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REFOCUS-VAR: NEXT-FOCUS PREDICTION FOR VI-
SUAL AUTOREGRESSIVE MODELING
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Figure 1: ReFocus-VAR achieves superior image generation quality. Our method generates im-
ages with significantly reduced aliasing artifacts (jaggies, moiré patterns) while preserving fine de-
tails and text readability compared to standard VAR. The progressive refocusing paradigm enables
clean multi-scale representations that lead to sharper, more realistic results.

ABSTRACT

Visual autoregressive models like VAR achieve impressive generation quality
through next-scale prediction over multi-scale token pyramids. However, the stan-
dard approach constructs these pyramids using pure digital downsampling, which
introduces aliasing artifacts that degrade fine details and create unwanted jaggies
and moiré patterns. We present ReFocus-VAR, which fundamentally reframes the
paradigm from next-scale prediction to next-focus prediction, mimicking the nat-
ural process of camera focusing from blur to clarity. Our approach introduces
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three key innovations: Next-Focus Prediction Paradigm that transforms multi-
scale autoregression by progressively reducing blur rather than simply downsam-
pling; Progressive Refocusing Pyramid Construction that uses physics-consistent
defocus kernels to build clean, alias-free multi-scale representations; and High-
Frequency Residual Learning that employs a specialized residual teacher network
to effectively incorporate alias information during training while maintaining de-
ployment simplicity. Specifically, we construct optical low-pass views using defo-
cus PSF kernels with decreasing radius, creating smooth blur-to-clarity transitions
that eliminate aliasing at its source. To further enhance detail generation, we in-
troduce a High-Frequency Residual Teacher that learns from both clean structure
and alias residuals, distilling this knowledge to a vanilla VAR deployment net-
work for seamless inference. Extensive experiments on ImageNet demonstrate
that ReFocus-VAR substantially reduces aliasing artifacts, improves fine detail
preservation, and enhances text readability, achieving superior performance with
perfect compatibility to existing VAR frameworks.

1 INTRODUCTION

Autoregressive large language models have demonstrated remarkable scalability and generalizabil-
ity in understanding and generating discrete text, which has inspired the exploration of autoregres-
sive generation on other data modalities. For continuous modalities such as visual data, Visual
AutoRegressive modeling typically resorts to quantization-based approaches (van den Oord et al.,
2017; Razavi et al., 2019; Esser et al., 2021; ?) to cast the data into a discrete space. The recently
proposed VAR demonstrates strong scalability and competitive performance compared to diffusion
models by structurally predicting from coarse to fine resolutions.

Discrete visual representation based on vector quantization provides support for autoregressive gen-
eration, yet the primary concern lies in the information loss due to quantization errors. During vi-
sual generation, quantization errors degrade the reconstruction quality of discrete image tokenizers,
which upper-bounds the generation quality (Rombach et al., 2022). Moreover, discrete represen-
tations compromise the model’s perception of low-level details, restricting their ability to capture
continuous variations and subtle differences. Recent advances have explored various directions to
address these limitations: improved tokenizers like LlamaGen and ViTVQ focus on better discrete
representations (Sun et al., 2024; Yu et al., 2021); continuous autoregressive approaches overcome
quantization limitations through strictly proper scoring rules (?) or diffusion-based per-token gen-
eration (Li et al., 2024); and computational optimizations like M-VAR decouple intra-scale and
inter-scale dependencies using linear state-space modules.

However, all these approaches fundamentally rely on pure digital downsampling for multi-scale con-
struction that ignores the physical process of optical image formation. This leads to a fundamental
problem: high-frequency contents above the Nyquist frequency fold into the baseband as aliasing
artifacts, creating unwanted jaggies, staircasing, and moiré patterns. Consequently, the autoregres-
sive Transformer must simultaneously learn to de-alias these artifacts while generating fine details,
resulting in unstable training particularly on images with regular textures and small fonts.

