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Abstract

Continual relation extraction aims to contin-
uously learn new relation categories without
forgetting the already learned ones. To achieve
this goal, two key issues need to be addressed:
catastrophic forgetting (CF) of the model and
knowledge transfer (KT) of the relations. In
terms of CF, there has been a great deal of re-
search work. However, another important chal-
lenge of continual learning: knowledge transfer,
has hardly been studied in the field of relation
extraction. To address this, we propose dy-
namically constructing relation extraction net-
works (DCREN) for Continual relation extrac-
tion, which dynamically changes the architec-
ture of the model through six designed actions
to achieve knowledge transfer of similar rela-
tions, and further to combat catastrophic for-
getting, an extensible classification module is
proposed to expand the new learning space for
new tasks while preserving the knowledge of
old relations. Experiments show that DCREN
achieves state-of-the-art performance through
dynamically updating the model structure to
learn new relations and transfer old knowledge.

1 Introduction

Relation extraction is an important and fundamen-
tal task in natural language processing, which aims
to identify semantic relationships between entities
from text. In short, relation extraction is to de-
termine, given two or more entities, the type of
relation between these entities. Relation extraction
has a wide range of applications in the fields of
information retrieval (Fan et al., 2022), knowledge
graph construction (Ji et al., 2022), and question
answering systems (Sarkar et al., 2023). It can help
us understand and organize a large amount of tex-
tual information so as to provide users with more
accurate and useful knowledge. However, new re-
lations in the real world are constantly updating
and changing, and traditional relation extraction

methods (Tian et al., 2022; Ye et al., 2022; Zhong
and Chen, 2021; Wei et al., 2020) are unable to
learn new relation knowledge in real time and con-
tinuously. Therefore, many researchers (De Lange
et al., 2022; Wang et al., 2022; Xia et al., 2023)
have turned to continual relation extraction.

Continual relation extraction allows for contin-
ual learning of new relation categories without for-
getting learned relations, aiming to continually im-
prove the model’s relation extraction capabilities.
In order to ensure that relation extraction models
still have excellent performance under continual
learning, there are two important issues that must
be taken into account: (1) catastrophic forgetting
(CF) of the model, and (2) knowledge transfer (KT)
of the relations.

On the one hand, in order to prevent the model
from forgetting the knowledge of learned relations,
i.e., CF, the simplest way is to store past data and
use the historical data to retrain the model when
it learns new relations. However, in practice this
approach cannot be applied in reality due to com-
putational resources and time costs. Existing work
therefore focuses on storing and replaying a small
number of typical samples to avoid catastrophic
forgetting of the model, but due to the limitation of
the number of typical samples, frequent replay can
lead to overfitting.

On the other hand, catastrophic forgetting is at-
tributed to the decline of prior knowledge with the
emergence of new relations, and thus the transfer
of previously learned relation knowledge is crit-
ically important, as we empirically study in Ap-
pendix A. Although knowledge transfer has been
studied in the continual learning, the research on
how to transfer previously learned relational knowl-
edge to a new task network and build a continual
learning model that allows for long-term learning
and rapid adaptation has been limited in the field
of continual relation extraction. Existing relation
extraction approaches (Zhao et al., 2023; Wu et al.,
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Figure 1: Overview of our proposed model.

2021; Zhao et al., 2022; Cui et al., 2021) focus
on catastrophic forgetting for continual learning,
ignoring the model’s ability to transfer knowledge
for similar tasks that have been learned in the past.

To overcome the above problems, we propose
dynamically constructing relation extraction net-
works to enable knowledge transfer of similar re-
lations and thus prevent catastrophic forgetting of
the model. The outstanding contribution is that
it can dynamically change the model architecture
according to the similarity of relations in different
learning tasks, so as to utilize the previous knowl-
edge of relations to learn each task in a targeted way.
Specifically, 1) we use reinforcement learning to
train a policy network that dynamically constructs
a corresponding task network for each task by tak-
ing a series of policy actions in order to achieve
knowledge transfer of similar relations in different
tasks. 2) We use a limited number of typical sam-
ples to teach the task network how to use previously
learned knowledge, similar to the role of examples,
with the aim of evoking the task network’s learning
experience and memory of old relations in order to
prevent catastrophic forgetting. The sensitivity of
our method to typical samples is explored in Ap-
pendix B. 3) To further enhance the memorization
ability of the model and retain prior knowledge of
relations, we propose an extensible classification
module. Unlike previous classification modules for
continual relation extraction models (Zhao et al.,
2022), our extensible classification module can ex-

