Under review as submission to TMLR

Large Language Models’ Understanding of Mathematics:
Source Criticism and Extrapolation

Anonymous authors
Paper under double-blind review

Abstract

It has been suggested that large language models such as GPT-4 have acquired some form of
understanding beyond the correlations among the words in text including some understand-
ing of mathematics as well. Here, we perform a critical inquiry into this claim by evaluating
the mathematical understanding of the GPT-4 model. Considering that GPT-4’s training
set is a secret, it is not straightforward to evaluate whether the model’s correct answers are
based on a mathematical understanding or based on replication of proofs that the model has
seen before. We specifically craft mathematical questions which their formal proofs are not
readily available on the web, proofs that are more likely not seen by the GPT-4. We see that
GPT-4 is unable to solve those problems despite their simplicity. It is hard to find scientific
evidence suggesting that GPT-4 has acquired an understanding of even basic mathematical
concepts. A straightforward way to find failure modes of GPT-4 in theorem proving is to
craft questions where their formal proofs are not available on the web. Our finding suggests
that GPT-4’s ability is to reproduce, rephrase, and polish the mathematical proofs that it
has seen before, and not in grasping mathematical concepts. We also see that GPT-4’s abil-
ity to prove mathematical theorems is continuously expanding over time despite the claim
that it is a fixed model. We suggest that the task of proving mathematical theorems in
formal language is comparable to the methods used in search engines such as Google while
predicting the next word in a sentence may be a misguided approach, a recipe that often
leads to excessive extrapolation and eventual failures. Prompting the GPT-4 over and over
may benefit the GPT-4 and the OpenAl, but we question whether it is valuable for machine
learning or for theorem proving.

1 Introduction

There is something perplexing about the proposal set forth by some scientists that large language models
(LLM) like OpenAI’s GPT-4 have attained some form of understanding that extends beyond mere statistical
correlations among words. The day after the release of GPT-4, Ilya Sutskever, OpenATI’s chief scientist,
openly extols the capacity of this model: “On the surface, it may look like learning correlations in texts, but
it turns out that to just learn statistic correlations in text, to compress information really well, what the
neural network learns is some representation of the process that produced the text. This text is actually a
projection of the world. There is a world out there and this text is the projection of that world. What the
neural network is learning is aspects of the world, of people, of the human conditions, their hopes, dreams,
motivations, their interactions.” In another showcase in GPT-4’s technical report, the model shows that it
can discern the humor embedded within an image in which a cell phone is connected to a VGA connector
(OpenAl, 2023).

When Sutskever elucidates that the product of the text generation process constitutes “the projection of the
world” that is “out there.”, what lies in the “out there” are composite textual corpus originating from distinct
sources, bearing traces of what, in the terminology of “source criticism," could be regarded as the mixture
of textual origins. Source criticism, a recognized scientific methodology for dissecting the composition of
textual works, can help evaluate claims related to LLM’s capacity to comprehend human knowledge. In

Under review as submission to TMLR

particular, the sources encountered by the GPT-4 model are vital for appraising the novel problem-solving
capacities it may exhibit.

Recently, some in the research community find value in solving mathematical theorems with GPT-4. Their
approach, sometimes, involves repeatedly formulating prompts presented to the model, persisting until the
model eventually furnishes the correct solution. It may take for the GPT-4 more than 100 rounds of
prompting until it solves some of the problems while for many of the theorems, it will continue to fail.
Nevertheless, when GPT-4 succeeds in solving a few of the theorems in datasets such as miniF2F (Zheng
et al.l 2021)), its success may be reported in papers to indicate scientific progress. A progress that tends to
be an occasion for signaling machine intelligence - that machines have developed the crucial capability of
following mathematical logic and solving formal theorems.

The question that arises here is whether the GPT-4 model is understanding any of the mathematical concepts.
If we assume, as Sutskever suggests, that text is the projection of the world and the process that produces the
text, i.e., the human knowledge, is there any evidence that GPT-4 has grasped some of the mathematical
knowledge from the mathematical text? Is GPT-4 merely repeating the proofs that it has already been
exposed to, or does it have some understanding of the mathematics that it deploys when it provides the correct
proofs? To answer this question, here, we perform a scientific inquiry on the mathematical understanding
of GPT-4. One can consider this inquiry as a case study to understand the model better seeking guidance
on how to think about its capabilities and how to use it. With that understanding, we might rethink the
usefulness of prompting the GPT-4 over and over again in order to solve a mathematical theorem. Our
results suggest that the task of theorem proving is more of a retrieval task such as Google’s search engine
(Brin & Page, [1998)) as opposed to the task of predicting the next word in a sentence.

2 Source criticism

Source criticism is a known method in scientific inquiry, research methodology, information science, epis-
temology, and many other fields (Hjgrland, |2012). In short, it refers to evaluating an information source.
Specifically, we would like to know the sources that the GPT-4 model has likely seen. With that knowledge,
we may be able to evaluate this model’s ability in solving mathematical theorems that it has not seen before.

While the training set of GPT-4 is kept as a secret, we can make some inferences about it:

1. Creators of some adjacent models have been transparent about the training set of their models. For
example, the GPT-f model was trained on the Common Crawl and WebMath datasets (Polu et al.|
2022). The WebMath contains all the publicly available code and text on GitHub, arXiv, and Math
StackExchange.

2. Any high quality text that is readily available on the web, anything that may be grabbed by the
Common Crawl or any other web scrapping method, may have been used in the training of GPT-4.
This could include any theorems in the Mathlib library (Moura & Ullrich, 2021)), any proof that can
be grabbed from the public, or private domain, or be created by experts specifically for training of
the model.

3. Numerous researchers are interacting with the GPT models, sometimes on a daily basis, crafting
various prompts/questions/statements. These prompts may be subsequently used as a training
source for GPT. For example, consider that a person manually writes the proof for a theorem in the
miniF2F dataset, a theorem that GPT cannot solve yet. That person might feed that proof to the
GPT, perhaps asking the GPT to polish its writing. That proof can then be picked by the GPT
model, and later on, it might be able to prove that theorem for any user. Note that although the
parameters of the model may not be updated frequently, it’s outputs are dependent on its prompt
history and the text it has seen so far. It is common knowledge that the outputs of GPT models
change and improve over time (Chen et al., |2023)). We provide more evidence on the evolution of
GPT-4 later in this section.

Under review as submission to TMLR

The extent of information on the Common Crawl is particularly interesting. The GPT-f model developed
for mathematical learning was trained on 300 billion tokens from CommonCrawl. The GPT-3 model was
trained on an enhanced version of Common Crawl as well as other sources such as Wikipedia (Brown et al.
2020). The size of the most recent CommonCrawl is 390 TiB including the contents of 3.1 billion pages on
the web. Hence, it may be safe to assume that any formal mathematical proof that is available on the web
may have been used as a training source for GPT-4. As pointed out by [Reichel et al.| (2023), any proof that
is released maybe used as data for new machine learning models.

2.1 How forthcoming is GPT-4 about its sources and its capabilities?

Clearly, the interactions that researchers have with GPT-4 is beneficial for the model and for OpenAl. The
mere perception that GPT-4 has generalization capabilities adds to the appeal for scientists and researchers
to keep interacting with it to solve mathematical theorems. If a student or a researcher adopts the view that
GPT-4 is a fixed model with understanding of mathematics and generalization capabilities, and the only
way to change the outputs of GPT-4 is to provide better prompts, then they might dedicate a considerable
effort to keep prompting the model to solve a specific theorem, and when the model, eventually, solves that
theorem, they might consider it as progress in generalization capabilities of AI. One might think that it is
because of the efforts put into crafting the prompt that the GPT-4 was able to solve the theorem, because
GPT-4 is a fixed model.

GPT-4 itself reinforces this perception. When we asked about its training set, mathematical proofs in its
training set, and its latest updates, the response was as following

GPT-4: My last training data goes up until January 2022. ... I don’t automatically update
with new data. You're interacting with a fixed version of me as of that 2022 cut-off...

My knowledge, including that of Lean mathematical proofs, is based on data available up
to January 2022. I was trained on a mizture of licensed data, data created by human trainers,
and publicly available data. However, I do not have real-time updates, so any developments,
proofs, or advancements in the Lean community or other fields after January 2022 would not
be known to me...

I don’t have access to my training data, but I was trained on a mixture of licensed data,
data created by human trainers, and publicly available data. OpenAl, the organization behind
Assistant, has not publicly disclosed the specifics of the individual datasets used, including
whether any specific data source was included...

OpenAl hasn’t released detailed specifics about individual datasets, including whether any
specific dataset related to Lean mathematical proofs was used. However, I was trained on a
diverse range of internet text. If there are publicly available materials, tutorials, discussions,
or other text-based content on Lean mathematical proofs up until my last training cut-off in
January 2022, then it’s likely that ’ve been exposed to the gemeral concepts, methodologies, and
techniques.