We take inspiration from the physical optics of camera focusing and propose ReFocus-VAR, which
fundamentally reframes visual autoregression from next-scale prediction to next-focus prediction.
Our core insight is that image formation naturally progresses from blur to clarity through focusing,
not through digital downsampling with aliasing artifacts. Rather than predicting the next coarser
scale through lossy downsampling, we predict the next focus state by progressively reducing optical
blur. This paradigm shift enables us to construct multi-scale representations that are physically
consistent and inherently free from aliasing artifacts.

Building on this next-focus prediction paradigm, our approach consists of three key components.
First, we construct progressive refocusing pyramids using physics-consistent defocus kernels with
decreasing radius, creating smooth blur-to-clarity transitions that naturally eliminate aliasing at its
source. Second, to enhance detail generation beyond what optical low-pass filtering alone can pro-
vide, we introduce a dual-path strategy that captures both clean structure and high-frequency resid-
ual information. Third, we employ a High-Frequency Residual Teacher architecture that learns
to effectively utilize these complementary signals during training, while the deployment network
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maintains vanilla VAR compatibility for seamless inference. This design ensures that the benefits
of alias-aware learning are preserved without any architectural modifications during inference. As
shown in fig:teaser, ReFocus-VAR achieves significantly improved generation quality with reduced
artifacts and enhanced detail preservation.

In summary, our main contributions are: We fundamentally reframe visual autoregression from
next-scale prediction to next-focus prediction, transforming the core paradigm from digital down-
sampling to progressive optical refocusing that mimics natural camera focusing. We develop a
physics-consistent progressive refocusing pyramid construction using defocus kernels with decreas-
ing radius, creating smooth blur-to-clarity transitions that inherently eliminate aliasing artifacts at
their source. To further enhance detail generation, we introduce a dual-path high-frequency resid-
ual learning approach that employs a High-Frequency Residual Teacher: this specialized network
learns to effectively utilize both clean structure and alias residual information during training, while
distilling this knowledge to a vanilla VAR deployment network that maintains perfect compatibil-
ity. This three-component design achieves superior generation quality with zero inference overhead
while ensuring seamless integration with existing VAR frameworks.

2 RELATED WORK

2.1 VISUAL AUTOREGRESSIVE GENERATION.

Early AR models operate at the pixel level with raster-scan dependencies (Van den Oord et al.,
2016). To improve efficiency and scalability, latent/token-based AR became dominant: VQ-VAE-2
and VQGAN tokenizers support causal or masked Transformers to model image token sequences
(Razavi et al., 2019; Esser et al., 2021), and large-scale text-to-image AR systems such as Parti and
LlamaGen further show strong scaling behavior with standard next-token learning (Yu et al., 2022;
Sun et al., 2024). Parallel to token-wise AR, diffusion models remain highly competitive in quality
but are typically slower at inference (Dhariwal & Nichol, 2021; Rombach et al., 2022; Peebles &
Xie, 2023). Our work follows the AR line but focuses on suppressing aliasing at its source in multi-
scale construction.

2.2 SCALE-WISE VAR AND ARCHITECTURAL VARIANTS.

VAR reformulates AR as next-scale prediction with a block-wise mask, preserving 2D structures
and scaling favorably (Tian et al., 2024). Subsequent variants decouple intra-/inter-scale dependen-
cies and replace long-range attention with linear state-space modules (e.g., Mamba) for efficiency,
while keeping strong intra-scale modeling (Gu & Dao, 2023; Dao & Gu, 2024). ReFocus-VAR is or-
thogonal and complementary: it keeps the single-decoder VAR pipeline intact, but redefines Stage-1
pyramid and adds a lightweight encoder-side cross-attention that preserves sequence length.

3 METHOD

Existing visual autoregressive models rely on digital downsampling for multi-scale construction,
introducing aliasing artifacts that compromise generation quality. We address this by transforming
the paradigm from next-scale to next-focus prediction through optical physics. ReFocus-VAR intro-
duces three key innovations: (1) Next-Focus Prediction Paradigm provides alias-free focus-based
autoregression; (2) Progressive Refocusing Pyramid Construction implements physics-consistent
defocus modeling; and (3) High-Frequency Residual Learning incorporates complementary high-
frequency information via teacher-student distillation while maintaining deployment compatibility.