tend the new learning space for new relations based
on the classifier for learning the old relations, in-
stead of retraining a new classifier for the set of
visible relations (old relations and new relations).
4) DCREN will create a new task network for each
task, so each task network will only experience a
typical sample replay, which maximizes the avoid-
ance of model overfitting to typical samples.

Our main contributions are summarized as fol-
lows:

(1) We clarify the important role of knowledge
transfer for continual relation extraction through
an empirical study and propose a novel continual
relation extraction network, termed DCREN, that
can dynamically construct the model structure to
realize knowledge transfer for similar relations.

(2) In order to enhance the model’s memory ca-
pability and prevent catastrophic forgetting, we
propose an extensible classification module. This
module extends the new learning space for new
relations based on the classifiers that have finished
learning old relations, preserving the knowledge of
previously learned relations.

(3) The task network dynamically constructed by
DCREN only replays the typical sample once, thus
minimizing the overfitting problem in continual
relation extraction.

(4) The experimental results on two benchmark
datasets show that our model achieves state-of-
the-art accuracy compared to existing work and
takes into account both catastrophic forgetting and



knowledge transfer, two important issues faced in
continual learning. Our source code can be found at
https://github.com/Anonymous-acl2025/DCREN.

2 Related Work

The purpose of continual learning (Wang et al.,
2023) is to consistently learn new tasks while main-
taining a high level of accuracy on tasks that have
been learned before. The main challenges of this
study are (1) avoiding catastrophic forgetting of
learned knowledge while learning a new task and
(2) beneficial knowledge transfer to subsequent
tasks based on the experience accumulated in previ-
ous tasks. In order to solve the above problems, cur-
rent research in continual learning focuses on three
aspects: (a) Regularization-based methods (Li and
Hoiem, 2018; Kirkpatrick et al., 2016; Adel et al.,
2019; Kemker and Kanan, 2017) to limit the pa-
rameter updates of neural networks can control the
balance of the model between old and new tasks to
enhance the generalization ability of the model. (b)
Dynamic model architecture-based methods (Vé-
niat et al., 2020; Yoon et al., 2017; Mallya and
Lazebnik, 2018; Qin et al., 2021) dynamically up-
date the network as each new task is learned, allow-
ing the model to efficiently integrate new knowl-
edge while retaining old knowledge as it learns
new tasks. (c) Memory-based methods (Lopez-Paz
and Ranzato, 2017; Chaudhry et al., 2018; Rolnick
et al., 2018; de Masson d'Autume et al., 2019) addi-
tionally equip the model with a memory repository
with a fixed size storage space for important his-
torical data. The current task data is then used to
train the model in conjunction with the historical
data, thus reducing catastrophic forgetting of old
knowledge.

Specifically, with respect to continual relation ex-
traction (CRE), there has been substantial research
work on challenge (1) catastrophic forgetting. The
memory-based models are the mainstream choice
because they show better performance than other
methods in avoiding catastrophic forgetting. For ex-
ample, Wang et al. (2019) et al. proposed a simple
memory replay method to mitigate the catastrophic
forgetting problem using embedding alignment to
alleviate the rapid change of embedding space in
continual learning. Han et al. (2020) et al. in-
spired by the mechanisms of long-term memory
formation in humans, introduced situational mem-
ory activation and reconsolidation into continual
learning of relations to reconsolidate the prototype

of old relations. Wu et al. (2021) et al. proposed a
new curriculum-meta learning method to address
the problems of order sensitivity and catastrophic
forgetting in continual relation extraction. Cui et al.
(2021) et al. use an attention-based memory net-
work refining sample embeddings to obtain bet-
ter memory prototypes and enhance performance .
Zhao et al. (2022) et al. proposed a consistent rep-
resentation learning method that employs contrast
learning and knowledge distillation to maintain the
stability of relation embeddings during replay mem-
ory. Zhao et al. (2023) et al. designed a memory-
insensitive relation prototype to overcome the over-
fitting problem, introducing integrated training and
focal knowledge distillation during training to im-
prove similar relation performance. Recently, Le
et al. (2024) et al. proposed a novel continual re-
lation extraction approach to address the balance
of the objective function of the CRE model on new
and old tasks by customizing a multi-task learning
framework for continual learning.

