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Abstract001

Graphs provide a unified representation of se-002
mantic content and relational structure, making003
them a natural fit for domains such as molec-004
ular modeling, citation networks, and social005
graphs. Meanwhile, large language models006
(LLMs) have excelled at understanding natural007
language and integrating cross-modal signals,008
sparking interest in their potential for graph009
reasoning. Recent work has explored this by ei-010
ther designing template-based graph templates011
or using graph neural networks (GNNs) to en-012
code structural information.In this study, we013
investigate how different strategies for encod-014
ing graph structure affect LLM performance on015
text-attributed graphs. Surprisingly, our system-016
atic experiments reveal that: (i) LLMs lever-017
aging only node textual descriptions already018
achieve strong performance across tasks; and019
(ii) most structural encoding strategies offer020
marginal or even negative gains. These find-021
ings challenge the necessity of explicit graph022
structure in the LLM era and suggest a need023
to rethink graph learning paradigms in light of024
powerful language models.025

1 Introduction026

Graphs are fundamental data structures for mod-027

eling relationships across diverse domains. Their028

capacity to capture interactions makes them invalu-029

able for both data representation and reasoning.030

Over the past decade, the machine learning commu-031

nity has widely adopted graphs to unify multimodal032

data (Dwivedi et al., 2022; McCallum et al., 2000;033

Sen et al., 2008a), with Graph Neural Networks034

(GNNs) emerging as the standard approach (Kipf035

and Welling, 2017; Veličković et al., 2018; Xu et al.,036

2019; Hamilton et al., 2017; Chen et al., 2018;037

Wang et al., 2023; Müller et al., 2024; Neubauer038

et al., 2024; Ying et al., 2021). Recently, the rise of039

Large Language Models (LLMs) has opened new040

opportunities for integrating linguistic reasoning041

into graph learning, giving rise to graph foundation 042

models. 043

LLM-GNN hybrids aim to combine the gener- 044

alization and reasoning abilities of LLMs with the 045

structural inductive biases of GNNs. This integra- 046

tion has shown promise on textual attribute graphs, 047

where nodes carry rich semantic content. Strate- 048

gies such as prompt-based graph encoding, hybrid 049

model architectures, and structure-aware instruc- 050

tion tuning have been explored (Chen et al., 2024; 051

Wang et al., 2024; Perozzi et al., 2024; He et al., 052

2024). However, the role of structural information 053

in these models remains uncertain. For example, 054

Bechler-Speicher et al. (2024) show that GNNs 055

may over-rely on structure even when it’s irrelevant, 056

while structure-agnostic models like DeepSets (Za- 057

heer et al., 2017) often generalize well. Addition- 058

ally, standard graph benchmarks may fail to reflect 059

real-world relational complexity, raising concerns 060

about their validity (Bechler-Speicher et al., 2025). 061

In this work, we take a methodological perspec- 062

tive to re-examine the necessity of structural en- 063

codings in LLM-based graph learning. Through 064

systematic experiments across multiple graph types, 065

encoding templates, and modeling paradigms, we 066

find that the inclusion of structural information, 067

whether predefined positional encodings or mes- 068

sage passing networks, often yields limited or no 069

performance gains when rich semantic node fea- 070

tures are present. In some cases, structural sig- 071

nals can even degrade performance due to over- 072

smoothing or noise. These findings challenge the 073

prevailing assumption that graph structure is inher- 074

ently beneficial and suggest a shift toward more 075

minimal, semantics-centered representations when 076

using LLMs for graph-related tasks. 077

2 Related Work 078

Graph Learning: Graph learning offers a robust 079

framework for modeling relational data across do- 080
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mains like social networks, biology, and knowl-081

