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Abstract

Continual relation extraction aims to contin-001
uously learn new relation categories without002
forgetting the already learned ones. To achieve003
this goal, two key issues need to be addressed:004
catastrophic forgetting (CF) of the model and005
knowledge transfer (KT) of the relations. In006
terms of CF, there has been a great deal of re-007
search work. However, another important chal-008
lenge of continual learning: knowledge transfer,009
has hardly been studied in the field of relation010
extraction. To address this, we propose dy-011
namically constructing relation extraction net-012
works (DCREN) for Continual relation extrac-013
tion, which dynamically changes the architec-014
ture of the model through six designed actions015
to achieve knowledge transfer of similar rela-016
tions, and further to combat catastrophic for-017
getting, an extensible classification module is018
proposed to expand the new learning space for019
new tasks while preserving the knowledge of020
old relations. Experiments show that DCREN021
achieves state-of-the-art performance through022
dynamically updating the model structure to023
learn new relations and transfer old knowledge.024

1 Introduction025

Relation extraction is an important and fundamen-026

tal task in natural language processing, which aims027

to identify semantic relationships between entities028

from text. In short, relation extraction is to de-029

termine, given two or more entities, the type of030

relation between these entities. Relation extraction031

has a wide range of applications in the fields of032

information retrieval (Fan et al., 2022), knowledge033

graph construction (Ji et al., 2022), and question034

answering systems (Sarkar et al., 2023). It can help035

us understand and organize a large amount of tex-036

tual information so as to provide users with more037

accurate and useful knowledge. However, new re-038

lations in the real world are constantly updating039

and changing, and traditional relation extraction040

methods (Tian et al., 2022; Ye et al., 2022; Zhong 041

and Chen, 2021; Wei et al., 2020) are unable to 042

learn new relation knowledge in real time and con- 043

tinuously. Therefore, many researchers (De Lange 044

et al., 2022; Wang et al., 2022; Xia et al., 2023) 045

have turned to continual relation extraction. 046

Continual relation extraction allows for contin- 047

ual learning of new relation categories without for- 048

getting learned relations, aiming to continually im- 049

prove the model’s relation extraction capabilities. 050

In order to ensure that relation extraction models 051

still have excellent performance under continual 052

learning, there are two important issues that must 053

be taken into account: (1) catastrophic forgetting 054

(CF) of the model, and (2) knowledge transfer (KT) 055

of the relations. 056

On the one hand, in order to prevent the model 057

from forgetting the knowledge of learned relations, 058

i.e., CF, the simplest way is to store past data and 059

use the historical data to retrain the model when 060

it learns new relations. However, in practice this 061

approach cannot be applied in reality due to com- 062

putational resources and time costs. Existing work 063

therefore focuses on storing and replaying a small 064

number of typical samples to avoid catastrophic 065

forgetting of the model, but due to the limitation of 066

the number of typical samples, frequent replay can 067

lead to overfitting. 068

On the other hand, catastrophic forgetting is at- 069

tributed to the decline of prior knowledge with the 070

emergence of new relations, and thus the transfer 071

of previously learned relation knowledge is crit- 072

ically important, as we empirically study in Ap- 073

pendix A. Although knowledge transfer has been 074

studied in the continual learning, the research on 075

how to transfer previously learned relational knowl- 076

edge to a new task network and build a continual 077

learning model that allows for long-term learning 078

and rapid adaptation has been limited in the field 079

of continual relation extraction. Existing relation 080

extraction approaches (Zhao et al., 2023; Wu et al., 081

1



Figure 1: Overview of our proposed model.

