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DREAMDISTRIBUTION: PROMPT DISTRIBUTION

LEARNING FOR TEXT-TO-IMAGE DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

Figure 1: DreamDistribution learns a prompt distribution D∗ that represents a distribution of de-
scriptions corresponding to a set of reference images. We can sample new prompts from D∗ or
modified D∗ by text-guided editing to generate images of diverse new instance that follows the vi-
sual attributes of reference training images (top). We can also apply a learned distribution flexibly
to, for example, a pretrained text-to-3D model, and generate diverse new 3D assets following the
reference images (bottom).

ABSTRACT

The popularization of Text-to-Image (T2I) diffusion models enables the genera-
tion of high-quality images from text descriptions. However, generating diverse
customized images with reference visual attributes remains challenging. This
work focuses on personalizing T2I diffusion models at a more abstract concept
or category level, adapting commonalities from a set of reference images while
creating new instances with sufficient variations. We introduce a solution that al-
lows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the
generation of novel images by sampling prompts from the learned distribution.
These prompts offer text-guided editing capabilities and additional flexibility in
controlling variation and mixing between multiple distributions. We also show
the adaptability of the learned prompt distribution to other tasks, such as text-
to-3D. Finally we demonstrate effectiveness of our approach through quantitative
analysis including automatic evaluation and human assessment.

1 INTRODUCTION

Dreams have long been a source of inspiration and novel insights for many individuals (Edwards
et al., 2013; Von Grunebaum & Caillois, 2023). These mysterious subconscious experiences often
reflect our daily work and life (Freud, 1921). However, these reflections are not mere replicas; they
often recombine elements of our reality in innovative ways, leading to fresh perspectives and ideas.
We aim to emulate this fascinating mechanism in the realm of text-to-image generation.
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Text-to-image (T2I) generation has recently been popularized due to the astonishing performance
of state-of-the-art diffusion models such as Stable Diffusion (Rombach et al., 2021) and DALL·E
2 (Ramesh et al., 2022). Variations of the T2I models have enabled several fascinating applica-
tions that allow user to control the generation, such as conditioned generation based on other input
modalities (Zhang et al., 2023; Li et al., 2023; Yang et al., 2023), inpainting (Lugmayr et al., 2022;
Xie et al., 2023), image editing (Mokady et al., 2023; Brooks et al., 2023). One such interesting
application is personalization of T2I models, where user provides some reference images of the
same instance (e.g. their pet dog), and the personalized model can generate images based on the
references, with the flexibility of text-guided editing for new context. This is generally achieved by
associating a token with the personalized concept through fine-tuning the model parameters (Ruiz
et al., 2022; Kumari et al., 2023) or newly added learnable token embeddings (Gal et al., 2022;
Voynov et al., 2023).

In many cases, however, user may want to personalize T2I generation over a more abstract visual
attribute instead of a specific instance-level personalization. For example, a designer may seek
inspiration by generating a variety of novel cartoon characters or scenery images following similar
visual attributes presented in their previous works. In this case, trying over text prompts is not
scalable and hard to get desired result that follows the desired visual attributes. On the other hand,
using the existing personalization methods aforementioned is likely to fail when training images do
not represent the same instance, but rather encompass a distribution sharing certain, yet challenging-
to-articulate, commonalities. Additionally, existing personalization methods often result in limited
diversity and variation during generation (Fig. 3). Since the associated token is fixed, these methods
will typically learn a token that is either overfitted to a combination of visual features, or learn a
token that is overly generalized, which introduces more randomness into the uncontrollable diffusion
process, thereby failing to follow desired visual attributes in generated images.

In this work, we propose DreamDistribution, a prompt distribution learning approach on T2I diffu-
sion model for various downstream tasks (Fig. 1). Our proposed solution has three key components
(Fig. 2). First, to adapt a pretrained fixed T2I model, instead of fine-tuning diffusion model parame-
ters, our method builds on prompt tuning (Zhou et al., 2022a;b), where we use soft learnable prompt
embeddings with the flexibility to concatenate with text, to associate with the training image set.
This design have several advantages: (1) It prevents catastrophic forgetting of the pretrained model,
enabling it to learn an almost infinite variety of target prompt distributions using the same T2I dif-
fusion model. (2) It is highly efficient in terms of parameters, requiring only the prompt itself as the
learnable element. (3) The learned prompts remain within the semantic space of natural language,
offering text-guided editing capabilities and generalizing to other pre-trained diffusion models, such
as text-to-3D. (4) The learned distribution increased flexibility in managing variations. Second, we
introduce a distribution of prompts to model various attributes described by reference images at a
broader level. The prompt distribution is modeled by a set of learnable prompt embeddings to as-
sociate with the training image set as a whole. The learned prompt distribution can be treated as
a distribution of learned “descriptions” of the reference images and should be able to model the
commonalities and variations of visual attributes, e.g., foreground, style, background, texture, pose.
During inference, we sample from the prompt distribution, which should have a similar semantic
meaning, understood by the downstream denoising network, to produce in-distribution outputs with
appropriate variations. Lastly, to effectively optimize the set of soft prompts that models the dis-
tribution, we apply a simple reparameterization trick (Kingma & Welling, 2013) and an orthogonal
loss to update the prompts at token embedding space simultaneously and orthogonally.

We first demonstrate the effectiveness of our approach in customizing image generation tasks (§4).
By taking a small set of images of interest as training images, we demonstrate that our approach can
generate diverse in-distribution images where baseline methods fail to generate desired output. The
diversity and the quality of our synthetic images are verified via automatic and human evaluation
(§4.2). We show that the learned distribution holds the capability of text-guided editing, as well as
further controllability such as scaling the variance and composition of distributions (§4.3). Next we
highlight that the learned prompt distribution can be easily applied to other text-guided generation
tasks such as pretrained text-to-3D models (§4.4). Lastly we show the effectiveness of our method
on personalized distribution generation through classification task with synthetic training data as a
proxy (§4.5). In summary, our contributions are:
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• We propose a distribution-based prompt tuning method for diverse personalized generation
by learning prompt distribution using T2I diffusion model.

