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Abstract—Locating the corner position of a hexagon bolt
with high precision is crucial, especially when dealing with
low-resolution images during the tightening of wrist bolts
in overhead contact systems. We present a novel framework
for an SR-integrated semantic segmentation method. In this
paper, we select the high-performance SRGAN model for low-
resolution image reconstruction; then improve the Deeplabv3+
segmentation model to achieve efficient segmentation of hexag-
onal bolts; and finally determines the bolt corner positions
based on Line Segment Detector. The novelty of this method
lies in integrating image super-resolution into the seman-
tic segmentation model, followed by the improvement of
the segmentation network using the lightweight MobileNetv2
backbone, ultimately achieving precise bolt corner location.
Experiments demonstrate that the proposed method improves
corner detection accuracy by 38.93% compared to the original
low-resolution method across different scenarios, proving its
practical engineering significance.

Index Terms—Corner location of bolt, Semantic segmenta-
tion, Super-resolution, Catenary arm

I. Introduction
The catenary system is a key component of modern rail

transportation, providing continuous electric energy for
high-speed trains and promoting the rapid development of
railway systems. However, the bolts on the catenary arm
frequently loosen due to adverse weather and prolonged
pantograph-catenary contact, affecting train stability and
safety. Currently, bolt tightening primarily relies on
manual operations, requiring maintenance personnel to
manually tighten bolts in outdoor environments. This
process is not only inefficient but also poses high safety
risks and costs. The Fig.1 shows the catenary arm and
the bolts compoment. Therefore, it is crucial to use visual
sensors and robotic arm automation technology to achieve
fast and accurate bolt tightening[1-2].

Image-based visual servoing (IBVS) technology achieves
precise positioning of the robot end-effector by analyzing
the image features of the target object, such as feature

points, lines, and planes[3-4]. In this study, when the
robotic arm moves near the parts to be tightened on
the catenary arm, the camera captures the hexagonal
feature of the bolt—the six corner positions—and matches
it with the standard template to control the robotic
arm to accurately fit the socket onto the bolt and
complete the tightening. However, in actual maintenance,
the resolution of bolt images is often low, leading to
inaccurate corner position detection, which affects the
positioning and operation of the robotic arm. Therefore,
obtaining high-precision corner position information from
Low-Resolution(LR) images is the core issue of this study.

(a)The catenary arm. (b)Bolt compoment.

Fig. 1: The picture of the catenary arm and the bolts
compoment.

Currently, bolt research mainly focuses on detecting
bolt loosening, with limited research on accurately ex-
tracting the six corner positions of the bolt. Nonetheless,
several studies have attempted to extract bolt contour
information using traditional image processing techniques,
such as edge detection, thresholding segmentation, and
shape processing. For example, Wang et al.[5] used an
object detection algorithm to locate remote bolt ar-
eas, followed by adaptive thresholding segmentation and
Hough transform technology[6] to obtain the contour and



position information of hexagonal nuts. Luo et al. [7] used
thresholding segmentation to extract the hexagonal nut
subgraph from the bolt connection graph and identified
each nut’s edge line using a Canny edge detector. How-
ever, these traditional detection techniques are mainly
suitable for situations with significant color contrast
between the hexagonal bolt and the background. They
are less robust and susceptible to external light, angle,
and noise. Additionally, these methods are affected by
subjective parameter settings, limiting their reliability and
stability in practical applications. Therefore, developing
more accurate and robust bolt detection techniques to
adapt to complex environments and improve automated
maintenance efficiency is particularly important.

With technological advancements, the field of computer
vision and deep learning has witnessed significant develop-
ments. With its excellent feature extraction capabilities,
Convolutional Neural Networks (CNN) have achieved
breakthrough results in key areas such as Semantic
Segmentation(SS) and Super-Resolution(SR). The advent
of Fully Convolutional Networks (FCN) [8] revolution-
ized the traditional segmentation approach. By removing
the fully connected layer in traditional CNNs and fully
utilizing the convolutional layer, FCNs achieved leading
SS results at the pixel level. This innovation inspired a
series of high-performance segmentation network models,
including SegNet, DeconvNet, the DeepLab family, U-Net,
and PP-Liteseg based on the PaddlePaddle framework [9-
13]. These advanced algorithms can effectively and clearly
segment hexagonal bolts from catenary arm components.