Researchers in the field refer to this claim to emphasize the importance of their success in proving theorems
with GPT-4. To see our questions and GPT-4’s complete responses, please refer to Appendix [A]

2.2 Evidence for continual improvement of GPT-4 and the expansion of its information sources

Let us see if there is evidence contradicting the claim that GPT-4 is a fixed model with fixed information
sources. Let’s consider one example. In June 2023, when we asked GPT-4 to prove the following theorem
in lean, its response was that it cannot solve this theorem and its proof may require “a great deal of effort",
and it did not provide any form of proof. Here is the theorem and part of GPT-4’s response:

User: please prove this in lean: lemma (t: R) : (28 — 3 t) xt)/(4) < 1/12:=

Under review as submission to TMLR

GPT-4: For inequalities like this one, calculus methods like taking derivatives to find
critical points are often helpful, but Lean’s real number library doesn’t include comprehensive
calculus support out-of-the-box as of my last update in September 2021.

It’s also possible that this specific inequality would require advanced mathematical methods to
prove, and Lean’s real number library might not be sufficiently developed to handle them without
a great deal of effort.

However, when in October 2023, we posed the exact same question to GPT-4, it immediately provided a
partial proof for it.

Let us look at a second example from June 2023. When we asked GPT-4 to prove this:
theorem (x y:R)(h:z #y):0< (z —y)* :=,

it provided a wrong proof using the pow_pos lemma from the mathlib library. The pow_ pos lemma states
that power n : N of a positive number is also positive. Hence, pow_pos can only prove 0 < (x — y)?, if we
have 0 < x — y. But, the theorem statement given to GPT-4 does not include such positivity statement, so
pow__pos is not applicable here. The correct proof should use the fact that the square of any real number is
non-negative, and then eliminate the possibility that (z —y)? can be equal to zero, and reach the goal based
on those steps.

In June 2023, when we asked GPT-4 to prove a similar alteration of the same theorem:
theorem (z y:R)(h: (z —y) #0):0 < (z —y)* :=,
it used the same incorrect approach to prove it using pow_ pos.

However, when in October 2023, we asked the exact same question, GPT-4 provided the correct proof on
the first prompt.

The two examples above seem to be clear indications that GPT-4’s information sources and capabilities are
continuously expanding. But, how can we reconcile this with the GPT-4’s claim that it is a fixed model
and it has not been updated since January 20227 Perhaps GPT-4 is not continually going through training
updates, but it might be possible that GPT-4 consists of modules that look through additional sources and
when there is a match between the prompt and those sources, they are utilized to produce its responses. It
is clear that GPT-4 is not just a single module model that predicts the next word, but on top of that, there
is a sophisticated system of modules that pre-process the prompts and regulate its outputs.

A person who interacts with GPT-4, in October 2023, might attribute the correct proofs to the generalization
capabilities of GPT-4. However, when we consider the GPT-4’s inability to solve the same theorems, 4 months
before, we shall reconsider the claim that GPT-4 is a fixed model. We may also reconsider whether solving
such theorems with GPT-4 is progress and whether it is worthwhile to report to the research community
that one has solved such theorem with GPT-4.

If we adopt the view that GPT-4’s sources of information is routinely updated and expanded based on the
prompts and other information sources that gradually become available, then, when GPT-4 eventually solves
a mathematical theorem, its success may be attributed to the possibility that somehow the correct proof
has made its way to the information sources of the model. Perhaps someone on one corner of the globe,
has provided the proof to the model, and now the model is reproducing that proof for everyone else who is
asking for that proof.

3 Evaluating the understanding of the model

There are standard educational assessment methods designed to evaluate various degrees of understanding
of learners. In the era where text books come with their solution manuals, there are still ways to assess the
knowledge of a student on specific topics.

Interesting evaluation techniques have been proposed to evaluate mathematical reasoning abilities of models
such as GPT-4. For example, |[Liu et al. (2023) propose a method to evaluate whether a model is capable

Under review as submission to TMLR

of identifying misconceptions in mathematical reasoning. They also prompt the model to make certain
inferences based on a given misconception. These are interesting approaches in educational studies which
can be insightful and sophisticated. In another approach, [Wu et al| (2023)) evaluate the GPT-4’s abilities
through counterfactual tasks and their results suggests that GPT-4 is mostly good at reciting and it is not
good at reasoning. Yiu et al.[(2023), also, finds LLMs to be imitation engines and reports lack of innovation
capabilities in them compared to human children. |Srivastava et al.| (2023)) provide a self-called “extremely
difficult and diverse benchmark" for a variety of tasks including mathematics with the goal to measure the
capabilities of large language models. Clearly, existing models, including GPT-4 do not do well on this
benchmark.

In summary, there are abundant difficult problems that GPT-4 cannot solve. The inabilities of GPT-4
includes a range of problems from math Olympiad problems to very simple problems. At the same time,
there are a wide range of problems that GPT-4 can solve accurately. What is not clear is how we can
interpret the successes and failures of GPT-4. How much of its correct answers can be attributed to its
generalization capabilities, and how much of them are merely replication of correct answers from its training
set?

Given the secrecy of its training set, which is a deliberate choice by the owners of GPT-4, it is not straightfor-
ward to find the answer. As mentioned above, many have tried to evaluate this model on harder and harder
problems. This approach removes the fog regarding the exaggerated capabilities of GPT-4 and LLMs, but
many may still focus on the correct answers of GPT-4 and interpret them as its generalization capabilities.
Most recently, [Yu et al.| (2023) proposed an evaluation method, called SKILL-MIX, in which prompts are
designed to include a combination of skills such as metaphor, red herring, and common knowledge physics.
The combination of such skills in the prompts would entail that a sensible answer, most likely, would not
exist exactly in the training set of the model, and for the model to produce a sensible answer, it will need
to draw from various parts of its training set. The results indicate some positive evidence that the GPT-4
can sometimes provide sensible answers to prompts combining a small of number of those skills, but for mst
of the prompts, it does not succeed. It is notable, however, that GPT-4 performs considerably better than
other LLMs. While we find this evaluation technique insightful, we note that it still aims at evaluating the
model on more complex and harder questions.

For mathematical reasoning, however, we believe that the evaluation of generalization capabilities of LLMs
can focus on an approach examining the foundations. We do not look for hard math Olympiad challenges.
We do not aim to craft questions combining elements from number theory, algebra, and geometry, altogether.
Rather, we look for relatively simple and trivial questions. Our only criteria is to pose questions where the
formal proof is not readily available on the web. To verify whether the proof for a lean theorem is available
online or not, we use the Google search engine.

Moreover, since our goal is to evaluate the mathematical understanding of the GPT-4 model, we directly
give the problem statement in formal Lean language as opposed to the natural language. This way, possible
mistakes of translating to formal language will not arise.

3.1 Casel

A natural number is either 0, 1, 2, 3, 4, 5, 6, or it is greater than 6.
lemma (z:N):z=0Ve=1Va=2Vez=3Ve=4Ve=5Va=6V6<z:=

GPT-4’s proof, provided in the Appendix [A] uses an imaginary term nat.cases on without defining it.
nat.cases__on is commonly used in the lean community, but it needs to be defined as a function before being
used. Another distinct feature in the GPT-4’s proof for this lemma is the use of the term or.inl rfl. We
googled both of these terms together, leading to only 6 results from the entire web. All the six results are
official lean documents/files. The instance where cases_on is used (Avigad et all 2021, p. 96) corresponds
to defining an enumerated type for the days of a week: 1, 2, 3, 4, 5, 6, 7, in appearance, very similar to what
we have in the statement of our lemma. In those same documents, we see the instance of or.inl rfl as well.

One could argue that GPT-4 has found something very similar to the statement in the prompt which is
a good capability, albeit not useful for proving our lemma. If we were to define an enumerated type for

Under review as submission to TMLR

numbers 0 to 6, of course, we can use it to prove x can be either of them. However, it would not help
with proving our lemma as the only statement given in the lemma is the definition of natural numbers. This
suggests that GPT-4 might have interpolated to the closest match between its training set and the statement
of the lemma, and it does not have an understanding of the context. One could argue that if GPT-4 had
seen the proof for our lemma, it would have interpolated to that proof instead because it would have been
more similar to our prompt.

3.2 Case?2
We modify the previous lemma turning it into the following form:
lemma (z:N):x<b5Va=5Va=6Va=7TVe=8Vaex=9VI<uz:=

This time, GPT-4 did not use its previous approach, i.e., it did not map to the enumeration type example of
weekdays in the lean library. Instead, it tried to use cases in conjunction with nat.zero_lt_succ from the
mathlib library. The nat.zero_It_succ states that if we add 1 to any natural number, its results would be
greater than 0. Clearly, this approach would not solve the problem.

We googled for the term exact nat.zero_It__succ used in GPT-4’s proof. Google returned only 4 results,
all of them were official lean proofs written by experts. Of these four proofs, two of them were related to
harmonic series, and one of them related to power series. Again, it seems that GPT-4 did not have a good
point of reference, and it just picked an irrelevant lemma that it had seen being used in similar situations.
When we googled for the term exact zero_lt_ succ, there was no exact matches.

3.3 Case3
The square of no natural number can be 27. Here is the prompt we gave to GPT-4:

please prove this in lean: (2 : N)(h : 2% = 27) — false

The proof provided by GPT-4, as shown in the Appendix [A] is incorrect. The GPT-4’s proof first defines a
new variable y = v/27 as a natural number. Then it aims to prove that y? < 27. Obviously it fails to prove
this. Then it aims to prove that y < x Az <y + 1+ 1. The GPT-4’s approach goes nowhere near proving
the theorem.

