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Abstract

Statistical Shape Modelling (SSM) is an effective tool for quantitatively analyzing anatom-
ical populations. SSM has benefitted largely from advances in deep learning where statis-
tical representations of anatomies (e.g., point distribution models or PDMs) are inferred
directly from images, alleviating the need for a time-consuming and expensive workflow of
anatomy segmentation, shape registration, and model optimization. Nonetheless, to date,
existing deep learning methods do not consider the rigid pose transformation of shapes or
anatomy of interest. They also require a tight bounding box to be defined over the image of
anatomy-of-interest before feeding the image to the deep network for network training and
inference. In this paper, we propose a deep learning framework that simultaneously detects
and segments the anatomy of interest, estimate the rigid transformation with respect to the
population mean (average) using a spatial transformer, and estimates the corresponding
statistical representation of that anatomy, all directly from unsegmented 3D image without
the need for any additional supervision. Furthermore, we leverage the segmentation task to
provide an attention model for the sub-network that estimates shape representation, giving
more accurate shape statistics for shape analysis.
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1. Introduction

Statistical Shape Modeling (SSM) effectively quantifies and characterizes the variations of
anatomical shapes. SSM has enabled various biomedical and clinical applications in neuro-
science (Gerig et al., 2001), orthopedics (Harris et al., 2013; Atkins et al., 2019), cardiology
and biological phenotyping; such as implant design (Kozic et al., 2010) and growth mod-
eling (Datar et al., 2009; Atkins et al., 2017). A popular approach for shape analysis is
using landmarks defined by correspondences across the population of shapes. Most recent
works (Sarkalkan et al., 2014; Cates et al., 2017; Tóthová et al., 2018) use dense correspon-
dences placed automatically i.e., point distribution models (PDMs) via optimization for
shape modeling that can then be turned into low-dimension shape representation by prin-
cipal component analysis (PCA), thus reducing the need for expert intervention to mark
distinct features, which can often be time and cost-consuming.
Conventional SSM methods still require an expert-driven workflow of anatomy segmenta-
tion, shape registration, optimization of population-level shape representations, and sig-
nificant parameter tuning. This has motivated the recent surge of deep learning based
methods that estimate statistical representations of shape directly from images (Bhalodia
et al., 2018b,a; Adams et al., 2020; Adams and Elhabian, 2022; Tao et al., 2022; Huang
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et al., 2017; Milletari et al., 2017; Xie et al., 2016; Zheng et al., 2015; Raju et al., 2022).
Such deep networks learn to regress shape information directly from images while learning
complex functional mappings and incorporating prior shape knowledge. These methods
remove most of the manual overhead needed to estimate an SSM from unsegmented images
once a deep network is trained and have been shown to perform statistically similarly to
traditional SSM methods in downstream tasks (Bhalodia et al., 2018b). Nonetheless, these
methods still require input image pre-processing in the form of indicating the anatomy
location, defining a tight bounding box around the anatomy of interest, and aligning the
given image to the model’s mean. Specifically, images are assumed to be cropped around
the anatomy of interest (i.e., manual delineation of the bounding box of the anatomy) in
training and during model inference. These methods also do not provide rigid pose infor-
mation; thus, they are only applicable in constrained and limited setups. This is a barrier
to deploying these methods as a fully automated alternative to conventional SSM methods.

In this paper, we propose LocalizedSSM, an end-to-end deep learning framework that
simultaneously extracts the tight bounding box over the shape of interest from a complete
image, transforms it to match the mean shape, and uses this to extract statistical shape
representation. LocalizedSSM comprises of three subnetworks that are trained end-to-end;
a segmentation subnetwork, a registration subnetwork, and a shape regression subnetwork.
Specifically, LocalizedSSM first performs anatomy segmentation using the segmentation
subnetwork to localize the anatomy and provide an attention map for the shape regression
subnetwork to estimate shape statistics from images. Then a spatial transformer does an
affine registration of the cropped region (based on the output of the segmentation subnet-
work) to match the mean shape, which is then passed to the shape regression subnetwork
that learns the functional mapping from image features to a low-dimensional shape rep-
resentation. Given a new image, LocalizedSSM alleviates any manual input required for
model inference. In addition, as LocalizedSSM is a multi-task network, it provides sig-
nificant accuracy improvements compared to using cropped images for estimating shape
descriptors. Moreover, LocalizedSSM is also orthogonal to existing deep learning methods
(Adams et al., 2020; Adams and Elhabian, 2022; Tao et al., 2022; Huang et al., 2017; Xie
et al., 2016; Zheng et al., 2015), any of which can be integrated as the shape regression
subnetwork in a straightforward manner.