2021; Zhao et al., 2022; Cui et al., 2021) focus082

on catastrophic forgetting for continual learning,083

ignoring the model’s ability to transfer knowledge084

for similar tasks that have been learned in the past.085

To overcome the above problems, we propose086

dynamically constructing relation extraction net-087

works to enable knowledge transfer of similar re-088

lations and thus prevent catastrophic forgetting of089

the model. The outstanding contribution is that090

it can dynamically change the model architecture091

according to the similarity of relations in different092

learning tasks, so as to utilize the previous knowl-093

edge of relations to learn each task in a targeted way.094

Specifically, 1) we use reinforcement learning to095

train a policy network that dynamically constructs096

a corresponding task network for each task by tak-097

ing a series of policy actions in order to achieve098

knowledge transfer of similar relations in different099

tasks. 2) We use a limited number of typical sam-100

ples to teach the task network how to use previously101

learned knowledge, similar to the role of examples,102

with the aim of evoking the task network’s learning103

experience and memory of old relations in order to104

prevent catastrophic forgetting. The sensitivity of105

our method to typical samples is explored in Ap-106

pendix B. 3) To further enhance the memorization107

ability of the model and retain prior knowledge of108

relations, we propose an extensible classification109

module. Unlike previous classification modules for110

continual relation extraction models (Zhao et al.,111

2022), our extensible classification module can ex-112

tend the new learning space for new relations based 113

on the classifier for learning the old relations, in- 114

stead of retraining a new classifier for the set of 115

visible relations (old relations and new relations). 116

4) DCREN will create a new task network for each 117

task, so each task network will only experience a 118

typical sample replay, which maximizes the avoid- 119

ance of model overfitting to typical samples. 120

Our main contributions are summarized as fol- 121

lows: 122

(1) We clarify the important role of knowledge 123

transfer for continual relation extraction through 124

an empirical study and propose a novel continual 125

relation extraction network, termed DCREN, that 126

can dynamically construct the model structure to 127

realize knowledge transfer for similar relations. 128

(2) In order to enhance the model’s memory ca- 129

pability and prevent catastrophic forgetting, we 130

propose an extensible classification module. This 131

module extends the new learning space for new 132

relations based on the classifiers that have finished 133

learning old relations, preserving the knowledge of 134

previously learned relations. 135

(3) The task network dynamically constructed by 136

DCREN only replays the typical sample once, thus 137

minimizing the overfitting problem in continual 138

relation extraction. 139

(4) The experimental results on two benchmark 140

datasets show that our model achieves state-of- 141

the-art accuracy compared to existing work and 142

takes into account both catastrophic forgetting and 143
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knowledge transfer, two important issues faced in144