• Using a public available pretrained T2I diffusion model, we experiment our approach on
customization T2I generation tasks and show that our approach can capture visual attributes
into prompt distribution and can generate diverse in-distribution images that follows text-
guided editing.

• Further experiments show that our method is flexible in terms of diversity or mixing and
easy to be adapted to other text-guided generation tasks.

• We further quantitatively demonstrate the effectiveness of our approach using synthetic
image dataset generation tasks as a proxy and also through automatic evaluation metrics
and human evaluation.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Sohl-Dickstein et al., 2015) have
achieved great success in various image generation tasks. State-of-the-art T2I models such as Ima-
gen (Saharia et al., 2022) and DALL·E 2 (Ramesh et al., 2022) trained on large scale data demon-
strate remarkable synthesis quality and controllability. Latent Diffusion Models (Rombach et al.,
2021) and its open-source implementation, Stable Diffusion (Rombach et al., 2021), have also be-
come a prevailing family of generative models. In these T2I diffusion models, text is encoded into
latent vectors by pretrained language encoders such as CLIP (Radford et al., 2021), and the de-
noising process is conditioned on latent vectors to achieve text-to-image synthesis. However, such
models trained on large scale text-image pairs are not designed to generate personalized images such
as images of one’s pet dog, therefore only the text conditioning cannot provide fine-grained control
over the generated images.

2.2 PERSONALIZED TEXT-TO-IMAGE GENERATION

Various approaches are proposed to better control the text-guided diffusion models and achieve
personalization. Textual Inversion (Gal et al., 2022) proposed to search for a new token in the em-
bedding space representing a visual concept via optimizing a word embedding vector. DreamBooth
(Ruiz et al., 2022) fine-tunes all parameters of the model to associate a personalized subject into
an rarely used token. Custom Diffusion (Kumari et al., 2023) employs that fine-tuning method but
only fine-tune cross-attention layers to reduce the training time, with the ability to learn multiple
concepts jointly. Subsequent works (Voynov et al., 2023; Wei et al., 2023; Shi et al., 2023a; Alaluf
et al., 2023) mainly follow the ideas from these works and focus on solving their drawbacks.

2.3 PROMPT LEARNING

Prompt learning is a popular method in natural language processing (NLP). The main idea is to
transfer various downstream NLP tasks to masked language modeling problems via adopting proper
prompt templates (Brown et al., 2020; Lester et al., 2021; Li & Liang, 2021; Radford et al., 2019)
instead of fine-tuning the pretrained language model. Searching for the appropriate prompts is the
key of this method. Prompt engineering (Brown et al., 2020; Radford et al., 2019) adopts carefully-
designed discrete (hard) prompts crafting by human, while prompt tuning (Lester et al., 2021; Li &
Liang, 2021) automatically searches for the desired prompts in the embedding space via learning
continuous (soft) prompts. The great success of NLP inspires computer vision researchers and
prompt engineering is explored in pretrained vision-language models such as CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021). CoOp (Zhou et al., 2022b) applies the idea of prompt tuning
in vision-language tasks, which learns a continuous prompt via minimizing the classification loss of
the downstream tasks. ProDA (Lu et al., 2022) learns a distribution of diverse prompts to capture
various representations of a visual concept instead of a single prompt in CoOp (Zhou et al., 2022b),
which achieves better generalization.

Most relevant to our work are Textual Inversion (Gal et al., 2022) and ProDA (Lu et al., 2022).
Textual Inversion learns a fixed token embedding associated with a pseudo-word. Ours learns a dis-
tribution of prompts in the CLIP feature space like ProDA, allowing for learning the visual concept
with diverse representations and capturing the details for reconstructions and plausible synthesis.

3



162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of DreamDistribution for learning a prompt distribution. We keep a set of K
learnable soft prompts and model a distribution of them at the CLIP text encoder feature space. Only
prompts are learnable, CLIP encoder and the T2I diffusion model are all fixed. We use reparame-
terization to sample from the prompt distribution and update the prompts through backpropagation.
The training objective is to make the generated images aligns with the references. An additional
orthogonal loss is incorporated to promote differentiation among learnable prompts. For inference,
we sample from the prompt distribution at text feature space to guide the pretrained T2I generation.

3 METHOD

Given a set of images with some common visual attributes (e.g. same category, similar style), our
goal is to capture the visual commonalities and variations and model by a prompt distribution in the
text feature space. The commonalities among reference images may be challenging to articulate with
natural language prompts. We can thus sample prompts from the distribution to guide T2I model
to generate diverse unseen images while at the same time following the common traits distribution.
The inherent characteristics of the learned prompts are compatible with natural language instructions
and other pretrained text-guided generation models.

3.1 TEXT-TO-IMAGE DIFFUSION

Text-to-image diffusion models are a class of generative models that learns image or image latent
distribution by gradually denoising a noise sampled from Gaussian distribution. Specifically, given
a natural language text prompt, a tokenizer followed by a text embedding layer maps the input text
to a sequence of embedding vectors p. A text encoder converts the text embedding into text features
c = E(p) used for conditioning the generation process. An initial noise ϵ is sampled from N (0, I),
and the denoising model ϵθ predicts the noise added to a noisy version of image of image latent x.
The denoising model ϵθ is optimized using the objective:

L = Ex,c,ϵ,t

[

∥ϵ− ϵθ (xt, c, t)∥22
]

(1)

where x is the ground-truth image or image latent obtained from a learned autoencoder, xt is the
noisy version of x at time-step t, and ϵ ∼ N (0, I).

3.2 PROMPT TUNING

Our proposed method is grounded in the notion of prompt tuning, which aims to learn a soft con-
tinuous prompt on target task and is widely used in fine-tuning NLP models. (Lester et al., 2021;
Liu et al., 2023; Li & Liang, 2021; Hambardzumyan et al., 2021; Liu et al., 2021) Specifically, for
a pretrained model that takes natural language prompt as input, we can formulate a prompt with
continuous learnable token embeddings P = [PREFIX]V [SUFFIX] ∈ R

L×d, where [PREFIX]
and [SUFFIX] are word embeddings of natural language prefix and suffix if needed, and L rep-
resents the prompt length or the total number of tokens, and d represent the dimension of word
embeddings. V = [v]1 . . . [v]M ∈ R

M×d represents a sequence of M learnable token embed-
ding vectors with same dimension as word embeddings. During fine-tuning, the parameters of the
pretrained generation model remain fixed, and only the learnable token embeddings V are updated
through direct optimization employing the corresponding loss function backpropagated through gen-
erator ϵθ and text encoder E . Formally, prompt tuning aims to find optimized embedding vectors
V∗ = argmaxV P (Y | P, X), where X and Y are input data and output label, respectively.

