the excess risk.

Theorem 2. The privacy mechanism M is e-local label DP. Moreover, under Assumption[l| with
1
h ~ (N (e2A1)/InK ) 2P+d the excess risk of the classifier described above can be upper bounded

as follows:
N(@ A1)\~
Ry o< (= 7
Rcls cls ~ ( nk ) . (14)
Proof. (Outline) For privacy guarantee, we need to show that (1)) is e-local label DP:
PMxy)=2) _ x 1 P(M(x,y)(j) = 2(5))
P(M(x,y') = z) TTP(M(x,y')(4) = 2(5))

) =
P(M(x,y)(y) = 2(y)) P(M(x,9)(y') = 2(y"))
P(M(x ,y’)( ) =2(y)) P(M(x,4)(y') = 2(y'))
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According to Definition[3] A is e-local label DP. For the performance guarantee (I4), according to
Proposition we need to bound 7" (x) — E[n.(x) (x)] for each x. If n* (x) — 7,(x) is large, then with
high probability, ¢(x) = ¢*(x), and then *(x) = 7(x)(x). Thus we mainly consider the case with
small * (x) — 1, (x). The details of proof are shown in Appendix [C] O

The lower bound (I0) and the upper bound (T4)) match up to a logarithm factor, indicating that the
results are tight. Now we comment on the results.
Remark 1. 1) Comparison with non-private bound. The classical minimax lower bound for non-

. e g BOD .
private classification problem is N~ 28+d . Therefore, the lower bound (10) reaches the non-private

bound with € > 1. With small ¢, N training samples with privatized labels roughly equals N €
non-privatized samples in terms of performance.

2) Comparison with local DP that protects both features and labels. In this case, the optimal
excess risk is (Ne?)~P0+1)/28+2d) ) N=BOr+1)/(B+d) yhich is worse than the right hand side of
(T0). Such result indicates that compared with classical DP, label DP incurs significantly weaker
performance loss.

3) Comparison with other baseline methods. If we use the randomized response method instead
of the privacy mechanism (11)), then the performance decreases sharply with the number of classes
K. Several methods have been proposed to improve the randomized response method, such as
RRWithPrior [14)] and ALIBI [19]. However, these methods are not guaranteed in theory.

4.2 Central Label DP

1) Lower bound. The following theorem shows the minimax lower bound under the central label DP.

Theorem 3. Denote A, as the set of all learning algorithms satisfying e-label DP (Definition 2)).
Then
inf  sup  (Rus — RY,) > N~ 292 4 (eN)~Fi. (16)
.AG.Ae (fvn)ej:cls

Proof. (Outline) Lower bounds under central DP are usually constructed by packing method [47]],
which works for fixed output dimensions. However, to achieve a desirable bias and variance tradeoff,
the model complexity needs to increase with N. In our proof, we still divide the support into G bins
and construct two hypotheses for each bin, but we develop a new tool (see Lemmal[I)) to give a lower
bound of the minimum error of hypothesis testing. We then use the group privacy property [4] to get
the overall lower bound. The details can be found in Appendix [D] O

2) Upper bound. Now we show that is achievable. Similar to the local label DP problem, now
divide the support into G bins, such that the length of each bin is h. Now the classification within the
[-th bin follows a exponential mechanism [56]:

€€"lg/2
(Cl ]| 1:N» 1.N) Z;(:l e€nlk/2’

in which n;; = Zfil 1(X; € B;,Y; = j). Then let ¢(x) = ¢; for x € B;. The excess risk is

bounded in the next theorem.

Theorem 4. The privacy mechanism is e-label DP. Moreover, under Assumption[l} if h scales as
1 1

h~(InK/eN)?+d 4 (In K/N)26+4, then the excess risk can be bounded as follows:

7)

_ B(y+1)

‘. < N 7% eN B+d
R—R*< (mK) - (th) : (18)

Proof. (Outline) The privacy guarantee of the exponential mechanism has been analyzed in [4]].
Following these existing analyses, it can be shown that is e-label DP. It remains to show (I8).
Note that if *(x) — ns(x) is large, then the difference between the largest and the second largest
one from {n;;|j = 1,..., K} will also be large. From (T7), the following inequality holds with high
probability: ¢; = argmax;n;; = arg max;n;(x) = ¢*(x), which means that the classifier makes
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optimal prediction. Hence we mainly consider the case with small n*(x) — 7s(x). The details of the
proof can be found in Appendix O

The upper and lower bounds match up to logarithmic factors. In (I8), the first term is just the

non-private convergence rate, while the second term (e N )7% can be regarded as the additional
risk caused by the privacy mechanism. It decays faster with N compared with the first term, thus the
additional performance loss caused by the privacy mechanism becomes negligible as IV increases.
This result is crucially different from the local model, under which the privacy mechanism always
induces higher sample complexity by a factor of O(1/(e* A 1)).

5 Regression with Bounded Noise

Now we analyze the theoretical limits of regression problems under local and central label DP.
Throughout this section, we assume that the label is restricted within a bounded interval.

Assumption 2. Givenanyx € X, P([Y| < T|X =x) = 1.

Assumption remains the same here. In the remainder of this section, denote F,..41 as the set of
(f,n) that satisfies Assumption [I|and

5.1 Local Label DP

1) Lower bound. Theorem [5]shows the minimax lower bound.
Theorem 5. Denote M. as the set of all privacy mechanisms satisfying e-label DP. Then

inf inf sup (Rpeg — Riey) 2 (N(2 A1) 77557 19
ﬁMEMf(f,n)eg ( °9 eg)w( ( )) (19)

regl
The proof of Theorem [5] is similar to that of Theorem [I] except for some details in hypotheses
construction and the final bound of excess risk. The details are shown in Appendix [F}

2) Upper bound. The privacy mechanism is Z = Y + W, in which W ~ Lap(2T/¢). Then the
privacy mechanism satisfies e-label DP. In this case, the real regression function 7(x) can be estimated
using the nearest neighbor approach. Let

R 1
) =7 >z, (20)
1€EN (x)
in which N (x) is the set of k nearest neighbors of x among X1, ..., Xy.