Several previous works have demonstrated that
memory-based methods can be effective in avoid-
ing model forgetting. However, memory-based
models have great difficulties in addressing chal-
lenge (2) knowledge transfer due to the working
mechanism of sample replay. The knowledge trans-
fer capability is crucial for constructing continual
learning models that can learn over time and adapt
quickly, which is clearly ignored by existing con-
tinual relation extraction studies. In this regard,
we propose the DCREN method, which dynami-
cally constructs relation extraction models based
on the similarity of different tasks to achieve knowl-
edge transfer of similar relations, thereby prevent-
ing catastrophic forgetting of the model.

3 Task Definition

Given a sequence of relation extraction tasks
{T1,T2,...,Tr},each task T; is associated with a
dataset D' = {(;,y;)}2*, , where z; represents a
sentence and y; € R! denotes a relation label from
the relation space R*. The relation spaces of differ-
ent tasks are disjoint. The goal of continual relation
extraction is to learn a model that incrementally
adapts to new tasks while maintaining performance
on previously learned tasks. Formally, a contin-
ual relation extraction model must demonstrate the
capability to detect all previously encountered rela-
tions Rt = U, R? and will be comprehensively
evaluated across the test sets of all observed tasks
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4 Methodology

4.1 Overview

The overview diagram of our method is shown in
Figure 1 and consists of two networks. The first
one is the policy network P(-; ), which is in the
environment of a given task and makes a policy de-
cision based on a certain state in that environment,
taking a series of actions to dynamically construct
a task-specific network suitable for the task. The
second one is the task network 7'(-; #), which con-
sists of two parts: the encoding framework and the
extensible classification module, and the purpose
of this network is to learn a new task based on
memorizing the knowledge of the previous task. A
similar work is BNS (Qin et al., 2021), which we
discuss in detail in Appendix C.

4.2 Policy Network

The policy network will be in different task en-
vironments in different learning tasks. In gen-
eral, the environment of task 7; contains (1) A set
M = |J M™ of typical samples of relations that
have appeared in all previous tasks , where M ™ de-
notes typical samples of the stored relation ;. (2)
The task network 7'(-; 6,_1) for the previous task

Ti-1. (3 The dataset D' = {Df, 5, Dby, it }
for the current task 7;. (4) The knowledge K =
(1)
vious task networks.

of the relations learned by all pre-

4.2.1 Agent

Our policy network P(-; ) uses a parameterized
LSTM as agent, as shown in Figure 1. When learn-
ing a task t, the agent receives the state S; in the
current task environment and samples a series of ac-
tions sequentially to construct each layer of the task
network T'(-; §) specific to the current task. Specif-
ically, the agent receives the state S; and samples
the action a; , and then a; and the state S; are input
together to the next layer of the LSTM to sample
the action a;4;. Benefiting from the influence of
the prior action a; , the next action a;4; sampled
by the agent has sequential forward and backward
dependence on the former action.

4.2.2 State

In every learning task, it usually contains N rela-
tions that need to be learned, so when learning the

current task 7;, we separately compute the simi-
larity s! between each relation r} in task 7; and
all the relations appearing in the old task, to get
the state representation Sy = [s},...,s%] of the
task 7T;. Specifically, in the environment of the cur-
rent task 7z, the task network 7'(-; ét_l) is used to
encode the training set D}, .= of the current task
and all typical samples of previous tasks stored in
the set M. For each visible (old task relations and
current task relations) relation r;, we compute the
average of its corresponding sentence embeddings
as the prototypical representation of the relation,
expressed as 7;. Then, the cosine function is used
to compute the similarity between the relation pro-
totype 7! in the current task 7; and the relation
prototype f*jM in the previous tasks. The formula is
expressed as follows:
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where z; 5, € Dtmm, represents the k;, sample
t

in the training set that belongs to relation r;. n;
represents the total number of samples of relation
r; in the training set. m;; € M, represents the
ki, sample in the typical sample set that belongs
to relation r;. njw represents the total number of
samples of relation r; in the typical sample set.
|r| represents the total number of relations that

appeared in previous tasks.