Prior works have shown the efficacy of adopting prompt tuning techniques on vision-language mod-
els for image classification tasks (Zhou et al., 2022b; Jia et al., 2022; Zhou et al., 2022a). Gal et al.
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(Gal et al., 2022) adopts similar prompt tuning methods that enable personalized generation. How-
ever, the limitation of this approach lies in its constraint to personalize only one particular concept,
such as a specific dog, as it employs a fixed token embedding for concept encoding.

3.3 LEARNING PROMPT DISTRIBUTION

We aim to model more general commonalities and variations presented in the reference image set
and generate diverse images of new instances that visually align, therefore we propose to model a
learnable distribution of prompts for the reference images. Inspired by Lu et al. (Lu et al., 2022),
which proposed to estimate a distribution of prompt for image classification tasks, we propose to
model a distribution of learnable prompts over a sequence of M token embeddings to capture the
distribution of visual attributes on T2I generation task leveraging diffusion model.

Our methods builds on Stable Diffusion (Rombach et al., 2021), where a pretraind CLIP (Radford
et al., 2021) text encoder is used for obtaining text feature of the prompt. Due to the contrastive
training objective of CLIP, features of texts that have similar semantic meaning have high cosine
similarity and therefore close to each other in CLIP feature space (Radford et al., 2021). Lu et al.
(Lu et al., 2022) and some other previous works (Chen et al., 2022; Ma et al., 2023) have also shown
that for text prompts that describe images of the same category, the CLIP text feature c output from
pretrained CLIP text encoder are adjacent to each other in a cluster. Therefore, it is sufficient to
model a Gaussian distribution of c that describes images of same category or with shared attributes
without extra restriction. To do so, instead of keeping one learnable soft prompt to optimize during

training, we maintain a set of K learnable prompts PK = {Pk = [PREFIX]Vk [SUFFIX]}Kk=1
corresponds to a set of similar reference images. Our goal is to optimize the set of learnable token

embeddings {Vk}Kk=1. With K learnable prompts, we can estimate the mean µc = µ
(

E
(

PK
))

∈
R

L×dE and standard deviation Ãc = Ã
(

E
(

PK
))

∈ R
L×dE at E text encoder space, where dE is the

feature dimension of text encoder space.

Applying to the training objective of T2I diffusion model, eq. (1) becomes:

L
(

PK
)

= Ex,c̃,ϵ t

[

∥ϵ− ϵθ (xt, c̃, t)∥22
]

(2)

where c̃ ∼ N
(

µc,Ã
2
c

)

and ϵ ∼ N (0, I) is the sampled Gaussian noise added to the image or
image latent. However, sampling c̃ from a distribution makes it not differentiable for optimization,
therefore we apply the reparameterization trick similar to that used in VAE (Kingma & Welling,
2013). Formally, since c̃ ∼ N

(

µc,Ã
2
c

)

, we can rewrite the optimization objective eq. (2) as:

L
(

PK
)

= Ex,É,ϵ,t

[

∥ϵ− ϵθ (xt,µc + ÉÃc, t)∥22
]

(3)

where É ∼ N (0, I) has the same dimension as µc and Ãc. Since the exact computation of L
(

PK
)

is intractable, we use a Monte Carlo approach to sample É for S times to approximate the expected
value for optimization:

L
(

PK
)

=
1

S

S
∑

s=1

∥ϵ− ϵθ (xt,µc + ÉsÃc, t)∥22 (4)

In order to avoid the scenario wherein multiple prompt features converge to a same vector, which will
result in a non-representative low-variance distribution, we apply a similar orthogonal loss proposed
in (Lu et al., 2022) to penalize on the cosine similarity and encourage orthogonality between each
pair of prompts:

Lortho =
1

K(K − 1)

K
∑

i=1

K
∑

j=i+1

|ïE(Pi), E(Pj)ð| (5)

where ï·, ·ð is cosine similarity between a pair of vectors. The total loss is therefore:

L = L(PK) + λLortho (6)

where λ is a hyperparameter.

Implementation Details In all experiments, we use Stable Diffusion 2.1 (Rombach et al., 2021)
and keep all the default hyperparameters. We use S = 4 and λ = 5 × 10−3. We use K = 32
prompts in all personalized generation experiments, and K = 10 prompts to reduce computation in
synthetic dataset experiments. We use 1,500 steps with constant learning rate of 10−3.
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Figure 3: Comparison of results with existing methods. Given a set of training images (typically
5-20, we only show 4 here), we compare generation results with other existing methods. We use
Stable Diffusion version 2.1 for all methods. As can be seen on the bottom row, our method is able
to generate more diverse and coherent images (also quantitatively analyzed by automatic and human
evaluation in §4.2).

4 EXPERIMENTS

In this section, we demonstrate several experiments and applications of our approach and show vi-
sual results of generated images. We show the ability of our approach to capture a distribution of
reference images and generate in-distribution novel images in §4.1. We present additional quantita-
tive results including automatic evaluation and user studies in §4.2. We also show the flexibility and
effects of manipulating and text-guide editing learned prompt distribution in §4.3. We further high-
light easy application of our learned prompt distribution to other text-based generation tasks using
text-to-3D as an example in §4.4. Finally in §4.5 we present experiments that show the effectiveness
of our approach in generating synthetic training dataset.

4.1 DIVERSE PERSONALIZED GENERATION

We first demonstrate the ability of our approach to generate images that preserve general visual
features shown in training set and at the same time generate new images with high diversity. Given
a diverse set of few training images (typically 5-20) that are not easily describable in texts and at the
same time share some similar visual attributes, we can generate diverse in-distribution images by
simply sampling from the learned distribution as the input prompt text embedding to T2I diffusion
model. Our learned prompt distribution can be therefore treated as a distribution of descriptions
corresponding to the set of training images.