Theorem 6. The method described above is e-local label DP. Moreover, with k ~ N Ti7m (enl)™ Ti%8 R
then under Assumption [l and[2)}

Ryey — Riyy < (N(2 A1) 7075 1)

reg ~

Proof. (Outline) Since |Y| < T, W ~ Lap(2T/e), it is obvious that Z = Y + W is e-local label
DP. For the performance (21}, the bias can be bounded by the k nearest neighbor distances based on
Assumption a). The variance of 7j(x) scales inversely with k. An appropriate k can be selected to
achieve a good tradeoff between bias and variance. The details are shown in Appendix [G] O

From standard minimax analysis on regression problems, the non-private convergence rate is

N—28/(d+2B) From Theorem and@ the privatization process makes sample complexity larger by
a O(1/¢€?) factor.

5.2 Central Label DP

1) Lower bound. The following theorem shows the minimax lower bound.
Theorem 7. Let A, be the set of all algorithms satisfying e-central DP. Then

23 23
inf sup (Reeg — Bl 2 N5 4 (eV) )
ACA(fm)eFregr g
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2) Upper bound. For each bin By, let n; = Zfil 1(X; € By) be the number of samples in B;. If
n; > 0, then

1
m=—

n

NE

1(X; € Bl)YZ + Wy, (23)
i=1

in which W; ~ Lap(2/(ne)). If n; = 0, i.e. no sample falls in By, then just let 7, = 0. For all
X € By, let 7j(x) = 7);. The excess risk can be bounded with the following theorem.

1
Theorem 8. (23) is e-label DP. Moreover, under Assumptionand if h scales as h ~ N~ 23+d +
1
(eN)™ @+5, then the excess risk is bounded by

R— R* < N%%a 4 (eN) a5, 24

The upper and lower bounds match, indicating that the results are tight. Again, the second term in
(24) converges faster than the first one with respect to IV, the performance loss caused by privacy
constraints becomes negligible as NV increases.

6 Regression with Heavy-tailed Noise

In this section, we consider the case such that the noise has tails. We make the following assumption.
Assumption 3. Forallx € X, E[|[Y|?|X = x| < M, for some p > 2.

Instead of requiring |Y'| < T for some 7', now we only assume that the p-th order moment is bounded.
For non-private cases, given fixed noise variance, the tail does not affect the mean squared error of
regression. As a result, as long as p > 2, the convergence rate of regression risk is the same as the
case with bounded noise. However, the label DP requires the output to be insensitive to the worst
case replacement of labels, which can be harder if the noise has tails. To achieve e-DP, the clipping
radius decreases with e, thus the noise strength needs to grow faster than O(1/¢). As a result, the
convergence rate becomes slower than the non-private case. In the remainder of this section, denote
Freg2 as the set of (f,n) that satisfies Assumption [I]and 3}

6.1 Local Label DP

1) Lower bound. In earlier sections about classification and regression with bounded noise, the impact
of privacy mechanisms is only a polynomial factor on €, while the convergence rate of excess risk
with respect to IV is not changed. However, this rule no longer holds when the noise has heavy tails.

Theorem 9. Denote M. as the set of all privacy mechanisms satisfying e-label DP. Then for small e,

26(p—1)
inf inf = sup (Rrey — Ry.y) 2 (N(ef — 1)%)"2p+de-1 N~ whea (25)
1 MeMe(fmer

2) Upper bound. Since now the noise has unbounded distribution, without preprocessing, the
sensitivity is unbounded, thus simply adding noise to Y can no longer protect the privacy. Therefore,
a solution is to clip Y into [T, T, and add noise proportional to T'/e to achieve e-local label DP.
Such truncation will inevitably introduce some bias. To achieve a tradeoff between clipping bias and
sensitivity, the value of 7" needs to be tuned carefully. Based on such intuition, the method is precisely
stated as follows. Let Z; = Y; +W;, in which Yr; is the truncation of Y;, i.e. Yr; = (Y, AT)V(=T),
and W ~ Lap(27'/¢). The result is shown in the next theorem.

pB
Theorem 10. The method above is e-local label DP. Moreover, with k ~ (N€?) =T N,
and T ~ (kez)ﬁ, the risk is bounded by
281 28
Ryeg — R, S (Ne*) ™ mstde-1 4 N~ 2+d, (26)

reg ~
Proof. (Outline) It can be shown that the clipping bias scales as 721 =), To meet the e-label DP, an
additional error that scales as T'/¢ is needed. By averaging over k nearest neighbors, the variance
caused by noise W scales with T2 /(ke?). From standard analysis on nearest neighbor methods [29)],

the non-private mean squared error scales as 1/k + (k/N)?%/?. Put all these terms together, Theorem
can be proved. Details can be found in Appendix [K] O
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With the limit of p — oo, the problem reduces to the case with bounded noise, and the growth rate of
k and the convergence rate of risk are the same as those in Theorem|[6] For finite p, 28(p — 1)/(2p8 +
d(p—1)) < 28/(28 + d), thus the convergence rate becomes slower due to the privacy mechanism.

6.2 Central Label DP

1) Lower bound. The minimax lower bound is shown in Theorem IT]
Theorem 11. The minimax lower bound is
253 26(p—1)

inf sup  (Rypeg — Rio,) 2 N7 323+ + (eN)™ pEFa-D 27)
AeAe(fﬂ?)Efregz 7 g

2) Upper bound. Now we derive the upper bound. To restrict the sensitivity, instead of estimating
with (23) directly, now we calculate an average of clipped label values:

1
n

N
iy = Z 1(X; € B)) Clip(V;, T) + W, (28)
i=1

in which W, ~ Lap(2T/(n;€)). Then for all x € By, let j(x) = #j;. The following theorem bounds
the excess risk.

Theorem 12. (28) is e-label DP. Moreover, under Assumption[l|and 3] if h and T scales as h ~
N~ 4 (eN) 7%=, and T ~ (e Nh®)'/P, then the excess risk can be bounded by

28(p—1)

Ryeg — RY,, < N725%3 4 (eN) wiedn (29)

reg ~

The proof of Theorem[TT]and[T2]follow that of Theorem[7]and[8] The details are shown in Appendix

and Mrespectively. With p = 2, the right hand side of (29) becomes (e A 1)~ it , indicating that

the privacy constraint blows up the sample complexity by a constant factor. With larger p, the second
term in (29) becomes negligible compared with the first one.