4.2.3 Action

Due to intuitive priors, the policy network has
six actions to build the task network, including
"reload", "fuse", "add", "remove", "reset", and
"protect”. Among them, "reload"”, "fuse" and "pro-
tect” are categorized as Class I actions, which serve
to transfer important relation knowledge for the
task network, and "add", "reset" and "remove" are
categorized as Class II actlons, which serve to add
new learning space or remove redundant neural
units from the task network. In conclusion, they
work together to determine how to transfer relation
knowledge learned from previous task networks



into the new task network or how to add new learn-
ing space to the new task network. A detailed
description of each of these actions is given as fol-
lows.

The "reload" action reloads the parameters of
the last task network, with the aim of utilizing the
knowledge learned in the previous task to facilitate
the learning of the new task. When the [;;, layer of
the new task network T'(-; §;) executes the action,
the parameters of this layer will be initialized to the
parameters of the [y, layer of the last task network,
ie,T(0 6 _)).

The "fuse” action fuses the parameters of all
previous task networks, with the aim of referring to
the knowledge learned in all previous tasks to help
the learning of the new task. When the [, layer of
the new task network T'(-; §;) executes the action,
the parameters of this layer will be initialized to
the average of the parameters of the Iy, layer of all
previous task networks, i.e., T'(+; 0} « '), 6 =
(05 +--61_,)

—1

The "add" action adds a new neural unit (e.g.,
a linear layer) based on the hidden dimensions
of the current layer, with the aim of generating
a new layer of learnable parameter space for the
new task network. When the [, layer of the new
task network T'(-; ;) executes the action, a param-
eter space with the same number of neurons as the
lyp, layer is added after it, i.e., T'(+; éﬁ +wh).

The "remove"” action removes the current layer
of the task network, with the aim of removing re-
dundant neurons that are not useful for the old task.
When the I, layer of the new task network 7°(+; ét)
executes the action, then this layer will be removed
in the task network, i.e., T'(-; 6, — 0!) .

The "reset” action resets the parameters of the
current task network, with the aim of introducing
a completely new learning space for new tasks.
When the Iy, layer of the new task network 7°(+; ét)
executes the action, the parameters of that layer
are randomly initialized and conform to a uniform
distribution, i.e., T'(-; uniform(6})) .

The "protect” action protects the parameters of
the current task network, with the aim of keeping
the relational knowledge from being updated and
forgotten during training. When the l;;, layer of a
new task network 7'(-; 6;) executes the action, the
parameters of that layer are frozen and not modified
during training, i.e., T'(-; |0L]) .

4.2.4 Reward

Once the policy network constructs a task network
based on the sampled actions, we use accuracy as
a measure of the performance of the current task
network. In the current task 7;, we stipulate the ac-
curacy improvement of the current training epoch i
over the previous training epoch i-1 as the base re-
ward, and the improvement of the current training
epoch i over the highest accuracy in all previous
training epochs as the advanced reward. The to-
tal rewards obtained by the current task network
T(-;6;) at training epoch i is shown as follows:

R = (a (accé — acci_l) +

(1-a) (accé — acc?ax)) ~,

)

where « is a weight parameter to regulate the pro-
portion of basic and advanced rewards , and 7 is
a scale parameter to normalize the rewards to a
reasonable range.

4.3 Task Network

In different task environments, the structure of the
task network is dynamically modified based on the
policy network’s decisions in order to better adapt
to new task learning. Once the task network is
constructed, it is put into new task learning.

4.3.1 Encoding Framework

Encoding framework consists of four parts: en-
coder based on pre-trained model, i.e., BERT (De-
vlin et al., 2019) and the top layer, middle layer
and bottom layer that can be dynamically modified.
Among them, the number of neurons (i.e., hidden
dimensions) in the top, middle, and bottom layers
decreases hierarchically, and a nonlinear activation
function exists between each layer, forming a spe-
cial kind of funnel structure. The advantage of this
structure is that the rich features extracted by en-
coder are abstracted and integrated step by step,
and the hierarchical feature extraction contributes
to the model’s ability to capture the key semantics
of the sentence. The initial structure of the top,
middle, and bottom layers all consist of a linear
layer and an activation function, and in subsequent
learning of new tasks, the policy network dynami-
cally extends and updates the three layers to adapt
to different learning tasks.