edge graphs. At its core, Graph Neural Net-082

works (GNNs) learn node and graph represen-083

tations through message passing and aggrega-084

tion (Kipf and Welling, 2017; Hamilton et al.,085

2017), with variants like Graph Attention Net-086

works (Veličković et al., 2018) and spectral meth-087

ods (Bruna et al., 2013) enhancing scalability and088

expressiveness. Inspired by NLP and vision, self-089

supervised methods such as GraphCL (You et al.,090

2020), G-BERT (Shang et al., 2019), and GPT-091

GNN (Hu et al., 2020) use contrastive or masked092

objectives to improve generalization. However,093

the lack of standardized benchmarks and input for-094

mats hampers cross-domain transfer. In response,095

Graph Foundation Models (GFMs) like Graph-096

MAE (Zhenyu Hou, 2023), GRAND (Feng et al.,097

2020), and GraphMVP (Liu et al., 2022) aim to098

learn general-purpose representations, though is-099

sues like data heterogeneity and vocabulary gaps100

persist, fueling interest in leveraging LLMs for101

more scalable graph representation learning.102

LLMs as GFMs: Recent advances move be-103

yond traditional GNN-based Graph Foundation104

Models (GFMs) by positioning LLMs as graph105

learners, leveraging their generalization and multi-106

modal reasoning abilities. Studies such as Fatemi107

et al. (2024) show that LLM performance on graph108

tasks is sensitive to graph-to-text encoding strate-109

gies, task types, and structural priors. OFA (Liu110

et al., 2023) introduces a unified task formulation111

using natural language prompts around nodes-of-112

interest, while LLaGA (Chen et al., 2024) refines113

this idea by applying structure-aware node reorder-114

ing to better align graph inputs with LLM process-115

ing. PromptGFM (Zhu et al., 2025) adds an in-116

text graph vocabulary to unify LLMs and GNNs,117

and LLM-BP (Wang et al., 2025) enhances reason-118

ing by combining belief propagation with LLM-119

inferred homophily.120

Hybrid models like GraphToken (Perozzi et al.,121

2024) use GNN adapters and prompts to inject122

structure into LLMs, while G-Retriever (He et al.,123

2024) and TEA-GLM (Wang et al., 2024) further124

fuse structural and semantic cues for strong bench-125

mark performance. However, recent findings by126

Guan et al. (2025) reveal that transformer attention127

often fails to reflect true graph topology, suggesting128

that limitations lie in LLMs’ internal processing of129

structure, rather than their downstream potential.130

3 Do LLMs Read TAG as Expectation? 131

In graph learning, models typically fuse seman- 132

tic node features with structural connectivity, a 133

core principle behind the success of GNNs. In- 134

spired by this, recent work has explored injecting 135

structural signals into LLMs, either through hand- 136

crafted templates, as in LLaGA (Chen et al., 2024), 137

or via GNN-based adapters like GraphToken, G- 138

Retriever, and TEA-GLM (Perozzi et al., 2024; He 139

et al., 2024; Wang et al., 2024), which learn struc- 140

tural embeddings. 141

These methods fall into two categories: template- 142

based approaches that manually encode neighbor- 143

hoods, and GNN-based ones that learn structure 144

through neural encoders. However, our findings re- 145

veal that both offer similar and often marginal gains 146

when node semantics are strong, indicating that 147

LLMs primarily rely on content rather than topol- 148

ogy. This challenges the necessity of structural 149

encoding in text-rich graphs and suggests a shift 150

toward more minimalist, semantics-driven graph 151

foundation models. 152

Table 1: TAG Datasets selected in experiments.

Dataset Text Domain Graph Structure

Cora (McCallum et al., 2000) Publication Homophilic

Citeseer (Giles et al., 1998) Publication Homophilic

Pubmed (Sen et al., 2008b) Publication Homophilic

School (Craven et al., 1998) Webpage Heterophilic

Roman Empire (Platonov et al., 2023) Wikipedia Heterophilic

Amazon Ratings (Platonov et al., 2023) E-commerce Heterophilic

3.1 Preliminary 153

We revisit recent LLM-Graph approaches, such as 154

LLaGA (Chen et al., 2024) and GraphToken (Per- 155

ozzi et al., 2024), focusing on modality fine- 156

tuned node classification in textual attribute graphs 157

(TAGs). Our analysis is guided by two key ques- 158

tions: (1) Are explicit structural encodings, like 159

Laplacian embeddings, necessary for LLMs? (2) 160

How does message passing networks like GNNs 161

affect performance? 162

Datasets As summarized in Table 1, we evaluate 163

our models on six real-world TAG datasets span- 164

ning diverse text domains and structural properties. 165

These include citation networks, e-commerce plat- 166

forms, historical Wikipedia articles, and web page 167

graphs, covering both homophilic and heterophilic 168

patterns. Additional experiment details are pro- 169

vided in Appendix A, B and C. 170
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Table 2: To evaluate the utility of Laplacian embeddings for LLMs, we compare LLaGA’s ND template with our
heuristic templates, HN and CO, where HN-1 samples node sequences from the 1-hop neighborhood. As shown
below, explicit structural encodings do not consistently enhance performance and can even degrade it in some cases.