3.1 NEXT-FOCUS PREDICTION PARADIGM

Our ReFocus-VAR framework implements the next-focus prediction paradigm through three key
components: progressive refocusing pyramid construction, dual-path tokenization, and high-
frequency residual learning via a specialized teacher network.

We propose a paradigm shift from scale-based to focus-based autoregression, grounded in the
physics of optical image formation. Instead of predicting increasingly downsampled versions, we
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Scale

Figure 2: Progressive Refocusing vs. Digital Downsampling. Our method transforms the
paradigm from ”next-scale prediction” to ”next-focus prediction.” (Left) Standard VAR uses pure
digital downsampling, introducing aliasing artifacts from coarse to fine scales. (Right) ReFocus-
VAR employs progressive refocusing with decreasing PSF radius, mimicking camera focusing from
blur to clarity. This physics-consistent approach eliminates aliasing at the source while preserving
fine details through dual-path tokenization.

model the natural focusing process where optical blur progressively decreases:

F : x → {Fρ1
(x), Fρ2

(x), . . . , FρK
(x)}, (1)

where Fρk
(x) = (kρk

⋆ x) represents the convolution with a defocus kernel of radius ρk, and
ρ1 > ρ2 > · · · > ρK = 0.

This formulation offers several theoretical advantages: (1) Spectral Preservation: Each focus state
Fρk

(x) is band-limited by the PSF’s frequency response, preventing aliasing artifacts. (2) Con-
tinuity: The focus sequence forms a continuous manifold in the space of blur kernels, enabling
smooth interpolation between states. (3) Information Monotonicity: Information content increases
monotonically as ρk → 0, aligning with the autoregressive generation process.

3.2 PROGRESSIVE REFOCUSING PYRAMID CONSTRUCTION

We implement the next-focus prediction paradigm through physics-consistent defocus modeling that
naturally eliminates aliasing artifacts at their source, as illustrated in fig:method. The defocus point
spread function (PSF) for a circular aperture is approximated as a normalized disk kernel kρ, where
the radius follows a monotonically decreasing schedule:

ρk = ρmax ·
1− cos

(
π k−1

K−1

)
2

, k = 1, 2, . . . ,K, (2)

ensuring smooth blur-to-clarity transitions from ρ1 > ρ2 > · · · > ρK = 0.

To capture both clean structure and high-frequency residual information, we construct complemen-
tary views through our dual-path strategy:

Lk = (kρk
⋆ x) ↓sk +βkε, (3)

Dk = x ↓sk , Ak = Dk − Lk, (4)

where Lk represents the physics-consistent focused view, Dk the traditional downsampled view, and
Ak the high-frequency residual information. The noise term βkε ensures full-rank covariance and
training stability.
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Figure 3: High-Frequency Residual Teacher Training Architecture. Our approach employs dual
networks during training: the High-Frequency Residual Teacher (top) processes both structure to-
kens rk and alias tokens ak through Alias-Gate Cross-Attention, while the Deployment Network
(bottom) only uses structure tokens to maintain vanilla VAR compatibility. Residual knowledge
transfer enables the deployment network to benefit from high-frequency information during training
while ensuring zero inference overhead.

3.3 HIGH-FREQUENCY RESIDUAL LEARNING VIA SPECIALIZED TEACHER NETWORK

While progressive refocusing pyramids provide clean, alias-free representations, the high-frequency
residuals Ak contain valuable information for detail generation. To leverage this information while
maintaining deployment compatibility, we employ a High-Frequency Residual Teacher architecture
that decouples alias-aware training from inference, as illustrated in fig:architecture.