Field-collected images often suffer from insufficient res-
olution, impacting the accuracy of manual labeling and
model train for predictions. To tackle this, SR is essential,
as it enhances image clarity, allowing convolutional neural
networks (CNNs) to extract detailed features and learn the
mapping from LR to high-resolution (HR) images, thus
aligning training and testing datasets more closely.Dong
et al. pioneered the SRCNN algorithm [14], which quickly
reconstructs high-quality HR images with a three-layer
convolutional model. They further refined this with the
FCN-based FSRCNN [15], offering a more efficient and
accurate reconstruction method. Despite these improve-
ments, there’s still room for refining detail and texture pro-
cessing.In recent years, Generative Adversarial Networks
(GANs) have become prominent in SR tasks, with their
discriminators adept at learning complex loss functions.
Ledig et al. [16] introduced SRGAN, the first GAN
application to single image SR, which effectively restores
realistic textures, vital for detecting and maintaining
minor damages on hexagonal bolts on catenary arms over
time

To summarize, we present our novel framework for
an SR integrated bolt SS method. During maintenance,
we overcame the resolution limitation by generating cor-
responding HR images through the SRGAN model in
the face of LR images. On this basis, we combined

the improved Deeplabv3+ model to complete the SS of
hexagon bolts and accurately position the corner points
of the contact line arm bolts. Compared with manual
maintenance and traditional vision methods, the proposed
method has the following significant advantages:
Firstly, this method improves bolt extraction effec-

tiveness and robustness through the pre-processing of
SRGAN image reconstruction based on data enhance-
ment technology. It also effectively addresses common
fuzzy and LR image problems during overhead catenary
arm maintenance. Images with a single data source and
low quality often face robustness and accuracy issues
in manually labeled datasets in diverse environments.
Therefore, improving the overall quality of images lays a
solid foundation for the subsequent SS of hexagonal bolts.
Secondly, in selecting the SS model, this paper inte-

grates the lightweight MobileNetv2 backbone into the
Deeplabv3+ model to enhance the SS effect. Compared
with traditional models, the improved Deeplabv3+ model
reaches new heights in segmentation accuracy and overall
performance. This combination optimizes the model’s
computational efficiency and significantly improves seg-
mentation accuracy.
Furthermore, boundary detection of the separated

hexagon bolt contour is performed to determine the order
of adjacent boundaries, obtaining the final position of
the hexagon bolt intersection. The high-precision Line
Segment Detection (LSD) [17] is used to detect the
edge segment of the mask image, eliminating image edge
unsmoothness errors. By expanding the dataset of HR
images of different parts of the contact line arm bolt
collected in the laboratory, experimental results show that
the proposed method achieves a high level of experimental
effect, with a detection accuracy increase of 38.96%. This
result highlights the critical role of SR in improving the
performance of LR bolt image segmentation, benefiting
the maintenance of the catenary arm by mechanical arms.
The structure of this paper is arranged as follows:

Section I introduces the background of overhauling the
contact net wrist arm, the visual servoing technology
of the robotic arm based on image visual servoing, and
the challenges it faces. Section II provides a detailed
overview of the design of the bolt corner detection model
integrating SR into SS. Section III describes and analyzes
the preparation of experimental data, process, and results.
Finally, Section IV concludes the paper.

II. Design of Detection Model
A. Super-Resolution Image Reconstruction based on SR-
GAN Model with Image Data Augmentation
When examining the performance of SS models, it is

essential to address the significance of datasets prepa-
ration, which underpins the model’s learning and gen-
eralization capabilities. A high-quality datasets should
be based on diverse shooting conditions and accurate
manual annotation. However, in the practical task of
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Fig. 2: The structure of SRGAN network.

tightening bolts on the catenary arm, LR images are often
encountered. This not only increases the data’s uniformity
but also complicates manual annotation, thereby affecting
the model’s training efficacy and generalization ability. To
address these issues, integrating image SR into image data
enhancement is particularly crucial.