Setting Dataset
Node Classification

ND HN-1 CO

Homophilic
Cora 88.07% (0.74%) 88.56% (0.80%) 85.42% (1.78%)

Citeseer 80.31% (0.81%) 80.20% (0.94%) 77.74% (0.31%)
Pubmed 92.56% (0.71%) 94.80% (0.17%) 94.84% (0.04%)

Heterophilic
Shool 66.43% (3.69%) 82.02% (12.79%) 91.13% (1.66%)

Roman Empire 48.56% (1.17%) 59.70% (2.42%) 62.24% (0.19%)
Amazon Ratings 40.97% (0.56%) 41.67% (0.22%) 40.38% (1.14%)

Across Datasets 69.48% 74.49% 75.29%

3.2 Template-Based Encoding171

In this subsection, we revisit the LLaGA frame-172

work (Chen et al., 2024), with a particular focus on173

the Neighborhood Detail (ND) template. This tem-174

plate relies on a predefined computational graph,175

typically a k-hop B-tree, and uses Laplacian-based176

positional encodings to inject structural signals into177

the LLM input. To assess the utility of these struc-178

tural components, we perform a systematic ablation179

by removing both the handcrafted subgraphs and180

positional encodings, replacing them with a simple,181

order-agnostic sequence of node descriptions.182

We compare the original ND template against183

two lightweight, structure-agnostic baselines: (1)184

HN (Hop Neighbor), which randomly samples a185

subset of k-hop neighbors to form a node sequence,186

and (2) CO (Center Only), which includes only187

the description of the central node. As shown in188

Table 2, the ND template does not significantly189

outperform either baseline. Compared to the non-190

Laplacian HN variant, which uses plain neighbors191

without positional encodings, we observe more ro-192

bust and consistent performance across both ho-193

mophilic and heterophilic graphs. Surprisingly,194

even the CO baseline achieves competitive results,195

especially on heterophilic graphs, suggesting that196

including only the center node may suffice, and that197

additional neighbor information can sometimes hin-198

der the model’s understanding.199

These findings indicate that, for node classifica-200

tion tasks on TAGs, LLMs can extract sufficient201

predictive signals from individual node semantics,202

with limited benefit from explicit structures, trans-203

forming the graph problem into a set problem.204
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Figure 1: Having deeper adapter will easily make model
lose it generalization ability for GraphToken approach.

3.3 GNN-Based Encoding 205

In contrast to LLaGA’s template-based approach to 206

structural encoding, several recent studies (Perozzi 207

et al., 2024; He et al., 2024; Wang et al., 2024) 208

have explored integrating GNN-based modules to 209

inject structural information into LLMs. Following 210

the experimental setup from the previous section, 211

we examine how LLMs perform in the absence 212

of such structural cues. Our primary focus is on 213

the GraphToken framework (Perozzi et al., 2024), 214

which trains GNNs with different dynamic struc- 215

tures during fine-tuning, enabling flexible and adap- 216

tive input graph. 217

We begin by evaluating the impact of different 218

GNN architectures. As shown in Table 3, while 219

some GNNs may be better suited to specific text do- 220

mains or graph structures, overall performance re- 221

mains comparable, consistent with findings in (Per- 222

ozzi et al., 2024). To isolate the role of struc- 223

tural modeling, we replace the GNN with a simple 224
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Table 3: This table evaluates whether message passing effectively aggregates useful neighbor information. Compar-
ing a simple MLP baseline with GNN-based adapters, we find that in the LLM setting, message passing can lead to
over-smoothing, even with skip connections, reducing the semantic distinctiveness of target nodes.

Setting Template Node Classification

MLP GCN GAT GIN

Homophilic
Cora 87.09% (0.66%) 87.64% (0.84%) 88.25% (0.53%) 83.03% (5.41%)

Citeseer 79.39% (1.38%) 80.20% (0.13%) 79.74% (0.41%) 79.32% (1.11%)
Pubmed 94.76% (0.10%) 92.24% (1.23%) 92.01% (0.24%) 91.40% (0.63%)

Heterophilic
Shool 90.17% (3.62%) 67.87% (3.24%) 64.75% (0.00%) 70.02% (2.19%)

Roman Empire 65.39% (0.29%) 36.51% (18.06%) 36.97% (13.92%) 46.92% (22.37%)
Amazon Ratings 40.78% (0.35%) 40.52% (0.51%) 40.71% (0.23%) 38.76% (0.18%)