4.3.2 Extensible Classification Module

In contrast to traditional classifiers with a fixed pa-
rameter space, Extensible Classification Module



can dynamically add new learnable parameters to
the existing parameter space, making it more suit-
able for continual learning that requires constant
learning of new tasks. Specifically, in each learn-
ing task, there are m learnable relations. When
learning a new task 7;, we first specify the rela-
tion knowledge of the previous 7;_1 old tasks, i.e.,
the parameter matrix of the old task is defined as
Weld € Rh>(t=1m and then we will generate a
parameter matriX Wyey € R"™™ for the new task
T: as the learning space of the new task. Finally,
the parameter matrix wy;q of the old task and the
parameter matrix wye,, of the new task are spliced
together as a classifier for task 7;. The formula is
represented as follows:

Wels = Wold P Wnew, 5

where wy; € RPP and @ represents matrix con-

catenation.

4.4 Model Training
4.4.1 Training the Policy Network

The goal of the policy network is to make rational
decisions based on the similarities between differ-
ent tasks, sampling a series of actions to construct
a task network suitable for the task. We train the
policy network using the popular A3C (Mnih et al.,
2016) algorithm, which is an Actor Critic method,
so that when our intelligent agent outputs a se-
quence of actions based on the state, it will also
output a critical value of its own decision-making
ability synchronously. For each iteration of train-
ing, it contains 77 non-intersecting learning tasks,
and when each iteration is completed, we then col-
lect 77 times of learning data to update the param-
eters of the policy network with the help of critical
values. To enable the policy network to more accu-
rately distinguish between actions that should be
encouraged and those that should be suppressed,
thereby improving policy optimization efficiency,
we employ the advantage function to update the
policy gradient during training instead of relying
solely on rewards. The advantage function is typi-
cally defined as the sum of the reward at the current
step and the value function estimate at the next step,
minus the value function estimate at the current
step. The loss of the policy network is calculated

as follows:

Z logmg(ag|si) A(se, ar)+

- (6)
1 2
Z V(st;00))* — H(mz(aslst)),
2=
A(styar) = Ry + V(si11;0,) — V(sg;0,), (1)

where A(-) is the advantage function, R; is the
reward for the current task 7;, V() is the criti-
cal function, and H (-) is the entropy of the policy
network, which is used to adjust the policy and
encourage the intelligent agent to explore.

4.4.2 Training the Task Network

The goal of the task network is to learn the current
task and achieve excellent performance. After the
policy network samples a series of actions to con-
struct the top, middle, and bottom layers of the task
network, it is trained using the dataset D}, ;. to
learn the relation knowledge of the current task 7.
The loss of the task network at the current task 7;
is calculated as follows:

Lerr(0) = Sy,.r;logP(r|zi; 0),

: 2
—
‘ train' (5, y,)GD

train

®)

where 7; is the prediction and y; is the true label,
when r; = y;, 6yi77«j = 1, otherwise 6yi7rj =0.

In order to awaken the task network’s learning
experience on previous tasks and to better utilize
the relation knowledge transferred from different
tasks, we will use a small number of typical sam-
ples to guide the task network’s memory on the old
relations. More specifically, after the task network
has been trained on the current training set D . ,
it is then guide using the typical samples stored in
the set M to wake up the model’s previous learning
memory. The loss of the task network performing
guided training is calculated as follows:

Lgt( Z 0y,

(xuyz)eM

logP (7l )

)
5 Experiments

5.1 Datasets

We evaluated our method DCREN on two popu-
lar relation extraction benchmarks — FewRel and
TACRED.