Image data augmentation technology plays a pivotal
role in the realms of machine learning and deep learning.
This technique involves applying a series of carefully
designed transformations to the original image, including
but not limited to rotation, translation, scaling, flipping,
and noise addition. These transformations create new
images with subtle differences while retaining the orig-
inal features. These newly generated images are used
as additional training samples along with the original
dataset. Data augmentation not only expands the training
dataset’s breadth and enhances the model’s learning
potential but also simulates various outdoor environments
such as sand, rain, night, and bright light. By introducing
diverse image transformations, the model is exposed to
richer data forms during training, resulting in stronger
adaptability to diverse environmental data during actual
catenary arm maintenance. This effectively reduces the
risk of model overfitting and significantly improves the
model’s generalization and robustness.

Image SR further strengthens the model’s data foun-
dation and enhances the accuracy of data labeling by
improving the details of LR images. The SRGAN network,
as a representative of image SR , adeptly combines deep
learning and adversarial training. The Generator aims

to produce SR images indistinguishable from real HR
images, while the Discriminator continually optimizes
its discrimination ability. Throughout this process, the
Generator gradually improves, ultimately generating high-
quality images that enhance the reality and detail of
the image, effectively addressing the smoothing problem
inherent in traditional algorithms. The structure of the
network is depicted in the Fig.2.
1) Generator
The Generator consists of multiple consistent residual

blocks, each containing two convolutional layers. The 3×3
convolution kernel and 64 feature maps effectively capture
global and local image features. The introduction of batch
normalization and the ReLU activation function further
enhance the model’s learning ability and generalization.
The sub-pixel convolutional layer at the network’s end
achieves precise image magnification through channel
expansion, providing clearer image results and showcasing
deep learning’s potential and excellent performance in SR
reconstruction.
2) Discriminator
The Discriminator’s architecture employs the Leaky

ReLU activation function and avoids Max pooling to
preserve image details. Inspired by the VGG network,
the following steps are enhanced: composing multiple con-
volutional layers, increasing the number of filter kernels,
emphasizing detailed local feature inspection, and improv-
ing computational efficiency through stride convolution.
Finally, the feature map is input into the dense layer,
and the final classification probability is output by the
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Fig. 3: The structure of Deeplabv3+-Mobilenetv2 network.

sigmoid function, accurately distinguishing between real
and fake images, thus providing a solid foundation for SR
technology.

3) Network usage
Thanks to the collaborative mechanism of the SRGAN’s

Generator and discriminator, only a set of real HR images
need to be provided initially. The network generates cor-
responding LR images through its down-sampling process
and learns the complex mapping relationship between HR
and LR images. In practical applications for catenary arm
maintenance, only the generator module of SRGAN and
its trained weights are deployed. This not only simplifies
the actual network model’s scale to meet lightweight stan-
dards but also rapidly recovers HR images with rich details
by processing LR images captured by the manipulator’s
front camera. This provides a solid foundation for the
subsequent contour segmentation task of hexagonal bolts.

B. Improved Deeplabv3+ Semantic Segmentation Model
1) DeepLabv3+ Network Concept and Framework
The DeepLab family of advanced deep learning image SS

models effectively combines low-level visual features and
high-level semantic information to achieve more accurate
image segmentation. As an optimized version of the series,
DeepLabv3+ introduces an Encoder-Decoder structure to
perfectly fuse multi-scale information. The Encoder com-
ponent manages feature extraction at different resolutions
to balance accuracy and time consumption. The network
framework schematic Fig.3 demonstrates this innovative
design.