The theoretical analyses in this section are summarized as follows. In general, with fixed noise
variance, if the label noise is heavy-tailed, while the non-private convergence rates remain unaffected,
the additional risk caused by privacy mechanisms becomes significantly higher, indicating the
difficulty of privacy protection for heavy-tailed distributions.

7 Conclusion

In this paper, we have derived the minimax lower bounds of learning under label DP for both central
and local models. Furthermore, we propose methods whose upper bounds match these lower bounds.
The results indicate the theoretical limits of learning under the label DP. From these results, it is
discovered that under local label DP constraints, the sample complexity blows up by a factor of at least
O(1/€2). Under central label DP requirements, the additional error caused by privacy mechanisms
is significantly smaller. Finally, it is shown that for regression problem with heavy-tailed label
distribution, the additional risk induced by privacy requirement becomes inevitably higher.

Limitations: The limitations of our work include the following aspects. Some assumptions can
be weakened. For example, current analysis assumes that feature distributions have bounded sup-
ports, which may be extended to the unbounded case. One can let the bin splitting and nearest
neighbor method be adaptive in the tails of features, such as [41]]. Moreover, the bounds derived in
this paper require that samples increase exponentially with dimensionality. However, in practice,
the performance of learning under the label DP can be quite well even in high dimensions. The
discrepancy can be explained by the fact that the minimax lower bound considers the worst-case
distribution over a wide range of distributions. However, in most realistic cases, the distributions
satisfy significantly better properties. A better modeling is to assume that these samples lie on a low
dimensional manifold [57.58]]. In this case, it is possible to achieve a much better convergence rate.
Finally, it is not sure whether approximate DP (i.e. (€, §)-DP) can improve the convergence rates.
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A Proof of Proposition 2]
From (5) and (@), the Bayes risk is
B =P(Y 2 ¢(X0) = [PV £ IX = x)f(dx = [ (1= 0" G0)fyix. (G0)
The risk of classifier ¢ is
Ra = P(Y (X)) = | [ (1= 1 (3) £ 0] a1
From (3T) and (8),
Rots = Rigy = [ (0 (0) = Elnog () (). 32)
The proof is complete.
B Proof of Theorem I

In this section, we prove the minimax lower bound of multi-class classification. The problem with K
classes with K > 2 is inherently harder than that with K = 2. Therefore, we just need to prove the
lower bound for binary classification, in which Y = {1, 2}. Let

1(x) = n2(x) = 1 (x). (33)
Since 71 (x) + n2(x) = 1 always holds, we have
1-— 1
m) = L1 o = LI, (34)

Therefore, n(x) captures the conditional distribution of Y given x.

Find G disjoint cubes By, ..., Bg C X, such that the length of each cube is h. Denote cy, . .., cg
as the centers of these cubes. Let ¢(u) be some function supported at [—1/2,1/2]%, such that

0 < ¢(u) < 1. (35)
Let f(x) =coverx € X.Forv e V:={-1,1}", let
- X—c
Nv(x) = kagb < W k) hP. (36)
k=1
It can be proved that if for some constant C'yy,
m < Carh"771, (37)
then for any 7 = 1, 71 and 7, satisfies Assumption[I[b). Denote
" X — Cg A
U, = arg max / 0] ( ) 1(sign(n(x)) = s) f(x)dx. (38)
se{-1,1} JB, h

Then the excess risk is bounded by

R_R = / v () [P(sign(71(x)) # sign (i (x))) f (x)dx

Y

; /Bk v (x)|P(sign(7i(x)) # sign(ny (x))) f(x)dx

= o0 [ o (55 ) plemtie0) (i (39)
k=1 ke
If O, # vy, then from (33),

[ o (35 ) 1o x> [ o (X5 ) dsien(io) = v s, 0
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Therefore

6 (E=) 1(sign(i(x)) £ o0 Fx)dx > = [ 6 (E2E) px)dx > Sent lg], . @D
Lo (5%) [ 0 (5% s>

Hence

Seh® 9l Y Pl £ )

R—-R* >
k=1
= LehP o], Elpn (v, V)], @)
in which pp denotes the Hamming distance. Then
inf jnf | suwp (R—R)> S124 ol it nf maxEfo (v, V). (43)
Define
0= sup max D r(Px,2).n I Px,2) 18 v ) 44)

MeMV:V'ipu(v,v')=1

in which P(x z), v denotes the distribution of (X4, Z1),...,(Xn, Zy) with n = ny. Dgp
denotes the Kullback-Leibler divergence. Then from [28]], Theorem 2.12(iv),

e . m (1 _ §
1I$f1]r\14fr516a\>}<E[pH(v,v)] > 5} (26 01— 2) . (45)

It remains to bound ¢. Without loss of generality, suppose v; # v}, and v; = v} for i # 1. Then
NDgr(Px,ziv||Px,z|v)

= N [ f(x)Drr(Pzix=xv||Pzjx=xv)dx
By

Dr(Px,z)0n vIPx,2)10v)

N f(x)(eE - 1)2TV2(PZ|X=X,V7 -PZ|X:x,v’)dX
B1

= N[ f)(ef —1)*5(x)dx

B,
= N(—1)° Blf( >¢>2< ; )hwd

N(ef — 1)1+ g5 (46)

In (a), Px, 7|y denotes the distribution of a single sample with privatized label (X, Z), with i = 7y

In (b), Pz|x X,V denotes the conditional distribution of Z given X = x, with = 7). (c) uses [24],

f #?(u)du, which is a constant. Moreover,

(a)
Drr(Px ziv|[Px.zivv) < Dxr(PxyplIPxyv)

P(Y = 1[v)

= /B1 f(x) {P(Y=1|v)lnP(Y:1V/)+P(Y:—1|v)1nP(Y:_
/ £ {1+m<x> b L) Lo _”VEXH dx
B

2 1—nv(x) 2 147y

—
INS

3 [ flx)ng(x)dx
By

< 3R g3

For (a), note that 7 is generated from Y. From data processing inequality, (a) holds. For (b), without
loss of generality, suppose that v; = 1, thus 7y (x) > 0 in By. Then In(1 + 7y (x)) < ny(x). From
33) and B6), |7v(x)| < 1/2. Therefore, — In(1 — 7y (x)) < 27 (x). Therefore (b) holds.
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From (#6) and #7),
§ < N [(e° = 1)2 A3] WP+ g3
Let
ho~ (N (2 A1) 750
Then § < 1. From (@3)), with m ~ h78=4,

inf inf Elpu (v,v)] = h7P~4,
BB e (VIR

Hence

inf inf sup (R— R*) 2 hPHpP=d o pPOTD [N (2 A1)]7 2T

v MeMe(fmep

The proof is complete.