Across Datasets 76.26% 67.50% 67.07% 68.24%

Figure 2: Altering the node sequence via GDC can gain some enhancement at a time.
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multi-layer perceptron (MLP), keeping all other225

components and training settings fixed. This ab-226

lation helps determine whether semantic features227

alone can support downstream performance with-228

out graph-specific inductive biases. Additionally,229

we observe that GraphToken’s performance de-230

grades with increased adapter depth when using231

a GNN module. As shown in Figure 1, adding232

more layers leads to a consistent drop in accuracy.233

Consistent with our earlier findings from234

LLaGA, LLMs achieve competitive performance235

even without GNN modules. This challenges the236

common assumption that structural encodings are237

essential, suggesting instead that textual seman-238

tics alone may suffice for many node classification239

tasks in textual attribute graphs.240

4 Can LLMs Better Leverage Structure?241

Although structural information appears to have242

limited impact on LLM performance, GraphToken243

with an MLP adapter occasionally outperforms the244

CO template. While MLPs lack explicit message245

passing, they may still benefit from implicit struc-246

tural cues embedded in the node sequence. This247

highlights a promising direction: systematically se-248

lecting node sequences to better exploit structural 249

signals. 250

To explore this, we apply Graph Diffusion Con- 251

volution (GDC) (Gasteiger et al., 2019), a graph 252

transformation that captures long-range dependen- 253

cies. As shown in Figure 2, GDC can condense the 254

node sequence into a center-focused subset and im- 255

prove LLM performance, suggesting that structure- 256

aware sparsification can be beneficial. Since GDC 257

uses only graph connectivity and ignores node se- 258

mantics, future work could integrate both structural 259

and semantic signals to guide graph transforma- 260

tions tailored for LLMs. 261

5 Conclusion and Future Directions 262

In this study, we revisit LLM-based methods for 263

node classification on TAGs. Our findings reveal 264

that LLMs largely treat graphs as unordered sets, 265

regardless of structural information added at the 266

input or model level. Accurate predictions can be 267

made using only the center node and the node se- 268

quence, indicating limited influence of structural 269

signals. This underscores the importance of de- 270

signing effective node sequences to better harness 271

LLMs for TAG tasks. 272
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Limitations273

In our work, we focus on assessing the importance274

of structural information in Text-Attributed Graphs,275

which are inherently 2D and primarily capture topo-276

logical relationships. However, structural informa-277

tion can extend beyond topology to include geo-278

metric properties such as 3D coordinates, which279

often play a more critical role in downstream per-280

formance. Future research could explore domains281

like molecular and protein structures, where geo-282

metric information is both natural and essential for283

accurate modeling.284
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A Dataset Details482