Baselines. We compare with popular instance-level personalization methods including Textual
Inversion (Gal et al., 2022), DreamBooth (Ruiz et al., 2022), Custom Diffusion (Kumari et al.,
2023). We also evaluate against Short Caption that uses a short description as text prompt, and
Long Caption that uses a longer text caption with detailed descriptions. These comparisons empha-
size our method’s ability to take care of both similarity and diversity referencing the training images.
We use the same pretrained Stable Diffusion version 2.1 with default hyperparameters provided in
baseline works. We use M = 8 context vectors without adding any prefix or suffix texts in either
training or inference process for DreamDistribution.

Results. Fig. 3 shows visualized comparison with baselines. In general, both short and long text
prompting methods fail to generate results that visually follow the reference images since there is
no training involved and the image details are hard to describe in language. Images generated using
baseline methods generally show limited variation or inconsistent visual attributes in all examples.
All these methods try to associate different visual concepts with a fixed token, which does not pro-
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Method CLIP-I↑ CLIP-T↑ DINO↑ Density↑ Coverage↑ FID³
DreamBooth 0.79 0.32 0.46 0.91 0.74 234.90
Textual Inversion 0.83 0.27 0.48 1.28 0.82 224.23
Custom Diffusion 0.80 0.33 0.46 1.45 0.87 236.61

Ours 0.84 0.29 0.50 1.59 0.93 215.15

(a) Our method achieves the best number on most au-
tomatic metrics. Mean value of the metrics across 12
scenarios are reported.

(b) Human Evaluation on image diversity (§4.2) aligns
with automatic evaluation (Fig. 4a). Our method
shows significantly greater diversity, which may ex-
plain why it can train better image classifiers in Tab. 1.

Figure 4: Quantitative and human evaluation.

vide any semantic variations itself. Although the denoising process enables some randomness, the
training objective of associating various concepts with a fixed token will either fail to capture a
distribution due to non-convergence, leading to underfitting to generic image category information,
or overfits to a visual combination of the training images. By modeling multiple concepts using
multiple prompts and optimizing the prompt distribution, our proposed method is able to produce
substantial variations of style and view points, for example, following the reference images in the
cathedral example (first column). Ours method can also model the texture and background informa-
tion and generate new instance with significant variations in color and pose following the reference
images of the Gundam example (second column), as well as patterns, lines, style as a whole and
generate novel artistic creations as shown in the Basquiat’s painting example (third column). In all,
DreamDistribution is able to produce substantial variations on style, viewpoints, pose, layout, etc.,
with appropriate visual attributes following the reference images.

4.2 GENERATION QUALITY AND DIVERSITY EVALUATION

We quantitatively assess our methods in terms of diversity and quality, and further use synthetic
ImageNet classification performance as a proxy in §4.5. We also conduct human evaluation study
on the same generation result to compare with baseline methods.

Datasets Different from existing datasets such as DreamBooth Dataset (Ruiz et al., 2022), which
focus on same-instance personalization, we construct a dataset that consists of different instances
in a same category set. Our dataset consists of 12 diverse image scenarios including photos of real
objects in large and small scales, works of famous artists, and illustrations with prominent styles,
sourced from illustrators from online communities. Each scenario consists of about 20 real reference
images. A comprehensive list and visualization is shown in the appendix. We train our method and
baselines including DreamBooth, Textual Inversion, and Custom Diffusion using the default settings
provided. For our approach we use M = 4 learnable context with no text prefix or suffix in both
training and generating stages. For baselines, we generate image using the prompt “a photo/drawing
of S*” depending on the nature of the reference set, where S* is the learned token(s). We generate
40 images per methods per scenario, resulting in a total of 1,920 images in the evaluation set.

Automatic Metrics We evaluate the generative images on established automatic evaluation met-
rics that measure the diversity of synthetic images and the similarity between real and synthetic
images. Following prior works (Heusel et al., 2017; Zhang et al., 2018; Naeem et al., 2020; Ruiz
et al., 2022), in Fig. 4a we evaluate image quality using CLIP-I and DINO (Ruiz et al., 2022)
that measures average pairwise cosine similarity between CLIP (Radford et al., 2021) and DINOv1
(Caron et al., 2021) embeddings, and FID (Heusel et al., 2017) that measures the distance between
the distribution of generated images and the distribution of real images via InceptionV3 (Szegedy
et al., 2016). Our method achieves the best quality across all three quality measurements, suggesting
that our method is capable of creating more high-quality images that fulfill the prompt requirement.
CLIP-T measures the image-text alignment in CLIP space for text-editing generation. We use the
25 object prompts provided in (Ruiz et al., 2022) and generate 4 images per prompt per scenario,
resulting 1,200 text-editing images. Our method may not show best performance due to the random
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(a) Effect of scaling the variance of a learned prompt
distribution. Image diversity increases as the scaling
factor γ increases.

(b) Composition of two prompt distributions through
interpolation. Mixing ratio changes linearly from left
to right. Middle columns show mixtures of two styles.

Figure 5: Scaling variance and composition of prompt distributions.

nature of distribution but still gives comparable result. Additionally, we report Density and Cover-
age (Naeem et al., 2020) in Fig. 4a. Density measures samples in regions where real samples are
densely packed, while coverage calculates fraction of real samples whose neighbourhoods contain
at least one generated sample. Both metrics are calculated with DINOv2 (Oquab et al., 2023). Our
method achieves the best coverage and diversity across the board.

Human Evaluation Admittedly, automatic evaluation does not fully capture the richness per-
ceived by human observers. We further investigate if Fig. 4a correlates with human perception via
conducting human evaluation based on the evaluation dataset. We assign 20 independent annotators.
For each of the 12 reference sets, annotators are asked to choose the most preferable set of gener-
ated images based on their perceived similarity with the reference set and the diversity within the
generated set. The methods are anonymized so annotators are unaware of which generated set corre-
sponds to which method. We collect a total of 240 samples and count the frequency of preferences.
Fig. 4b demonstrates that our generated images exhibit superior diversity compared to three baseline
models, reinforcing our intuition that by learning distribution we are able to generate diverse images
with coherent content and visual attributes presented in the reference image.