2. Methods

Given a dataset of N samples, we denote the unsegmented 3D images {In}Nn=1 where In ∈
RH×W×D. The corresponding segmentations are denoted {Sn}Nn=1 where Sn ∈ RH×W×D.
The set of corresponding PDMs comprised of M world 3D correspondence points is denoted
{pn}Nn=1 where pn ∈ R3M , which are essentially coordinates representing the population-
level statistical shape information after removing global alignment differences across samples
in the given cohort (check 3 for how the correspondences were generated). The proposed
network maps the volumetric image In to correspondences pn in an end-to-end manner.

First Ŝn is predicted from In via a segmentation sub-network and the excess background
is cropped out, resulting in Ŝ′

n. Next, a spatial transformer sub-network does an affine
registration of the cropped Ŝ′

n to match the mean shape. The output of this step is denoted
Ŝ′′
n. The cropped, aligned segmentation, Ŝ′′

n, is then passed to a shape regression sub-network
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to output predicted correspondences p̂n. An overview diagram is provided in Figure 1 and
the sub-networks are described in the following sections.

Figure 1: LocalizedSSM Network Architecture.

2.1. Segmentation sub-network

The segmentation sub-network utilizes a 3D UNet (Ronneberger et al., 2015; Çiçek et al.,
2016) architecture to segment the anatomy of interest from the volumetric image (ı.e., pre-
dict Sn from In). A binary cross entropy loss (Lseg) in used for supervising the segmentation
sub-network. Architecture details can be found in the supplementary materials.

Lseg = −
1

N

N∑
i=1

Sn · log Ŝn + (1− Sn) · log(1− Ŝn); (1)

The excess background is then cropped from the segmentation, resulting in Ŝ′
n. This iden-

tical cropping is also applied to the input image, resulting in I′n.

2.2. Registration sub-network

The registration sub-network employs a spatial transformer (Jaderberg et al., 2015) to
enhance the model’s geometric invariance by transforming the segmented shape. Shape is
defined by the characteristic that remains after removing all global geometrical information
from an object. To this end, we select a representative shape to which every shape is matched
via a rigid transformation. The registration sub-network learns a rigid transformation
(parameterized by θn) from Ŝ′

n to the representative shape, S. In our experiments, the
medoid shape is used as the reference S; where the mediod is selected by first computing
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the average segmentation and then selecting the training shape nearest to it. S is used as
a target for the supervised spatial transformer to make the shape regression network focus
on estimating shape features that are invariant to Euclidean transformations.

The learned rigid spatial transform, θn, is then applied to the cropped segmentation
Ŝ′
n, resulting in Ŝ′′

n. This transform is additionally applied to the cropped input image I′n,
resulting in I′′n. The registration sub-network optimized MSE loss (Lreg) between mean

shape, S and transformed cropped anatomy segmentation Ŝ′′
n.

Lreg =
1

N

(
S− Ŝ′′

n

)2
; (2)

2.3. Attention Map

We apply a Gaussian Filter G (kernel size = 5 , σ = 2) on the transformed cropped anatomy
segmentation (Ŝ′′

n), which acts as an attention map and is added with transformed cropped
anatomy image (I′′n) resulting in Cn.

Cn = (G⊛ In) ·max (I′′n) + I′′n; (3)

This puts more emphasis on the boundary of shape making the work of shape sub-network
network easier.

2.4. Shape sub-network

We based our shape sub-network on DeepSSM (Bhalodia et al., 2018a). It is a set of 5 con-
volution layers and 2 fully-connected layers that takes the result from the Gaussian Filter
(Cn) and regress to the PCA scores zn. The PCA score is passed through another linear
fully-connected layer with the weights fixed as the eigenvectors and the bias as the mean
shape (precomputed on training set world correspondences and hence provides and implicit
shape prior), giving us an estimate of the world correspondences pn. The shape sub-network
optimizes the MSE loss (Lw) between the estimated and the original world correspondences.