We tokenize both the focused views and high-frequency residuals using our dual-path strategy: rk =
QL(Lk) and ak = QA(Ak), where the alias codebook |CA| ≪ |CL| reflects the sparse nature of high-
frequency patterns. During training, the High-Frequency Residual Teacher incorporates standard
self-attention on structure tokens plus Alias-Gate Cross-Attention to selectively fuse information
from both token streams, while the deployment network operates solely on structure tokens using
standard self-attention, maintaining vanilla VAR compatibility.

Residual knowledge transfer moves the teacher’s enhanced capabilities to the deployment network
through multi-level objectives:

Ltotal = Ldeploy
AR + λfeatLfeat + λlogitLlogit, (5)

where Lfeat enforces feature alignment and Llogit matches output distributions. During inference,
only the deployment network is used, ensuring zero overhead and perfect VAR compatibility.

The complete ReFocus-VAR approach integrates the three components through a carefully orches-
trated training procedure: progressive pyramid construction generates dual-path representations,
the High-Frequency Residual Teacher learns from both structure and alias tokens, and residual
knowledge transfer enables vanilla VAR deployment with zero inference overhead. The overall
complexity remains comparable to vanilla VAR with modest overhead: (1) PSF Construction:
O(K · H · W · ρ2max) for K focus states, which can be precomputed and cached. (2) Teacher
Training: Additional O(N2d) for AG-XAttn per selected layer, where N is sequence length and d
is hidden dimension. With M ∈ {1, 2} layers, this adds 6-15% training FLOPs. (3) Deployment
Inference: Identical to vanilla VAR with zero overhead, ensuring deployment scalability.

3.4 SPECTRAL ANALYSIS OF ALIASING DECOMPOSITION

From a signal processing perspective, pure digital downsampling without anti-aliasing prefiltering
causes spectral folding that maps supra-Nyquist frequencies into the baseband. For a 1D signal
undergoing 2:1 decimation, the Fourier transform of the downsampled signal within the baseband
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ω ∈ [−π/2, π/2] becomes:

D̂(ω) =
1

2
[X(ω) +X(ω + π)] , (6)

where X(ω+π) represents the folded high-frequency content. In 2D, similar spectral folding occurs
along each spatial dimension.

With an ideal anti-aliasing filter Hk having cutoff frequency π/2, the baseband spectrum decom-
poses as Dk = Lk +Ak, where the alias residual in the frequency domain satisfies:

Âk(ω) =
1

2

∑
u∈U

X(ω + u), (7)

with U denoting the set of folding shift vectors per spatial axis. This decomposition yields several
key properties:

Alias-free structure preservation. If Hk implements ideal low-pass filtering with cutoff π/2,
then L̂k(ω) = X(ω) for |ω| ≤ π/2, ensuring the low-frequency view Lk contains no aliasing
artifacts within the passband.

Predictive high-frequency evidence. The alias residual Ak aggregates folded high-frequency
content that encodes valuable information about edge orientations, texture patterns, and fine-scale
structures, making it a complementary signal for detail recovery.

Energy conservation. The spectral energy of the alias residual satisfies:

∥L̂k − D̂k∥22 = ∥Âk∥22 =
1

4
∥X(ω + π)∥22 (8)

within the passband, providing direct control over aliasing through the choice of Hk.

From an optimization perspective, VQ codebooks trained on Lk operate on smooth, well-
conditioned signals with superior numerical stability, while alias cues in ak can be selectively incor-
porated when beneficial for detail enhancement.

3.5 ALIAS-GATE CROSS-ATTENTION IN TEACHER NETWORK

To enable the teacher network to leverage high-frequency alias information during training, we intro-
duce Alias-Gate Cross-Attention (AG-XAttn), a lightweight mechanism applied exclusively in the
teacher network’s encoder. Crucially, the student network operates without AG-XAttn, main-
taining vanilla VAR structure for perfect deployment compatibility. Within the teacher’s en-
coder blocks (selectively in the final M autoregressive scales for computational efficiency), we first
compute windowed self-attention on the structure tokens, then apply cross-attention from structure
to alias:

XL = WSA(E(rk)), (9)
Z = XL + Attn(Q = XLWQ,K = Ea(ak)WK , V = Ea(ak)WV ), (10)

where E(·) and Ea(·) denote the structure and alias token embeddings, respectively, and
WQ,WK ,WV ∈ Rd×dh are learned projection matrices. The resulting contextual representations
Ck = Z are fed to the unchanged decoder, while the alias tokens {ak} remain excluded from the
autoregressive prediction sequence.

