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Abstract

Graphs provide a unified representation of se-
mantic content and relational structure, making
them a natural fit for domains such as molec-
ular modeling, citation networks, and social
graphs. Meanwhile, large language models
(LLMs) have excelled at understanding natural
language and integrating cross-modal signals,
sparking interest in their potential for graph
reasoning. Recent work has explored this by ei-
ther designing template-based graph templates
or using graph neural networks (GNNs) to en-
code structural information.In this study, we
investigate how different strategies for encod-
ing graph structure affect LLM performance on
text-attributed graphs. Surprisingly, our system-
atic experiments reveal that: (i) LLMs lever-
aging only node textual descriptions already
achieve strong performance across tasks; and
(i1) most structural encoding strategies offer
marginal or even negative gains. These find-
ings challenge the necessity of explicit graph
structure in the LLM era and suggest a need
to rethink graph learning paradigms in light of
powerful language models.

1 Introduction

Graphs are fundamental data structures for mod-
eling relationships across diverse domains. Their
capacity to capture interactions makes them invalu-
able for both data representation and reasoning.
Over the past decade, the machine learning commu-
nity has widely adopted graphs to unify multimodal
data (Dwivedi et al., 2022; McCallum et al., 2000;
Sen et al., 2008a), with Graph Neural Networks
(GNNs) emerging as the standard approach (Kipf
and Welling, 2017; Velickovi¢ et al., 2018; Xu et al.,
2019; Hamilton et al., 2017; Chen et al., 2018;
Wang et al., 2023; Miiller et al., 2024; Neubauer
et al., 2024; Ying et al., 2021). Recently, the rise of
Large Language Models (LLMs) has opened new
opportunities for integrating linguistic reasoning

into graph learning, giving rise to graph foundation
models.

LLM-GNN hybrids aim to combine the gener-
alization and reasoning abilities of LLMs with the
structural inductive biases of GNNs. This integra-
tion has shown promise on textual attribute graphs,
where nodes carry rich semantic content. Strate-
gies such as prompt-based graph encoding, hybrid
model architectures, and structure-aware instruc-
tion tuning have been explored (Chen et al., 2024;
Wang et al., 2024; Perozzi et al., 2024; He et al.,
2024). However, the role of structural information
in these models remains uncertain. For example,
Bechler-Speicher et al. (2024) show that GNNs
may over-rely on structure even when it’s irrelevant,
while structure-agnostic models like DeepSets (Za-
heer et al., 2017) often generalize well. Addition-
ally, standard graph benchmarks may fail to reflect
real-world relational complexity, raising concerns
about their validity (Bechler-Speicher et al., 2025).

In this work, we take a methodological perspec-
tive to re-examine the necessity of structural en-
codings in LLM-based graph learning. Through
systematic experiments across multiple graph types,
encoding templates, and modeling paradigms, we
find that the inclusion of structural information,
whether predefined positional encodings or mes-
sage passing networks, often yields limited or no
performance gains when rich semantic node fea-
tures are present. In some cases, structural sig-
nals can even degrade performance due to over-
smoothing or noise. These findings challenge the
prevailing assumption that graph structure is inher-
ently beneficial and suggest a shift toward more
minimal, semantics-centered representations when
using LLMs for graph-related tasks.

2 Related Work

Graph Learning: Graph learning offers a robust
framework for modeling relational data across do-



mains like social networks, biology, and knowl-
edge graphs. At its core, Graph Neural Net-
works (GNNs) learn node and graph represen-
tations through message passing and aggrega-
tion (Kipf and Welling, 2017; Hamilton et al.,
2017), with variants like Graph Attention Net-
works (Velickovi¢ et al., 2018) and spectral meth-
ods (Bruna et al., 2013) enhancing scalability and
expressiveness. Inspired by NLP and vision, self-
supervised methods such as GraphCL (You et al.,
2020), G-BERT (Shang et al., 2019), and GPT-
GNN (Hu et al., 2020) use contrastive or masked
objectives to improve generalization. However,
the lack of standardized benchmarks and input for-
mats hampers cross-domain transfer. In response,
Graph Foundation Models (GFMs) like Graph-
MAE (Zhenyu Hou, 2023), GRAND (Feng et al.,
2020), and GraphMVP (Liu et al., 2022) aim to
learn general-purpose representations, though is-
sues like data heterogeneity and vocabulary gaps
persist, fueling interest in leveraging LLMs for
more scalable graph representation learning.