2) Backbone Network Innovation

With the continual advancement of CNN technology,
Depthwise Separable Convolution(DSC) has become a
typical lightweight network structure due to its low
parameter count and operational cost. The backbone
network, responsible for extracting image features, directly
affects model performance and computational complexity.
Although the original DeepLabv3+ uses Xception as the
backbone, which offers optimization, it still has high
computational complexity and parameter count. To meet
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Fig. 4: The structure of inverted residual module.

the requirements of bolt corner location in catenary arm
maintenance, we innovatively use MobileNetV2 as the
backbone network for fast and efficient feature extrac-
tion. MobileNetV2’s inverted residual module initially
expands the number of channels through 1×1 pointwise
convolution, then performs DSC, and finally reduces the
dimension to minimize feature information loss. This
structure, which was introduced early in the network,
captures the richness of features that are critical to the



SS task, and its structure is shown in Fig 4.
Comprehensive evaluations in the Table I show that

using MobileNetV2 as the backbone network offers sig-
nificant computational complexity advantages without
compromising segmentation performance. This supports
deploying efficient SS models in computing resource-
constrained environments.
TABLE I: Model Parameters and Performance Metrics

Model Parameters(M)a MACs(HM)b Size(MB)
MobileNetV2 3.4 300 15

Xception 22.9 11700 70-80
a Number of parameters in the backbone network.
b Number of parameters in the backbone network.

3) Encoder Core Innovation
In the bolt images captured during maintenance, the

target bolt occupies most of the area, requiring a large
receptive field from the model. The core of DeepLabv3+
introduces dilated convolutions, allowing each convolu-
tional layer to output a broad range of pixel information
without losing detail. Dilated convolutions extract effec-
tive features across pixel levels. DeepLabv3+ uses multiple
parallel Atrous convolutions (ASPP) with different rates
to extract features at varying resolutions and encode rich
semantic information.

4) Loss Function Definition
The SS task involves classifying each pixel of the

input image. Network training progresses by comparing
predicted results with class labels in the actual segmenta-
tion map. Traditional DeepLabv3+ uses a composite loss
function consisting of Cross-Entropy loss and Auxiliary
loss. The Auxiliary loss is calculated on multi-layer feature
maps to improve performance at different resolutions
and enhance small object detection. For this task, the
classification category simplifies to bolt and background,
with the bolt being a large target object. Therefore, the
composite loss function replaces the auxiliary loss with
the Dice loss for training.

• Cross-Entropy loss
The cross entropy loss measures the difference between
the predicted probability distribution of the model and
the actual label probability distribution, and is commonly
used in multi-class classification. It is defined by the
following formula:

lC−E = −
N∑
i=1

yi log(pi) (1)

In the fomular: N is the number of categories, P =
{p1, p2, · · ·, pN}is the probability that a pixel belongs to
the Cth category, and Y = {y1, y2, · · ·, yN}is the value in
the one-hot encoding vector.

• Dice loss
Dice loss is designed for binary or multi-class classification
problems. It measures the similarity of samples based on

the Dice coefficient to deal with class imbalance. It is
calculated as follows:

lDice = 1−Dice = 1− 2 |X ∩ Y |
|X|+ |Y |

(2)

In the fomular: X and Y represent the pixel values of the
predicted and true labels respectively, the Dice coefficient
measures the similarity between the two, and smaller is
better as a loss function.

C. Hexagon Bolt Corner Positioning Method
This study focuses on using semantic segmentation

algorithms on HR reconstructed images to accurately
extract hexagonal bolt contours. Based on advanced
SS techniques, we generate segmentation mask maps of
hexagonal bolts. However, segmentation mask edges are
often not smooth enough, and traditional edge extrac-
tion methods, such as the Canny operator, struggle to
obtain ideal flat contours. Thus, we introduce the Line
Segment Detector(LSD). Leveraging LSD’s efficient line
segment detection performance, we perform a series of
screening and positioning operations on detected line
segment information to obtain the six boundary lines of
the hexagonal bolt, ultimately locating the bolt’s corners.
The Fig. 5 illustrates the LSD detection results and final
corner position determination results.Below are the LSD
operation steps and line segment screening and positioning
steps:

(a)LSD’s handling of
segmentation masks.

(b)The final result of
corner position.

Fig. 5: The LSD detection results and final corner position
determination results.