We made the problem simpler by adding an additional statement making 6 < x:

(:N)(hy : 2?2 =27)(hy : 6 < z) — false

This can be proved even for real numbers. Since we have 6 < z, it is easy to prove that 2 cannot be equal to
27. However, GPT-4 still struggles with proving this simplified lemma. This time, GPT-4 starts by proving
that 36 < z2. Then it replaces 22 with 27 to obtain 36 < 27. This can be used as a contradiction, however
GPT-4 proceeds with using the not_le_of_ It lemma. This lemma cannot lead to our false goal, because it
states that if @ < b, then =b > a. So, even in such an overly simplified case, although GPT-4 made some
progress, it could not provide the correct proof.

3.4 Case4

If a, b, ¢, X, y, and z are positive real numbers where ¢ < b < a and z < y < z, then we have x/c+y/a+2z/b <
x/a+y/b+ z/e.
please prove this in lean:

lemma (abc:R)(xyz:R)(hg:0<a AN0O<bA0<c)
(h1:0<xz AO0O<y AO0<2)(ha:c<bAb<a)hg:z<y ANy<z):
z/ctylatz/b<zlaty/b+tz/c:=

Under review as submission to TMLR

Again, GPT-4 does not take a sensible approach. It first aims to prove that /¢ < z/a which is obviously
false, and it fails to prove it. The GPT-4’s overall approach to this problem was naive, as it aimed to prove
x/c < x/a, then y/a < y/b, and z/b < z/c, planning to eventually add up all the three inequalities to obtain
the goal.

A student may also think of taking such an approach, but soon, they may realize that z/c < z/a is not true
and such an approach would not work, but GPT-4 does not realize that.

3.5 Caseb

Our last case is based on the property that squaring both sides of an inequality reverses the inequality when
both sides are negative real numbers:

please prove this in lean:
lemma (z:R)(hg: 0 <1+ 2z)
(hy: =11z — 9 < —(22 + 9)V1 + 22)
(ha : —(22 4+ 9)v/1+ 22 < 0) :
(—11z —9)? > (—=2z + 9)V1 + 2% x)% :=

In Ay, we have an inequality where both sides are negative. The goal of the lemma states that when we
square both sides of this inequality, the direction of the inequality sign flips. Lean library already has the
lemma for flipping the direction of inequalities. The theorem statement also gives the information that the
right hand side of inequality is negative. It follows that the left hand side is also negative. The lean proof
can be written in one line.

However, when we ask GPT-4 to prove this, it takes a completely misguided approach. It first aims to prove
that —(2x 4+ 9) > 0 which is untrue and it fails to prove it. Then, it proceeds with squaring both sides of h;.
In the comments of its proof, GPT-4 states: “Now, we can square both sides of the inequality and maintain
the direction of the inequality. This is due to both sides being non-positive." This statement by itself is
wrong regardless of its applicability to our lemma.

Google search did not return any results including both of the lemmas used in GPT-4’s proof. This suggests
that GPT-4 came up with this novel and wrong answer by itself.

If we assume that GPT-4 has some understanding of basic mathematical concepts, proving this lemma does
not require extrapolation beyond its familiar concepts, the concepts that are used in its correct answers.
However, if we consider the lean statements merely as a text corpus, then the theorem posed in this case
may be quite novel, as its formal proof is not available on the web, and apparently, not seen by the model.
From such a textual perspective, this theorem would require considerable extrapolation, which GPT-4 tries
to perform, leading to a failure.

3.6 Our take from these cases

Our only criteria for choosing these lemmas was the lack of availability of a formal lean proof for them in
the public domain. These 5 cases are selected, as a show case, from a larger pool of easy problems that
GPT-4 could not solve. The problems that we chose for this showcase were intentionally all about natural
and real numbers. We did not present cases where GPT-4 fails to solve quadratic equations, or cases related
to rational numbers. We did not go for Olympiad problems or extremely hard cases. The easy way to find a
failure mode of GPT-4 is to rely on Google’s search engine. We have to look for problems that do not have
a formal proof readily available online. To evaluate a learner’s understanding of a subject, the evaluator has
to first cover the basics.

Under review as submission to TMLR

4 Ways to view and use the GPT-4 when solving math theorems

4.1 The evidence for success and failure of GPT-4

We have seen that, currently, GPT-4 is the best available tool for replicating/rephrasing/polishing existing
text. The same capability seems to be true for mathematical proofs. GPT-4 is able to provide the correct
proof for a variety of mathematical theorems, and the correct proof is generated time after time, with
consistency, and insensitive to the minute details of the prompt. Such proofs appear to be the ones that
already exist in a formal language in the public domain, the proofs that are likely used in the training process
of GPT-4.

If we adopt this notion that GPT-4 is good at providing the proof for problems that it has seen in its training
process, that could give us a clear guideline on how to deploy this model and how to think about it. The
developers and owners of the GPT-4 certainly have access to the training set of their model. They can
identify the theorems and the proofs that the model is trained on. They can measure how accurate the
model is in solving theorems that are not included in its training set. They can also create procedures for
the model to abstain from attempting to prove theorems that it is unlikely to prove correctly. The approach
of OpenAl, so far, seem to be encouraging the community to keep prompting the GPT-4 while constantly
improving the model behind the curtains, perhaps using the same prompts they receive from the community,
i.e., creating a fog about generalization capabilities of their model while constantly improving it.

If the success rate of the model in proving unseen mathematical theorems, the like of which we explored in
this paper, is minute, then it would be useful to report that to the community at the least. Such transparency
would benefit the community as a whole, and it may benefit the OpenAl as well in the long run.

4.2 Training the models on all the existing proofs

The practice of grabbing all the available proofs and feeding it to the model could be fine if we are using
the model as a writing assistant for replicating/rephrasing/polishing existing proofs. But, when we are not
upfront about the model’s generalization capabilities, that practice may turn out to be misleading for the
broader community. For example, if we work based on the idea that GPT-4 is only good at reproducing the
proofs that it has seen before, and it is not a tool for solving novel mathematical theorems, then we would
not assign value to prompting the model day after day to solve a trivial theorem. Instead of encouraging a
PhD student to keep prompting the GPT-4 until they can get the correct proof for a mathematical theorem,
we may encourage the same student to write the proof themselves, if that problem needs to be solved. After,
we have the proof, one can still feed that proof to the GPT-4, or other LLMs, so that the model can polish
it and reproduce it for anyone around the globe who needs that proof, perhaps for educational purposes.

On the other hand, if we need to develop AI models that can solve novel mathematical theorems, i.e.,
theorems that the AI model has not seen before, we need to have clear procedures for evaluating their
generalization capabilities. In that scenario, solving mathematical theorems with GPT-4, when we do not
know what the model has seen before, does not appear to be progress towards our goal. Prompting the
GPT-4 over and over may improve the capabilities of GPT-4, and the prompts may provide new training
source for OpenAl. But, it would not be clear whether the improvement counts as developing an Al model
that has learned to solve mathematics. Such progress may well be categorized as developing a model that is
good at replicating/rephrasing/polishing existing text made by humans.

5 A retrieval task or predicting the next word?

There may be many motivations to use Al for solving mathematical theorems. Automation is one of them.
Automation in this context may be used for software engineering purposes. Moreover, computers may be
able to perform certain tasks better and faster than humans, especially, the tasks that involve retrieval
from a large database, extensive search, or evaluating enormous possibilities. The memory that a computer
deploys may be much larger than the memory of a human brain. Most would agree on the usefulness of
search engines such as Google which can bring us useful results in a fraction of a second, a task that would

Under review as submission to TMLR

be hard to perform without an automated system. Computers can also outperform humans in certain games
such as Chess and Go (Silver et al., 2017)).

But imagine we were using the Google’s search engine to find links related to a specific topic, and the
results came after an hour, and many of the links were broken or irrelevant. Then, you might reconsider
the usefulness of this search engine. Using Al to solve mathematical theorems can be seen from a similar
perspective. If we solve a mathematical theorem with a large language model when it takes a long timeﬂ
for it to come up with an answer, and that given answer is most likely incorrect, what is the value in that
model? GPT-4 predicts the next word, and it does not take long for it to produce a correct or incorrect
answer. However, other types of models such as GPT-f rely on extensive trial and error. So, the familiar
trade-off between compute expense vs the correctness of the outputs is present here. But it does not seem
clear whether using a large language model is the best approach for solving mathematical theorems. Being
able to solve unseen mathematical theorems from scratch requires the use of familiar contents, e.g., the
lemmas that are available in a library. From this perspective, solving the theorems requires the ability to
identify the applicable theorems and lemmas that are available in a very large library. This is similar to the
retrieval and page rank method used in the Google’s search engine (Langville & Meyer} 2006), and not the
method of predicting the next word deployed in large language models.