LLMs as GFMs: Recent advances move be-
yond traditional GNN-based Graph Foundation
Models (GFMs) by positioning LLMs as graph
learners, leveraging their generalization and multi-
modal reasoning abilities. Studies such as Fatemi
et al. (2024) show that LLM performance on graph
tasks is sensitive to graph-to-text encoding strate-
gies, task types, and structural priors. OFA (Liu
et al., 2023) introduces a unified task formulation
using natural language prompts around nodes-of-
interest, while LLaGA (Chen et al., 2024) refines
this idea by applying structure-aware node reorder-
ing to better align graph inputs with LLM process-
ing. PromptGFM (Zhu et al., 2025) adds an in-
text graph vocabulary to unify LLMs and GNNs,
and LLM-BP (Wang et al., 2025) enhances reason-
ing by combining belief propagation with LLM-
inferred homophily.

Hybrid models like GraphToken (Perozzi et al.,
2024) use GNN adapters and prompts to inject
structure into LLLMs, while G-Retriever (He et al.,
2024) and TEA-GLM (Wang et al., 2024) further
fuse structural and semantic cues for strong bench-
mark performance. However, recent findings by
Guan et al. (2025) reveal that transformer attention
often fails to reflect true graph topology, suggesting
that limitations lie in LLMs’ internal processing of
structure, rather than their downstream potential.

3 Do LLMs Read TAG as Expectation?

In graph learning, models typically fuse seman-
tic node features with structural connectivity, a
core principle behind the success of GNNs. In-
spired by this, recent work has explored injecting
structural signals into LLMs, either through hand-
crafted templates, as in LLaGA (Chen et al., 2024),
or via GNN-based adapters like GraphToken, G-
Retriever, and TEA-GLM (Perozzi et al., 2024; He
et al., 2024; Wang et al., 2024), which learn struc-
tural embeddings.

These methods fall into two categories: template-
based approaches that manually encode neighbor-
hoods, and GNN-based ones that learn structure
through neural encoders. However, our findings re-
veal that both offer similar and often marginal gains
when node semantics are strong, indicating that
LLMs primarily rely on content rather than topol-
ogy. This challenges the necessity of structural
encoding in text-rich graphs and suggests a shift
toward more minimalist, semantics-driven graph
foundation models.

Table 1: TAG Datasets selected in experiments.

Dataset Text Domain  Graph Structure

Cora (McCallum et al., 2000) Publication Homophilic
Citeseer (Giles et al., 1998) Publication Homophilic
Pubmed (Sen et al., 2008b) Publication Homophilic
School (Craven et al., 1998) Webpage Heterophilic

Roman Empire (Platonov et al., 2023) Wikipedia Heterophilic
Amazon Ratings (Platonov et al., 2023) E-commerce Heterophilic

3.1 Preliminary

We revisit recent LLM-Graph approaches, such as
LLaGA (Chen et al., 2024) and GraphToken (Per-
ozzi et al., 2024), focusing on modality fine-
tuned node classification in textual attribute graphs
(TAGs). Our analysis is guided by two key ques-
tions: (1) Are explicit structural encodings, like
Laplacian embeddings, necessary for LLMs? (2)
How does message passing networks like GNNs
affect performance?

Datasets As summarized in Table 1, we evaluate
our models on six real-world TAG datasets span-
ning diverse text domains and structural properties.
These include citation networks, e-commerce plat-
forms, historical Wikipedia articles, and web page
graphs, covering both homophilic and heterophilic
patterns. Additional experiment details are pro-
vided in Appendix A, B and C.



Table 2: To evaluate the utility of Laplacian embeddings for LLMs, we compare LLaGA’s ND template with our
heuristic templates, HN and CO, where HN-1 samples node sequences from the 1-hop neighborhood. As shown
below, explicit structural encodings do not consistently enhance performance and can even degrade it in some cases.