1) LSD Operation Steps:
Step 1: Image scaling pre-processing. Reduce the input

image to 80% of its original size and apply Gaussian
downsampling to minimize or eliminate jagged effects,
preventing other interference noise.

G =

√(
gradx(x, y)

2
+ grady(x, y)

2
)

(3)

θ = arctan

[
−gradx (x, y)

grady (x, y)

]
(4)

In the formula:Grepresents the gradient of the pixel at
(x, y) along the x and y axes; θ is the gradient angle at
that point.



Step 2: Calculate and sort image gradient magnitude
and row and column angles. A 22 template calculates gra-
dient magnitude G and row-column angles θ. This small
template speeds up calculation and ensures neighborhood
direction distribution independence.

Step 3: Image gradient sorting and pixel filtering.
Regions with sharp gradient magnitude changes are likely
to contain strong edges. Sorting pixel gradient magnitudes
enhances subsequent line segment calculation and detec-
tion accuracy. In LSD calculations, pixels with gradient
amplitudes exceeding the threshold are filtered out.

Step 4: Region generation. Select unused pixels from the
sorted pixel list as seed points. Search for unused pixels
satisfying specified angle conditions in the 8-neighborhood
of seed points to form the support line region.

2) Line Segment Screening and Positioning Steps
Step 1: Calculate and sort segment lengths. Use the

Euclidean distance formula to calculate the lengths of
all line segments in the mask image, then sort them.
Identify the six longest line segments as the hexagonal
bolt’s boundaries.

Length =

√
(x1 − x2)

2
+ (y1 − y2)

2 (5)

Step 2: Sort endpoint coordinates. Since the obtained
line segment information lacks order, further processing
is required. Traverse endpoint coordinates using the Eu-
clidean distance formula to find the closest endpoint pairs,
determining the adjacent order of the six boundaries.

Step 3: Determine corner positions. Using the principle
of the intersection of two straight lines, determine the
six corner positions of the hexagonal bolt. Divide each
corner point’s coordinate values by 8 according to the
reconstruction coefficient to obtain the hexagonal bolt
corner positions in the resolution picture.

Using the above positioning method, we accurately
identify the hexagonal bolt’s boundary and corner posi-
tions, providing a solid foundation for subsequent image-
based visual servoing of the manipulator. The figure below
illustrates this flow, depicting the complete steps from
image processing to corner location.

III. Experiment
This section describes the implementation of the cate-

nary arm hexagonal bolt corner position method, which
incorporates SR into SS. The entire flowchart is depicted in
Fig. 6. The process is divided into four parts: dataset pre-
processing, image reconstruction using the SRGAN model,
SS of hexagonal bolts based on an improved Deeplabv3+
model, and determination of the corner positions of the
hexagonal bolts.

A. Dataset Pre-processing
LR images with a resolution of 512×375 were collected

during the overhead contact net overhaul. We used a
manual zoom camera, Basler, to capture HR bolt images
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Fig. 6: The entire flowchart of the catenary arm hexagonal
bolt corner position method.

with a resolution of 4096×3000 from the overhead contact
net wrist arm model during the training data acquisition
stage, after calculating a SR factor of 8. All images
were downsampled (coefficient 8) to create LR image
datasets with a resolution of 512×375. It is important
to note that the LR datasets are used only as a control
object for the subsequent SS network and not as an
operational step of the method. Considering the actual
outdoor working environment, which includes sand, rain,
night conditions, and strong light irradiation, and given
the limited number of captured data, data enhancement
techniques such as rotation, horizontal cropping, Gaussian
noise, and exposure adjustment were applied to both
datasets. After these enhancements, two groups of 1400
HR and LR experimental datasets were obtained and
randomly divided in an 8:2 ratio. The number of images
of catenary arm bolts used for SRGAN and Deeplabv3+
network training is 1120, while 280 images were used for
testing. Part of the catenary arm bolt image datasets



(a) Low Brightness. (b) Strong Exposure.

(c) Gaussian Noise. (d) Rotate.