continual learning. Our source code can be found at145

https://github.com/Anonymous-acl2025/DCREN.146

2 Related Work147

The purpose of continual learning (Wang et al.,148

2023) is to consistently learn new tasks while main-149

taining a high level of accuracy on tasks that have150

been learned before. The main challenges of this151

study are (1) avoiding catastrophic forgetting of152

learned knowledge while learning a new task and153

(2) beneficial knowledge transfer to subsequent154

tasks based on the experience accumulated in previ-155

ous tasks. In order to solve the above problems, cur-156

rent research in continual learning focuses on three157

aspects: (a) Regularization-based methods (Li and158

Hoiem, 2018; Kirkpatrick et al., 2016; Adel et al.,159

2019; Kemker and Kanan, 2017) to limit the pa-160

rameter updates of neural networks can control the161

balance of the model between old and new tasks to162

enhance the generalization ability of the model. (b)163

Dynamic model architecture-based methods (Vé-164

niat et al., 2020; Yoon et al., 2017; Mallya and165

Lazebnik, 2018; Qin et al., 2021) dynamically up-166

date the network as each new task is learned, allow-167

ing the model to efficiently integrate new knowl-168

edge while retaining old knowledge as it learns169

new tasks. (c) Memory-based methods (Lopez-Paz170

and Ranzato, 2017; Chaudhry et al., 2018; Rolnick171

et al., 2018; de Masson d'Autume et al., 2019) addi-172

tionally equip the model with a memory repository173

with a fixed size storage space for important his-174

torical data. The current task data is then used to175

train the model in conjunction with the historical176

data, thus reducing catastrophic forgetting of old177

knowledge.178

Specifically, with respect to continual relation ex-179

traction (CRE), there has been substantial research180

work on challenge (1) catastrophic forgetting. The181

memory-based models are the mainstream choice182

because they show better performance than other183

methods in avoiding catastrophic forgetting. For ex-184

ample, Wang et al. (2019) et al. proposed a simple185

memory replay method to mitigate the catastrophic186

forgetting problem using embedding alignment to187

alleviate the rapid change of embedding space in188

continual learning. Han et al. (2020) et al. in-189

spired by the mechanisms of long-term memory190

formation in humans, introduced situational mem-191

ory activation and reconsolidation into continual192

learning of relations to reconsolidate the prototype193

of old relations. Wu et al. (2021) et al. proposed a 194

new curriculum-meta learning method to address 195

the problems of order sensitivity and catastrophic 196

forgetting in continual relation extraction. Cui et al. 197

(2021) et al. use an attention-based memory net- 198

work refining sample embeddings to obtain bet- 199

ter memory prototypes and enhance performance . 200

Zhao et al. (2022) et al. proposed a consistent rep- 201

resentation learning method that employs contrast 202

learning and knowledge distillation to maintain the 203

stability of relation embeddings during replay mem- 204

ory. Zhao et al. (2023) et al. designed a memory- 205

insensitive relation prototype to overcome the over- 206

fitting problem, introducing integrated training and 207

focal knowledge distillation during training to im- 208

prove similar relation performance. Recently, Le 209

et al. (2024) et al. proposed a novel continual re- 210

lation extraction approach to address the balance 211

of the objective function of the CRE model on new 212

and old tasks by customizing a multi-task learning 213

framework for continual learning. 214

Several previous works have demonstrated that 215

memory-based methods can be effective in avoid- 216

ing model forgetting. However, memory-based 217

models have great difficulties in addressing chal- 218

lenge (2) knowledge transfer due to the working 219

mechanism of sample replay. The knowledge trans- 220

fer capability is crucial for constructing continual 221

learning models that can learn over time and adapt 222

quickly, which is clearly ignored by existing con- 223

tinual relation extraction studies. In this regard, 224

we propose the DCREN method, which dynami- 225

cally constructs relation extraction models based 226

on the similarity of different tasks to achieve knowl- 227

edge transfer of similar relations, thereby prevent- 228

ing catastrophic forgetting of the model. 229

3 Task Definition 230

Given a sequence of relation extraction tasks 231

{T1, T2, . . . , TT } , each task Tt is associated with a 232

dataset Dt = {(xi, yi)}Nt
i=1 , where xi represents a 233

sentence and yi ∈ Rt denotes a relation label from 234

the relation spaceRt. The relation spaces of differ- 235

ent tasks are disjoint. The goal of continual relation 236

extraction is to learn a model that incrementally 237

adapts to new tasks while maintaining performance 238

on previously learned tasks. Formally, a contin- 239

ual relation extraction model must demonstrate the 240

capability to detect all previously encountered rela- 241

tions R̃t =
⋃t

i=1Ri and will be comprehensively 242

evaluated across the test sets of all observed tasks 243
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D̃t
test =