FewRel T1 T2 T3 T4 15 T6 T/ T8 19 TIO
EAEMR 890 690 59.1 542 478 461 431 407 386 352
EMAR 988 89.1 89.5 857 836 848 793 800 771 738
CML 912 748 682 582 537 504 478 444 431 397
RP-CRE 979 927 916 892 884 868 851 84.1 822 815
CRL 982 946 925 905 894 879 869 856 845 83.1
CEAR 985 954 930 91.6 90.5 89.0 877 866 852 83.6
CREST 987 936 938 923 910 899 876 867 860 8438
Ours 984 956 935 92.0 91.0 894 885 874 862 845
TACRED T1 T2 T3 T4 15 T6 T/ T8 19 TIO
EA-EMR 475 401 383 299 284 273 269 258 229 198
EMAR 966 857 810 786 739 723 717 722 726 710
CML 572 514 413 393 359 289 273 269 248 234
RP-CRE 976 906 86.1 824 798 772 751 73.7 724 724
CRL 977 932 898 847 841 813 802 79.1 79.0 78.0
CEAR 97.9 937 914 875 8.1 832 3811 795 793 79.0
CREST 973 914 83 85 792 758 788 774 786 794
Ours 981 950 925 88.0 855 837 813 801 794 794

Table 1: Experimental results after learning each task
results are underlined.

FewRel (Han et al., 2018) contains 100 relation
categories with 700 instances per category, contain-
ing 70,000 instances in total. The instances are
extracted from Wikipedia and Wikidata and are in-
tended for use in relation extraction tasks in natural
language processing. We follow the previous set-
tings (Zhao et al., 2022) and use 80 relations with
700 samples each and divide them into 10 subsets
to simulate 10 disjoint tasks.

TACRED (Zhang et al., 2017) is a large-scale
relation extraction dataset. The dataset con-
tains 106,264 instances covering 42 relation cate-
gories. The instances are constructed from English
newswire and web texts. Following the settings
of previous work (Zhao et al., 2022), the number
of relations for continual learning is limited to 40,
and the maximum number of training samples per
relation is 320.

5.2 Implementation Details and Baseline
Models

For the evaluation metrics, we follow the exist-
ing evaluation scheme using accuracy (Hu et al.,
2022), for the currently learned K tasks, the av-
erage accuracy over 5 experiments is reported in
the paper. For the selection of typical samples, we
follow previous work (Zhang et al., 2022) using
the K-means algorithm to cluster the samples for
each relation r;. The number of clusters is defined
as the memory size M"¢ = 10 . For hyperparame-
ter settings, o = 0.5, v = 10, train batch size = 16,
test batch size = 64, task network learning rate =
le-5, policy network learning rate = 1e-3, and ex-
tensible classification module learning rate = 1le-3.

. The best results are marked in bold and the second best

For the experimental environment, the IDE used
for the experiments in this paper is Pycharm2021
Professional, PyTorch version 1.9.1, and CUDA
version 12.1. The model training and inference are
performed on an NVIDIA GeForce RTX4090 with
24GB GPU memory.

For the baseline model, we selected repre-
sentative models in recent years, including EA-
EMR (Wang et al., 2019), EMAR (Han et al., 2020),
CML (Wu et al., 2021), RP-CRE (Cui et al., 2021),
CRL (Zhao et al., 2022), CEAR (Zhao et al., 2023)
and CREST (Le et al., 2024). see Section 2 for a
detailed description.

5.3 Results and Analyses
5.3.1 Main Results

Table 1 shows the results of the main experiment of
our DCREN with all baseline models. From these
results, we can draw the following conclusions:

(1) Our proposed method achieves overall state-
of-the-art performance on two different datasets.
This is due to the fact that our method dynamically
changes the network structure for each task, en-
abling the transfer of relation knowledge across
tasks, a capability not found in other baseline mod-
els.

(2) Although the performance of all comparative
models decreases as the continual learning task in-
creases, our model is still able to maintain a high
performance, which suggests that our proposed
extensible classification module plays an indispens-
able role in combating catastrophic forgetting.