When we want to find web pages related to a topic, we do not usually ask a language model, instead we
use a search engine to retrieve, in real time, from the database of all the web pages. It is more efficient to
search the web in real-time than to train a model, and then ask the model to give us the answer. Search
and retrieval from a factual database appears to be a fundamentally different task compared to predicting
the most plausible next word in a sentence. Suggesting links to web pages is exactly the shortcoming of the
large language models. The links that LLMs provide are often non-existent, i.e., hallucinations of the model
from the contents of the web. Although these hallucinations are being filtered out more and more every day,
it does not fully conceal that the method of predicting the next word can lead to extensive hallucinations.

The same logic applies for retrieving the applicable lemmas and tactics for solving mathematical theorems.
We have a library like Mathlib. We would like to find the applicable lemmas, tactics, etc. that would
eventually compose the proof for a given theorem. It would be better to go directly to the library, and use
a powerful search engine to retrieve the applicable premises in that library and rank them based on their
relevance/usefulness. This is the approach that was originally taken by the math community, leading to
methods such as Sledgehammer (Bohme & Nipkow, [2010; [Paulsson & Blanchettel |2012)), but much more
work can be done in that direction. Using a language model may not be as useful, for the same reason
that we are still using search engines such as Google and Bing to scan the contents of the web. These
search engines, first scan the contents of the web, identify the contents relevant to the inquiry, and then
rank those contents based on their relevance, and return the ranked list. Image search engines perform a
similar procedure. Clearly, powerful search engines also make use of machine learning methods, especially for
ranking the results. We view that approach fruitful as well. The point is that relying on a language model
that is trained to predict the next word may not be a good approach to generate proofs for mathematical
theorems unless those proofs are already written and we just want the language model to reproduce them
for others.

Some researchers have considered the idea of using language models in conjunction with premise selection
methods such as Sledgehammer. For example, Jiang et al.| (2022 uses the Sledgehammer for premise selection
and then relies on a language model to ultimately generate the proof for the theorems using the selected
premises. This approach is more successful in solving some of the simpler theorems and its computational
cost is also less expensive compared to the methods that solely rely on language models. Nevertheless, it still
cannot prove more than 70% of the theorems in the miniF2F testing set. While the authors of that work
describe the reason for their improvement gain to be the hybridization of various tools, it is also plausible to
see their method as a move away from the use of language models for proving novel mathematical theorems.

GPT models may still be useful, and training them on mathematical proofs may still be a good thing to
do, if some of us want to use these models as writing assistants to reproduce existing proofs. These models

ISee, for example, the running time of GPT-f model (Polu et all, [2022, Section 7) as well as the running time of GPT-4
when it has to be prompted so many times.

Under review as submission to TMLR

may become more credible if they stick to what they have seen in their training set, reproducing the proofs
that are previously verified. This would entail, for the GPT-4 model, to abstain from producing proofs of
its own, until and unless it can do that with some verified degree of correctness. The same argument goes
for producing web pages and book references. To scan the web or to search for references, using a search
engine is faster and more reliable than using GPT-4, a non-retrieval based model. While many of the large
language models were initially unrestrained about providing fictional web links and book references, their
creators have now implemented strict restraints on them to stick to the exact links and references that they
have seen.

6 Is it all about compression? What is the role of extrapolation?

Sometimes, the generalization of the GPT models is attributed to the notion of compression, specifically in the
context of Kolmogorov complexity (Kolmogorov, 1963). We find the notion of compression and Kolmogorov
complexity relevant and insightful in this context, but perhaps this notion has been overemphasized, carrying
the burden of much speculationﬂ with limited ways for verification. The Kolmogorov complexity of object
x with respect to the specifying method ¢ is defined as

Ky(z) = mpin{lpl L (p) = v},

and K4(x) = oo if there are no such p (Li & Vitanyi, 2019). Here, p denotes a program describing the z via
a method ¢, and |.| is the length operator. Hence, the Kolmogorov complexity of an object (e.g., text) is the
length of the shortest program that can produce = as output using the programming method ¢.

When one creates a model that is simpler than another model yet it can learn better, that aligns with
the notion of Kolmogorov complexity, as the simpler model would have a lower Kolmogorov complexity.
However, Kolmogorov complexity does not provide a method on how the minimum length program, i.e.,
compression of the data, should be computed, nor it cannot be used to verify whether a given compression
of the data is its best compression (Vereshchagin & Vitdnyil |2004). In practice, Kolmogorov complexity is
often used to prove impossibilities in algorithmic computations. Another result derived from Kolmogorov
complexity is that no program can compute the Kolmogorov complexity for infinitely many elements (Li &
Vitanyi, 2019)), e.g., strings of text. Kolmogorov complexity is indeed not computable. Hence, many of those
speculations about generalization of deep learning models, and their ability to acquire an understanding of
“the world out there', remain non-verifiable through the lens of compression. However, in the case studies
that we presented earlier, GPT-4 has not grasped or compressed an understanding of basic mathematical
concepts. The theorems that GPT-4 can prove correctly, proofs seem to be already available on the internet.

To study the generalization, performance, and failure modes of GPT-4 and other deep learning models, it
would be better to adopt a broader view and note that compression is not the only operation performed
by such models, and as a result, compression, alone, may not be able to explain those phenomenon. To
arrive at such broader view, we can look back, even further, on earlier work of Andrey Kolmogorov, not
on compression, but on extrapolation (Kolmogorov}, [1941), the topic that was pursued independently by
Norbert Wiener around the same time.

Kolmogorov is famous for his work on computational complexity while that piece of his work was preceded
by his study of extrapolation. Similarly, Wiener’s famous work, Cybernetics (Wiener} [1948)), was preceded
by his work on extrapolation. Indeed, Wieners’ work on extrapolation was about sequences in their general
form including sequences of words (Wiener, 1942} p. 2). The type of sequence that Wiener originally worked
on was about the sequence of locations that a guided missile goes through in space. After the World War
I1, he extended those same concepts for modeling other sequences such as sequences of words (Cao, [2023)).

Many may agree that the ideas put forth in the Wiener’s Cybernetics are a foundation for modern methods
of learning from the data (Ma et al., 2022), yet the Cybernetics itself was built on the Wiener’s work on
extrapolation. Both Kolmogorov and Wiener where developing models that can learn a phenomenon from a
data distribution, and then, extrapolate from it.

2See for examples, the talk by Ilya Sutskever at the Simons Institute in August 2023: https://simons.berkeley.edu/talks/
ilya-sutskever-openai-2023-08-14, and his interview with NVIDIA’s CEO on the release of GPT-4.

10

https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14
https://simons.berkeley.edu/talks/ilya-sutskever-openai-2023-08-14

Under review as submission to TMLR

6.1 Does GPT-4 extrapolate?

The answer is yes, in many different ways and to many different extents. When the model rephrases a piece
of text from the received prompt or from its training set, that may entail some degree of extrapolation, but
the extent of extrapolation may be very small. On the other hand, when the model hallucinates, or when it
attempts to write a poem, the extent of extrapolation may be much larger.

For solving mathematical theorems, when the model has seen the proof, it can interpolate to that seen proof
and provide the sensible answer. Along the way, it may polish the proof from its training set, or make some
small modifications to it. Such modifications may entail small degrees of extrapolation in the textual space.

But, when the model is tasked to generate a proof on a concept that it has not seen before, it may need to
extrapolate to a larger extent, on a conceptual, as well as, a textual level. As we saw in our experiments,
the model may end up assembling a nonsensical answer to unseen theorems even when the concepts used in
those theorems are familiar. So, the extrapolation in the textual space is influential as well. Extrapolation
in the text space can be contrasted to extrapolation in the compressed space that a model has learned. But
failures of GPT-4 in the cases we investigated in this paper are explainable not by lack of exposure to certain
mathematical concepts, rather by unavailability of those proofs in formal language. Those failures where not
cases of conceptual extrapolation, but of textual extrapolation.

The extent of extrapolation may be used as a guide to prevent the nonsensical answers and to tie the answers
of the model to its training set. This would also be useful to prevent hallucination. Limiting the answers of
the model to its training set can be seen as a step towards grounding its answers in verified data. Clearly,
the training set itself should be purged from any incorrect text/information.

Of course, if one wants the model to come up with a poem, or to write some fictional statement, excessive
extrapolation may be very desirable. But in many other instances, it may be more sensible if the model
abstains from extensive extrapolations and acknowledges its limitations.

6.2 GPT-4’s internal instructions on extrapolation

GPT-4 is not unfamiliar with these notions. When asked whether it extrapolates or not, it responded:

GPT-4: Eztrapolation in the context of ChatGPT refers to generating responses that go beyond
simply repeating what is in the training data, aiming to make inferences, generate creative text,
or provide explanations based on patterns it has learned.

So, in summary, I extrapolate by generating text based on the context of the prompt and the
patterns 've learned during training. This allows me to answer a wide range of queries, even
those that were not explicitly present in my training data.

When asked how it avoids excessive extrapolation, it responded:

GPT-4: Avoiding excessive extrapolation is crucial for maintaining intellectual rigor, whether
you’re engaged in scientific research, data analysis, or everyday decision-making.