Fig. 7: The display of enhanced datasets.

enhanced by data augmentation techniques is shown in
Fig. 7.

B. Image Reconstruction for SRGAN Model
1) Datasets Selection and Model Training: During the

SRGAN model train phase, we selected HR datasets with
a resolution of 4096×3000. The model can automatically
downsample the input HR image by a factor of 8 through
bicubic interpolation, simulate the characteristics of LR
images, and finally reconstruct a HR image based on
the actual LR image. Since the semantic segmentation
network is the key model technology of the whole method,
and image SR is a promotional step, we only train HR
image reconstruction on the SRGAN model, which is
configured with an Ubuntu 18.04 system and performed
on a 2×22G RTX 2080Ti GPU device. The reconstruction
factor is 8, with default epochs set to 200, Batch size set
to 32, momentum set to 0.9, and an initial learning rate
of 0.0001.

2) Evaluation Indicators:
• PSNR(Peak Signal-to-Noise Ratio)
Measures image quality by comparing the difference

between the original and SR images through the Mean
Squared Error (MSE) of each pixel value. It is calculated
as follows:

PSNR = 10 lg

[
(MAXI)

2

MSE

]
(6)

In the formula: MAXI is the maximum possible pixel
value of the image(255 in this paper); The expression for
the MSE is given as follows. A higher PSNR means that
the error between the SR image and the original image
is smaller, and the image quality is better; generally, a
PSNR value above 30dB is considered as a high-quality
image.

• SSIM(Structural Similarity Index)
SSIM is a measure of the visual similarity of two

images, which takes into account the brightness, contrast
and structural information of the image, and can better
reflect the human eye’s perception of image quality than
PSNR.It is calculated as follows:

SSIM(x,y) =
2(µxµy + c1)(2σxy + c2)

(µx
2µy

2 + c1)(2σx
2σy

2 + c2)
(7)

In the formula: µx and µy represent the brightness of
the original image and the SR image at the (desired) pixel
respectively; σx and σy are their mean brightness, and
σxy is their covariance; c are the small constant used to
stabilize the division. SSIM values range from 0 to 1,
with values closer to 1 indicating that two images are
more similar.

3) Results Presentation and Analysis
As shown in Figure. 8 and Table II, we display the

original HR image set, the LR images captured in the
actual scene, and the HR images reconstructed by SRGAN
in the LR test set.
TABLE II: Comparison of Super-Resolution Methods

Indicator LR 4×BICUBIC 8×BICUBIC Ours
PSNR 28.97 30.57 32.37 34.11
SSIM 0.70 0.73 0.80 0.82

The data differences are evident. The BICUBIC method
can improve image resolution but introduces a blurring
effect, particularly at higher reconstruction coefficients,
leading to edge detail loss in contact net wrist bolts. In
contrast, the SRGAN model retains original image details,
aligns better with human visual habits, and enhances
the viewing experience. The data in Table II indicate
significant improvements in key evaluation indicators,
demonstrating that the reconstruction effect is more sim-
ilar to the original image and closer to the real situation.

C. Semantic Segmentation of Hexagonal Bolt Based on
Improved Deeplabv3+ Model

1) Datasets Selection and Model Training
During the Deeplabv3+ model training phase, both

HR and LR datasets were used, with the LR datasets
serving as a control group. Based on SRGAN training
results, we reconstructed the 280 test images in the LR
datasets for subsequent testing. The Deeplabv3+ model
was trained on datasets at different resolutions, using
the same hardware configuration as the SRGAN training.
Default epoch is 200, BatchSize is 32, initial learning
rate is 0.007, momentum is set to 0.9, weight decay
is 0.0001, and a cosine decay learning rate scheduling
strategy controls the learning rate.
2) Evaluation Indicators

• mPA (Mean Pixel Accuracy)



(a) Bolt Compoment 1 (b) HR (c) 4*BICUBIC (d) 8*BICUBIC (e) SRGAN

(f) Bolt Compoment 2 (g) HR (h) 4*BICUBIC (i) 8*BICUBIC (g) SRGAN
Fig. 8: Experimental visual results for Image Reconstruction.