C Proof of Theorem

Denote
N
n; = Z 1(X7 S Bl),
i=1

and for Z = M(X,Y), let

nj(x) = E[Z(j)|X =x]
e )
= s (x) + m( —1;(x))
as the number of training samples whose feature vectors fall in B;, and
1 -
Vij = ; Z nj(Xi)-
Lixien

Recall (T2) that defines S;;. From Hoeffding’s inequality,
2t?
P (S — nyvy;| > t[Xq1:n) < 2exp ol
1
in which X. denotes X1, ..., Xy.
Define

v 1= maxuv;,
J

and

¢ = argmax vy;.
J

(43)

(49)

(50)

(S

(52)

(53)

(54)

(55)

(56)

(57)

Now we bound P(v/ — vy, > t), in which ¢; is defined in @) c; can be viewed as the prediction at
the [-th bin. We would like to show that the even if the prediction is wrong, the value (i.e. conditional
probability) of the predicted class is close to the ground truth. v} — v, > t only if 35, v} — vy; > ¢,

and Sy; > Sjc:. Therefore either Sy; — njvy; > t/2 or Sier —muj > t/2 holds. Hence

1 1
P(vf —wvje, >1) <P <E|j7 |S1; — nyugj| > 2nlt) < 2K exp (2nlt2) .

Define
_ [2In(2K)

0= _—.
n
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s26  Then

1
v — Elvi,|X1.n] = / P(v] — v, > t)dt
0

& 1
< +/ 2K exp (2n1t2) dt
to
(a) 12 1
< tp+2 IKexp (nlt?))
B /2111 2K) /

In(2K) 2K
< gy (60)
ny
527 In (a), we use the inequality
o w2 .2
/ e 202du < \/27706_217. (61)
t

s28  Now we bound the excess risk.

R-R - / (7" (%) — Elneg (x)]) F(x)dx
G

— ZZ/BZ (1" (%) = Elnex (x)]) f(x)dx. 62)

520 We need to bound [ B, (n*(x) — E[ne(x) (x)]) f(x)dx for each . From Assumption a), for any
s30 X,x’ € By, the distance is bounded by ||x — x’|| < V/dL. Thus

[n; (%) = ()| < Lah?, (63)
ss1  in which Ly is defined as Ly := Lv/d. From ©3) and @

~‘ o = L nr. 64
|7 (x) — 7;(x )|_e2—|— d (64)
532 Define
i7" (%) = maxi}; (x), 65)
533 then
* ez +1 }
n ( ) E[nCl( )|X1N} < o (7] ( )_]E[TICL(XNXlN])
es 41,
< oo (0 — Efvie X)) + 2L
541 [2In(2K
< 36z+ n( )_~_2th[3. ©6)
e2 — 1 n;

s34 Take integration over cube B, we get

/ (7 (%) — Efe, (0)]) f (x)dlx
B,

1 1
< P (< gmm)) [ (n*<> b () < p(B0)] ) S(x)x
B
[ (060 - Bl ol = () ) x)dx
—1(1-n2)Np(B €2+1 21n d
< p(By)e z1-mANp(B) 4 |3 ) +2L w2 | p(By), (67)
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540
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544

in which p(B;) = P(X € B) is the probability mass of B;. Moreover, define

A= inf ("(x) —ns(x)), (68)
and
A= inf (7(0) - (%) = LA, (69)
x€B ez +1
ir} which the 7); is the second largest value of 7; among 7 = 1,..., K, which follows the definition
of 7.

If A; > 0, then ¢*(x) is the same over B;. Then either v} — vj,, = 0 or v] — v, > A, holds. Hence
x) — E[fje, ()| X1.n]

7" (
- / T (%) > X o) dt

1
/ P (vl Vig, >t — 2th56 + |X1 N) dt
0

A;+2L4 R 0o 1
/ P(v] — v, > Ay)dt —l—/ 2K exp [—nl(t — 2thﬁ)2] dt
0 Al+2thB 2

1 1 1
2K exp (—inA ) (Al + 2th522 + 1) + 2K n—l exp (—2nZA2>

< P41 /2 1 -
[QK <Al + 2thﬁz% i— 1) + 2K ij exp (—2nlAl2> . (70)

Take expectation over X;.y, we get

/B (n*(x) — E[’I]Cl (X)])f(x)dx < p(Bl)e—%(l—th)Np(Bl)

IN

IN

IN

€

€ 2
ez +1 2T 1 ez —1
2Kp(B)) | A, +2L4h° + — —=Np(B)A? [ — 71
+2Kp( l)( 1+ 2Lah” 4 Np(Bl)>eXp[ 3 p(Bi) l<e2+1)]( )

Define

ef +1 [2In(2K)

B
ez — 1 cNhd +2Lah

3

a = p(Bi), (72)

and

e € 2
s41 [ 2 —1
b= 2Kp(By) [ A+ 2L0ah? + \ o ™) exp ”cthM e )
es — Nhd ez +1

From Assumption|1fc), p(B;) > ¢Nh?. Therefore, from (67) and (71)

G
R—R* < Z [p(Bl)e—%(l—lnmNp(Bz) 4 min{al,bl}}

IN

G
e~ 3(-l2)eNnt > min{a, b} (74)
=1

It remains to bound Zlel min{az, b;}. Note that for all x € By, n*(x) — ns(x) < A; + 2L4hP.
Thus

> p(B) <P (n°(X) = ns(X) < u+2Lgh") < M(u+2Lgh")". (75)
LA <u
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552

553

554

555
556

Let
es +1 [2In(2K)