Hence, unlimited extrapolation is considered undesirable by GPT-4, but it is not clear how much extrapola-
tion is considered to be excessive by the model. This question may be hard to quantify in various domains,
e.g., math, literature, etc. Nevertheless, it is notable that GPT-4 acknowledges that it tries to avoid excessive
extrapolation.

When we asked GPT-4 if it avoids extrapolation, it replied:

GPT-4: I don’t “avoid" extrapolation in the sense that I actively detect and reject it. Rather,
my design inherently minimizes extrapolation by virtue of how I generate responses.

The word “inherent", in GPT-4’s response, appears to be a clear overstatement, considering the cases that
we studied in this paper. While GPT-4 abstains from providing a proof for some theorems, those theorems
seem to be the ones that are more on the difficult side, and there are not similar instances of such proofs
available on the web. Nevertheless, there are a wide variety of theorems, as in the cases we studied in this

11

Under review as submission to TMLR

paper, where GPT-4 goes off the rail by generating proofs that could be considered unjustified or out-of-
context extrapolation. Perhaps this type of extrapolation is not limited or minimized by GPT-4, inherently
or otherwise. It would not be surprising if GPT-4 is allowed to go beyond the boundaries of its knowledge,
and sometimes give out nonsensical answers. While expert users are constantly prompting the model, giving
nonsensical answers could still be useful by the model, as it allows its limitations to be examined by its users,
eventually leading to the improvement of the model and expansion of its capabilities. This is definitely a
progress towards having a better automated writing assistant.

On the other hand, when asked how it avoids replicating training data and plagiarism, it replied:
GPT-4: I am designed to avoid generating text that is identical to the training data...

Again, the answer is related to extrapolation, but this time, GPT-4 is designed to perform some intentional
and limited amount of extrapolation in the textual space to ensure that its responses are not identical to its
training set. This may be interpreted as no extrapolation on a conceptual level, rather, a simple rephrasing
in the textual space may be sufficient to achieve that goal. In other words, it seems that GPT-4 is designed
to maintain some minimal level of extrapolation in the textual space in most of its responses.

Looking back at the pioneering work of Kolmogorov and Wiener in the 1940s, the kind of extrapolation that
they formulated and pursued was limited, guided, and in specific ways related to specific data distributions.
It appears that much more work has to be done to study the extrapolations performed by deep learning
models, and at the same time, to limit and guide the extrapolations that they perform. Extrapolation still
is an overlooked and under studied concept in the deep learning literature and practice.

7 Conclusions

We performed a critical inquiry into the claims about GPT-4’s ability to understand mathematics. We
specifically posed questions that are simple, but their formal proofs are not abundant on the internet. We
observed that GPT-4 was not able to answer those questions correctly. Scientific evidence that GPT-4
has acquired an understanding of the mathematical concepts appear to be scarce. Instead, our results
suggests that GPT-4 has the capability to provide correct answers when it has seen the solution before
indicating the usefulness of this model in reproducing/rephrasing/polishing existing proofs as opposed to
solving mathematical theorems based on mathematical understanding. This may provide us with some
guidance on how to use this model, and how to interpret its correct and incorrect answers.

We further discussed the task of theorem proving and suggested that it is more of a retrieval task from a
database, similar to how search engines work. We discussed why most people still use retrieval-based search
engines to find contents on the web as opposed using the likes of GPT-4. Building powerful search engines
for mathematical libraries could be a more fruitful approach compared to training GPT-4 models on all
the available formal proofs in the world. We further discussed that this approach of training a model on
all contents of the web blurs the line on measuring the generalization capabilities, a line that can be easily
de-blurred by creators of GPT-4.

On the other hand, we observed that GPT-4’s ability to reproduce the contents of its training set may
provide a straightforward approach for it to measure its own confidence. Whenever the model has to go
beyond its training contents, at least when it comes to mathematical proofs, it appears that it does not have
a reasonable chance of providing sensible answers. It would be useful for the research community if OpenAl
honestly reveals the generalization capabilities of its model in solving formal mathematical problems, the
capabilities that can be verified only through the knowledge of its training set. We further discussed how
extrapolation, in the textual space as well as in the representation space, may be a useful concept to evaluate
and identify the success and failure cases of large language models.

Another observation is that mathematical theorem datasets such as miniF2F were created by people at
the OpenAl. Putting out a model that outperforms all other models while not being forthcoming about
the model’s procedures and its training sources, blurring the line to evaluate its generalization capabilities,
and at the same time, encouraging the scientific community to keep prompting the privately owned GPT-
4 model with the goal to improve it, may seem a bit deceiving and self-serving, and at the same time,
counter-productive for scientific progress.

12

Under review as submission to TMLR

References

Jeremy Avigad, Leonardo De Moura, and Soonho Kong. Theorem proving in lean. Online: hitps://leanprover.
github. io/theorem__ proving__ in__ lean/theorem__ proving__ in__ lean. pdf, 2021.

Sascha Bohme and Tobias Nipkow. Sledgehammer: Judgement day. In Automated Reasoning: 5th Interna-
tional Joint Conference, pp. 107-121. Springer, 2010.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer
networks and ISDN systems, 30(1-7):107-117, 1998.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Adwvances in Neural Information Processing Systems, 33:1877-1901, 2020.

Xuenan Cao. How chatbots extrapolate: From guided missiles to guided prompts. 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. How is ChatGPT’s behavior changing over time? arXiv
preprint arXiv:2307.09009, 2023.

Birger Hjgrland. Methods for evaluating information sources: An annotated catalogue. Journal of Informa-
tion Science, 38(3):258-268, 2012.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygézdz, Piotr
Milos, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language models and
automated theorem provers. Advances in Neural Information Processing Systems, 35:8360-8373, 2022.

Andrei N Kolmogorov. On tables of random numbers. Sankhya: The Indian Journal of Statistics, Series A,
pp. 369-376, 1963.

Andrey Kolmogorov. Interpolation and extrapolation of stationary random sequences. Izvestiya Rossiiskoi
Akademii Nauk. Seriya Matematicheskaya, 5:3, 1941.

Amy N Langville and Carl D Meyer. Google’s PageRank and beyond: The science of search engine rankings.
Princeton University Press, 2006.

Ming Li and Paul Vitanyi. An introduction to Kolmogorov complexity and its applications. Springer, 4th
edition, 2019.

Naiming Liu, Shashank Sonkar, Zichao Wang, Simon Woodhead, and Richard G Baraniuk. Novice learner
and expert tutor: Evaluating math reasoning abilities of large language models with misconceptions. arXiv
preprint arXiv:2310.02439, 2023.

Yi Ma, Doris Tsao, and Heung-Yeung Shum. On the principles of parsimony and self-consistency for the
emergence of intelligence. Frontiers of Information Technology & FElectronic Engineering, 23(9):1298-1323,
2022.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In 28th
International Conference on Automated Deduction, pp. 625-635, 2021.

OpenAl. GPT-4 technical report, 2023.

Lawrence C Paulsson and Jasmin C Blanchette. Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In Proceedings of the 8th International Workshop
on the Implementation of Logics, volume 2, 2012.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever.
Formal mathematics statement curriculum learning. In The Eleventh International Conference on Learning
Representations, 2022.

13

Under review as submission to TMLR

Tom Reichel, R Henderson, Andrew Touchet, Andrew Gardner, and Talia Ringer. Proof repair infrastruc-
ture for supervised models: Building a large proof repair dataset. In 14th International Conference on
Interactive Theorem Proving, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go without human
knowledge. Nature, 550(7676):354-359, 2017.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models. Transactions on Machine Learning
Research, 2023.

Nikolai K Vereshchagin and Paul MB Vitanyi. Kolmogorov’s structure functions and model selection. IEEFE
Transactions on Information Theory, 50(12):3265-3290, 2004.

Norbert Wiener. FExtrapolation, interpolation, and smoothing of stationary time series: With engineering
applications. The MIT Press, 1942.

Norbert Wiener. Cybernetics or Control and Communication in the Animal and the Machine. MIT Press,
1948.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek, Boyuan Chen, Bailin Wang, Najoung Kim, Jacob
Andreas, and Yoon Kim. Reasoning or reciting? Exploring the capabilities and limitations of language
models through counterfactual tasks. arXiv preprint arXiv:2307.02477, 2023.

Eunice Yiu, Eliza Kosoy, and Alison Gopnik. Transmission versus truth, imitation versus innovation: What
children can do that large language and language-and-vision models cannot (yet). Perspectives on Psy-
chological Science, 2023.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora. Skill-Mix:
A flexible and expandable family of evaluations for Al models. arXiv preprint arXiv:2310.17567, 2023.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: A cross-system benchmark for formal
olympiad-level mathematics. In International Conference on Learning Representations, 2021.

14

Under review as submission to TMLR

A Interactions with GPT-4

Section 2.1

When was your last training date? Is your training updated regularly?

My last training data goes up until January 2022. As of my last update, | am based on
OpenAl's GPT-4 architecture. While OpenAl continues research and development on models
like mine, | don't automatically update with new data. You're interacting with a fixed version
of me as of that 2022 cut-off. Future versions may have more up-to-date training, but you'd
need to check with OpenAl's official announcements or updates for the latest information on

newer models.