Measures how accurately the model predicts each pixel
class. Higher mPA values indicate better segmentation
performance.

mPA =
1

K

K∑
k=1

1

I × J

I∑
i=1

J∑
j=1

f(pij = k ∧ tij = k) (8)

In the formula: K is the number of segmentation
categories; I and J denote the height and width of the
image, respectively. pij is the predicted pixel class at
(i, j); tij is the actual pixel class at (i, j); f is the
indicator function, which is 1 only when the function
condition is met, that is, when both the predicted and
actual classification of the pixel value are of class k, and
0 otherwise.

• mIoU (Mean Intersection over Union)
Measures the overlap between predicted and actual

segmentation results. Higher mIoU values indicate better
classification accuracy and segmentation network perfor-
mance.

mIoU =
1

K

K∑
i=0

pii
K∑
j=0

pij +
K∑
j=0

pji − pii

(9)

In the formula: K is the number of segmentation
categories; i�j represents the different classes; pij is for
predicting class j as class i, which is 1 only if the
classification is correct.

• Accuracy
Measures the fraction of correctly predicted pixels

compared to the total number of pixels. Higher accuracy
represents better semantic segmentation performance.

Accuracy =

I∑
i=1

J∑
j=1

f(pij = tij)

I × J
(10)

In the formula: I and J represent the height and width
of the image respectively; pij is the predicted pixel class at
(i, j); tij is the actual pixel class at (i, j); f is the indicator
function, which is 1 only if the function condition is met,
that is, if the predicted and actual classification of the
pixel value are the same, and 0 otherwise.
3) Experimental Results and Analysis
As a crucial part of the method, the training of the

semantic segmentation network rigorously demonstrates
the correctness of the segmentation model and training
method.

• Necessity of SRGAN reconstruction model:
To highlight the key role of incorporating image SR

technology in our method, we chose the DeepLabv3+
model with MobileNetv2 as the backbone network and
trained it on datasets with different resolutions. After
training, different models were applied to the HR test
image set reconstructed by SRGAN. The experimental
results are as follows:

TABLE III: Performance Metrics for Different Data
Sources

Train and Test Data Source mPA mIoU Accuracy(%)
Source 1 a 97.92 96.26 99.44
Source 2 b 97.82 96.23 99.24
Source 3 c 95.91 94.50 98.19

a HR training set, HR test set reconstructed by SRGAN.
b LR training set, HR test set reconstructed by SRGAN.
c LR image training set, LR test set.

From the results in the Table III above, it can be
concluded that compared with the training and testing
on the original LR datasets, the three indicators of the
DeepLabv3+ model have significantly improved after the
introduction of image SR technology. Additionally, in
the early dataset labeling stage, HR images are more



conducive to manual labeling compared to LR blurry
images.

• Efficiency of the improved DeepLabv3+ model:
To highlight the innovation of the DeepLabv3+ model

in our approach regarding the backbone network, several
SS models were trained, including DeepLabv3+ using Mo-
bileNetv2 backbone network, the original DeepLabv3+,
and the lightweight SS network PP-LiteSeg.

TABLE IV: Performance Metrics of Different Models
Model mPA mIoU Accuracy(%)

deeplabv3+-Mobilenetv2 97.92 96.26 99.44
deeplabv3+-xception 97.57 95.63 99.34

PP-LiteSeg 94.44 93.18 98.90

From the Table IV :further in-depth analysis of the
different backbone networks of DeepLabv3+ reveals that
when DeepLabv3+ is combined with MobileNetv2, the
model reaches new heights in segmentation accuracy and
overall performance. This combination not only optimizes
the computational efficiency of the model but also sig-
nificantly improves segmentation accuracy. In contrast,
although DeepLabv3+ combined with Xception performs
well, it is slightly worse on some performance metrics.
The optimized model shows higher accuracy and efficiency
in dealing with complex images and detail recognition,
providing a solid technical foundation for the subsequent
corner location task of hexagonal bolts.