4.3 CONTROLLABILITY OF PROMPT DISTRIBUTION

Since our learned prompt distribution is in the CLIP text feature space, it is natural to manipulate the
learned distribution based on the property of CLIP text feature space. We show several interesting
distribution manipulation methods, including text-guided editing, scaling the variance for diversity
control, interpolation between multiple distributions.

Text-guided Editing Similar to existing personalization methods (Ruiz et al., 2022; Gal et al.,
2022; Kumari et al., 2023), our learned distribution preserves the flexibility of text-guided editing
. As shown in Fig. 1 and Fig. 6, we are able to generate diverse in-distribution Gundam figures
that follows the style of reference images but with different pose, style, context, using user provided
text-guidance at inference time. With a set of learned prompt, we concatenate them with the same
text prefix and/or suffix to fit a new distribution at the CLIP text feature space to enable text-guided
editing of a prompt distribution. Application includes but not limited to, generating objects of in-
terests in a different background or context, transferring style using text, and controlling the pose,
viewpoints, layout, of objects of interests.

Scaling Variance for Diversity Control Once a prompt distribution is learned, we can easily
control the diversity of generated images by changing the variance or standard deviation of the
learned distribution. We show an example of the effect of multiplying different scale factors γ to
the variance of a learned prompt distribution in Fig. 5a. When γ = 0, the generated images show
very similar patterns following some of the reference images. As γ increases, more different layouts
emerge, and when we further scale the variance for γ = 2, the generated images become more
diverse with significant randomness.

Composition of Distributions Given multiple prompt distributions in CLIP feature space, we can
composite distributions by finding a linearly interpolated distribution between them. This distribu-
tion in the CLIP feature space should represent a text with semantic meaning that is a weighted mix-
ture of the given prompt distributions, thereby showing a mixture of visual attributes in the generated
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Figure 6: Results on text-editability of our methods. Left column shows samples of reference im-
ages, right columns are generated results with corresponding prompts.

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

Real 88.0 96.7 85.1 94.9 45.1 63.9 66.1 85.2 26.7 65.8 - - - - -

Class Names 45.5 70.0 46.2 72.5 24.1 43.3 53.6 75.8 8.1 38.8 0.75 0.43 0.71 0.41 149.87

CLIP Prompts (Radford et al., 2021) 45.6 69.2 46.1 69.6 36.2 60.1 58.8 81.1 12.2 45.7 0.71 0.37 0.63 0.40 166.42

ImageNet-SD (Sariyildiz et al., 2022) 55.4 77.5 55.8 77.5 29.4 49.0 59.8 80.0 15.9 49.4 0.72 0.38 0.54 0.36 173.58

Textual Inversion (Gal et al., 2022) 17.3 35.7 17.7 35.3 4.84 13.2 19.2 46.6 8.2 33.2 0.71 0.35 0.43 0.21 214.14

DreamBooth (Ruiz et al., 2022) 44.1 67.4 45.2 67.7 11.4 28.1 33.4 59.2 8.8 38.8 0.77 0.50 0.89 0.51 139.49
Custom Diffusion (Kumari et al., 2023) 34.0 57.6 36.0 59.7 6.1 15.7 24.7 50.1 10.1 40.3 0.75 0.47 0.84 0.42 141.53

DreamDistribution (Ours) 56.7 79.8 62.0 81.5 30.4 50.9 54.7 78.4 18.8 55.0 0.78 0.48 0.89 0.56 131.60

Method IN IN-V2 IN-S IN-R IN-A CLIP-I↑ DINO↑ Density↑ Coverage↑ FID↓

Table 1: Classification accuracy and other metrics on different real test sets by training a classifier
on synthetic ImageNet (IN) generated by different methods. The rows with gray background are
non-training methods. When training on images generated from our method, the resulting classifier
performs better on most test sets, indicating that the images synthesized by our method allowed the
classifier to learn those object categories better.

images. We naively use a weighted sum of the distributions to interpolate between distributions:

µ∗

c
=

N
∑

i=1

αiµci
, Ã∗

c
=

N
∑

i=1

√
αiÃci

(7)

where µ∗
c

and Ã∗
c

are mean and standard deviations of the interpolated distribution, and αi is the
weight of i-th prompt distribution with mean and standard deviation µci

and Ãci
respectively, and

∑N

i=1 αi = 1 are weight parameters. We show an example of mixing Chinese paintings and Van
Gogh paintings in Fig. 5b. From the left column to right, we adjust the mixing ratio to increase the
weight of Van Gogh and decrease the weight of Chinese painting.

4.4 APPLYING TO TEXT-TO-3D GENERATION

Our learned distribution can be flexibly applied to other text-driven tasks, as long as the generation
pipeline uses the same pretrained text encoder as the text feature extractor. In this section, we high-
light and demonstrate the flexibility of our method by using a prompt distribution trained on T2I
diffusion for text-to-3D task. We use MVDream (Shi et al., 2023b), a state-of-the-art text-to-3D
model that train a NeRF (Mildenhall et al., 2021) and render a 3D asset following a text prompt,
which in our case is a prompt sampled from prompt distribution. As shown in Fig. 1 and Fig. 7a,
although MVDream incorporates some extra prior in its modified multi-view diffusion model that
leads to reduced diversity, our prompt distribution can still generate 3D assets with significant vari-
ation in design details. Moreover, as shown in Fig. 7b, the pipeline possesses text-guided editing
capabilities akin to those of DreamBooth3D (Raj et al., 2023), yet it can generate instances that
exhibit more diverse appearances.

4.5 APPLYING TO SYNTHETIC DATASET GENERATION

Our proposed method can be effectively used in generating synthetic image classification datasets.
By giving several dozens to hundreds of images that correspond to a class in a classification dataset,
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(a) 3D generation results by learning a prompt distri-
bution over reference images and then inference (with-
out extra texts).

(b) 3D generation results by learning a prompt distri-
bution over reference images and then inference with
text-guided editing.