Dataset ‘

Node Classification

HN-1

CO

88.56% (0.80%)
80.20% (0.94%)
94.80% (0.17%)

85.42% (1.78%)
77.74% (0.31%)
94.84% (0.04%)

Setting

ND
Cora 88.07% (0.74%)
Homophilic Citeseer 80.31% (0.81%)
Pubmed 92.56% (0.71%)
Shool 66.43% (3.69%)
Heterophilic  Roman Empire | 48.56% (1.17%)
Amazon Ratings | 40.97% (0.56%)

82.02% (12.79%)
59.70% (2.42%)
41.67% (0.22%)

91.13% (1.66%)
62.24% (0.19%)
40.38% (1.14%)

Across Datasets

69.48%

74.49%

75.29%

3.2 Template-Based Encoding

In this subsection, we revisit the LLaGA frame-
work (Chen et al., 2024), with a particular focus on
the Neighborhood Detail (ND) template. This tem-
plate relies on a predefined computational graph,
typically a k-hop B-tree, and uses Laplacian-based
positional encodings to inject structural signals into
the LLM input. To assess the utility of these struc-
tural components, we perform a systematic ablation
by removing both the handcrafted subgraphs and
positional encodings, replacing them with a simple,
order-agnostic sequence of node descriptions.

We compare the original ND template against
two lightweight, structure-agnostic baselines: (1)
HN (Hop Neighbor), which randomly samples a
subset of k-hop neighbors to form a node sequence,
and (2) CO (Center Only), which includes only
the description of the central node. As shown in
Table 2, the ND template does not significantly
outperform either baseline. Compared to the non-
Laplacian HN variant, which uses plain neighbors
without positional encodings, we observe more ro-
bust and consistent performance across both ho-
mophilic and heterophilic graphs. Surprisingly,
even the CO baseline achieves competitive results,
especially on heterophilic graphs, suggesting that
including only the center node may suffice, and that
additional neighbor information can sometimes hin-
der the model’s understanding.

These findings indicate that, for node classifica-
tion tasks on TAGs, LLMs can extract sufficient
predictive signals from individual node semantics,
with limited benefit from explicit structures, trans-
forming the graph problem into a set problem.
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Figure 1: Having deeper adapter will easily make model
lose it generalization ability for GraphToken approach.

3.3 GNN-Based Encoding

In contrast to LLaGA’s template-based approach to
structural encoding, several recent studies (Perozzi
et al., 2024; He et al., 2024; Wang et al., 2024)
have explored integrating GNN-based modules to
inject structural information into LLMs. Following
the experimental setup from the previous section,
we examine how LLMs perform in the absence
of such structural cues. Our primary focus is on
the GraphToken framework (Perozzi et al., 2024),
which trains GNNs with different dynamic struc-
tures during fine-tuning, enabling flexible and adap-
tive input graph.

We begin by evaluating the impact of different
GNN architectures. As shown in Table 3, while
some GNNs may be better suited to specific text do-
mains or graph structures, overall performance re-
mains comparable, consistent with findings in (Per-
ozzi et al., 2024). To isolate the role of struc-
tural modeling, we replace the GNN with a simple



Table 3: This table evaluates whether message passing effectively aggregates useful neighbor information. Compar-
ing a simple MLP baseline with GNN-based adapters, we find that in the LLM setting, message passing can lead to
over-smoothing, even with skip connections, reducing the semantic distinctiveness of target nodes.

Node Classification

Template ‘

Setting

| MLP GCN GAT GIN
Cora 87.09% (0.66%)  87.64% (0.84%)  88.25% (0.53%)  83.03% (5.41%)
Homophilic Citeseer 79.39% (1.38%)  80.20% (0.13%)  79.74% (0.41%)  79.32% (1.11%)
Pubmed 94.76% (0.10%)  92.24% (1.23%) 92.01% (0.24%)  91.40% (0.63%)
Shool 90.17% (3.62%)  67.87% (3.24%) 64.75% (0.00%)  70.02% (2.19%)
Heterophilic =~ Roman Empire | 65.39% (0.29%) 36.51% (18.06%) 36.97% (13.92%) 46.92% (22.37%)
Amazon Ratings | 40.78% (0.35%)  40.52% (0.51%)  40.71% (0.23%) 38.76% (0.18%)

Across Datasets 76.26 %

67.50% 67.07% 68.24%

Figure 2: Altering the node sequence via GDC can gain some enhancement at a time.
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multi-layer perceptron (MLP), keeping all other
components and training settings fixed. This ab-
lation helps determine whether semantic features
alone can support downstream performance with-
out graph-specific inductive biases. Additionally,
we observe that GraphToken’s performance de-
grades with increased adapter depth when using
a GNN module. As shown in Figure 1, adding
more layers leads to a consistent drop in accuracy.