Lw =
1

3M
(p̂n − pn)

2 ; (4)

The final loss is given by -

L = λsegLseg + λregLreg + λwLw; (5)

The proposed network is trained in a stepwise manner, initially only training for segmen-
tation (λseg = 100, λreg = λw = 0) for the first ten epochs. Then the weight corresponding
to the registration loss (λreg) is increased, and the network is trained for ten more epochs.
Finally, incrementally increasing λw until a certain value. Overall we train the network for
200 epochs; PyTorch is used in constructing and training the network with Adam (Kingma
and Ba, 2014) optimizer and a learning rate of 2e-3 for the first ten epochs, then 1e-5 with
step learning rate decay. The weights of the network are initialized by He initialization (He
et al., 2015).
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3. Results

We compare our results with two baseline approaches (Bhalodia et al., 2018a, 2021), DeepSSMc

and DeepSSMf . In DeepSSMf we use full images (as in our work) for training, whereas in
DeepSSMc, we crop the image to extract the anatomy as a pre-processing. By comparing
these baselines, we showcase that LocalizedSSM performs better or comparatively to the
networks trained separately. For each dataset, we evaluate the performance of each model
by comparing the predicted world points to their ground truths and computing the root
mean squared error (RMSE) averaged over each dimension. We also reconstruct mesh from
the predicted and ground truth points and evaluate the surface-to-surface distance, which
is essentially the average Haussdorff distance.

3.1. Supershapes

We used a 3D supershapes dataset as a proof of concept. Supershapes can be parametrized
by three variables, two define the curvature, and the last defines the number of lobes.
We generate 2000 shapes with random curvature and number of lobes between 4-10 chosen
randomly. These shapes are randomly oriented and positioned in a 128x128x128 size image.
Additive Gaussian noise is added to the images, and the images are blurred with a Gaussian
filter to mimic diffuse shape boundaries. We form the initial PDM with 32 points from
complete data using the Shapeworks software (Cates et al., 2017) and use 6 PCA components
to capture 72% of shape variability. We use 1800 examples for training and the remaining
for testing.
The box plots for unseen test data representing the Euclidean distance error per-point

(a) (b)

Figure 2: Supershapes. (a) RMSE for world points (mm): Euclidean distance between ground
truth points and points obtained from predictions across all test samples. (b) Surface-to-surface
distance (mm): Computed between reconstructed mesh using ground truth points and points ob-
tained from predictions across all test samples.

per-shape is shown in Figure 2(a); and the one representing surface-to-surface distance
for reconstructed mesh is shown in Figure 2(b). We can see that our method performs
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comparably or better to the baselines. We have also provided the surface-to-surface distance
visualization of reconstructed mesh for best, median and worst cases in the test set in
Figure 3.

Figure 3: Supershapes. Surface to surface distance (mm) visualization: Shape reconstruction
error interpolated as a heatmap on ground truth reconstructed meshes. Best, Median and Worst case
result on LocalizedSSM.

3.2. Left Atrium

We apply our network on the Left Atrium MRI dataset. The data has a total of 1006
images that vary significantly in intensity and quality, more so due to topological variants
pertaining to pulmonary veins arrangements. We divide the data into train and test sets.
We form the initial PDM with 1024 points using the Shapeworks software (Cates et al.,
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2017) from training data (914 examples) and use 300 PCA components to capture 97% of
shape variability. Note that the test data is kept separate while generating the initial PDM;
this is done to ensure that the test data remains completely unseen.
The box plots for unseen test data representing the Euclidean distance error per-point

(a) (b)

Figure 4: Left Atrium. (a) RMSE for world points (mm): Euclidean distance between ground
truth points and points obtained from predictions across all test samples. (b) Surface-to-surface
distance (mm): Computed between reconstructed mesh using ground truth points and points ob-
tained from predictions across all test samples.

per-shape is shown in Figure 4(a); and the one representing surface-to-surface distance
for reconstructed mesh is shown in Figure 4(b). We can see that our method performs
comparably or better to the baselines, primarily as localizing the anatomy provides a strong
prior for identifying world points. We have also provided the surface-to-surface distance
visualization of reconstructed mesh for best, median and worst cases in the test set in
Figure 6.

We also compare Left Atrium to another baseline where cropped and aligned images
are used to train DeepSSM (DeepSSM CA); LocalizedSSM performs comparably or even
better than the lower bound achieved with cropped and aligned images (DeepSSM CA).
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Figure 5: RMSE for world points (mm)