Figure 7: Results of our method applied to 3D generation using MVDream (Shi et al., 2023b).

our method can capture and encode distributions of the dataset images into the learnable prompt
distributions, and thereby generate diverse training images similar to the training set.

We generate “synthetic copy” (Ge et al., 2022a;b; Sariyildiz et al., 2022; Ge et al., 2023) of ImageNet
(Russakovsky et al., 2015) via DreamDistribution using Stable Diffusion version 2.1 with default
hyperparameters. Due to the large size of ImageNet-1K, we follow previous works (Sariyildiz et al.,
2022) to mainly experiment on ImageNet-100 (IN) (Tian et al., 2020), a 100-class subset. For
each class, we generate 2,000 synthetic images and use CLIP (Radford et al., 2021) to select top
1,300 images with highest cosine similarity to the embedding vector of the corresponding class
name, resulting the same total number of images as real ImageNet training set. We compare with
non-training baselines: Real uses the real ImageNet training set, Class Names and CLIP Prompts
generate images by feeding Stable Diffusion class name of each class or with 80 diverse text prompts
provided by CLIP, e.g. “a drawing of c”, where c is the class name. ImageNet-SD (Sariyildiz et al.,
2022) generates images using prompts in the form of “c, hc inside b”, where c represents the class
name, hc represents the hypernym (WordNet parent class name) of the class, and b is a random
background description from the Places365 dataset (Zhou et al., 2017). We also experiment with
other aforementioned personalization baselines. For personalization baselines and our method, we
use same random 100 images per class to train the generation pipeline. Then we train a ResNet-
50 (He et al., 2016) classifier on synthetic images only for 300 epochs using 0.2 alpha for mixup
augmentation (Zhang et al., 2017) and auto augment v0 via timm (Wightman, 2019).

To analyze generalizability, we also evaluate the trained model on validation set of ImageNet vari-
ants including ImageNetV2 (IN-V2) (Recht et al., 2019), ImageNet-Sketch (IN-S) (Wang et al.,
2019), ImageNet-R (IN-R) (Hendrycks et al., 2021a), and ImageNet-A (IN-A) (Hendrycks et al.,
2021b). Top-1 and top-5 accuracy is reported in Tab. 1. In all settings, the classifier is exclusively
exposed to synthetic images, but images generated using our method shows the highest classification
accuracy on ImageNet validation set. This is because DreamDistribution can generate a diverse set
of high-quality images following training set distribution, while other prompt engineering methods
cannot follow the real image distribution and tend to show limited diversity, resulting in perfor-
mance degradation. We also achieve the best results on ImageNet-V2 and ImageNet-A. For the
Sketch and Rendition variants, in contrast to our method, CLIP Prompts and ImageNet-SD offer
specific prompts to generate images of other domains, which may account for our comparatively
lower performance.

5 CONCLUSION

We introduced DreamDistribution, a distribution based prompt tuning method for personalizing T2I
diffusion models to generate diverse in-distribution images following a small set of reference images.
The key idea of our methods lies in modeling the commonalities and variations of visual attributes
using a prompt distribution at text feature space. We show a variety of experiments and application
that is enabled by our method.
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A MORE IMPLEMENTATION DETAILS

In all experiments, we use Stable Diffusion 2.1, which is the latest version. We use the default
parameters, including 7.5 guidance scale and 50 denoising steps. For all visual results, we generate
images in 768 × 768 resolution, and for synthetic dataset experiments, we generate 256 × 256
images to save time and resources. We provide a pseudocode for learning a prompt distribution in
Algorithm 1.

Algorithm 1 Training prompt distribution

Require: Set of reference images I = {xi}Ni=1

Require: Set of learnable prompts PK = {Pi}Ki=1
Require: Text encoder E , noise predictor ϵθ, hyperparameter λ

1: Random initialize all learnable embeddings V in PK

2: for image x ∈ I do
3: Sample time step t
4: Sample noise ϵ ∼ N (0, I)
5: xt ← x with noise added based on ϵ and t

6: Compute µc = 1
K

∑K

i=1 E (Pi)

7: Compute Ã2
c
= 1

K

∑K

i=1 (E (Pi)− µc)
2

8: for s ∈ [S] do
9: Sample És ∼ N (0, I)

10: Ls

(

PK
)

= ∥ϵ− ϵθ (xt,µc + ÉsÃc, t)∥22
11: end for
12: L

(

PK
)

= 1
S

∑S

s=1 Ls(PK)

13: Lortho = 1
K(K−1)

∑K

i=1

∑K

j=i+1 |ïE(Pi), E(Pj)ð|
14: L = L

(

PK
)

+ λLortho

15: Update learnable embeddings V in PK based on L
16: end for

Figure 8: In general, with more prompts, the performance increases in terms of both quality and
diversity.

Figure 9: Choice of λ value between 1 × 10−4 and 1 × 10−2 generally achieves good balance of
quantitative metrics.
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Figure 10: Similar to number of prompts, increasing number of prompt tokens also shows increasing
image quality and diversity.

B EVALUATION SET

We show samples of reference images from our evaluation set in Fig. 11. Each row shows 8 samples
reference images from the same set.

C ADDITIONAL RESULT

C.1 DIVERSE IMAGE INSTANCE GENERATION

We show additional image generation results of our method in Fig. 12 using the reference images
from our evaluation set. Each row is generated using reference images of the corresponding row in
Fig. 11. We also show additional examples in Fig. 13 that demonstrate the ability of our method
to capture visual similarities in reference images and generate diverse images, specifically on the
attributes that are shown different in reference images.

C.2 TEXT-GUIDED EDITING

We show more results on the ability of our method to generate diverse images with text-guided
editing in Fig. 14 using different sets of reference images.

C.3 SCALING VARIANCE FOR DIVERSITY CONTROL

We show more results on generating images from prompt distribution with scaled standard devia-
tions in Fig. 15

C.4 COMPOSITION OF DISTRIBUTION

In Fig. 16 we show more results on composition of two different learned prompt distributions with
various weights.