In this section, we will introduce our used datasets483

in details:484

• Cora: The Cora dataset is a classic citation485

network where each node represents a ma-486

chine learning research paper, and edges in-487

dicate citation relationships between papers.488

Each paper is described by a sparse bag-of-489

words feature vector, and the task is to clas-490

sify papers into one of seven predefined cate-491

gories such as neural networks or case-based492

reasoning. Total 2,708 nodes will be classi-493

fied into {’Theory’, ’Neural Networks’, ’Prob-494

abilistic Methods’, ’Reinforcement Learn-495

ing’, ’Case Based’, ’Rule Learning’, ’Genetic496

Algorithms’}497

• Citeseer: Citeseer is another widely-used ci-498

tation network dataset in which nodes repre-499

sent research papers and edges denote citation500

links. Each node includes word-based features501

and belongs to one of six scientific categories.502

These labels {’artificial intelligence’, ’human-503

computer interaction’, ’information retrieval’,504

’database’, ’agents’, ’machine learning’} will505

be associated to 3,186 nodes in Citeseer.506

• Pubmed: The Pubmed dataset is a large-scale507

citation graph composed of scientific papers508

from the biomedical domain. Each node repre-509

sents a paper described by a TF/IDF-weighted510

word vector from the paper’s abstract, and511

edges correspond to citation links. Pubmed512

contains 19,717 nodes, and nodes are parti-513

tioned into 3 label categories: {Diabetes Mel-514

litus Type1, Diabetes Mellitus Type2, Dia-515

betes Mellitus Experimental}516

• School: School dataset is a collection of 4517

common heterophilic graph datasets: Cor-518

nell, Texas, Washington, and Wisconsin. All519

of these 4 datasets are from the WebKB520

collection, where represent web pages from521

{Cornell University, University of Texas,522

University of Washington, University of523

Wisconsin} correspondingly and edges cap-524

ture hyperlinks between them. Model needs525

to classify each node (webpage) into 5 cate-526

gories: ’project’, ’course’, ’student’, ’faculty’,527

’staff’, and ’student’. The total number of528

nodes in School dataset is 872.529

• Roman Empire: Roman Empire dataset is 530

a synthetic temporal graph dataset designed 531

to evaluate temporal graph learning models. 532

There are 17 labels in total: {’passive sub- 533

ject’, ’coordinating conjunction’, ’active sub- 534

ject’, ’object of preposition’, ’adverbial mod- 535

ifier’, ’adjective modifier’, ’relative clause’, 536

’noun compound modifier’, ’appositive mod- 537

ifier’, ’prepositional marker’, ’passive auxil- 538

iary’, ’possessive modifier’, ’direct object’, 539

’null’, ’conjoined element’, ’auxiliary verb’, 540

’main predicate’, ’determiner’}, and Roman 541

Empire contains 24,492 nodes. 542

• Amazon Ratings: The Amazon Ratings 543

dataset represents a temporal bipartite graph 544

where nodes are users and products, and edges 545

correspond to product ratings over time. There 546

are 24,492 comments with 5 different rating 547

scales: {’excellent – exceeded all expecta- 548

tions’, ’very good – almost perfect, just shy of 549

excellent’, ’decent – some good, some bad’, 550

’good – solid experience with minor flaws’, 551

’terrible – extremely disappointing’} 552

Each dataset follow the same train-test split ratio 553

8:2. 554

B Experiment Configuration 555

dataset training epoch total training time

Cora 5 ∼ 16mins
Citeseer 5 ∼ 10mins
Pubmed 1 ∼ 9mins
School 13 ∼ 3mins

Roman Empire 1 ∼ 10mins
Amazon Ratings 1 ∼ 10mins

Table 4: Configuration and efficiency estimation for
each dataset.

Each dataset is trained on 8 A6000 GPUs, and 556

the training batch size is set to 4 per GPU for all 557

dataset, and the learning rate for template-based 558

encoding is 2e-3 and for GNN-based encoding is 559

1e-4. We use AdamW optimizer and DeepSpeed to 560

perform the multi-GPU training. We use the vicuna- 561

7b (Zheng et al., 2023) as our main LLM backbone 562

for all experiments. We report average results from 563

3 random seed runs. For GraphToken experiments, 564

we set the number of adapter layer at 1 for each 565

adapter module. Setting adapter layer at 1 usually 566

offers the best performance, and model will easily 567
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lose its expressivity with a deeper adapter layer. All568

models and experiments are built using Hugging569

Face (Wolf et al., 2020) and torch geometric (Fey570

and Lenssen, 2019) packages.571

C Prompts572

• Cora: Given a node-centered graph: <graph>,573

each node represents a paper, we need to clas-574

sify the center node into 7 classes: Case Based,575

Genetic Algorithms, Neural Networks, Prob-576

abilistic Methods, Reinforcement Learning,577

Rule Learning, Theory, please tell me which578

class the center node belongs to?579

• Citeseer: Given a node-centered graph:580

<graph>, each node represents a paper, we581

need to classify the center node into 6 classes:582

Agents, Machine Learning, Information Re-583

trieval, Database, Human-Computer Interac-584

tion, Artificial Intelligence, please tell me585

which class the center node belongs to?586

• Pubmed: Given a node-centered graph:587

<graph>, each node represents a paper about588

Diabetes, we need to classify the center node589

into 3 classes: Diabetes Mellitus Experimen-590

tal, Diabetes Mellitus Type1, Diabetes Mel-591

litus Type2, please tell me which class the592

center node belongs to?593

• School: In a graph of a university website,594

each node represents a web page, and each595

edge indicates that one web page links to an-596

other via a hyperlink. The web pages can597

belong to one of the following categories:598

project, faculty, course, student, staff. Here is599

a node-centered graph: <graph>, what is the600

category?601

• Roman Empire: In an article, words that have602

dependency relationships (where one word603

depends on another) are connected, forming a604

dependency graph. Based on the connections605

between words, determine the syntactic role606

of each word. Given that a word described in607

a node-centered graph: <graph>, what is this608

word syntactic role?609

• Amazon Ratings: n a product graph dataset,610

edges connect products that are frequently pur-611

chased together. Based on the connections612

between products (books, music CDs, DVDs,613

VHS tapes), predict the average rating given614

by reviewers for the products. Given that a 615

product described in a node-centered graph: 616

<graph>, what is the product rating? 617

The <graph> serves as a placeholder token, which 618

will be replace by the input node sequence during 619

training and inference stages. 620

8


	Introduction
	Related Work
	Do LLMs Read TAG as Expectation?
	Preliminary
	Template-Based Encoding
	GNN-Based Encoding

	Can LLMs Better Leverage Structure?
	Conclusion and Future Directions
	Dataset Details
	Experiment Configuration
	Prompts