⋃t
i=1Di

test.244

4 Methodology245

4.1 Overview246

The overview diagram of our method is shown in247

Figure 1 and consists of two networks. The first248

one is the policy network P (·; θ̄), which is in the249

environment of a given task and makes a policy de-250

cision based on a certain state in that environment,251

taking a series of actions to dynamically construct252

a task-specific network suitable for the task. The253

second one is the task network T (·; θ̃), which con-254

sists of two parts: the encoding framework and the255

extensible classification module, and the purpose256

of this network is to learn a new task based on257

memorizing the knowledge of the previous task. A258

similar work is BNS (Qin et al., 2021), which we259

discuss in detail in Appendix C.260

4.2 Policy Network261

The policy network will be in different task en-262

vironments in different learning tasks. In gen-263

eral, the environment of task Tt contains (1) A set264

M̃ =
⋃
M ri of typical samples of relations that265

have appeared in all previous tasks , where M ri de-266

notes typical samples of the stored relation ri. (2)267

The task network T (·; θ̃t−1) for the previous task268

Tt−1. (3) The dataset Dt =
{
Dt

train,Dt
val, D̃t

test

}
269

for the current task Tt. (4) The knowledge K =270 {
θ̃1, . . . , θ̃t−1

}
of the relations learned by all pre-271

vious task networks.272

4.2.1 Agent273

Our policy network P (·; θ̄) uses a parameterized274

LSTM as agent, as shown in Figure 1. When learn-275

ing a task t, the agent receives the state St in the276

current task environment and samples a series of ac-277

tions sequentially to construct each layer of the task278

network T (·; θ̃) specific to the current task. Specif-279

ically, the agent receives the state St and samples280

the action ai , and then ai and the state St are input281

together to the next layer of the LSTM to sample282

the action ai+1. Benefiting from the influence of283

the prior action ai , the next action ai+1 sampled284

by the agent has sequential forward and backward285

dependence on the former action.286

4.2.2 State287

In every learning task, it usually contains N rela-288

tions that need to be learned, so when learning the289

current task Tt, we separately compute the simi- 290

larity sti between each relation rti in task Tt and 291

all the relations appearing in the old task, to get 292

the state representation St =
[
st1, . . . , s

t
N

]
of the 293

task Tt. Specifically, in the environment of the cur- 294

rent task Tt, the task network T (·; θ̃t−1) is used to 295

encode the training set Dt
train of the current task 296

and all typical samples of previous tasks stored in 297

the set M̃ . For each visible (old task relations and 298

current task relations) relation ri, we compute the 299

average of its corresponding sentence embeddings 300

as the prototypical representation of the relation, 301

expressed as r̂i. Then, the cosine function is used 302

to compute the similarity between the relation pro- 303

totype r̂ti in the current task Tt and the relation 304

prototype r̂M̃j in the previous tasks. The formula is 305

expressed as follows: 306

r̂ti =
1

nt
i

nt
i∑

k=1

T
(
xi,k; θ̃t−1

)
, (1) 307

r̂M̃j =
1

nM̃
j

nM̃
j∑

k=1

T
(
mj,k; θ̃t−1

)
, (2) 308

sti =
1

|r|

|r|∑
j=1

r̂ti · r̂M̃j
||r̂ti || × ||r̂M̃j ||

, (3) 309

where xi,k ∈ Dt
train, represents the kth sample 310

in the training set that belongs to relation ri. nt
i 311

represents the total number of samples of relation 312

ri in the training set. mj,k ∈ M̃ , represents the 313

kth sample in the typical sample set that belongs 314

to relation rj . nM̃
j represents the total number of 315

samples of relation rj in the typical sample set. 316

|r| represents the total number of relations that 317

appeared in previous tasks. 318

4.2.3 Action 319

Due to intuitive priors, the policy network has 320

six actions to build the task network, including 321

"reload", "fuse", "add", "remove", "reset", and 322

"protect". Among them, "reload", "fuse" and "pro- 323

tect" are categorized as Class I actions, which serve 324

to transfer important relation knowledge for the 325

task network, and "add", "reset" and "remove" are 326

categorized as Class II actions, which serve to add 327

new learning space or remove redundant neural 328

units from the task network. In conclusion, they 329

work together to determine how to transfer relation 330

knowledge learned from previous task networks 331
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into the new task network or how to add new learn-332

ing space to the new task network. A detailed333

description of each of these actions is given as fol-334

lows.335

The "reload" action reloads the parameters of336

the last task network, with the aim of utilizing the337

knowledge learned in the previous task to facilitate338

the learning of the new task. When the lth layer of339

the new task network T (·; θ̃t) executes the action,340

the parameters of this layer will be initialized to the341

parameters of the lth layer of the last task network,342

i.e., T (·; θ̃lt ← θ̃lt−1).343

The "fuse" action fuses the parameters of all344

previous task networks, with the aim of referring to345

the knowledge learned in all previous tasks to help346

the learning of the new task. When the lth layer of347

the new task network T (·; θ̃t) executes the action,348

the parameters of this layer will be initialized to349

the average of the parameters of the lth layer of all350

previous task networks, i.e., T (·; θ̃lt ← θl), θl =351
(θ̃l1+···θ̃lt−1)