Ag = — , 76
07 51 cNhd (76)
and
I, = {l|A <A}, (77)
I, = {l12F'A0 <Ay <28A0}k=1,2,... (78)
Then
(o b <
?eufﬂl{al b < lez;oaz
ef +1 [2In(2K)
< B 3— 2Lah"
< l:A;AOP( 1) 1\ o +2L4
+1 [2In(2K)
< M(Ag+20gh%) |35 2L 4P
- (Ao +2Lah") es —1 cNhd d
1 WK\ *
n
— RAOHD), 79
<€2/\1th> + 7)

For I, with k > 1,
i b < b
{reulr:{az’ 1y < Z )

S
1 /e —1\°
< Z p(By) | - 2K (28Ag + 2Lah? + Ao) exp l <€€ — ) cth22“A§]
A28 A, 2\ez+1
< M(2Ag + 2LghP)7 (25 +1)Ag + 2Lgh?) (2K) 2" 71

< M(Ag+ 2LghP)yHigkyth=2""242

It is obvious that there exists a finite constant C’ < oo that depends on +, such that

o0
22k7+k—22k72+2 S C/. (81)
k=1
Therefore
0 41
1 InK)\ 2
i W<l ——— RPOAHD), 82
= k
Combine (74), (79) and (B2),
y+1
1 InK\ 2
R-R' S (62 N ]I;hd) + HEOFD, (83)
To minimize the overall excess risk, let
1
N(E2 A1)\ 2PH
h ~ ((an )) , (84)
then
N(2 A1)\ T
R—R*< (an) . (85)

Compare to the simple random response method, the bin splitting avoids the polynomial decrease
over K.

18

(80)



557

558
559
560

561
562

563

564
565

566

568

569

570
571
572

D Proof of Theorem

We still divide the support as the local label DP setting, except that the value of h is different, which
will be specified later in this section. Note that still holds here. Let V takes values from
{=1,1}" randomly with equal probability, and V} is the k-th element. Then 7y (x) is a random

function. The corresponding random output of hypothesis testing is denoted as Vi, which is calculated

by (38). Then

Y

inf sup (R—R")
ACA(f,n)EFara

v

1 m
L ppta ! ;
i _inf max k§—1p(vk # k)

1 o
§hﬁ+d loll, Aléli ’;P(Vk # Vi)

1 “ N
— B+d i
= 5h ”qulg_lX?iP(Vk # Vi),

in which the last step holds since V}, for different k are calculated independently.

(86)

It remains to give a lower bound of P(Vk # V). Denote ny as the number of samples falling in By,

Y}, as the average label values in By:

N
ne = Z XEBk

1
Y, = — Yil X; € B).
Moreover, define

ap = 72'” |1X EBk)

g N L
- ¢(M) 1(X, € By),
N =1 h

in which the last step comes from (36). Then
E[V;|[X1.n, Vi] = Viag,

in which Xj. means Xy, ..., Xy. We then show the following lemma.
Lemma 1. If0 <t <In2/(eny), and nyt is an integer, then

PV = 1Xyn, Yo = —t) + P(Vi, = —1[Xyn, Yy = ) >

Wl N

(87)

(88)

(89)

(90)

oD

Proof. Construct D' by changing the label values of I = nyt items from these ng samples falling in
By, from —1 to 1. Then the average label values in By, is denoted as Y,c after such replacement. Vk

also becomes Vk. Then from the e-label DP requirement,

(@)

P(Vk = 1|X1:N,Yk = 715) > 716P <Vk = 1|X1 Nka =—t+

®)
> e lp (Vk =1X1.n, Ve = —t+

21
N
21

N

2
> eTnwte [ (Vk = —1|X1 N;Yk = —t+

)
)

l
N

> L {1 —p (f/k — Xy, Vi = tﬂ .

-2

19

)

92)



573
574
575

576

577

579

580

582

583

584

585

586

587

588

589

in which (a) uses the group privacy property. The Hamming distance between D and D’ is I, thus the
ratio of probability between D and D’ is within [e !¢, !¢]. (b) holds because the algorithm does not
change after changing D to D’. Similarly,

N _ 1 N _
P(Vi = —1[X1n Ve =) > [1 —P (Vk — 1X1n, Vi = ftﬂ . (93)
Then (OI)) can be shown by adding up (92) and (93). O
Now we use Lemma |1| to bound the excess risk. With sufficiently large ng, Y}, will be close to

Gaussian distribution with mean ay. To be more rigorous, by Berry-Esseen theorem [?], for some
absolute constant Cg,

1 Cg
P(Y, <ap|X Vi=1) > - — —. 94
P (Y, < axXin, Vi )_2 N (94)
Similarly,
- 1 Cg
P (V> —apXun, Vi=—-1) > - — —. 95)
2 %
We first analyze cubes with
In2
ng > 160%, ap < —. (96)
ENng
Under condition (96)), the right hand side of (94) and (93) are at least 1/4. Therefore
P(Vi # VilXin) = (\7 =1 Xy, Ve = —1) + 2P( = 11Xy, Ve =1)
In2 1 In2
> ( = 1]X;. NaYk>_n> (Vk—_1|X1N7Yk <n>
Ny 8 ENg
> . 97
z 33 97

From (86),

1 1 In2
inf  sup (R—R")>=h"Te|¢ E —P (a;C < —,np > 16C% ) (98)
AEAe(f n)e}_db( ) 2 H ||1 P 12 N E

From (33)), (89) and (87), a. < h”. Therefore

1 - In2
inf sup (R—R*)>—h"T|g|, Y P <1602 <np < ) ) (99)
AEA‘(fm)efcls( 24 Il prt o ch?