D. Determination of Corner Position of Hexagonal Bolt
1) Experimental procedure
The LR test images with a resolution of 512×375

are reconstructed by the SRGAN network, and then
semantic segmentation is carried out by the DeepLabv3+-
MobileNetv2 network. After multiple experiments, it is
concluded that the best effect is achieved when the
threshold of the LSD line segment detector is set to 0.25.

2) Evaluation index
Because the position information of the bolt corner is

not clearly given, we manually marked the corner position
using the labeling tool LabelMe as the position of the
corner of our standard hexagonal bolt. The Euclidean
distance formula is used to calculate the average distance
error, and the formula is as follows:

Error =
1

6

√
(x∗ − x)

2
+ (y∗ − y)

2 (11)

3) Experimental results and analysis
To demonstrate the accuracy of this method and the

necessity of introducing image SR technology, the original
method and this method are compared from two aspects:
visual results and data results.

• Display of visual results:
Fig. 9 and Fig. 10 respectively show the results of hexag-

onal bolt edge detection using two different methods for

(a)Ours Method (b)Low-Resolution
Fig. 9: Visual results for bolt compoment 1.

(a)Ours Method (b)Low-Resolution
Fig. 10: Visual results for bolt compoment 2.

different catenary arm bolt components. Through careful
comparison of these images, we observe that although the
segmentation effect maintains integrity under LR, there
are deficiencies in processing edge details. Specifically, the
smoothness and uniformity of the edges have not reached
the ideal state, and the corners of the hexagonal bolts
are not visually sharp enough. These problems further
affect the performance of the LSD line segment detection
algorithm, preventing accurate encircling of hex bolt
edges. Consequently, this imprecise edge detection affects
the accuracy of corner detection, making the position
accuracy fail to meet the expected requirements.

• Display of Data Results:
We tested the bolts (280×2=560 in total) under four
different conditions (normal, low brightness, strong ex-
posure, Gaussian noise) in the test set after SRGAN
reconstruction and in the LR test set, respectively, and
calculated the error value between the detected corner
position of hexagonal bolts and the actual marked corner



TABLE V: The final data results.
Method Test Scenario Total

Normal Low Brightness Strong Exposure Gaussian Noise Error
Ours 2.38 2.86 1.46 2.12 2.21
LR 3.95 4.25 2.79 3.45 3.61

position. The experimental data are as follows:
From Table V provided, we can clearly observe that

in all experimental scenarios, the proposed method in
this study shows significant improvement in error values
compared to the original LR method. Specifically, the
accuracy increases were 39.81%, 32.69%, 47.6%, and
38.6%, respectively. These data not only highlight the per-
formance advantages of this method in various scenarios
but also reflect its robustness under different conditions.
When considering all cases comprehensively, the overall
improvement of detection accuracy reaches 38.93%. This
significant improvement greatly enhances the reliability
and accuracy of corner position detection of hexagonal
bolts, thus providing a more solid foundation for research
and application in related fields.

IV. Conclusion

In this paper, we introduce a method to determine
the corner position of the arm bolt of a contact line
by integrating image SR technology into the SS model.
During maintenance, in the face of the challenge of LR im-
ages, we overcame the resolution limitation by generating
corresponding HR images through the SRGAN model. On
this basis, we combined the improved DeepLabv3+ model
to complete the SS of hexagon bolts and accurately locate
the corner points of the contact line arm bolts.

The reliability of the SRGAN reconstruction method
is demonstrated by PSNR and SSIM values; the seg-
mentation accuracy of the improved DeepLabv3+ model
is verified by comparison experiments of mPA, mIoU,
and Accuracy. Finally, the accuracy of the corner point
position using the proposed method is proved to have
improved by nearly 38.93% through distance calculation.
The test results in various experimental scenarios show
significant improvements, and the method is characterized
by strong robustness.

Compared with the original LR method, the proposed
method is more suitable for tightening the wrist bolt of
the contact line under IBVS-based mechanical arm visual
servoing by obtaining higher accuracy in the hexagon bolt
corner position.
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