t−1 .352

The "add" action adds a new neural unit (e.g.,353

a linear layer) based on the hidden dimensions354

of the current layer, with the aim of generating355

a new layer of learnable parameter space for the356

new task network. When the lth layer of the new357

task network T (·; θ̃t) executes the action, a param-358

eter space with the same number of neurons as the359

lth layer is added after it, i.e., T (·; θ̃lt + wl).360

The "remove" action removes the current layer361

of the task network, with the aim of removing re-362

dundant neurons that are not useful for the old task.363

When the lth layer of the new task network T (·; θ̃t)364

executes the action, then this layer will be removed365

in the task network, i.e., T (·; θ̃t − θ̃lt) .366

The "reset" action resets the parameters of the367

current task network, with the aim of introducing368

a completely new learning space for new tasks.369

When the lth layer of the new task network T (·; θ̃t)370

executes the action, the parameters of that layer371

are randomly initialized and conform to a uniform372

distribution, i.e., T (·;uniform(θ̃lt)) .373

The "protect" action protects the parameters of374

the current task network, with the aim of keeping375

the relational knowledge from being updated and376

forgotten during training. When the lth layer of a377

new task network T (·; θ̃t) executes the action, the378

parameters of that layer are frozen and not modified379

during training, i.e., T (·; |θ̃lt|) .380

4.2.4 Reward 381

Once the policy network constructs a task network 382

based on the sampled actions, we use accuracy as 383

a measure of the performance of the current task 384

network. In the current task Tt, we stipulate the ac- 385

curacy improvement of the current training epoch i 386

over the previous training epoch i-1 as the base re- 387

ward, and the improvement of the current training 388

epoch i over the highest accuracy in all previous 389

training epochs as the advanced reward. The to- 390

tal rewards obtained by the current task network 391

T (·; θ̃t) at training epoch i is shown as follows: 392

Ri
t =

(
α
(
accit − acci−1

t

)
+

(1− α)
(
accit − accmax

t

))
γ,

(4) 393

where α is a weight parameter to regulate the pro- 394

portion of basic and advanced rewards , and γ is 395

a scale parameter to normalize the rewards to a 396

reasonable range. 397

4.3 Task Network 398

In different task environments, the structure of the 399

task network is dynamically modified based on the 400

policy network’s decisions in order to better adapt 401

to new task learning. Once the task network is 402

constructed, it is put into new task learning. 403

4.3.1 Encoding Framework 404

Encoding framework consists of four parts: en- 405

coder based on pre-trained model, i.e., BERT (De- 406

vlin et al., 2019) and the top layer, middle layer 407

and bottom layer that can be dynamically modified. 408

Among them, the number of neurons (i.e., hidden 409

dimensions) in the top, middle, and bottom layers 410

decreases hierarchically, and a nonlinear activation 411

function exists between each layer, forming a spe- 412

cial kind of funnel structure. The advantage of this 413

structure is that the rich features extracted by en- 414

coder are abstracted and integrated step by step, 415

and the hierarchical feature extraction contributes 416

to the model’s ability to capture the key semantics 417

of the sentence. The initial structure of the top, 418

middle, and bottom layers all consist of a linear 419

layer and an activation function, and in subsequent 420

learning of new tasks, the policy network dynami- 421

cally extends and updates the three layers to adapt 422

to different learning tasks. 423

4.3.2 Extensible Classification Module 424

In contrast to traditional classifiers with a fixed pa- 425

rameter space, Extensible Classification Module 426
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can dynamically add new learnable parameters to427

the existing parameter space, making it more suit-428

able for continual learning that requires constant429

learning of new tasks. Specifically, in each learn-430

ing task, there are m learnable relations. When431

learning a new task Tt, we first specify the rela-432

tion knowledge of the previous Tt−1 old tasks, i.e.,433

the parameter matrix of the old task is defined as434

wold ∈ Rh×(t−1)m, and then we will generate a435

parameter matrix wnew ∈ Rh×m for the new task436

Tt as the learning space of the new task. Finally,437

the parameter matrix wold of the old task and the438

parameter matrix wnew of the new task are spliced439

together as a classifier for task Tt. The formula is440

represented as follows:441

wcls = wold ⊕ wnew, (5)442

where wcls ∈ Rh×tm and ⊕ represents matrix con-443

catenation.444

4.4 Model Training445

4.4.1 Training the Policy Network446

The goal of the policy network is to make rational447

decisions based on the similarities between differ-448

ent tasks, sampling a series of actions to construct449

a task network suitable for the task. We train the450

policy network using the popular A3C (Mnih et al.,451

2016) algorithm, which is an Actor Critic method,452

so that when our intelligent agent outputs a se-453

quence of actions based on the state, it will also454

output a critical value of its own decision-making455

ability synchronously. For each iteration of train-456

ing, it contains TT non-intersecting learning tasks,457

and when each iteration is completed, we then col-458

lect TT times of learning data to update the param-459

eters of the policy network with the help of critical460

values. To enable the policy network to more accu-461

rately distinguish between actions that should be462

encouraged and those that should be suppressed,463

thereby improving policy optimization efficiency,464

we employ the advantage function to update the465

policy gradient during training instead of relying466

solely on rewards. The advantage function is typi-467

cally defined as the sum of the reward at the current468

step and the value function estimate at the next step,469

minus the value function estimate at the current470

step. The loss of the policy network is calculated471

as follows: 472

J(θ̄) = −
T∑
t=0

logπθ̄(at|st)A(st, at)+

1

2

T∑
t=0

(Rt − V (st; θ̄v))
2 −H(πθ̄(at|st)),

(6) 473

474
A(st, at) = Rt + V (st+1; θ̄v)− V (st; θ̄v), (7) 475

where A(·) is the advantage function, Rt is the 476

reward for the current task Tt, V (·) is the criti- 477

cal function, and H(·) is the entropy of the policy 478

network, which is used to adjust the policy and 479

encourage the intelligent agent to explore. 480

4.4.2 Training the Task Network 481

The goal of the task network is to learn the current 482

task and achieve excellent performance. After the 483

policy network samples a series of actions to con- 484

struct the top, middle, and bottom layers of the task 485

network, it is trained using the dataset Dt
train to 486

learn the relation knowledge of the current task Tt. 487

The loss of the task network at the current task Tt 488

is calculated as follows: 489

Lcrr(θ̃) = − 1

|Dt
train|

∑
(xi,yi)∈Dt

train

δyi,rj logP (rj |xi; θ̃),

(8) 490

491

where rj is the prediction and yi is the true label, 492

when rj = yi, δyi,rj = 1, otherwise δyi,rj = 0. 493

In order to awaken the task network’s learning 494

experience on previous tasks and to better utilize 495

the relation knowledge transferred from different 496

tasks, we will use a small number of typical sam- 497

ples to guide the task network’s memory on the old 498

relations. More specifically, after the task network 499

has been trained on the current training set Dt
train, 500

it is then guide using the typical samples stored in 501

the set M̃ to wake up the model’s previous learning 502

memory. The loss of the task network performing 503

guided training is calculated as follows: 504

Lgt(θ̃) = −
1

|M̃ |

∑
(xi,yi)∈M̃

δyi,rj logP (rj |xi; θ̃).