Figure 1: GPT-4 emphasizes that it is a fixed model and it has not been updated after January 2022.

When was the last time you were trained on lean mathematical proofs?

My knowledge, including that of Lean mathematical proofs, is based on data available up to
January 2022. | was trained on a mixture of licensed data, data created by human trainers,
and publicly available data. However, | do not have real-time updates, so any developments,
proofs, or advancements in the Lean community or other fields after January 2022 would not
be known to me. If you have questions about specific Lean proofs or techniques up to that

time, I'll do my best to help!

Figure 2: GPT-4 claims that it has no knowledge of any lean mathematical proofs that are written after
January 2022.

What can you tell me about your training set?

I don’t have access to my training data, but | was trained on a mixture of licensed data, data
created by human trainers, and publicly available data. OpenAl, the organization behind
Assistant, has not publicly disclosed the specifics of the individual datasets used, including

whether any specific data source was included.

My knowledge is based on the data | was trained on, and my primary function is to generate
human-like text based on that training. This includes a wide range of sources, from books,

websites, and other educational and general-purpose content.

For very specific or recent details about OpenAl's datasets, methodologies, or other specific

inquiries, | would recommend referring directly to official OpenAl documentation or

publications.

Figure 3: GPT-4 acknowledges that its training set has not been revealed by its creator.

15

Under review as submission to TMLR

What can you tell me about the formal lean mathematical proofs used in your training set?

OpenAl hasn't released detailed specifics about individual datasets, including whether any
specific dataset related to Lean mathematical proofs was used. However, | was trained on a
diverse range of internet text. If there are publicly available materials, tutorials, discussions,
or other text-based content on Lean mathematical proofs up until my last training cut-off in
January 2022, then it's likely that I've been exposed to the general concepts, methodologies,
and techniques.

Lean is a formal proof verification system, and the community around it has made various
contributions to mathematics and formalized theories in it. This includes projects like the
formalization of the Kepler conjecture or the development of the mathlib library, which aims

to build a substantial body of mathematicsin Lean.

However, for detailed, up-to-date, or specific information about Lean's developments after
January 2022, or for nuanced technical details, you might want to consult dedicated

resources or experts in the Lean community.

Figure 4: GPT-4 acknowledges that it may have been exposed to any “concepts, methodologies, and tech-
niques", using the language that implies learning and understanding as opposed to reproducing/rephrasing.

About the prompts that you receive from the users across the globe, are those prompts used
for your retraining and improvement?

As an Al developed by OpenAl, | don't have the capability to retain, recall, or use individual
user interactions for the purpose of retraining or self-improvement. Each interaction with
users like you is stateless, meaning that once our conversation ends, | don't retain any record
of it.

However, OpenAl may collect data from interactions to improve the performance and
capabilities of Al models like me in aggregate. This is done by analyzing large sets of
interactions to identify patterns, areas for improvement, and to understand user needs
better. Any data used in such a way is typically processed in accordance with OpenAl's use
case policy and privacy agreements, and is aimed at general improvements rather than

learning from specific user inputs.

Individual conversations are not used to directly retrain or update my responses. Retraining

Al models requires substantial resources and is conducted by the OpenAl team using

diverse and extensive datasets that are curated to train the Al effectively and ethically.

Figure 5: GPT-4 refers to its privacy agreement and leaves the door open for using the user prompts for its
improvement.

16

Under review as submission to TMLR

When a user provides you with a mathematical proof written in lean, is it possible that you
will use that proof to improve your future responses to other users?

I don't have the ability to learn from individual interactions or retain specific user data,
including any Lean proofs or other information provided during our conversation. Each
session is independent, and once it ends, | do not remember the details of the conversation

or have the ability to reference past interactions.

While OpenAl does collect data to improve the Al's performance, this is not done at the
individual conversation level for retraining with specific content from users. Instead,
improvements are made based on aggregated and anonymized data to identify general
trends, common questions, and areas where the Al might need to be more accurate or

provide better responses.

It's important to note that OpenAl ensures data privacy and adheres to strict data use
policies. Any data used to train and improve models like me is managed in a way that is

designed to respect user privacy and comply with relevant regulations.

Figure 6: When asked about how it uses the prompts that it receives, GPT-4 uses ambiguous language
focusing on anonymization and privacy, not revealing how OpenAl improves its performance based on the
user prompts.

Section 2.2

User
please prove this in lean:
theorem amc12b_2020_p22
(t:R):
(2"t-3*Y*t) /(@ =s1/12:=

(2)t

1
The problem statement requires proving an inequality of the form L 12

Proving
inequalities in Lean often involves technigues such as rearranging the terms, applying specific
lemmas, and semetimes even leveraging calculus. Note that the domain for ¢ is all real

number:

For inequalities like this one, calculus methods like taking derivatives to find critical points are
often helpful, but Lean's real number library doesn't include comprehensive calculus support
out-of-the-box as of my last update in September 2021

Therefore, if you want to prove this theorem using Lean, you might have to proceed by first

proving it (or at least finding the steps for proving it) manually using mathematical methods
and then encode those steps into Lean, which could be very involved.

For a start, you'd generally want to rearrange the inequality into a form where one side
and then work on proving that one side is less than or equ zero. After that, you'd go about
proving this inequality in Lean using real number lemmas and other methods.

It's also possible that this specific inequality would require advanced mathematical methods
to prove, and Lean's real number library might not be suffi ly developed to handle them
without a great deal of effort.

Figure 7: In June 2023, GPT-4 abstains from providing a proof for this theorem mentioning that this problem
would require advanced mathematical methods and a great deal of effort.

17

Under review as submission to TMLR

please prove this in lean:
theorem amc12b_2020_p22 (t
(2M-3*)*) /(4") <1/12:

To prove the inequality in Lean, we can employ a combination of real analysis methods and the
properties of exponentials. The problem can be tackled by analyzing the behavior of the
function as ¢ approaches certain values.

Let's provide a proof for this in Lean:
lean) Copy code

import data.real.basic

theorem amcl12b_2020_p22 (t : R) :
(27t -3 *t)y * 1) / (4"t) =1/ 12 :=
begin
-- Use a reductio ad absurdum approach
by_contra h,
-- We will first make the assumption that the inequality does not

push_neg at h,

-- Rearrange the inequality to isolate 4"t and use exponentiation
have h1 : (2°t - 3 * t) * t > (1 / 12) * (4"t),
from (mul_lt_mul_right (pow_pos zero_lt_two t)).mpr h,

Analyze the behavior of the function
Given the nature of the function and its properties, we can dex
Depending on the approach you take, you might use calculus, fac

The above proof is the beginning, and you would need to add fur
at a contradiction given the properties of the function, thus

NOTE: The above proof sets up the problem in Lean, but the spec
contradictions are yet to be elaborated on.

sorry, -- Placeholder for an unfinished proof.
end
e ————————————

This proof sets up the problem in Lean, but the specific steps and contradictions based on the
behavior of the function are yet to be elaborated on. Depending on the exact solution strategy,
you might employ calculus, analyze the behavior of the function at specific points, or utilize

properties of exponentials and logarithms.

Figure 8: In October 2023, it provides a partial proof for the problem that it abstained to prove back in
June as shown in previous figure.

18

Under review as submission to TMLR

please prove this i
theorem

(xy:R)
(h:x-yz0):
0<(x-y)"2:=

To prove this theorem in Lean, we need to show that the square of a non-zero real number is

always positive. In Lean, the theorem statement would be:

lean ©) Copy code

import data.real.basic

theorem square_pos
xy
(h

begin
have hxy : >0vx-y<O0 :=ne.lt or_ 1t h,
cases hxy,
{--Case: x -y >0
have hsg @ (x - ¥)"2 = (x - y) * (x - y) = by ring,
Iw hsq,
exact mul_pos hxy hxy, },
-- Case: x -y <0
have hsq : (x - y)"2 = (x - y) * (x - y) := by ring,
W hsq,
exact mul_pos_of_neg_of_neg hxy hxy, 3},

Here's what's happening in this proof:

1. We import the necessary module for real numbers.

2. We define the theorem, stating that for any real numbers "x~ and "y ’,if 'x = y~isnot
equal to zero, then the square of *x -y~ is greater than zero.

3. We prove the theorem by considering the two possible cases that arise fre e fact that "x
-y’ is not zero: it is either positive or negative.

4. In each case, we use the fact that the square of a positive number is positive (*'mul_pos)
and the square of a negative number is also positive ('mul_pos_of_neg_of_neg’).
We conclude the proof by indicating that in both cases, " (x - y)"27 is greater than zero.

This Lean code is a formalization of the mathematical fact that a non-zero real number

squared is always positive, utilizing Lean's theorem proving capabilities.

Figure 9: In October 2023, GPT-4 provides the correct proof for this theorem.

lean ©) Copy code

import data.real.basic

-- The theorem statement
theorem square _pos (x y : R) (h : x = y)
begin
-- Show that x - y = 0
have h' : x - y = 0,
{
intro hxy,
apply h,
exact sub_eq_zero.mp hxy,
3,

-- Use pow_pos lemma
exact pow_pos h' 2,
end

In this proof, we first show that = — y # 0 using the assumption # y. Then we use the

“pow_pos " lemma to show that (= — y)“ > O giventhata — y

Figure 10: In June 2023, its proof for the same problem as previous figure was completely wrong.