C.5 SAME INSTANCE PERSONALIZATION

Our method solves a more generalized task compared to same instance personalization, where ref-
erence images is one or more images of the same instance and the generation is expected to follow
user provided text prompts of different contexts. Although reconstruction of the same instance is
not our main focus, we still show that our method can achieve on par results on this task compared
with baselines, using DreamBooth dataset (Ruiz et al., 2022) with identical prompts and evaluation
settings. The quantitative results are show in Tab. 2.

C.6 NAIVE ADAPTATION OF BASELINES

We compare our approach with a naive adaptation of baseline methods, where the training set is
randomly divided into 4 subsets, and a generation model is trained on each subset. During inference,

16
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Figure 11: Samples of reference images from our evaluation set. Numbers on the right represent the
number of images in each set.
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Figure 12: Samples of generated image results using reference images from the evaluation set. Each
row is generated using reference images of the corresponding row in Fig. 11.
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Figure 13: More results that shows the ability of our method to capture same visual attributes and
generate diverse images specifically on the attributes that are shown different in reference images.
The top example shows reference images with same shape outline but different foreground texture
and pattern, and our method also generates the same shape with diverse new foreground patterns.
The bottom example shows reference images of same object in different background, and our method
generates the same object in diverse background as well. We additionally show comparison with a
naive adaptation of Textual Inversion, where we add a Gaussian noise with 0.5 variance to the
learned tokens for generation, and the result shows that although it may increase diversity due to
introduction of extra randomness, it fails to capture the common attributes that should not be varied
in both examples, such as constant shape and background in first example and color and appearance
in second example.

Method CLIP-I↑ CLIP-T↑ DINO↑
DreamBooth 0.80 0.31 0.67

Textual Inversion 0.78 0.26 0.57
Custom Diffusion 0.80 0.36 0.54

Ours 0.80 0.31 0.59

Table 2: Experiment results of personalized generation on DreamBooth dataset.

the final output is a mixture of results from the models trained on these different subsets. Based on
the evaluation results shown in Tab. 3, our method outperforms this naive adaptation of three baseline
methods on all metrics. Moreover, this naive adaptation takes significantly more extra disk space
since it requires the storage of multiple sets of model weights.

Method CLIP-I↑ CLIP-T↑ DINO↑ Density↑ Coverage↑ FID³
DreamBooth 0.80 0.26 0.44 1.00 0.83 232.13
Textual Inversion 0.80 0.25 0.44 0.78 0.66 243.93
Custom Diffusion 0.75 0.27 0.39 0.62 0.57 268.48

Ours 0.84 0.29 0.50 1.59 0.93 215.15

Table 3: Comparison of our methods with naive adaptations of baseline methods.
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Figure 14: More results on text-editability of our methods. Left column shows samples of reference
images to learn distribution D∗, right columns are generated results using prompts sampled from
corresponding text-edited distribution.

C.7 EXPLORING WITH DIFFERENT GRANULARITY OF CONCEPTS

We experiment on image sets at different class granularity to show that our method is capable of
capturing distribution at different levels of concepts. Specifically, we composed 3 different reference
image sets, forced from ImageNet images: French Bulldog, dogs, and quadruped animals, where
dogs set includes images from different ImageNet dog species such as Bulldog, Saluki, Chihuahua,
etc., and animals set includes images from different ImageNet quadruped classes, such as tiger, cat,
bison, fox, etc. We run DreamDistribution on these image sets respectively. The result visualization
is shown in Fig. 17. For French Bulldog, our method is able to generate different instances of
French Bulldogs with different fur colors and appearances. For dogs reference set, our method
is able to generate different dog species with mixed attributes. For quadrupeds reference set, our
method can generate a variety of quadruped animals, including non-existing animals that show a
mix of attributes from different animals. Quantitative analysis presented in Tab. 4 demonstrates
that at the most granular level, such as French Bulldog, our method significantly outperforms the
personalization baselines. However, at coarser-grained levels, such as Dogs or Quadrupeds, the
advantage of our method diminishes. This could be attributed to the increased diversity of the
reference images, which makes it challenging for our method to effectively capture a coherent or
meaningful distribution, leading to a higher likelihood of sampling outliers from the learned prompt
distribution during generation.

C.8 EXPERIMENT WITH SMALL REFERENCE SET

We conduct experiments on image sets with only four reference images to simulate scenarios where
users are unable to provide a larger set for better distribution capture. Our method is compared
against the personalization baselines used in previous sections. Visualizations of the generated re-
sults are shown in Fig. 18, which shows that our method can still generate results with more diversity
and at the same time within the distribution of reference images.

C.9 3D GENERATION DIVERSITY

Our learned prompt distribution can extend to text-to-3D generation pipelines, such as MVDream
Shi et al. (2023b), which utilize text-to-image models as their backbone, enabling more diverse 3D
asset generation. As illustrated in Fig. 19, unlike the Textual Inversion baseline, which relies on a
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Figure 15: More results on scaling standard deviation of learned prompt distribution.

Image Set Method CLIP-I↑ DINO↑ Density↑ Coverage↑ FID↓

Textual Inversion 0.82 0.49 0.10 0.12 98.76

DreamBooth 0.85 0.56 0.02 0.04 100.24

Custom Diffusion 0.84 0.54 0.09 0.14 98.39

Ours 0.85 0.61 0.23 0.34 88.81

Textual Inversion 0.75 0.20 1.00 0.56 194.74

DreamBooth 0.76 0.20 0.68 0.44 211.34

Custom Diffusion 0.77 0.21 1.00 0.64 179.51

Ours 0.77 0.21 0.93 0.64 173.74

Textual Inversion 0.70 0.18 1.50 0.23 214.70

DreamBooth 0.69 0.16 2.35 0.23 228.39

Custom Diffusion 0.70 0.15 2.20 0.21 217.58

Ours 0.71 0.18 1.89 0.24 210.93

French
Bulldog

Dogs

Quadrupeds

Table 4: Comparison of our method with baselines on feature-based metrics over different granular-
ities of reference images.
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Figure 16: More results on composition of multiple prompt distributions using different weights.
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Figure 17: Visualization of reference and generated images using different methods at different class
granularity.

fixed learned token to prompt the text-to-3D model, our method samples from the learned prompt
distribution, resulting in greater diversity in the generated 3D assets.