(9) 505

5 Experiments 506

5.1 Datasets 507

We evaluated our method DCREN on two popu- 508

lar relation extraction benchmarks — FewRel and 509

TACRED. 510
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FewRel T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2
EMAR 98.8 89.1 89.5 85.7 83.6 84.8 79.3 80.0 77.1 73.8
CML 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7
RP-CRE 97.9 92.7 91.6 89.2 88.4 86.8 85.1 84.1 82.2 81.5
CRL 98.2 94.6 92.5 90.5 89.4 87.9 86.9 85.6 84.5 83.1
CEAR 98.5 95.4 93.0 91.6 90.5 89.0 87.7 86.6 85.2 83.6
CREST 98.7 93.6 93.8 92.3 91.0 89.9 87.6 86.7 86.0 84.8
Ours 98.4 95.6 93.5 92.0 91.0 89.4 88.5 87.4 86.2 84.5

TACRED T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 47.5 40.1 38.3 29.9 28.4 27.3 26.9 25.8 22.9 19.8
EMAR 96.6 85.7 81.0 78.6 73.9 72.3 71.7 72.2 72.6 71.0
CML 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4
RP-CRE 97.6 90.6 86.1 82.4 79.8 77.2 75.1 73.7 72.4 72.4
CRL 97.7 93.2 89.8 84.7 84.1 81.3 80.2 79.1 79.0 78.0
CEAR 97.9 93.7 91.4 87.5 85.1 83.2 81.1 79.5 79.3 79.0
CREST 97.3 91.4 82.3 82.5 79.2 75.8 78.8 77.4 78.6 79.4
Ours 98.1 95.0 92.5 88.0 85.5 83.7 81.3 80.1 79.4 79.4

Table 1: Experimental results after learning each task. The best results are marked in bold and the second best
results are underlined.

FewRel (Han et al., 2018) contains 100 relation511

categories with 700 instances per category, contain-512

ing 70,000 instances in total. The instances are513

extracted from Wikipedia and Wikidata and are in-514

tended for use in relation extraction tasks in natural515

language processing. We follow the previous set-516

tings (Zhao et al., 2022) and use 80 relations with517

700 samples each and divide them into 10 subsets518

to simulate 10 disjoint tasks.519

TACRED (Zhang et al., 2017) is a large-scale520

relation extraction dataset. The dataset con-521

tains 106,264 instances covering 42 relation cate-522

gories. The instances are constructed from English523

newswire and web texts. Following the settings524

of previous work (Zhao et al., 2022), the number525

of relations for continual learning is limited to 40,526

and the maximum number of training samples per527

relation is 320.528

5.2 Implementation Details and Baseline529

Models530

For the evaluation metrics, we follow the exist-531

ing evaluation scheme using accuracy (Hu et al.,532

2022), for the currently learned K tasks, the av-533

erage accuracy over 5 experiments is reported in534

the paper. For the selection of typical samples, we535

follow previous work (Zhang et al., 2022) using536

the K-means algorithm to cluster the samples for537

each relation ri. The number of clusters is defined538

as the memory size M ri = 10 . For hyperparame-539

ter settings, α = 0.5, γ = 10, train batch size = 16,540

test batch size = 64, task network learning rate =541

1e-5, policy network learning rate = 1e-3, and ex-542

tensible classification module learning rate = 1e-3.543

For the experimental environment, the IDE used 544

for the experiments in this paper is Pycharm2021 545

Professional, PyTorch version 1.9.1, and CUDA 546

version 12.1. The model training and inference are 547

performed on an NVIDIA GeForce RTX4090 with 548

24GB GPU memory. 549

For the baseline model, we selected repre- 550

sentative models in recent years, including EA- 551

EMR (Wang et al., 2019), EMAR (Han et al., 2020), 552

CML (Wu et al., 2021), RP-CRE (Cui et al., 2021), 553

CRL (Zhao et al., 2022), CEAR (Zhao et al., 2023) 554

and CREST (Le et al., 2024). see Section 2 for a 555

detailed description. 556

5.3 Results and Analyses 557

5.3.1 Main Results 558

Table 1 shows the results of the main experiment of 559

our DCREN with all baseline models. From these 560

results, we can draw the following conclusions: 561

(1) Our proposed method achieves overall state- 562

of-the-art performance on two different datasets. 563

This is due to the fact that our method dynamically 564

changes the network structure for each task, en- 565

abling the transfer of relation knowledge across 566

tasks, a capability not found in other baseline mod- 567

els. 568

(2) Although the performance of all comparative 569

models decreases as the continual learning task in- 570

creases, our model is still able to maintain a high 571

performance, which suggests that our proposed 572

extensible classification module plays an indispens- 573

able role in combating catastrophic forgetting. 574

(3) On the TACRED benchmark, the perfor- 575

mance of all models is degraded because the dis- 576
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tribution of the number of relation categories is577