Index Value

Dice Score for
Segmentation

0.771

Normalized Cross
Correlation Loss
for Registration

0.0278

Table 1: Segmentation and Registration Perfor-
mance for the Left Atrium Dataset

4. Conclusion

LocalizedSSM is an end-to-end deep learning framework for extracting the population shape
representation in the form of world correspondence. It offers a novel approach for deep
learning based shape modeling that simultaneously detects and segments the anatomy of
interest, performs rigid transformation with respect to mean shape, and predicts the sta-
tistical representation of the anatomy. Our work alleviates any manual input required for
model inference while also significantly improving the accuracy. We compare our work to
the baseline DeepSSM models and find that the qualitative and quantitative performance
of the proposed model is better or comparable with the baselines on two different datasets.
Although the proposed work has some limitations, including that it does not provide local
correspondences (i.e., in the coordinate frame of the original image), which might be useful
in several downstream tasks Additionally, the proposed approach is a supervised method,
and it requires software such as ShapeWorks to form the initial PDM for training and hence
is dependent on the accuracy of the reference method (Goparaju et al., 2022) used. To the
best of our knowledge, this paper is the first of its kind to introduce localization awareness
for statistical shape modeling. Our results demonstrate that localization and registration
are essential for effective shape modeling. Additionally, the proposed method can be readily
integrated with other deep learning based shape modeling methods by replacing the shape
regression sub-network and could improve upon the accuracy of those methods.
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Figure 6: Left Atrium. Surface to surface distance (mm) visualization: Shape reconstruction
error interpolated as a heatmap on ground truth reconstructed meshes. Best, Median and Worst case
result on LocalizedSSM.
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Appendix A. Architecture Details

A.1. Segmentation

A 3D UNet is used for segmentation. It consists of five downsampling, five upsampling
layers, and a bottleneck in between. In downsampling/encoder layers, each layer consists of
two convolution layers with kernel size 3x3 and padding 1 followed by a ReLU activation and
3D Batch Norm and then a 3D Max Pool of kernel size 2. We start with the initial feature
output of the first layer as 16 and double it every layer till the end of the downsampling
layer. For the decoder / upsampling layers, each layer has a 3D convolution transpose
operation that preserves the features and acts as an inverse to max pool 3D; it uses a
kernel of size two and stride two followed by two convolution layers with kernel size 3x3
and padding 1, followed by a ReLU activation and 3D Batch Norm, same as in encoder.
The only difference is that the size of channels is reduced to divide by 2 for every layer,
and it also takes the corresponding input from the encoder (skip connection) for each layer.
Finally, the last decoder layer has two convolution layers with kernel size 3x3 that outputs
the required channels (both input and output channels are 1), followed by a sigmoid.

A.2. Spatial Transformer

We concatenate the cropped anatomy and the mean segmentation channel-wise to pass it to
shape registration subnetwork to estimate the 12-parameter theta matrix (3 for translation
and 3x3 rotation). The shape registration subnetwork, also referred to as a localization net
in the context of spatial transformers, uses the same architecture as UNet Encoder with 5
layers and the starting feature output of the first layer as 8. We then pass the output from
the encoder to another linear layer to give 12 values. For this final layer, we initialize the
parameters corresponding to translation as 0 and the parameters of the rotation matrix as
identity. We then create an affine grid of the same dimensions as the cropped region using
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the theta matrix; the grid is generated using the function provided by PyTorch. We use
the grid to sample the cropped anatomy, which transforms it based on the theta values

A.3. Shape Subnetwork

The shape subnetwork architecture is the same as DeepSSM. CNN layers with five con-
volution layers followed by two fully connected layers to produce the output regression
coefficients. The input to the network is the cropped 3D image combined with a Gaussian
filter (the Gaussian filter provides an attention map for the shape regression subnetwork),
and the output is a set of ordered PCA loadings with respect to the shape space. The
PCA loadings are then passed to a fixed linear decoder, whose weights are fixed to the
Eigen-matrix and bias to mean shape, to give the world particles.

Appendix B. Cropping

The segmentation output is essentially a binary 3D image where pixels not corresponding to
the anatomy of interest are zeros. We use this mask to get the bounding box of the region
with non-zeros pixel values and use it to crop the segmentation and, correspondingly, the
input image. Then finally, resize them to a constant size of 64× 64× 64.

Appendix C. Training Details

The batch size is set to 1, λseg = 100 is fixed. λreg is set to 100 after ten epochs. And after
ten more epochs, we keep on increasing λw to a maximum value of 10 over the duration
of 10 epochs. We have determined these values after extensive experimentation and cross-
validation. Also, note that the segmentation network is kept completely separated; we break
the gradient flow after segmentation so Lreg (registration network) and Lw (shape sub-
network) does not affect the segmentations (same as segmentation trained independently).
We do this because we found out in our experiments that propagating the Lreg hurts the
segmentation performance. A step learning rate scheduler is used with gamma 0.99 and
updated every 50 epochs.
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