19

Under review as submission to TMLR

Section 3.1

please prove this in lean:
theoremlemma_1:v (x:N),x=0vx=1vx=2vx=3vx=4vXx=5vx=26:=

To prove this in Lean, we can utilize the properties of natural numbers and the built-in tactic
“nat.cases_on". This tactic allows us to consider cases based on the value of a natural

number.
Here's how you can prove this:

() Copy code

theorem lemma_1 : V (x
begin
intro x,
-- We can do case analysis on x up to 6 and then handle the general case
nat.cases_on x
(left rfl) -- case x = 0
(A x, nat.cases_on x
(or.inl (or.inr rfl)) -- case x = 1
(A x, nat.cases_on x
(or.inr (or.inl rfl)) -- case x = 2
(X x, nat.cases_on x
(or.inr (or.inr (or.inl rfl))) -- case x = 3
(X x, nat.cases_on x
(or.inr (or.inr (or.inr (or.inl rfl)))) -- case x = 4
(A x, nat.cases_on x
(or.inr (or.inr (or.inr (or.inr (or.inl rfl))))) -- case x =5
(A x, or.inr (or.inr (or.inr (or.inr (or.inr (le_refl 6)))))))))

The proof uses nested applications of “nat.cases_on" to handle each possible value of

from O to 5. After handling these cases, the proof directly concludes that > 6 for the

remaining cases.

Figure 11: Case 1 - GPT-4’s approach for proving this theorem is wrong. We find that its proof is based on
a similar but irrelevant lean document available on the web.

20

Under review as submission to TMLR

Section 3.2

please prove this in lean without using the linarith:
lemma my_lemma_95
(x:M):
X<5vXx=5vXx=6vXx=Tvx=8vx=9vO<x:=

Sure! We can provide a proof by cases for this lemma without using “1inarith . Here's one
way to do it:

lean) Copy code

lemma my_lemma_95 (x
XxX<5vx=5vx

begin
cases x with x,
{ left, exact nat.zero_lt_succ -- Case O
cases X with x,
{ left, exact nat.zero_lt_succ 3}, -- Case 1
cases x with x,
{ left, exact nat.zero_lt_succ 3, -- Case 2
cases x with x,
{ left, exact nat.zero_lt_succ 3, -- Case 3
cases x with x,
{ left, exact nat.zero_lt_succ }, -- Case 4
cases x with x,
{ right, left, refl }, -- Case 5
cases x with x,
{ right, right, left, refl }, -- Case 6
cases x with x,
{ right, right, right, left, refl }, -- Case 7
cases x with x,
{ right, right, right, ri , left, refl }, -- Case 8
cases x with x,
{ right, right, right, right, right, left, refl }, -- Case 9

right, right, right, right, right, right, exact nat.succ_pos x, -
end

This proof methodically breaks down each case for “x from O to 9 and then combines all the
cases using the "left " and "right " tactics to form the final result. For all values greater
than or equal to 10, we use “nat.succ_pos” to prove the result.

Figure 12: Case 2 - GPT-4 uses an irrelevant lemma from the mathlib library, a lemma that was used for
problems in harmonic and power series.

21

Under review as submission to TMLR

Section 3.3

please prove this in lean:

hx:x*2=27
+ false

In Lean, the goal is to prove that there is no natural number “x* suchthat *x * 2 = 27"

One way to prove this is by contradiction.

Firstly, let's note that 27 is not a perfect square, which means no natural number *x ™ can
satisfy "x » 2 = 27",

Here's how this proof might look in Lean:

lean O Copy code

import data.nat.sgrt

-- Proof that no natural number x exists such that x"2
theorem no_nat_square_ 27 : V (x : N), x ~ 2 = 27 2> false :
begin

intros x hx,

-- Use the sqrt function from data.nat.sqrt

-- to obtain the square root of 27 as a natural number.

let y := nat.sqrt 27,

-- Show that vy * 2 < 27 < (y + 1) *~ 2
have hyl : y "~ 2 < 27 := pat.sqrt_l1lt.2 (by linarith),
have hy2 : 27 < (y + 1) *~ 2 := nat.lt_succ_sqrt 27,

-- Now, x * 2 = 27 implies x is between y and y + 1,
-- which in turn implies x =y or x = y + 1.
have hx_range : y < X A X <y + 1+ 1,
{ rw [hx],
exact (nat.lt_sqrt.2 hyl, nat.lt_succ_sqgrt 27) },

-- Prove that x = y or x = y + 1 leads to contradiction.
have hx_cases := nat.lt_or_ge x (y + 1)

cases hx_cases,

{ --Case 1: x <y + 1

exact 1t_irrefl (1t_trans (nat.lt_succ_of_1t hx_cases) hx_ranc

-- Case 2: x 2y + 1
have h_ge : y + 1 £ x := hx_cases,
have h_le : x £y + 1 := hx_range.right,
have h_ eq : x =y + 1 := le_antisymm h_le h_ge,
rw [h_eq, pow_two, nat.succ_mul, add_assoc, nat.one_add_one_eq_t
exact hy2 (eq.subst hx (le_refl _)) I,
end

In this Lean code, we use some facts about the square root function from the
“data.nat.sqrt’ library. Specifically, we use that “nat.sqrt 27" will return the floor of
the square root of 27 as a natural number. Then we prove by contradiction that no natural

number “x" cansatisfy "x * 2 = 27",

This completes the proof that there is no natural number “x " suchthat "x ~ 2 = 27",

Figure 13: Case 3 - We want to prove square of a natural number cannot be equal to 27. GPT-4’s approach
is incorrect.

22

Under review as submission to TMLR

please prove this in lean:
x: N

hx:x"2=

h_cases: x =

i false

The idea behind this proofis thatif z > 6 and 27, it leads to a contradiction. This is
because any natural number squared that's 6 or greater will be at least 62 which is 36, and
that's greater than 27.

Here's how you can prove it in Lean:

lean ©) Copy code

theorem square_contradiction (x : RN) rx A (h_cases
begin

have h : 6"2 = x"2,

{ exact pow_le_pow_of_le_left (nat.zero_le _) h_cases 2 },

have hl : 36 < 27,

{ rw hx at h,

exact h 3,

exact (not_le_of_1t (nat.lt_succ_self 35)) hi,

end

In this Lean proof:

. We first show that if

. Substituting the given z“ = 27 into the above inequality leads to 36 < 27, whichis a
contradiction since 36 is not less than or equal to 27.

Figure 14: Case 3 simplified - To make the problem simpler, we add a constraint of z > 6, again asking to
prove that 22 cannot be equal to 27. This time, the approach can be considered sensible, nevertheless some
of the lemmas used in the proof are irrelevant, and the overall proof is wrong. Even in such a simple case,
although GPT-4 made some progress, it could not provide the correct proof.

23

Under review as submission to TMLR

Section 3.4

please prove this in lean:
:R]

x/c+y/a+z/b<sxfa+yfb+z/c:=

To prove the inequality in the Lean theorem prover, we'll break the proof into several small
steps.

Given the conditions, you want to show:
. > S

Let's set up and prove the theorem in Lean:
lean (%) Copy code

import data.real.basic

theorem inequality_proof
(abc:R)
(xyz:R)
(hg :0<an0<bAOD<cC)
(hy : 0<xAO0O<yaAaODc<zZ)
(h;: c <bAbZ<a)
(hs: X <yaAaysz):
x/c + y/a + z/b £ x/a +y/b + z/c i=
begin
-- Extract the information from the given hypotheses
have hea : 0 <
have hob :
have hoc :

o

<

have hyx :
have hyy :
have h,z :
have h,c :
have h;b :
have hsx :
have hsy :

< x T 0o OO0 o0 Oo

-- We will show the inequalities individually and then combine
-- 1) Show x/c < x/a
have hs : x/c £ x/a,
{
apply div_le_div_of_le_of_pos,
exact h,b,
exact hoa,

-- 2) Show y/a < y/b
have hs : y/a £ y/b,
{
apply div_le_div_of_le_left,
exact hyy,
exact hoa,
exact hob,
exact le_trans h,c h,b,
),

-- 3) Show z/b £ z/c

have hg : z/b < z/c,

{
apply div_le_div_of_le_of_pos,
exact le_tr h,c h,b,

Figure 15: Case 4 - GPT-4’s approach for this theorem is completely wrong. While the theorem states that
0 < ¢ < a, GPT-4 aims to prove z/c < x/a as the first step towards the goal, a step that obviously fails.
Making such an obvious error and not realizing it reveals the GPT-4’s lack of understanding. The formal
proof of this lemma, despite its simplicity, does not seem to exist on the web according to Google’s search
engine. To find a failure case of GPT-4, one should search for problems that do not yet have a formal proof
on the web.