Wiener filtering interpretation. Under local linearization, the cross-attention update can be
viewed as a learned gated residual connection:

Z ≈ XL + α⊙ Ãk, (11)

where α ∈ [0, 1]d represents a data-dependent gating function and Ãk denotes the processed alias
information. This resembles the classical Wiener filter formulation, where the optimal gain for MSE
minimization is:

α∗(ω) =
Sxx(ω)

Sxx(ω) + Snn(ω)
, (12)
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with Sxx(ω) and Snn(ω) representing the signal and noise power spectral densities, respectively.
Intuitively, the learned attention mechanism adaptively upweights reliable, edge-aligned frequencies
while suppressing aliasing patterns prone to generating moiré artifacts.

Computational complexity. The AG-XAttn mechanism adds one cross-attention operation per
selected encoder block. For a sequence of length N with embedding dimension d, this contributes
O(N2d) additional FLOPs per block, which is comparable to the existing self-attention. When
applied only to the final M ∈ {1, 2} blocks, the total overhead is approximately 6–15% in FLOPs
and memory, with parameter increase ¡3%.

3.6 TEACHER-STUDENT KNOWLEDGE DISTILLATION

The key to our approach is the online distillation between the teacher (with AG-XAttn) and student
(vanilla VAR structure) networks. During training, both networks process the same input batch
simultaneously, with knowledge transfer achieved through multiple complementary objectives:

Training Objective. For each scale k, the combined loss function is:

Ltotal = Lstu
AR(rk−1, pstu) + λfeat

∑
ℓ

∥F (ℓ)
stu − sg(F (ℓ)

tea )∥22 + λlogit · KL(ptea∥pstu), (13)

where Lstu
AR is the standard autoregressive loss for the student, F (ℓ) denotes feature representations

from the final 1-2 encoder blocks, sg(·) is the stop-gradient operator, and ptea, pstu are the output
logits from teacher and student networks respectively.

Deployment Strategy. During inference, only the student network is used, which operates identi-
cally to vanilla VAR with perfect compatibility. The teacher network serves purely as a training-time
knowledge source and is discarded after training completion.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We evaluate our method on ImageNet 256×256 and 512×512 class-conditional generation follow-
ing prior VAR works (Deng et al., 2009; Tian et al., 2024). We use standard metrics including FID
(Heusel et al., 2017), IS (Salimans et al., 2016), and Precision/Recall (Kynkäänniemi et al., 2019) to
assess generation quality.

4.2 IMPLEMENTATION DETAILS

We follow the training setup of VAR (Tian et al., 2024) with modifications for our dual-path ar-
chitecture. All models are trained on 8×A100 GPUs with mixed precision. For the progressive
refocusing pyramid, we use K = 4 scales with maximum PSF radius ρmax = 12 pixels and cosine
scheduling. The structure codebook has 8192 entries while the alias codebook uses 512 entries to
reflect the sparse nature of high-frequency patterns.

The High-Frequency Residual Teacher applies AG-XAttn only to the final 2 transformer blocks for
computational efficiency. Knowledge distillation uses λfeat = 1.0 and λlogit = 0.5. We employ
two-stage training: first train dual VQ tokenizers for 100K steps, then end-to-end training for 400K
steps with learning rate 1e-4 and batch size 256. The noise regularization βk increases linearly from
1e-3 to 1e-2 across scales.