extremely unbalanced, but our model still shows578

a huge advantage with up to 10.2% performance579

improvement compared to the CREST baseline.580

(4) On the FewRel benchmark, as the number581

of task increases, it can be noticed that the gap be-582

tween the performance of CEAR model and ours583

is increasingly large, and from the first incremental584

learning T2 to T10, the gap between the CEAR585

and our DCREN improves from +0.2 to +1.0. The586

reason for this situation is that CEAR consider only587

the catastrophic forgetting problem and rely exces-588

sively on stored typical samples, and overfitting589

occurs during the frequent replay of the samples.590

On the contrary, DCREN, our model dynamically591

updates the structure in each task, so that the net-592

work will only experience typical samples replay593

once in each task, which minimizes the problem of594

model overfitting to typical samples. Most impor-595

tantly, our model transferred the knowledge learned596

in previous tasks, avoiding catastrophic forgetting.597

5.3.2 Ablation Study598

We performed ablation studies to verify the ef-599

fectiveness of individual modules in our model.600

Specifically, for "w/o Policy", we remove the ac-601

tion decision of the policy network, i.e., DCREN602

cannot dynamically change its encoding framework603

part in each task. For "w/o Ecm", we remove the604

extensible classification module of the task net-605

work, i.e., DCREN cannot extend the new learning606

space for the new task on top of the old one, but607

instead use the stored typical samples to retrain a608

classifier that contains all the visible relations. For609

"w/o Both", we perform the above two ablation610

operations simultaneously.611

The experimental results are shown in Table 2,612

where it can be observed that the performance of613

the model is impaired when any of the modules are614

removed individually, indicating that all modules615

are beneficial and are an essential part of DCREN.616

In particular, the "Policy" dominates the knowl-617

edge transfer capability of DCREN, which helps618

DCREN to utilize the relation knowledge of pre-619

vious tasks to guide the model to learn new tasks620

quickly, the "Ecm" dominates knowledge memo-621

rization ability of DCREN and it helps DCREN to622

fight against catastrophic forgetting. Further, when623

both were removed, the model shows a significant624

decrease in performance, indicating that the two625

are complementary and both have a huge positive626

effect on the model.627

T2 T4 T6 T8 T10

Fe
w

R
el w/o Policy 95.2 91.5 88.6 86.2 83.7

w/o Ecm 95.3 91.9 89.1 86.8 83.9
w/o Both 94.7 89.0 86.2 84.2 81.1
Ours 95.6 92.0 89.4 87.4 84.5

TA
C

R
E

D w/o Policy 93.9 86.4 82.8 78.9 77.7
w/o Ecm 93.6 87.8 83.7 79.9 77.6
w/o Both 91.6 84.2 77.9 74.7 72.5
Ours 95.0 88.0 83.7 80.1 77.9

Table 2: Experimental results of ablation studies.

6 Conclusion 628

In this work, we propose DCREN, a continual rela- 629

tion extraction model that can dynamically change 630

its model structure to address two important chal- 631

lenges in continual learning: catastrophic forget- 632

ting and knowledge transfer. DCREN can dynami- 633

cally transfer knowledge of similar relations or add 634

new learning spaces for new relations to the task 635

network based on the similarities and differences of 636

relations in different tasks. Specifically, DCREN 637

will take more Class I (reload, fuse, protect) ac- 638

tions to transfer beneficial knowledge for the task 639

network when the relations are similar, whereas 640

when the relations are dissimilar, DCREN will take 641

Class II actions (add, reset, remove) to expand new 642

learning spaces for the task network. Experimental 643

results show that DCREN achieves state-of-the-art 644

performance and outperforms current mainstream 645

memory-based models. Further, we conducted 646

additional empirical research to demonstrate the 647

important role of knowledge transfer in continual 648

learning as a capability that a continual learning 649

model should have. In future work, we will explore 650

more possibilities of dynamic models in continual 651

learning. 652

Limitations 653

Although DCREN effectively mitigated catas- 654

trophic forgetting in continual relation extraction 655

through knowledge transfer capabilities, there are 656

still some limitations: (1) Our model still needs to 657

consume additional space to store a small number 658

of typical samples to teach the task network how 659

to use previously learned relational knowledge. (2) 660

Our approach used reinforcement learning to train 661

the model, which resulted in slower convergence of 662

our model compared to mainstream memory-based 663

continual relation extraction models. (3) Large lan- 664

guage models may improve the performance of 665

continual relation extraction due to their powerful 666

parameters, which has not been explored in this 667
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A Empirical Study of knowledge transfer879