Recall that each cube has probability mass ch®. Select h such that
In2

2Nch? = 100
R (100)
From Chernoff inequality, 16C% < nj < In2/(eh”) holds with high probability. (T00) yields
h ~ (eN)™ 5. (101)
Recall the bound of m in (37). Let m ~ h7#~4, then (©9) becomes
inf  sup (R—R*) > hPOTY
AeAe(fﬂ’/)e}-cls
> (eN)“TEE (102)
Moreover, the standard lower bound for classification [28]] is
B(y+1)
inf sup (R—R")Z2 N~ 25+d . (103)
ACA(fm)eFu
Therefore
inf  sup (R—R") 2 N~ T (eN)™ Eal (104)

AEA(f m)EeF s
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591

592

593

595

596

597

598

599

E Proof of Theorem 4

Denote

n; = maxny;,

K
n; = E Ny
j=1

For all j such that n; —n;; > t,

P(Cl :j|X1:NaY1:N) ==

=1

= Z 1(Xi S Bl).

eenlj/Q

*
6671[

- - .
K 2
Zkzl ecnuk/

K
eny /2
Ek:le lk/

/2

2

_ Ll

—Llet
< em2¢,
Therefore
P(n; —ni, >1t) = Z P = j|Xi.n, Yin) < Ke 2,
Jmny—mn;>t
Hence
E[n} —ni,] = / P(n; —ny; > t)dt
0
2In K/e o) N
< / 1dt+/ Ke z¢qdt
0 2InK/e
2
= —(InK+1).

€

Define
1
vij = o 2_; 1(X; € Bi)n;(Xs),
then
E[nlj|X1:N] = nlvlj.
From Hoeffding’s inequality,
2
P(|7’Llj — nﬂ}lj‘ > t) < 2672"17th
Thus
E max |y, — nlvlj@ = / P (Uf:1 {Inij — nyoyj| > t}) dt
0

Rl — L 42
< min (1, 2Ke ?m ) dt
0

2n In(2K) + /

< 24/2n;In(2K),

s00 in which the last step uses the inequalit [, e~/ gy < \/2rge=t"/(2") Then

oo

2n; In(2K)

2Ke Tl dt

* 1 *
E[Ul 7'Ulcl|X1:N] = n—lE[nlvl 77741}101]

1 * * *

= n—lE [0 — e, + v — nf + nye, — MU

< 1Ep -+ QE[ | ]
—En —ng —E |max |n;; — ngvy;

>~ n 1 lcg n p % LYl
2 2In(2K

< Lok 41y 44y HEE)
€eny ny

21
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60t By Holder continuity assumption (Assumption[Ia)), for x € By,

1
luij —mj(x)] < ;21 (X; € By)|n;(X;) — n;(x)| < Lah®, (115)

i=1

602 in which Lg = L+/d, L is the constant in Assumption a). Thus

E[n* (%) = ne,(x)|Xin] < —(In K +1) +4 MHthﬁ. (116)

2
€eny ny

603 Now take integration over B;.

/ (7" (%) — Elne, (0)]) £ (x)dx
B

< 2 (m < o)) [ (60— [ olm < GN0(B] ) sl
o (760 =B |Gl > 58080 ) £t
< p(Bl)eXp[ ;(1 —In2)Np(B ] !;f;l)l) +4 2]\1;((2[;) L oLah?| p(B)),
(117)

s04 in whichp(By) =P(X € B)) = [, f(x)dx. is the central label DP counterpart of (67). The
605 remainder of the proof follows arguments of the local label DP. We omit detailed steps. The result is

y+1
In K [In K
* B
R—R §<€th+ hd+h> . (118)

606 Let
1 1
In K\ B+d In K\ 28+d
h ~ —_— 119
(EN) +( N) , (119)
607 then
MK\ T I
n n
R—R*< —_— . 120
N(GN) +(N) (120)

e0s The proof is complete.

ss F Proof of Theorem 3

610 Find G cubes in the support and the length of each cube is /. Let ¢(u) be the same as the classification
611 case shown in appendix[B| For v € V := {—1,1}%, let

K
x) =3 v <X C’“)hﬁ. (121)
k=1

612 LetP(Y =1|x) = (1 + nv(x))/2, P(Y = —1|x) = (1 — nv(x)), then n(x) = E[Y|x] = nv(x).
613 The overall volume of the support is bounded. Thus, we have

G < Cgh™ (122)

614 for some constant Cg.

615 Denote

o, = sign ( /B )0 (X _hc’“) f(X)dX> , (123)

22



616

617

618

619

620

621

622

623

624

626

627

then the excess risk is bounded by
R = E|[((X)-m(X)]
= ZK: E [(7(x) = nv(x))?] f(x)dx. (124)
If 0 # vy, from (T23),

/Bk (’7(") — Uk (X _hck> hﬁ>2 f(x)dx > /Bk (ﬁ(X) + o (X _flck> hﬁ)2 F(x)dx. (125)

Therefore, if 0, # vy, then

J R R e L e e e [ B ED
Therefore

R-R"

v

B [ ol 100 # 00|
= LGl Elpn (¥, V)] (127)
Similar to the classification problem analyzed in Appendix [B] let
h~ (N(e A1)?) 5 (128)
then § < 1, and

inf sup maxE[py(v,v)] > G~ h™ % (129)
Vv MeM,.VEV

Thus

inf inf  sup R AT~ b8~ (N(e A1)2) 25, (130)
7 MeM(PX,Ye]:rcgl

G Proof of Theorem

According to Assumption |Y'| < T with probability 1, thus Var[Y|x] < T2 for any x. A Laplacian
distribution with parameter \ has variance 22, thus

27\? 8T
Var[W]zQ)\Q:Q() == (131)
€ €
Hence
8
Var[Z] = Var[Y] + Var[W] < T2 (1 + 2) : (132)
€
Now we analyze the bias first.
Ei]=E|+ 3 z|=E|r 3 nx) (133)
X)| = — = — .
n ko i ko A
1€ENE (%) i1€N® (%)

23



628 Thus

1 . B
< E T Z mm{LHXi—XH ,2T}]
L E€ENK(x)
1 .
< E T Z mln{Lp’B(x),QT}]
| E€ENK(x)
< 2TP(p(x) > 1) + Ll
8
2k \“
< 9T —(1-In2)k L
- € + Ncvgb
8
k d
< G (N) ) (134)

629 for some constant Cf.
630 It remains to bound the variance.