Consistent with our earlier findings from
LLaGA, LLMs achieve competitive performance
even without GNN modules. This challenges the
common assumption that structural encodings are
essential, suggesting instead that textual seman-
tics alone may suffice for many node classification
tasks in textual attribute graphs.

4 Can LLMs Better Leverage Structure?

Although structural information appears to have
limited impact on LLM performance, GraphToken
with an MLP adapter occasionally outperforms the
CO template. While MLPs lack explicit message
passing, they may still benefit from implicit struc-
tural cues embedded in the node sequence. This
highlights a promising direction: systematically se-

Null
Graph Transformation

lecting node sequences to better exploit structural
signals.

To explore this, we apply Graph Diffusion Con-
volution (GDC) (Gasteiger et al., 2019), a graph
transformation that captures long-range dependen-
cies. As shown in Figure 2, GDC can condense the
node sequence into a center-focused subset and im-
prove LLM performance, suggesting that structure-
aware sparsification can be beneficial. Since GDC
uses only graph connectivity and ignores node se-
mantics, future work could integrate both structural
and semantic signals to guide graph transforma-
tions tailored for LLMs.

5 Conclusion and Future Directions

In this study, we revisit LLM-based methods for
node classification on TAGs. Our findings reveal
that LLMs largely treat graphs as unordered sets,
regardless of structural information added at the
input or model level. Accurate predictions can be
made using only the center node and the node se-
quence, indicating limited influence of structural
signals. This underscores the importance of de-
signing effective node sequences to better harness
LLMs for TAG tasks.



Limitations

In our work, we focus on assessing the importance
of structural information in Text-Attributed Graphs,
which are inherently 2D and primarily capture topo-
logical relationships. However, structural informa-
tion can extend beyond topology to include geo-
metric properties such as 3D coordinates, which
often play a more critical role in downstream per-
formance. Future research could explore domains
like molecular and protein structures, where geo-
metric information is both natural and essential for
accurate modeling.
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A Dataset Details

In this section, we will introduce our used datasets
in details:

* Cora: The Cora dataset is a classic citation
network where each node represents a ma-
chine learning research paper, and edges in-
dicate citation relationships between papers.
Each paper is described by a sparse bag-of-
words feature vector, and the task is to clas-
sify papers into one of seven predefined cate-
gories such as neural networks or case-based
reasoning. Total 2,708 nodes will be classi-
fied into {"Theory’, ’Neural Networks’, ’Prob-
abilistic Methods’, ’Reinforcement Learn-
ing’, Case Based’, 'Rule Learning’, ’Genetic
Algorithms’ }

Citeseer: Citeseer is another widely-used ci-
tation network dataset in which nodes repre-
sent research papers and edges denote citation
links. Each node includes word-based features
and belongs to one of six scientific categories.
These labels { artificial intelligence’, "human-
computer interaction’, ’information retrieval’,
"database’, "agents’, "machine learning’ } will
be associated to 3,186 nodes in Citeseer.

Pubmed: The Pubmed dataset is a large-scale
citation graph composed of scientific papers
from the biomedical domain. Each node repre-
sents a paper described by a TF/IDF-weighted
word vector from the paper’s abstract, and
edges correspond to citation links. Pubmed
contains 19,717 nodes, and nodes are parti-
tioned into 3 label categories: {Diabetes Mel-
litus Typel, Diabetes Mellitus Type2, Dia-
betes Mellitus Experimental }

School: School dataset is a collection of 4
common heterophilic graph datasets: Cor-
nell, Texas, Washington, and Wisconsin. All
of these 4 datasets are from the WebKB
collection, where represent web pages from
{Cornell University, University of Texas,
University of Washington, University of
Wisconsin} correspondingly and edges cap-
ture hyperlinks between them. Model needs
to classify each node (webpage) into 5 cate-
gories: “project’, *course’, “student’, *faculty’,
’staff’, and ’student’. The total number of
nodes in School dataset is 872.