Knowledge transfer is a desirable and extremely880

important capability for models that require con-881

tinual learning. Extracting knowledge from previ-882

ously learned tasks not only facilitates the learning883

of new tasks, but also effectively mitigates catas-884

trophic forgetting. In order to verify the essential885

role of knowledge transfer and how our DCREN886

specifically transfers knowledge about similar rela-887

tions, we designed the following experiments: The888

average of the embeddings of all instances of a889

relation as a prototype of itself and represents the890

overall representation of the relation. The relations891

in the dataset are equally divided into different sets892

based on the similarity of each relation prototype to893

the other relation prototypes, and then we observe894

the performance of the strongest baseline CEAR895

and our DCREN in different sets of relations.896

Figure 2 illustrates the experimental results on897

both FewRel and TACRED datasets. It can be898

observed that the performance of the models all899

decrease as the similarity of the relations increases,900

due to the fact that the severe decay of knowledge901

in similar relations is a key factor in catastrophic902

forgetting. However, our model is still able to main-903

tain a relatively excellent performance in a highly904

similar set of relations and is ahead of CEAR by a905

large gap, which is due to the fact that our model is906

able to transfer the knowledge of similar relations907

and effectively alleviate catastrophic forgetting.908

Figure 3 illustrates the distribution of actions per-909

formed by our DCREN in different sets of similar-910

ity relations. It can be observed that (1) the proba-911

bility that DCREN performs class I actions (reload,912

fuse, protect) grows progressively larger as the sim-913

ilarity increases, suggesting that in a collection of914

relations with higher similarity, the more relation915

knowledge needs to be transferred to maintain the916

model’s performance against catastrophic forget-917

ting. (2) As can be seen from Figure 3(a), when the918

set of relations has less similarity and less transfer-919

able beneficial knowledge, our DCREN will more920

often choose class II actions (add, reset, remove)921

to create a new learning space for new relations, so922

as to cope with the situation where the distribution923

of relations is more varied.924

In summary, knowledge transfer is effective in925

mitigating catastrophic forgetting and is a capabil-926

ity that a continual learning model deserves and927

must have. Our DCREN is able to selectively trans-928

fer relation knowledge according to the similarity929

Figure 2: Experimental results of CEAR and our method
in relation sets with different similarities. Due to the
smaller number of TACRED relations, it is divided into
only two sets of relations (0.00, 0.85] and (0.85,1.00).

of the relations. With relations that are highly simi- 930

lar, DCREN transfers more knowledge to maintain 931

model performance. With relations that are not 932

similar, DCREN adds new learning spaces to ac- 933

commodate different relation knowledge. 934

B Influence of Memory Size 935

In the former section, we have demonstrated the 936

important role of knowledge transfer. Further, in or- 937

der to verify the effect of memory size on DCREN, 938

we conducted experiments with the strongest base- 939

line model of memory-based models, CEAR, as a 940

reference. 941

Figure 4 shows the experimental results of our 942

DCREN and CEAR with different memory size 943

settings. It can be noticed that (1) our model 944

achieves the best performance under different mem- 945

ory settings in both datasets, which indicates that 946

our model has strong generalization ability and is 947

not as sensitive to memory size compared to the 948

memory-based model. (2) As can be seen from 949

Figure 4(b) and (c), with a balanced distribution 950

of relations, our model leads the performance of 951

11



Figure 3: Distribution of actions performed by our
method in different similarity sets.

CEAR increasingly as the tasks increase, which952

reveals that the utilization of typical samples in953

memory for DCREN is also completely ahead of954

the memory-based model.955

C Comparison with BNS956

Similar to our work is the BNS proposed by Qin957

et al. (2021) et al. This approach also dynamically958

builds network architectures in continual learning.959

However, our approach is significantly different960

from BNS in the following ways: (1) Differences961

in Continual Learning Types. The BNS focuses962

on task-incremental learning (Task-CL) within con-963

tinual learning, while our DCREN focuses on class-964

incremental learning (Class-CL), which is more965

challenging. (2) Field Differences. The BNS966

is used to solve image recognition problems in967

computer vision, whereas our DCREN is designed968

to address relation extraction problems in natural969

language processing. (3) Methodological Differ-970

ences. The BNS stipulates a fixed number of hid-971

den layers for the dynamic model. When facing a972

new task, its dynamism is reflected in the different973

actions performed for each hidden layer to rebuild974

the network, i.e., the process of destruction and975

reconstruction. On the other hand, our DCREN976

does not specify a fixed number of hidden layers977

but instead features three different dimensional en-978

coding layers (top, middle, and bottom). Within979

Figure 4: Experimental results of CEAR and our method
with different memory sizes.

these layers, the hidden layers can be optimized 980

(Class I actions) or expanded/removed (Class II 981

actions) arbitrarily, i.e., the process of optimization 982

and expansion (or removal). 983
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