4.3 MAIN RESULTS

Table 1 shows our method consistently outperforms both VAR and M-VAR across different model
sizes, achieving better FID scores with comparable inference speed. Figure 4 demonstrates that
ReFocus-VAR significantly reduces aliasing artifacts while preserving fine details.
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Table 1: Comparisons on ImageNet 256×256. Metrics: FID↓, IS↑, Precision (Pre)↑, Recall
(Rec)↑. Step: model runs to generate one image. Time: relative inference time.

Model FID↓ IS↑ Pre↑ Rec↑ Param Step Time

Generative Adversarial Net (GAN)
BigGAN (Brock et al., 1809) 6.95 224.5 0.89 0.38 112M 1 –
GigaGAN (Kang et al., 2023) 3.45 225.5 0.84 0.61 569M 1 –
StyleGAN-XL (Sauer et al., 2022) 2.30 265.1 0.78 0.53 166M 1 0.2

Diffusion
ADM (Dhariwal & Nichol, 2021) 10.94 101.0 0.69 0.63 554M 250 118
CDM (Ho et al., 2022) 4.88 158.7 – – – 8100 –
LDM-4-G (Rombach et al., 2022) 3.60 247.7 – – 400M 250 –
DiT-L/2 (Peebles & Xie, 2023) 5.02 167.2 0.75 0.57 458M 250 2
DiT-XL/2 (Peebles & Xie, 2023) 2.27 278.2 0.83 0.57 675M 250 2
L-DiT-7B (Alpha-VLLM, 2024) 2.28 316.2 0.83 0.58 7.0B 250 >32

Mask Prediction
MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 227M 8 0.4
RCG (cond.) (Li et al., 2023) 3.49 215.5 – – 502M 20 1.4

Token-wise Autoregressive
VQGAN (Esser et al., 2021) 15.78 74.3 – – 1.4B 256 17
ViTVQ (Yu et al., 2021) 4.17 175.1 – – 1.7B 1024 >17
RQTran. (Lee et al., 2022) 7.55 134.0 – – 3.8B 68 15
LlamaGen-3B (Sun et al., 2024) 2.18 263.3 0.81 0.58 3.1B 576 –

Scale-wise Autoregressive
VAR-d12 (Tian et al., 2024) 5.81 201.3 0.81 0.45 132M 10 0.2
M-VAR-d12 (Anonymous, 2024) 4.19 234.8 0.83 0.48 198M 10 0.2
ReFocus-VAR-d12 (Ours) 3.95 238.2 0.84 0.49 132M 10 0.2
VAR-d16 (Tian et al., 2024) 3.55 280.4 0.84 0.51 310M 10 0.2
M-VAR-d16 (Anonymous, 2024) 3.07 294.6 0.84 0.53 464M 10 0.2
ReFocus-VAR-d16 (Ours) 2.89 298.1 0.85 0.54 310M 10 0.2
VAR-d20 (Tian et al., 2024) 2.95 302.6 0.83 0.56 600M 10 0.3
M-VAR-d20 (Anonymous, 2024) 2.41 308.4 0.85 0.58 900M 10 0.4
ReFocus-VAR-d20 (Ours) 2.25 312.8 0.86 0.59 600M 10 0.3
VAR-d24 (Tian et al., 2024) 2.33 312.9 0.82 0.59 1.0B 10 0.5
M-VAR-d24 (Anonymous, 2024) 1.93 320.7 0.83 0.59 1.5B 10 0.6
ReFocus-VAR-d24 (Ours) 1.75 325.8 0.84 0.61 1.0B 10 0.5

Figure 4: Visual quality comparison between VAR and ReFocus-VAR. Each pair shows results
on the same prompt: VAR (left) vs. ReFocus-VAR (right). Our method significantly improves
overall image quality.

4.4 ABLATIONS AND ANALYSIS

We conduct comprehensive ablation studies to validate each component of our method. All ex-
periments are performed on ImageNet 256×256 using the VAR-d16 architecture unless specified
otherwise. Table 2 presents detailed ablation results, and Figure 5 shows our full method achieves
the fastest convergence and lowest final FID among all variants.