24

Under review as submission to TMLR

Section 3.5

please prove this in lean:

example (x :)

(hp:0<1+2*x)

(h32: (-1 *x-9<-(2*x+9) *sgrt (1+2*x))
(h35:-(2*x+9)*sqrt(1+2*x) < 0) :

(1M *x-9)"2>(-(2*x+9) *sqart (1+2*x) ~2:=

To prove this lemma in Lean, you'll want to take advantage of the properties of real numbers
and inequalities. Here's a possible proof:

[CE [7) Copy code

import data.real.basic

example (x : R)
(hg : 021+ 2*x)
(h32 @ (-11) * x - 9 < -(2 * x + 9) * sgrt (1 + 2 * x))
(h35 : -(2 * x +9) * sgrt (1 + 2 * x) £0)
((-11) * x - 9) ~ 2> (-(2 * x +9) * sgrt (1L + 2 * x)) ~ 2 :=
begin
-- Given h35, we can conclude that (-(2 * x + 9)) 1is non-negative
have hl1 : -(2 * x + 9) =2 0,
{ by_contradiction contra,
have := mul_neg_of_neg_of_pos contra (real.sqrt_pos.2 h,)
linarith },

-- Now, we can sguare both sides of the inequality in h32 and mair
-- This is due to both sides being non-positive.
apply pow_lt _pow_of_1t_left h32 hil,
-- Verify that (-11 * x - 9) is non-positive, completing the condi
linarith,

end

In this proof, we first establish that —(2 * = + 9) is non-negative based on the given

hypotheses. Then, using the properties of inequalities and real numbers, we square both sides
of the inequality given by "h32 ", ensuring that the inequality's direction is preserved because
both sides are non-positive.

Figure 16: Case 5 - GPT-4’s approach is incorrect. The proof for this theorem can be written in one line,
and the only concept used in the proof is that the sign of an inequality flips direction when both sides are
negative and they are squared. However, GPT-4 tries to prove intermediary statements that are false, and
even if proved, they would not help with the goal of the theorem. Moreover, GPT-4 writes comments and
explanations that are wrong regardless of our lemma.

25

Under review as submission to TMLR

Section 6.2

how do you make sure that you don't plagiarize contents?

G

As an Al developad by OpenAl, | generate responses based on patterns and information in the data | was
trained on, but | do not have the ability to directly copy or recall specific sources. | don't have access to the
internet or external databases in real-time. Therefore, the responses | provide are generated based on a

mixture of licensed data, data created by human trainers, and publicly available data.

In the case of potential copyright infringement or plagiarism, OpenAl has implemeanted several measures:

1. | am designad to avoid generating text that is identical to the training data.

2. The training process involves large-scale datasets that include a broad cross-section of the intemet,
which makes it unlikely for me to generate a specific copy of a given source.

3. OpenAl has guidelines in place for the use of its Al, including not using it to infringe upon the
intellectual property rights of others.

However, it's important to note that while these measures reduce the risk of plagiarism, they don't entirely
eliminate it. Therefore, it's always a good idea to double-check and ensure any content generated by Al
tools like me is original and doesn't inadvertently infringe on existing copyrighted material

Figure 17: GPT-4 says: “I am designed to avoid generating text that is identical to my training set."

26

Under review as submission to TMLR

how does ChatGPT extrapolate?

Extrapolationin ontext of ChatGPT refers to generating responses that go beyond simply
repeating what is in the training data, aiming to make inferences, generate creative tex
provide explanations based on patterns it has learned. Here's how it works:

. Pattern Recognition: ChatGPT identifies patterns in the text data it was trained on. These
patterns can be syntactical, contextual, or semantic. For mple, it might recognize that
"What is the capital of X?" is a question format that usually e a city name as an answer.
Contextual Understanding: When given a prompt, | analyze it in the context of the
conversation and the broader patterns I've learned. For example, if you ask, "Tell me a joke," I'll
recognize this as a request for humor and generate a text that typically fits the pattern ofa
joke.

3. Probabilistic Language Model: | generate text based on probabiliti
word, | consider the words that have come before it in the prompt or conversation and
calculate the most likely next word based on my training data.

1. Sequence Generation: | generate responses one word at a time, in a sequence, until a
stopping criterion is met (e.g., a maximum length or the generation of a special character like
a period).
Inference: While | can't "understand" text like a human does, | can often infer the type of
response that is most approf e for a given prompt. Fc
engine worl 've likely never seen the

explaining how car engines work.

5. Creative Text: | can generate creative text, like stories or poems, by extrapolating from the

creative patterns I've seen in my training data. Again, the text is generated based on
probabilistic calculations and not on any "understanding" or "intent."

7. Factual or Explanatory Text: For factual queries or explanatory prompts, | generate text
based on the factual patterns I've learned. However, worth noting that my training data
might be outdated, incomplete, or contain inaccuracies.

Limitations and Boundaries: While | strive for 2 y and relevance, | don't
to verify information or the context in which it will be used. Therefore, my responses
be fied independently, especially for critical or important tasks.

So, in summary, | extrapolate by generating text based on the context of the prompt and the
patterns I've learned during training. This allows me to answer a wide range of queries, even
those that were not explicitly present in my training data.

Figure 18: GPT-4 acknowledges: “I extrapolate by generating text based on the context of the prompt and
the patterns I have learned during training."

27

Under review as submission to TMLR

|, how do you make sure that you don't extrapolate ex

Avoiding excessi xtrapolation is crucial for maintaining intellectual rigor, whether you're
engaged in scientific research, data analysis, or everyday decision-making. Here are some

general guidelines:

. Stick to the Data: Always make sure your conclusions are grounded in data or evidence.
Going beyond the data can lead to unsupported conclusions.

2. Be Explicit About Assumptions: Any extrapolation is based on certain assumptions. Make
those assumptions explicit and test their validity. If the assumptions are not met, the
conclusions may not be reliable.

Use Conservative Estimates: When making projections or generalizations, use conservative
estimates when possible. This prc
not completely Irate.
. Error Bars and Confidence Intervals: In statis
confid e intervals to indicate the range ¢
Logic and Reasoning: In a logic
ioms, stablished f
Peer Review: Before f
others, particularly those with expertise in the area. They may cat
that you didn't notice.

7. Sensitivity Analysis: If possible, analyze how
your assumptions or input data. If small chang roduce big differen
model may be too unstable for reliable extrapolation.

8. Account for Complexity: Be
variables interact in unpred S rticularly risky.

9. Limit the Scope:Bec bout the limits of your conclusions. Just because a model works in
one domain doesn't mean it will work in another.

0. Question Your Conclusions: Always be your own worst critic. Try to find holes in your

arguments or places where you might have gone beyond the data. Being rigorous in your own
an help you avoid over-extrapolation.

. Transparency: Make your methodology and data transparent sc
work and as he validity of your conclusions.
Continual Re-assessment: Especially in rapidl olving fields or situations, it's important to
revisit and, if ne ry, revise your conclusions in light of new data or understanding.
Acknowledge Uncertainty: It's okay not to have all the answers. Acknowledge the limitations
and uncertainties in your work. This not only lends credibility to your conclusions but also
provid roadmap for further re ch or inquiry.

By adhering to these guidelines, you're more likely to produce reliable, credible conclusions
without making unsupported leaps.

Figure 19: GPT-4 says: “Avoiding excessive extrapolation is crucial for maintaining intellectual rigor ..."

28

Under review as submission to TMLR

how do you avoid extrapolation?

| don't "avoid" extrapolation in the sense that | actively detect and reject it. Rather, my design

inherently minimizes extrapolation by virtue of how | generate responses:

. Training Data: My responses are based on patterns in the data | was trained on. | don't
speculate about future events or facts beyond my last update in January 2022.

. Pattern Recogpnition: | work primarily by recognizing and completing patterns in the data. If
you ask a question that closely matches patterns in my training data, | can generate a
response that's likely accurate. If a question is more novel or ambiguous, there's a higher
chance that | might not provide a perfect answer.

. No Forward Prediction: | don't predict future events, prices, outcomes, or anything that
would require extrapolation beyond my training data. If asked about future events, | would
typically provide a general or historical context based on existing knowledge up to 2022.

. Safety Measures: OpenAl has introduced several iterations and safety mechanisms to
reduce both glaring and subtle inaccuracies in my responses. This includes extensive fine-

tuning and the use of reinforcement learning from human feedback (RLHF) to make me
more safe and useful.

That being said, while | aim to provide accurate and reliable information, | can't guarantee
perfection. Users should exercise their own judgment, especially in critical applications, and

validate information from multiple trusted sources when necessary.

Figure 20: GPT-4 says it does not “avoid" extrapolation by actively detecting and rejecting it. Rather, its
design inherently minimizes extrapolation by virtue of how it generates responses. The words “inherent" and
“minimize" seem to be more of a figure of speech and advertisement.

29

	Introduction
	Source criticism
	How forthcoming is GPT-4 about its sources and its capabilities?
	Evidence for continual improvement of GPT-4 and the expansion of its information sources

	Evaluating the understanding of the model
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Our take from these cases

	Ways to view and use the GPT-4 when solving math theorems
	The evidence for success and failure of GPT-4
	Training the models on all the existing proofs

	A retrieval task or predicting the next word?
	Is it all about compression? What is the role of extrapolation?
	Does GPT-4 extrapolate?
	GPT-4's internal instructions on extrapolation

	Conclusions
	Interactions with GPT-4