* Roman Empire: Roman Empire dataset is
a synthetic temporal graph dataset designed
to evaluate temporal graph learning models.
There are 17 labels in total: {’passive sub-
ject’, ’coordinating conjunction’, *active sub-
ject’, “object of preposition’, *adverbial mod-
ifier’, ’adjective modifier’, ’relative clause’,
’noun compound modifier’, *appositive mod-
ifier’, ’prepositional marker’, "passive auxil-
iary’, ’possessive modifier’, ’direct object’,
‘null’, ’conjoined element’, "auxiliary verb’,
"main predicate’, *determiner’ }, and Roman
Empire contains 24,492 nodes.

* Amazon Ratings: The Amazon Ratings
dataset represents a temporal bipartite graph
where nodes are users and products, and edges
correspond to product ratings over time. There
are 24,492 comments with 5 different rating
scales: {’excellent — exceeded all expecta-
tions’, 'very good — almost perfect, just shy of
excellent’, ’decent — some good, some bad’,
’good — solid experience with minor flaws’,
‘terrible — extremely disappointing’ }

Each dataset follow the same train-test split ratio
8:2.

B Experiment Configuration

dataset ‘ training epoch ‘ total training time
Cora 5 ~ 16mins
Citeseer 5 ~ 10mins
Pubmed 1 ~ 9mins
School 13 ~ 3mins
Roman Empire 1 ~ 10mins
Amazon Ratings 1 ~ 10mins

Table 4: Configuration and efficiency estimation for
each dataset.

Each dataset is trained on 8 A6000 GPUs, and
the training batch size is set to 4 per GPU for all
dataset, and the learning rate for template-based
encoding is 2e-3 and for GNN-based encoding is
le-4. We use AdamW optimizer and DeepSpeed to
perform the multi-GPU training. We use the vicuna-
7b (Zheng et al., 2023) as our main LLM backbone
for all experiments. We report average results from
3 random seed runs. For GraphToken experiments,
we set the number of adapter layer at 1 for each
adapter module. Setting adapter layer at 1 usually
offers the best performance, and model will easily



lose its expressivity with a deeper adapter layer. All
models and experiments are built using Hugging
Face (Wolf et al., 2020) and torch geometric (Fey
and Lenssen, 2019) packages.

C Prompts

* Cora: Given a node-centered graph: <graph>,
each node represents a paper, we need to clas-
sify the center node into 7 classes: Case Based,
Genetic Algorithms, Neural Networks, Prob-
abilistic Methods, Reinforcement Learning,
Rule Learning, Theory, please tell me which
class the center node belongs to?

Citeseer: Given a node-centered graph:
<graph>, each node represents a paper, we
need to classify the center node into 6 classes:
Agents, Machine Learning, Information Re-
trieval, Database, Human-Computer Interac-
tion, Artificial Intelligence, please tell me
which class the center node belongs to?

* Pubmed: Given a node-centered graph:
<graph>, each node represents a paper about
Diabetes, we need to classify the center node
into 3 classes: Diabetes Mellitus Experimen-
tal, Diabetes Mellitus Typel, Diabetes Mel-
litus Type2, please tell me which class the
center node belongs to?

School: In a graph of a university website,
each node represents a web page, and each
edge indicates that one web page links to an-
other via a hyperlink. The web pages can
belong to one of the following categories:
project, faculty, course, student, staff. Here is
a node-centered graph: <graph>, what is the
category?

* Roman Empire: In an article, words that have
dependency relationships (where one word
depends on another) are connected, forming a
dependency graph. Based on the connections
between words, determine the syntactic role
of each word. Given that a word described in
a node-centered graph: <graph>, what is this
word syntactic role?

* Amazon Ratings: n a product graph dataset,
edges connect products that are frequently pur-
chased together. Based on the connections
between products (books, music CDs, DVDs,
VHS tapes), predict the average rating given

by reviewers for the products. Given that a
product described in a node-centered graph:
<graph>, what is the product rating?

The <graph> serves as a placeholder token, which
will be replace by the input node sequence during
training and inference stages.
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