Var[(x)] = E [Var [7(x)| X1, ..., Xn]] + Var[E[(x)]| X1, . .., Xn]. (135)
631 For the first term in (133)),

R 1
Var[n(x)|X1,...,XN] = Var % Z Zz"Xla---,XN
1€EN (x)
1
= = > Var[Zi|Xy, ..., Xy]
iE€ENY (%)
1 8
< T 1+ ). 136
(1) -
s32 For the second term in (133),
. 1
Var[E[j(x)[Xy, ..., Xn]] = Var |+ S onX)
1€EN (%)

IN

=
/

il
=
e
|

=

X
[ )

IN

S E [min {L2 I1X; — x||*? ,4T2H

4T2e~(1=n2)k | L2r(2)ﬁ

28
a

o (;) : (137)

IN

IN

633 Therefore (I33) becomes
. 1 3 k
Var[r(x)] < %TQ (1 + 62) + C? (N) . (138)
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634

635

636

637

638

639

641

642

643

644

645

646

647

648

Combine the analysis of bias and variance,
mm@ywmmﬂ<lﬂ 1+§ +20% (= N
~—k €2 AN '
Therefore the overall risk is bounded by
R—MCBJ—(X”ﬂ<iW 1+§ +2C% LA
- T] 77 ~ k 62 1 N .

The optimal growth rate of k over N is

k ~ N7 (¢ N 1) 7285,

Then the convergence rate of the overall risk becomes

23

RS (N(enl)?) @2,

H Proof of Theorem 7]
From (127)),

=
|

7
v

1 A
5?1613 Elpn (V, V)]

G
1 R
= §Ch2ﬁ+d 613> P(Vi # Vi)

k=1

(139)

(140)

(141)

(142)

(143)

Follow the analysis of lower bounds of classification in Appendix [D} let & scales as (I0T), then

P(Vi, # Vi) = 1. Moreover, G ~ h~%. Hence
. % 28 _ 28
inf sup (R—R")Zh™" ~ (eN) a5,
AEAG(fan)E-Fregl
Moreover, note that the non-private lower bound of regression is

inf - sup (R—R")Z2 N~ 247
ACA(fm)EFregt

Combine (T44) and (143),
28 23

inf  sup (R—R")Z2 N 25+d 4 (eN) @+5.
ACA(f )€ Freqn

I Proof of Theorem [§]
1) Analysis of bias. Note that
1
E[n|Xi.n] = EY|X € B)] = —— du.
[ Xoon) = BYIX € B =~ [ ofu)f(w)du
Therefore, for all x € By,

Efiu|Xa.n] = n(x)| !

p(Bi)
< thﬁ.

/ () — 9| £ (w)du

Therefore for all x € By,
B[] — n(x)| < Lah”.
2) Analysis of variance. If n; > 0,
1

N
1 1
Var | — 1(X; € B)Y;|X1.n| = —VarlY|X € B| <
ar | -3 1(Xi € BY;| m] o VarlY[X € B < -

i=1

25
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(146)

(147)

(148)

(149)
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649

650

651

652

653

654

655

656

657
658
659

660

661
662
663

664

665

666

Therefore

N
;; 1X, €eB)Y;| < P <nl < ;Np(Bl)) +P <nl > ;Np(Bl)) Np?Bl>
< exp {1(1 - ln2)Np(Bl)} + i (151)
2 Nchd
Similarly,
Var[W)] < P (nl < ;Np(Bl)) l2 4P <nl > 1Np(Bl)> %
€ 2 (%NP(BZ)) €2
< W. (152)
The mean squared error can then be bounded by the bounds of bias and variance.
E [(16) ~ n0)?) $ % + 1o + o (153)
Let
h~ N~37a 4 (eN)~ 75 (154)
Then
R— R* < N"7%7 4 (eN) 717, (155)

J Proof of Theorem[9]

Now we prove the minimax lower bound of nonparametric regression under label DP constraint. We
focus on the case in which e is small.

Similar to the steps of the proof of Theorem [5]in Appendix [F} we find B cubes in the support. The
definition of 7y, Uy, are also the same as (121)) and (123). Compared with the case with bounded
noise, now Y can take values in R.

For given x, let

T with probability % (3 + 2:2)

Y = 0  with probability 1-— % (156)
—T  with probability 1 (% - an(x)) .

In Appendix Ej about the case with bounded noise, 7T is a fixed constant. However, here T is not fixed
and will change over N. It is straightforward to show that the distribution of Y in (I56) satisfies
Assumption [3}

E[|Y|P|x] = M,. (157)
Moreover, by taking expectation over Y, it can be shown that 7, is still the regression function:

E[Y|x] = ny(x). (158)
Let

%

- ( Myh~ ﬂ) . (159)

Here we still define
0= sup max D(Pix, 2y n W1 Px,2)1.80 V) (160)

MeM V. V'ipa(v,v)=1
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667

668

669

670

671

672

673

674

675

676

677

679

Without loss of generality, suppose that v; = v} for ¢ # 1. Then
D(Pix.z)nivllPx.2)niv) = ND(Pxzpl[Px,ziv)

= N[ fX)D(Pzxv||Pzx,v)dx
B1

< N[ fx)(e = 1)°TV? (Pgx.v, Pzixv) dx
B

= N[00 - 1)) g

By
h?8 X—c
_ e 12V 2 1
= N(e—1) Tz /Blf(x)gb ( h )dx
= N(ef = 1)?r*H||g| 3772

2
1 St 26
= N 2ol (5o ) R aen
Let
h~ (N(ef —1)%) " mrtaeD, (162)

then § < 1. Hence

inf inf  sup R A% ~ (N(ef — 1)2)" mstimn, (163)
7 MEMe(f e F ~

K Proof of Theorem

Define
nr(x) := E[Y7|x]. (164)
Then
() = 1) = () = () + E[()] —nr(x) +(x) - Eli(x)]. (165)
Therefore
E () = n(x)?] < 3r(x) = n(x))? + 3(EHE)] — nr(x)? + 3 Varli(x)]
= 31 + 12+ I3). (166)

Now we bound /1, Is and I3 separately.

Bound of ;. We show the following lemma (which will also be used later).

Lemma 2.
Mp 1-p
Inr(x) —n(x)| < s (167)
Proof. Firstly, we decompose 77 (x) and 7(x):
nr(x) =E[Yr|x] =E[Y1(-T <Y <T)|x]+ TP(Y > T|x) — TP(Y < T|x), (168)

n(x) =E[Y|x] =E[Y1(-T <Y < T)|x] + E[Y1(Y > T)|x] — E[Y1(Y < T)|x].  (169)

The first term is the same between (168) and (T69). Therefore we only need to compare the second
and the third term.