(3) On the TACRED benchmark, the perfor-
mance of all models is degraded because the dis-



tribution of the number of relation categories is
extremely unbalanced, but our model still shows
a huge advantage with up to 10.2% performance
improvement compared to the CREST baseline.
(4) On the FewRel benchmark, as the number
of task increases, it can be noticed that the gap be-
tween the performance of CEAR model and ours
is increasingly large, and from the first incremental
learning T2 to T10, the gap between the CEAR
and our DCREN improves from +0.2 to +1.0. The
reason for this situation is that CEAR consider only
the catastrophic forgetting problem and rely exces-
sively on stored typical samples, and overfitting
occurs during the frequent replay of the samples.
On the contrary, DCREN, our model dynamically
updates the structure in each task, so that the net-
work will only experience typical samples replay
once in each task, which minimizes the problem of
model overfitting to typical samples. Most impor-
tantly, our model transferred the knowledge learned
in previous tasks, avoiding catastrophic forgetting.

5.3.2 Ablation Study

We performed ablation studies to verify the ef-
fectiveness of individual modules in our model.
Specifically, for "w/o Policy", we remove the ac-
tion decision of the policy network, i.e., DCREN
cannot dynamically change its encoding framework
part in each task. For "w/o Ecm", we remove the
extensible classification module of the task net-
work, i.e., DCREN cannot extend the new learning
space for the new task on top of the old one, but
instead use the stored typical samples to retrain a
classifier that contains all the visible relations. For
"w/o Both", we perform the above two ablation
operations simultaneously.

The experimental results are shown in Table 2,
where it can be observed that the performance of
the model is impaired when any of the modules are
removed individually, indicating that all modules
are beneficial and are an essential part of DCREN.
In particular, the "Policy" dominates the knowl-
edge transfer capability of DCREN, which helps
DCREN to utilize the relation knowledge of pre-
vious tasks to guide the model to learn new tasks
quickly, the "Ecm" dominates knowledge memo-
rization ability of DCREN and it helps DCREN to
fight against catastrophic forgetting. Further, when
both were removed, the model shows a significant
decrease in performance, indicating that the two
are complementary and both have a huge positive
effect on the model.

T2 T4 T6 T8 T10
w/oPolicy 952 915 88.6 862 83.7
w/o Ecm 953 919 89.1 86.8 839
w/o Both 947 89.0 862 842 &I.1
Ours 95.6 92.0 894 874 845
w/o Policy 939 864 828 789 717
w/o Ecm 93.6 87.8 837 799 776
w/o Both 91.6 842 779 747 725
Ours 95.0 88.0 83.7 80.1 779

TACRED| FewRel

Table 2: Experimental results of ablation studies.

6 Conclusion

In this work, we propose DCREN, a continual rela-
tion extraction model that can dynamically change
its model structure to address two important chal-
lenges in continual learning: catastrophic forget-
ting and knowledge transfer. DCREN can dynami-
cally transfer knowledge of similar relations or add
new learning spaces for new relations to the task
network based on the similarities and differences of
relations in different tasks. Specifically, DCREN
will take more Class 1 (reload, fuse, protect) ac-
tions to transfer beneficial knowledge for the task
network when the relations are similar, whereas
when the relations are dissimilar, DCREN will take
Class II actions (add, reset, remove) to expand new
learning spaces for the task network. Experimental
results show that DCREN achieves state-of-the-art
performance and outperforms current mainstream
memory-based models. Further, we conducted
additional empirical research to demonstrate the
important role of knowledge transfer in continual
learning as a capability that a continual learning
model should have. In future work, we will explore
more possibilities of dynamic models in continual
learning.

Limitations

Although DCREN effectively mitigated catas-
trophic forgetting in continual relation extraction
through knowledge transfer capabilities, there are
still some limitations: (1) Our model still needs to
consume additional space to store a small number
of typical samples to teach the task network how
to use previously learned relational knowledge. (2)
Our approach used reinforcement learning to train
the model, which resulted in slower convergence of
our model compared to mainstream memory-based
continual relation extraction models. (3) Large lan-
guage models may improve the performance of
continual relation extraction due to their powerful
parameters, which has not been explored in this



paper.
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A Empirical Study of knowledge transfer

Knowledge transfer is a desirable and extremely
important capability for models that require con-
tinual learning. Extracting knowledge from previ-
ously learned tasks not only facilitates the learning
of new tasks, but also effectively mitigates catas-
trophic forgetting. In order to verify the essential
role of knowledge transfer and how our DCREN
specifically transfers knowledge about similar rela-
tions, we designed the following experiments: The
average of the embeddings of all instances of a
relation as a prototype of itself and represents the
overall representation of the relation. The relations
in the dataset are equally divided into different sets
based on the similarity of each relation prototype to
the other relation prototypes, and then we observe
the performance of the strongest baseline CEAR
and our DCREN in different sets of relations.