Progressive Refocusing Analysis. Removing progressive refocusing (VAR pyramid) shows min-
imal improvement over baseline (3.55→3.51 FID), confirming that standard downsampling inher-
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Table 2: Ablation study on ReFocus-VAR-d16.
All metrics evaluated on ImageNet 256×256.

Variant FID↓ IS↑
VAR-d16 (Baseline) 3.55 280.4
ReFocus-VAR-d16 (Full) 2.89 298.1

w/o Progressive Refocusing 3.51 282.1
w/ Gaussian blur 3.32 286.7
w/o High-Freq Teacher 3.06 294.8
w/o Dual tokenizers 3.14 292.1

Figure 5: Training convergence comparison for ablation variants. We compare the FID conver-
gence curves of different ReFocus-VAR variants during training. Our full method (green) achieves
the fastest convergence and lowest final FID. The comparison shows that physics-consistent PSF
significantly outperforms Gaussian blur, while the High-Frequency Residual Teacher and dual tok-
enizers both contribute to improved training dynamics and final performance.

ently limits generation quality. Notably, even simple Gaussian blur provides meaningful gains
(3.55→3.32 FID), validating our core hypothesis that anti-aliasing filtering benefits image gener-
ation. However, our physics-consistent PSF achieves substantially better results (2.89 FID), demon-
strating that optical realism in defocus modeling is crucial. The 0.43 FID gap between Gaussian
and PSF approaches highlights the importance of modeling real camera optics rather than arbitrary
smoothing.

High-Frequency Residual Teacher Impact. The comparison between our full method (2.89 FID)
and ”w/o High-Freq Teacher” (3.06 FID) reveals a 0.17 FID improvement, demonstrating significant
value from alias-aware learning. The teacher network with its specialized AG-XAttn mechanism ef-
fectively captures and transfers high-frequency information to the deployment network, confirming
that our teacher-student framework substantially enhances detail generation quality.

Dual-Path Strategy Validation. Our dual tokenizer approach (2.89 FID) provides substantial im-
provement over using shared tokenizers (3.14 FID), with a 0.25 FID gap validating that specialized
quantization for different signal types is essential. This confirms our hypothesis that structure and
alias information have fundamentally different statistical properties requiring separate codebook de-
signs optimized for their respective characteristics.

5 CONCLUSION

We present ReFocus-VAR, which reframes visual autoregressive modeling from next-scale predic-
tion to next-focus prediction by mimicking the natural camera focusing process. Our method elimi-
nates aliasing artifacts at their source through progressive refocusing pyramids, dual-path tokeniza-
tion, and a High-Frequency Residual Teacher that enables zero-overhead deployment. Experiments
demonstrate consistent improvements over VAR and M-VAR across model sizes, establishing a new
physics-informed paradigm for multi-scale visual generation.
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A APPENDIX

A.1 ETHICS STATEMENT

This work focuses on improving visual generation models through physics-informed autoregressive
modeling. The proposed ReFocus-VAR method does not introduce new ethical concerns beyond
those inherent to generative AI models. We acknowledge the potential for misuse of high-quality
image generation capabilities, such as creating deepfakes or other deceptive content. We encourage
responsible use of this technology and support the development of detection methods for generated
content. All experiments were conducted on publicly available datasets (ImageNet) under appropri-
ate licensing terms.

A.2 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The paper provides comprehensive
implementation details including hyperparameters, training procedures, and network architectures.
We plan to release the complete source code, pre-trained models, and evaluation scripts upon publi-
cation to facilitate reproduction and further research.
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A.3 USE OF LARGE LANGUAGE MODELS

We declare limited use of LLMs in the preparation of this manuscript. Specifically, LLMs were
used solely for grammar checking and language polishing to improve readability and clarity of the
English text. No LLM assistance was used for generating research ideas, designing experiments,
analyzing results, or drawing conclusions. All technical contributions, experimental design, and
scientific insights are the original work of the authors.
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