EY1(Y >T)x] = /OT P(Y > T|x)dt + /TOO P(Y > Tlx)dt

IA

TP(Y > T|x) + / Myt~Pdt
T

M,
TP(Y > T|x) + —"1T1"’. (170)
p—
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680

681

682

683

685

686

687

688

689

690

691

692

693

Therefore

E[Y1(Y > T)|x] = TP(Y > T|x) < £”1T1—P.
p—

Similarly,
M,
p—1

TP(Y <Tlx) —E[Y1(Y <T)|x] <
A Combination of these two inequalities yields the (T67).

With Lemma 2}

M2
I, < p__p2(1-p)
= p-1)2

Bound of 1. Follow the steps in (134)),

I, < C} <§_)

Bound of I5. We decompose Var[rj(x)] as following:

28
d

Var[)(x)] = E[Var[f}(x)|X4, ..., Xn]] + Var[E[)(x)| X4, . ..

TP,

7XN]]'

(171)

172)

(173)

(174)

(175)

For the first term in (T73), from Assumption E[|Y|P|x] < M,. Since p > 2, we have E[Y?|x] =

2
My . Therefore

812

2
Var[Z;|Xy,...,Xy] = Var[Yr| + Var[W] < My + —-
€

Recall (20), we have

R 1
Vaf[n(x)|X17--~,XN] = ﬁ Z Var[Zi|X17...

i€N (x)

1 2 872
VA
k( p 62)

For the second term in (T73), (I37) still holds, thus

IN

28
>d

1/ 2 8T? AN
I3 < % (lupp +€2) + ] <N) .

Plug (173), and into (166)), and take expectations, we get
R = E[7H(X)-n(X))]

Var[E[j(x)|X1, ..., Xy]] < C} (

=] =

and

1 T2 B\ T
S TP oot (N>
Let
T ~ (ke?)%, k ~ (Ne2) @125 \ N751a,
then

__28(=1) 25
R < (Neé*)™aw-1728 v N~ 25+4d,

28

7XN]

(176)

(177)

(178)

(179)

(180)

(181)

(182)
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710
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L Proof of Theorem 1]

Let Y be distributed as (I56). Recall Lemma I] for the problem of classification and regression with
bounded noise.

Now we show the corresponding lemma for regression with unbounded noise.
Lemma 3. If0 <t < TIn2/(eny), and nit/T is an integer, then

P(Vk = 1|X1:N,Yk = —t) —I—P(Vk = —1|X1:N,Yk = t) > —. (183)

W N

Here we briefly explain the condition nt is an integer. Recall the definition of Y}, in (88). Now since
Y take values in {—T7,0, T}, ny Yy /T must be an integer. Therefore, in Lemma we only need to
consider the case such that nyt/T is an integer.

Proof. The proof follows the proof of Lemma I|closely. We provide the proof here for completeness.
Construct D’ by changing the label values of | = nyt/T items from these ny, samples falling in By,
from —T to T'. Then the average label values in By, is denoted as }_/k’ after such replacement. V}, also
becomes Vk' . Then from the e-label DP requirement,

. _ (a) . _ 21
PV =1Xy.n, Y = —t) > e~ lep (V,; =1Xy.n, Y = —t+ )

ng
® - ; 2
> e “P(Vi=1Xyn, Vi =—t+ —
ng
—npte 9 % 2
> e 'k 1-P Vk:—1|X1:N,Yk:—t+f
N
1 N _
> {1 —P (v,c = 1[Xyn, Y = tﬂ . (184)

in which (a) uses the group privacy property. The Hamming distance between D and D’ is [, thus the
ratio of probability between D and D’ is within [e !¢, €/¢]. (b) holds because the algorithm does not
change after changing D to D’. Similarly,

. _ 1 . _
P(Vi = —1Xuy, Vi = £) = 5 [1 =P (Vi = X0, Vo = 1) ] (185)
Then (T83) can be shown by adding up (T84) and (I83). O

We then follow the proof of Theorem [3]in Appendix[D] (TOT) becomes
1
eN\ @7
h~|(— . 186
(7) (156
In (T36), note that P(Y = T') > 0 and P(Y = —T) > 0. Therefore M, /T? > n,(x)/T. This
requires R TP~ < M,,. Let T ~ hfpﬁ%l, then
1B
h~ (eN)” @8 h @A E-1) (187)
ie.
h ~ (eN) ™ #FHTD . (188)

Combine with standard minimax rate, the lower bound of regression with unbounded noise is
28(p—1)

inf  sup (R—R*)2 N %7 + (eN) wrdi 1, (189)
ACA(f,1)EFrega
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716

77

718

719

720

721

722

M Proof of Theorem

1) Analysis of bias. Note that Lemma 2] still holds here. Moreover, recall (I49). Therefore

[B{) — )| < Bl — 2 (O -+ () — ()] < Lah? + 271,

2) Analysis of variance. Similar to (I31)), it can be shown that

1
Val' Z X (S Bl N W
Moreover, the noise variance can be bounded by
T2
Var[Wl] = N2h2d€2
The mean squared error is then bounded by
T2 1

E (360~ n00)?] £ 0%+ 709

Let T ~ (eNh®)'/P, then

R— R =E[H(X)-n(X))*] <r* + + (eNhd)=20=1/p),

Nhd
To minimize (T94), let

h ~ N~ 4 (eN) ™ wra=D,
then

28(p—1)

R—R*"<N™ ta + (eN) ™ pF¥at=D,
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution (i.e. proposing a new Huber loss minimization approach
which is more suitable to realistic cases, and providing theoretical analysis) has been made
clear in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: It is explained at the end of conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs are shown in the appendix, and intuition is provided in the paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions

of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a theoretical paper without experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This is a theoretical paper without experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This is a theoretical paper without experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: No experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines)?

Answer: [Yes]
Justification: Our paper does not violate code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper is foundational and theoretical research and not tied to particular
applications.
Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper has no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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