Figure 2 illustrates the experimental results on
both FewRel and TACRED datasets. It can be
observed that the performance of the models all
decrease as the similarity of the relations increases,
due to the fact that the severe decay of knowledge
in similar relations is a key factor in catastrophic
forgetting. However, our model is still able to main-
tain a relatively excellent performance in a highly
similar set of relations and is ahead of CEAR by a
large gap, which is due to the fact that our model is
able to transfer the knowledge of similar relations
and effectively alleviate catastrophic forgetting.

Figure 3 illustrates the distribution of actions per-
formed by our DCREN in different sets of similar-
ity relations. It can be observed that (1) the proba-
bility that DCREN performs class I actions (reload,
fuse, protect) grows progressively larger as the sim-
ilarity increases, suggesting that in a collection of
relations with higher similarity, the more relation
knowledge needs to be transferred to maintain the
model’s performance against catastrophic forget-
ting. (2) As can be seen from Figure 3(a), when the
set of relations has less similarity and less transfer-
able beneficial knowledge, our DCREN will more
often choose class II actions (add, reset, remove)
to create a new learning space for new relations, so
as to cope with the situation where the distribution
of relations is more varied.

In summary, knowledge transfer is effective in
mitigating catastrophic forgetting and is a capabil-
ity that a continual learning model deserves and
must have. Our DCREN is able to selectively trans-
fer relation knowledge according to the similarity
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Figure 2: Experimental results of CEAR and our method
in relation sets with different similarities. Due to the
smaller number of TACRED relations, it is divided into
only two sets of relations (0.00, 0.85] and (0.85,1.00).

of the relations. With relations that are highly simi-
lar, DCREN transfers more knowledge to maintain
model performance. With relations that are not
similar, DCREN adds new learning spaces to ac-
commodate different relation knowledge.

B Influence of Memory Size

In the former section, we have demonstrated the
important role of knowledge transfer. Further, in or-
der to verify the effect of memory size on DCREN,
we conducted experiments with the strongest base-
line model of memory-based models, CEAR, as a
reference.

Figure 4 shows the experimental results of our
DCREN and CEAR with different memory size
settings. It can be noticed that (1) our model
achieves the best performance under different mem-
ory settings in both datasets, which indicates that
our model has strong generalization ability and is
not as sensitive to memory size compared to the
memory-based model. (2) As can be seen from
Figure 4(b) and (c), with a balanced distribution
of relations, our model leads the performance of
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Figure 3: Distribution of actions performed by our
method in different similarity sets.

CEAR increasingly as the tasks increase, which
reveals that the utilization of typical samples in
memory for DCREN is also completely ahead of
the memory-based model.

C Comparison with BNS

Similar to our work is the BNS proposed by Qin
et al. (2021) et al. This approach also dynamically
builds network architectures in continual learning.
However, our approach is significantly different
from BNS in the following ways: (1) Differences
in Continual Learning Types. The BNS focuses
on task-incremental learning (Task-CL) within con-
tinual learning, while our DCREN focuses on class-
incremental learning (Class-CL), which is more
challenging. (2) Field Differences. The BNS
is used to solve image recognition problems in
computer vision, whereas our DCREN is designed
to address relation extraction problems in natural
language processing. (3) Methodological Differ-
ences. The BNS stipulates a fixed number of hid-
den layers for the dynamic model. When facing a
new task, its dynamism is reflected in the different
actions performed for each hidden layer to rebuild
the network, i.e., the process of destruction and
reconstruction. On the other hand, our DCREN
does not specify a fixed number of hidden layers
but instead features three different dimensional en-
coding layers (top, middle, and bottom). Within
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Figure 4: Experimental results of CEAR and our method
with different memory sizes.

these layers, the hidden layers can be optimized
(Class I actions) or expanded/removed (Class II
actions) arbitrarily, i.e., the process of optimization
and expansion (or removal).
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