Following Corso et al. (2023), we perform a quantitative analysis of in-batch cosine similarities
among features of rendered images. Specifically, we compute the average pairwise cosine similar-
ity of DINO and CLIP-I features within each image set. The results shown in Tab. 5 demonstrate
that 3D assets generated using our learned prompt distribution exhibit significantly greater diver-
sity compared to those generated using Textual Inversion’s learned token, which aligns with visual
results. All samples are generated without using random seeds.

Method CLIP-I³ DINO³
Textual Inversion 0.63 0.31

Ours 0.53 0.14

Table 5: Quantitative comparison of 3D generation diversity using averaged pairwise cosine simi-
larity of features of rendered images. Lower similarity means the generated set is more diverse.

D ABLATION STUDY

Number of Prompts We additionally ablate K, the number of prompts in personalized generation.
We randomly select 4 sets of reference images from our evaluation set and compute the average
performance based on automatic quality and diversity metrics introduced in main Section 4.1. In
Fig. 8, we show the effect of K in terms of both generation quality and diversity. We observe a
positive correlation between the performance (in terms of both quality and diversity) and the number
of prompts. More prompts offer more flexibility for our methods to model a better distribution of
prompts, thus enabling the model to encapsulate content better (quality) and adapt to various nuances
of the training images (diversity).
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Figure 18: Visual results of training on only 4 reference images.

Figure 19: Qualitative comparison of diverse 3D generation.

Orthogonal Loss We also test different value of weight of orthogonal loss added during prompt
distribution training. As shown in Fig. 9, our choice of λ (x-axis) can achieve good balance on
quantitative metrics.
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Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

10 49.8 73.8 48.5 71.4 27.7 48.8 57.1 78.1 15.3 44.4

100 56.7 79.8 62.0 81.5 30.4 50.9 54.7 78.4 18.8 55.0

500 64.3 84.0 61.7 81.6 25.2 45.8 53.0 74.8 15.7 50.4

full(1300) 63.6 82.9 60.5 80.0 18.6 36.3 43.5 67.8 11.6 45.0

# training images
per class

IN IN-V2 IN-S IN-R IN-A

Table 6: ImageNet classification accuracy on different real test sets by training a classifier on syn-
thetic ImageNet (IN) generated by DreamDistribution using different number of real training images
per class. Our experiments show that using 500 training images per class yields the highest final clas-
sification accuracy on real validation set.

Number of Prompt Token Vectors We evaluate the impact of varying the number of token vectors
M used in each learnable prompt. As shown in Fig. 10, similar to number of prompts, we observe a
positive correlation between performance and the number of learnable prompt tokens. However, this
effect is less pronounced compared to the impact of changing the number of prompts, and increasing
the number of learnable tokens results in longer training times.

E SYNTHETIC DATASET

E.1 MORE ANALYSIS ON SYNTHETIC DATASET

Number of training images We experiment with different number of training images. We use
randomly selected 10, 100, 500 images per class, as well as all ImageNet training images to train
our learnable prompts and generate same size synthetic dataset. From results shown in Tab. 6 and
Fig. 20 column 1 & 2, we found that using about 100-500 images per class (7%-38% of the real
training set) would be enough to reach high classification accuracy on real validation set, while
using more data would not further improve accuracy. For validation sets of ImageNet variants, less
training data would obtain higher accuracy due to the domain gap between the real training set and
different validation sets.

Mixing synthetic data with real training data We also experiment with mixing different sizes
of synthetic image data with the real training images. We mix additional 20%, 40%, 60%, 80%
and 100% synthetic data with real training data, where 100% means the size of the mixed dataset
is twice of the size of the ImageNet training set, and the ratio of the number of real images to
the number of synthetic images is approximately 1:1. As shown in Fig. 20 column 3 & 4, adding
more synthetic data would improve the accuracy on ImageNet validation set. On the validation sets
of different domains, however, adding more synthetic data would not show significant improving
trends on accuracy.

E.2 IMPLEMENTATION DETAIL

For training on ImageNet dataset, we use the same training hyperparameters except for reducing the
number of learnable prompts to 10 per class. We train for 5 epochs for training prompt distribution
and 300 epochs for training ResNet-50 using generated or mixed dataset. All results are averaged
over 3 runs of training using the generated or mixed dataset. For ImageNet-R and ImageNet-A, we
only evaluate on the overlapping classes with ImageNet-100.

E.3 MORE VISUAL RESULT

We show some generated training images using our method and compare them with generated im-
ages using baseline methods in Fig. 21, Fig. 22, Fig. 23, Fig. 24, Fig. 25, Fig. 26. Compared to the
images generated using baseline methods, non-learning methods could generate images with diver-
sity, however, the appearances are generally far from real images. Learning based personalization
baselines can generate images with high fidelity, but with very limited diversity. Our method in
contrast can generated images that looks more like real image samples and at the same time with
significant diversity.
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Figure 20: Column 1 & 2: Top-1 and top-5 accuracy on ImageNet validation set versus using
different number of training images to train prompt distribution. Column 3 & 4; Top-1 and top-5
accuracy on ImageNet validation set versus percentage of synthetic images added to the real training
set.
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F LIMITATIONS

Despite the ability of our method to generate diverse novel in-distribution images, it does have
certain limitations. Specifically, our method may struggle to capture visual features when the number
of training images is limited and very diverse. Moreover, the Gaussian distribution assumption could
be overly restrictive depending on the training images and the text encoder’s latent space. In the
future, we hope to find a more robust approach to learning distributions from a few, highly diverse
images, with more accurate assumptions and resilient distribution forms.

27



1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Under review as a conference paper at ICLR 2025

Figure 21: Visualization of generated images on ImageNet ambulance.

Figure 22: Visualization of generated images on ImageNet cabbage.
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Figure 23: Visualization of generated images on ImageNet honeycomb.

Figure 24: Visualization of generated images on ImageNet lorikeet.
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Figure 25: Visualization of generated images on ImageNet papillon.

Figure 26: Visualization of generated images on ImageNet pirate ship.
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